arXiv:1102.5433v4 [math.CO] 5 Mar 2014

On the van der Waerden numbers w(z)3

Tanbir Ahmed, Oliver Kullmanr?, Hunter Snevil§t

aDepartment of Computer Science and Software Engineeriage@dia University, Montréal, Canada.
ta_ahmed@cs.concordia.ca
bComputer Science Department, Swansea University, Swadsea
O.Kullmann@Swansea.ac.uk
¢Department of Mathematics, University of Idaho - Moscowhin, USA.

Abstract

In this paper we present results and conjectures on theargdian der Waerden numbers w(2t)3and on the new
palindromic van der Waerden numbgrdw(2; 3t). We have computed the exact value of the previously unknown
number w(2; 319) = 349, and we provide new lower bounds for 2@ < 39, where for 20< t < 30 we conjecture
these bounds to be exact. The lower bounds for w(@;8ith 24 < t < 30 refute the conjecture that w(2;t3 < t?

as suggested in [14]. Based on the known values of w2, &e investigate regularities to better understand the
lower bounds of w(2; ). Motivated by such regularities, we introduce palindroman der Waerden numbers
pdw(; to, . . ., tk_1), which are defined as the ordinary numberk\y, . . ., tx_1), but where only palindromic solutions
are considered, reading the same from both endgef@nt from the situation for ordinary van der Waerden number
these “numbers” need actually to be pairs of numbers. We atemguiw(2; 3t) for 3 < t < 27, and we provide bounds
fort < 39, which we believe to be exact fox 35. All computations are based on SAT solving, and we disthess
various relations between SAT solving and Ramsey theonyeéially we introduce a novel (open-source) SAT solver,
thetawSolver, which performs best on the SAT instances studied here, aihvs actually the original DLL-solver
([28]), but with an dicient implementation and a modern heuristic typical foklanead solvers (applying the theory
developed in/[48]).

Contents
1 Introduction 2
1.1 Using SAT SOIVEIS . . . . . . e e e (4
1.1.1 Informedversus uninformed SAT solving . . . . . . . . . . oo (5
1.1.2 Parallgtistributed SAT solving . . . . . . . . . . e e E;
1.1.3 Synergies between Ramsey theoryand SAT . . . . . . . . . ... ... 6
1.2 Theresultsofthispaper. . . . . . . . . e (7
2 ThetawSolver k
2.1 Thebasicstructure . . . . . . . . e (B
2.2 Look-aheadsolvers . . . . . . . L e (b
2.3 FromtawSolver-1.0t0tawSolver-2.6 . . . . . . . . . . . . . e o
2.4 Theimplementation . . . . . . . . . . L e e [1h
2.5 Theoptimal projection: thefunction . . . . . . . . . .. ... [J12

IHunter Snevily passed away on November 11, 2013 after higstmiggle with Parkinsons disease. He was an inspiring ensatician. We
have lost a great friend and colleague. He will be heavilysedsand fondly remembered

Preprint submitted to Elsevier September 11, 2018


http://arxiv.org/abs/1102.5433v4
http://en.wikipedia.org/wiki/Van_der_Waerden_number

3 Computational results onw(2; 3, t) [12

31 W(2;319)=349 . .o []12
3.2 SOMENEW CONJECIUNES . . . . o o i e e e e e e e e e e e [1B
3.3 Aconjectureonthe upperbound . . . . . . . . .. [14
4 Patterns in the good partitions 14
4.1 Numberof 0'sand 00'S . . . . . . . . . e e (15
4.2 Numberof 1's . . . . . e e [1b
4.3 Howcanithelpfor SAT solving? . . . . . . . . . . e L6
5 Palindromes [
5.1 PalindromicvdW-hypergraphs . . . . . . . . . . . e [ 18
5.2 Precisevalues . . . . . . . . . e [2b
5.3 Conjecturedvaluesandbounds . . . . . . . . . L e e [d1
5.4 Openproblems . . . . . . . e [2h
5.5 Remarksonthe use of Symmetries . . . . . . . . . ... [22
6 Experiments with SAT solvers 22
6.1 Complete solvers . . . . . . e e [2b
6.1.1 Cube-and-Conquer . . . . . . . . . . e e [2B
6.1.2 VdW-problems . . . . . . [2h
6.1.3 PalindromicvdW-problems . . . . . . . .. .. [2b
6.2 Incomplete solvers (stochastic local search) . . . . . ... . . L L oo [ 28
7 Conclusion 29
Appendix A Certificates 32
Appendix A.1  Conjectured precise lower boundsforw(2)3 . . . . . ... ... ... ... .... [ 32
Appendix A.2  Further lower boundsforw(2;t3. . . . . . . . . . ... Lo [ B3
Appendix A.3  Good palindromic partitions . . . . . . . . ... oo [3d4
Appendix B Using theOKlibrary 37
Appendix B.1  Numbersandcertificates . . . . . . . . . . .. [37
Appendix B.2  Hypergraphs . . . . . . . L e e [4b
Appendix B.3  SATINStANCES . . . . . . . . . e e e L4l
Appendix B.4  The SATSOIVErS . . . . . . . e [4b
AppendiX B.4.1 tawSoLlver. . . . . . . i e e [ a2
Appendix B.4.2 satz . . . .. .. e e [Jaa
Appendix B.4.3 march pl . . . . . . . .. [las
AppendiX B.4.4 OKSOLVET . . . . . o v v v i it i e e e [las
AppendiX B.4.5 Ubcsat . . . . . . . oo e e e [ 146

Appendix B.5 Running experiments . . . . . . . . ... e

1. Introduction

We consider Ramsey theory and its connections to compuc(see [58] for a survey) by exploring a rather
recent link, especially to algorithms and formal methodanaly to| SAT solving. SAT is the problem of finding
a satisfying assignment for a propositional formula. SiResnsey problems can naturally be formulated as SAT
problems, SAT solvers can be used to compute numbers froms®atheory. In the present article, we consider
van der Waerden numbers ([69]), where SAT had its biggestesscn Ramsey theory, namely the determination of
w(2;6,6) = 1132 in [43], the first new diagonal van der Waerden (short®Ridnumber after almost 30 years.


http://en.wikipedia.org/wiki/Ramsey_theory
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Definition 1.1. We useN = {x € Z : x > 1}, Ng = N U {0}. An arithmetic progressiomf lengtht € N is a subset
p c N of length|p| = t and of the formp ={a+i-d:i€{0,...,t—1}} for somea,d € N. A block partitionof length

k € N of a setX is a tuple Py, ..., Px_1) of lengthk of subsets oiX (possibly empty) which are pairwise disjoint
(PiNnP; =0fori # j)andwithPyU ---U Py = X. Thevan der Waerden numbev(k; to, t1, ..., t—1) € N for

K to,...,t1 € Nis the smallesh € N such that for any block partitiorP, . . ., Pc_1) of lengthk of {1, ..., n} there
exists gj € {0, ...,k - 1} such thaP; contains an arithmetic progression of length

That we have w; to, t1, . . ., tk-1) > ncan be certified by an appropriate block partitiofof . . , n}; such partitions
are the solutions of the SAT problems to be constructed, andall them “good partitions”:

Definition 1.2. A good partitionof {1,...,n} (wheren € Np) w.r.t. parameter$, ty, ..., t-1 iS a block partition
(Po, ..., Px1) Of {1, ..., n} containing no blockP; with an arithmetic progression of length(for any j).

So there exists a good partition{df . . ., n} if and only if n < w(k; to, t1, ..., t_1). For evenk,to,...,t%_1 € Nthe
only block partition of{1,...,0} = 0is (0,...,0), and this is a good partition. In this paper, we are inteckst the
specific van der Waerden numbers w(2)3t > 3. Specialising the general definition we obtain:

w(2; 3, 1) is the smallesh € N, such that
forall Po,PL C{1,...,njwithPonP; =0andPoU Py ={1,...,n}
eitherPy has an arithmetic progression of size Farhas an arithmetic progression of sizer both.

The known exact values of w(2;8 are shown in Tablgl 1 (with our contribution in bold).

t|345678910111213141516171819
w(2;3t) |9 18 22 32 46 58 77 97 114 135 160 186 218 238 279 3329

Table 1: Known values for w(2; 3)

As references and for relevant information on the above rarmisee Chvatal [15], Brown [13], Beeler and O’Neil
[@], Kouril [43], Landman, Robertson and Culver [53], andméd [2, 3] 4, SE Recently, Kullmann [4@ reported
the following lower bounds

w(2;3,19) > 349 w(2; 3, 20) > 389 w(2; 3, 21) > 416

We confirm the exact value of w(2; 89) = 349, and we extend the list of lower bounds ug te 39. Brown,
Landman, and Robertson [14], showed the lower bound w¢p;3 t>-/1°9/09t for t > 4. 10°16 and observed that
w(2;3,1) < t? for 5 < t < 16, suggesting that this might hold for &llOur lower bounds in SubsectibnB.2 however
prove that there arewith w(2; 3,t) > t2. We provide an improved upper boun®7%? in Subsectiof 313 (satisfying
all known values and lower bounds of w(218.

We also present a new type of van-der-Waerden-like numbarselypalindromic number-pairsobtained by the
constraint on good partitions that they must be symmetraeuneflection at the mid-point of the intervdl . . ., n}.
Perceived originally only as a heuristic tool for studyingioary van der Waerden numbers, it turned out that these
numbers are interesting objects on their own. An interggthenomenon is that we no longer have the standard
behaviour of the SAT instances with increasmgvhere

o first all instances are satisfiable (for< w(k;to, ..., t-1)), and from a certain point on (the van der Waerden
number) all instances are unsatisfiable (far w(k;to, . . ., tk-1)),

¢ but now first again all instances are satisfiable (far p), then we have a region with strict alternation between
unsatisfiability and satisfiability, and only from a secomihp on all instances are unsatisfiable (for g).

2This sequence sttp: //oeis.org/A007783]in the “On-Line Encyclopedia of Integer Sequences”.
Sthe conference articlé [50] contains only material relae6Green-Tao numbers and SAT


http://oeis.org/A007783

These two turning points constitute the palindromic “nuniipelw(2; 3,t) = (p, g) as pairs of natural numbers. We
were able to compute pdw(2;1} for t < 27. We also provide (conjectured) values fat 39[ The full definition is
in Sectiorl b, while the special case experimentally stuiiedis paper is defined as follows:

In pdw(2;31) = (p,q),
the numben is the smallest number such that foratt q and
forall Pp, P1 C {1,...,n} with Pon Py = 0 andPy U Py = {1, ..., n} with the property,
thatforallve {1,...,nfwe haveve P ©n+1-vePyjandve P n+1-ve Py,
eitherPy has an arithmetic progression of size Farhas an arithmetic progression of sizer both.
While pis the largest number such that foralk p and for all such g, P;)
neitherPy has an arithmetic progression of size 3 Rghas an arithmetic progression of size

In the ordinary case of plain partitions (without the adtitl symmetry condition) we haye+ 1 = g, and thus one
uses just one number (instead of a pair), however here we aan & “palindromic span”, that ig+ 1 < g can
happen for the palindromic case. The reason is that from d gadition of{1,. .., n} we obtain a good partition of
{1,...,n— 1} by simple removing, however for “good palindromic partitions” besides remmmm we also need to
remove the corresponding vertex 1 (due to the palindroyndcindition).

Apparently the most advanced special algorithm (and imphgation) for computing (mixed) van der Waerden
numbers is the algorithfimplementation developed in_[63]. For computing w(213) = 279, with this special
algorithm a run-time of 552 days is reported (page 113); thehine used should be at most 30% slower than the
machine used in our experiments, and so this should transkat at least 400 days on our machine. As we can see in
Table[9, thecawSolver-2.6 used is 85-times faster, while Tablé 10 shows, that & Conquer is around 40-times
faster. These algorithms know nothing about the specifiblpro, and are just given the generic SAT formulation of
the underlying hypergraph colouring problem. So it seeras AT solving does a good job héte.

1.1. Using SAT solvers

As explored in Dransfield et al. [19], Herwig et al. [27], Kdy#3, 42], Ahmed [2, 3], and Kullmann_[49,
50], we can generate an instar€fy, . . ., tk_1; n) of the satisfiability problem (for definition, see any of thleove
references) corresponding tokylp, ts, . . ., tk-1) and integemn, such that=(to, . .., tx_1; n) is satisfiable if and only if
n < w(k;to,t1,...,t_1). In particular, the instande(3, t; n) corresponding to w(2;,3) with n variables consists of the
following clauses:

(a) {Xa» Xard> Xar2q} Witha > 1,d > 1,a+2d < n, and
(b) {Xa» Xa+d - » Xard-n} Witha>1,d > La+d(t-1)<n,

where an assignment = ¢ encodes € P, for £ € {0,1} (if X is not assigned but the formula is satisfied, then
i can be arbitrarily placed in either of the blocks of the gimmi). The (“positive”) clauses (a) (consisting only of
variables), constructed from all arithmetic progressimiiength 3 in{1, ..., n}, prohibit the existence of an arithmetic
progression of length 3 iRy. And the (“negative”) clauses (b) (consisting only of neghtariables), constructed from
all arithmetic progressions of lengthin {1, ..., n}, prohibit the existence of an arithmetic progression ofjtan in
P;. To check the satisfiability of the generated instance, vesine use a “SAT solver”. A complete SAT solver finds
a satisfying assignment if one exists, and otherwise ctlyreays that no satisfying assignment exists and the famul
is unsatisfiable. One of the earliest complete algorithitfsaOLL algorithm ([18]), and our algorithm for computing
w(2; 3,19) < 349, discussed in Sectibh 2, actually implements this vasjdscheme, using modern heuristics.

SAT solving has progressed much beyond this simple algaoriimd the handbook [12] gives an overview (where
[7Q] discusses some applications of SAT to combinatorig$lere in [17] we find a general overview on complete
SAT algorithms, whilel[40] gives an overview on incompletgasithms. For complete algorithms especially the

4The sequence pdw(2;8 is http://oeis.org/A198684, http://oeis.org/A198685| in the “On-Line Encyclopedia of Integer Se-
quences” (the first and the second components).

5As discussed in Subsectibn P.1, for enumerating all salstiorn = w(2;3 17) - 1 = 278 with tawSolver-2.6 we need at most the time
needed for determining unsatisfiability; in this specialecave have actually precisely one solution.

4


http://oeis.org/A198684
http://oeis.org/A198685

algorithms derived from the DLL algorithm are of importanaad there are two families, namely the (earlier) “look-
ahead solvers” outlined in_[31], and the (later) “conflicivén solvers” (or “CDCL” like “conflict-driven clause-
learning”) outlined in[[55]. In Sectioln] 6 we will discuss h@eneral SAT solvers perform on the problems from this
article. The motivation for our choice of the most basic DUgaithm for tackling the unsatisfiability of the instance
F(3,19; 349), already employed inl[3] and discussed in Subsedid, is, that on these special problems classes
this basic algorithm together with a modern heuristic ig/\@mpetitive — best on ordinary problem instances, and
beaten on palindromic instances only by theth®e & Conquer methodd And then it is also instructive to use such
an algorithm, which due to its simplicity might enable gerahsight. Another advantage of its simplicity is, that it
can also count and enumerate the solutions, but in thideartie focus mostly on mere SAT solving; seel[22] for an
overview on counting solutions.

Local-search based incomplete algorithms (see Ubcse{&1f]) are generally faster than a DLL-like algorithm
in finding a satisfying assignment (on such combinatoriabfgms), and this is also the case for the instances of
this article. However they may fail to deliver a satisfyirgsgnment when there exists one, and they can not prove
unsatisfiability. If they succeed on our instances, they thaiver a good patrtition, and thus a lower bound for a
certain van der Waerden number. So such incomplete algwsitiie used for obtaining good partitions and improving
lower bounds of van der Waerden numbers. When they fail toargthe lower bound any further, we need to turn
to a complete algorithm.

1.1.1. Informed versus uninformed SAT solving

We use general SAT solvers, and the new solvers developed byeualso general SAT solvers, which can run
without modification on any SAT problem; these solvers just on the naked and natural SAT formulation of the
problem, without giving them further information. More sgjfecally, to show unsatisfiability we have developed the
tawSolver (Sectiorf?) and théube & Conquer-method (Subsectidn 6.1.1), while to find satisfying assignts we
have selected local-search algorithms (SubseLtidn 6.2).

On the other end of the spectrumlisi[43, 42], which uses a gt cialised method, which involves a variety of
specialised SAT solvers on specialised hardware, in coaibimwith some special insights into the problem domain.
For finding satisfying assignments we have the methods dpeedlin [27| 30, 29]. For more examples on informed
search to compute van der Waerden numbers, see also Sedfif]2

Our “uninformed approach” has stronger bearings on gerg&&lsolving, while the informed approach can be
more dficient for producing numerical results (however it seemseteda lot of §ort to beat general SAT solvers (by
specialised SAT solvers); as we have already reported,engrgl methods are at least on the instances of this paper
much faster than the dedicated (non-SAT-based) metho&in [6

1.1.2. Paralledistributed SAT solving

The problems we consider are computationally hard, andniherdest of them in this paper, computation of
w(2;3,19) = 349, a single processor, even when run for a long time, ismmigh. Hence some form of parallelisation
or distribution of the work is needed. Four levels of pataigion have been considered for general-purpose SAT
solving (in a variety of schemes):

(i) Processor-level parallelisation: This helps only ferwspecial algorithms, and can only achieve some relativel
small speed-up; see [33] for an example which exploits fedtait-operations. It seems to play no role for the
problems we are considering.

(i) Computer-level parallelisation: Here it is exploitdtat currently a single (standard) computer can contain up
to, say, 16 relatively independent processing units, waykin shared memory. So threads (or processes) can
run in parallel, using one (or more) of the following gendeains of collaboration:

(a) Partitioning the work via partitioning the instanceq&elow); [71| 39] are “classical” examples.
(b) Using the same algorithm running in various nodes onahneesproblem, exploiting randomisation amd
sharing of learned results; se¢el[36, 24] for recent examples

6TheCube & Conquer method, developed originally on the instances of this lerticombines a look-ahead solver with a conflict-driven eglv
and is faster by a factor of two on palindromic instances.



(c) Using some portfolio approach, runningtdrent algorithms on the same problem, exploiting that vexrio
algorithms can behave veryftrently and unpredictably; see [23] for the first example.
Often these approaches are combined in various ways; sg2][627| 38] for recent examples. Approaches (b)
and (c) do not seem to be of much use for the well-specifiedi@nollomain of hard instances from Ramsey
theory. Only (a) is relevant, but in a more extreme form (sglews). In the context of (ii), still only relatively
“easy” problems (compared to the hard problems from Ranissyry) are tackled.

(iif) Parallelisation on a cluster of computers: Here upsay, 100 computers are considered, with restricted com-
munication (though typically still non-trivial). In thisase, the approach (ii)(a) becomes more dominant, but
other considerations of (ii) are still relevant. For hardigems this form of computation is a common approach.

(iv) Internet computation, with completely independentnpaiters, and only very basic communication between
the centre and the machines: In principle, the number of cenp is unbounded. Since progress must be
guaranteed, and the instances for which Internet computatiapplied would be very hard, at the global level
only (ii)(a) is applicable (while at a local level all the ethschemes can in principle be applied). Yet there is no
real example for a SAT computation at this level.

We remark that the classical area of “high performance caimgiuiseems to be of no relevance for SAT solving, since
the basic SAT algorithms like unit-clause propagation diferent from typical forms of numerical computation, in-
herently sequential (compare also our remarks to (i)). Hewasing dedicated hardware with specialised algorithms
has been utilised in [43, 42], yielding the currently ma&téent machinery for computing van der Waerden numbers.

A major advantage of the DLL solver architecture (which hesrbfurther developed into so-called “look-ahead”
SAT solvers) is that the computation is easily parallelisalnd distributable: Just compute the tree only up to aicerta
depthd, and solve the (up to)*sub-problems at level. Only minimal interaction is required: The sub-problemes ar
solved independently, and in case one sub-problem has beed Eatisfiable, then the whole search can be aborted
(for the purpose of mere SAT-solving; for counting all s@uas of course the search needs to be completed). And
the sub-problems are accessible via the partial assignooastituting the path from the root to the corresponding
leaf, and thus also require only small storage space. Thiieisore of method (ii)(a) from above, and will be further
considered in Subsectién 8.1 (for our special examplexlass

In the subsequent subsection we will discuss the generédtisnaéiapplying SAT solving to (hard) Ramsey prob-
lems. One spin4d of this combination lies in pushing the frontier of large qautations. As a first example we have
developed in[[32, 68], motivated by the considerations efghesent article, an improved method for (ii)(a) called
“Cube & Conquer”, which is also relevant for industrial problems (typigaftom the verification area). One aspect
exploited here is that for extremely hard problems, splitinto millions of sub-instances is needed. In the litenatu
until now (see above for examples) only splitting as requiby at most hundreds of processors, has been performed,
while it turned out that the above “extreme splitting”, whesmbined with “modern” (CDCL) SAT solvers, is even
beneficial when considered as a (hybrid) solver on a singlegssor, and this for a large range of problem instances.

1.1.3. Synergies between Ramsey theory and SAT

For Ramsey-numbers (see[57] for an overview on exact ®sudtlatively precise asymptotic bounds exist, and
due to the inherent symmetry, relatively specialised medtfor solving concrete instances have an advantage. Van-
der-Waerden-like numbers seem harder to tackle, both asyicgdly and exactly, and perhaps the only way ever to
know the precise values is by computation (and perhapsghatso true for Ramsey-numbers, only more structures
are to be exploited). SAT solvers are especially suitedifertask, since the computational problems are hypergraph-
colouring problems, which, at least for two colours, haveoacal translations into SAT problems (as only considered
in this paper). For more colours, see the approach star{@jnwhile for a general theory of multi-valued SAT close
to hypergraph-colouring, see [51, 52].

Through applying and improving SAT solvers (as in the preaelicle), Ramsey theory itself acquires an applied
side. Perhaps unknown to many mathematicians is the fatttienever for example a recent microchip is employed,
this likely involves SAT solving, playing an important (tingh typically hidden) role in its development, by providing
the underlying “engines” for its verification; see the reddeandbookl[12] to get some impression of this astounding
development. Now we believe that problem instances fromdRgrtheory are good benchmarks, serving to improve
SAT solvers on hard instances:



e Unlike with random instances (see [1] for an overview), anstes from Ramsey theory are “structured” in
various ways. One special structure which one finds in aflgliestances is that they are layered by the number
of vertices (the same structural pattern is repeated agdiagain, on growing scales).

e A major advantage of random instances is their scalabihigt is, we can create relatively easily instances of
the same “structure” and fiierent sizes. With instances from Ramsey theory we can atydiva parameters,
however due to the possibly large and unknown growth of Rg#ike numbers, controlling satisfiability and
hardness is more complicated here. This possible disaalyartn be overcome through computational studies
like in this paper, which serve to calibrate the scale vizigeenumerical data, so that the field of SAT instances
from Ramsey-theory becomes accessible (one knows foalipiirameter values the satisfiability status and
(apparent) solving complexity, and gets a feeling what leagpeyond that).

¢ Inthis paper, we consider two instance classes: instaptaed to ordinary van der Waerden numbers w(®; 3
and instances related to the palindromic forms pdw(B; Now already with these two classes, the two main
types of complete SAT solvers, “look-ahead” (see [31]) arwhflict-driven” (seel[55]), are covered in the sense
that they dominate on one class each (and are (relativéig)emt); see Section 6 for further details. On the
other hand, for random instances only look-ahead solverdgicient (for complete solvers).

e Especially for local-search methods (see [40] for an oesvyjthese problems are hard, but not overwhelmingly
so (for the ranges considered), and thus all the given loaends can trigger further progress (and insight) into
the solution process in a relatively simple engineerikg-tnanner (by studying which algorithms work best
where).

e On the other hand, for upper bounds we need to show unsailitfiaihich is much harder (we can only solve
much smaller instances). All applications of SAT solvindghardware verification are “unsatisfiability-driven”
(seel[9, 44] for introductions). So future progress in sojMiard Ramsey instances might trigger a breakthrough
in tackling unsatisfiability, and should then also imprdvede industrial applications.

We believe that for better SAT solving, established hardbfamm instances are needed in a great variety, and we
believe that Ramsey theonyfers this potential. To begin the process of applying Rambegpry in this direc-
tion, problem instances from this paper (as well as relatejb@]) have been used in the SAT 2011 competition
(http://wuw.satcompetition.org/2011/). As already mentioned in the previous subsection, theffuds of
the collaboration between SAT and Ramsey theory appeaf@8,i68], yielding a method for tackling hard problems
with strong scalability.

Finally, the interaction between Ramsey theory and SAT khgield new insights for Ramsey theory itself:

1. The numerical data can yield conjectures on growth rats Subsectidn 3.3.

2. The good partitions found can yield conjectures on pastesee Sectidd 4.

3. New forms of Ramsey problems can be found through alguoiiticonsiderations; see Sect{dn 5.

4. The SAT solving process, consideliaddetail, acts like a microscope, enabling insights into the stmectf
the problem instances which are out of sight for Ramsey thget: For approaches towards structures in SAT
instances, which we hope to study in the future, see [61, 41].

1.2. The results of this paper

In Section 2, we present the new SAT solveiwSolver-2.6, with superior performance on the instances con-
sidered in this paper (only for palindromic instances the& hgbrid methodCube & Conquer is superior). Section
contains our results on the numbers w(2)3We discuss the computation of the one new van der Waerden nu
ber, and present further conjectures regarding precim@aind the growth rate. In Secti@h 4, we investigate some
patterns we found in the good partitions (establishing dveer bounds). In Sectidd 5, we introduce palindromic
problems and the corresponding palindromic number-p&irglly in Sectiori 6, we discuss the observations on the
use of the various SAT solvers involved.

"to establish these conjectures will require major advanc&AT solving

7


http://www.satcompetition.org/2011/

In this paper, we represent partitions of w(2)3as bitstrings. For example, the partiti® = {1,4,5,8} and
P, = {2,3,6, 7}, which is an example of a good partition {df 2, .. ., 8}, where 8= w(2; 3,3) — 1, is represented as
01100110, or more compactly as?01120, using exponentiation to denote repetition of bits.

2. ThetawSolver

We now discuss theawSolver, an open-source SAT solver, created by the first author wihesial focus on
van der Waerden problems (version 1.0), and improved byabersl author through an improved branching heuristic
(version 2.6ﬁ Algorithm[1 shows that the basic algorithm of thewSolver is the simplest possible (reasonable)
DLL-scheme, just branching on a variable plus unit-claus@agation. As we can see in Sectidn 6, it is the strongest
SAT solver on the instances considered in this paper, ordtelmeon palindromic problems by the new hybrid scheme
Cube & Conquer, which came out as a result on research on the instancesqgfaper.

2.1. The basic structure
Algorithm[T specifies theawSolver, which for inputF (a formula or “clause-set”) decides satisfiability:

1. Lines 3-5 is “unit-clause propagation” (UCP), denotedh®y/functionry, which sets literalx in the current
to true while there are unit-clausgg € F.

(a) Setting a literak to true in a clause-sét is performed by first removing all clauses frdfrcontainingx,
and removing the elemeRrtfrom the remaining clauses.

(b) r1 finds a contradiction (Line 4) by finding two unit-claugesand{v} (i.e.,v A =v).

(c) Whiler; finds a satisfying assignment (Line 5) if all clauses vaniqfiave been satisfied).

2. Lines 6-7 give the branching heuristic, which yields thanehing literalx, first set to true, then to false, in the
recursive call of theawSolver.

(@) p(a,b) € R, fora, be R.gin Line 6 is the “projection”, and we consider three choipesp., p;.

(b) we(x) for literal x is a heuristical value, measuring in a sense the “progresg\ad” when setting
to FALSE (“progress” in the sense of the instance becomingensonstrained, so that more unit-clause
propagations are to be expected).

(c) The details are specified in Subsection$[2.3, 2.5.

3. The implementation is discussed in Subsedfioh 2.4.
4. The tree of recursive calls made by the solver is calledihietree of F.

Besides the choice of the heuristic, this is the basic SA¥es@ls published in [18]. The implementation is optimised
for the needs of the branching heuristic, which requiresmvkfrom each (original) clause in the inpgatwhether it
has been satisfied meanwhile, and if not, what is its curesrgth.

Algorithm 1 tawSolver
1: Global variable, initialised by the input.
2: function DLL() : returns SAT or UNSAT for the currerit
3 UpdateF tory(F)
If contradiction found via;, then goto 12
If satisfying assignment found via, then return SAT
Choose variableg with maximal p(wg (v), W (V))
If we(v) > we(V), thenx:=v, elsex:=V
Setxto TRUE inF; if DLL() = SAT, then return SAT
Undo assignment of
10: SetXxto TRUE inF; if DLL() = SAT, then return SAT
11: Undo assignment of
12: Undo assignments made by
13: Return UNSAT
14: end function

© o N

€http://sourceforge.net/projects/tawsolver/} and in thedklibrary:
https://github.com/0OKullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/tawSolver.cpp

8


http://sourceforge.net/projects/tawsolver/
https://github.com/OKullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/tawSolver.cpp

With a small modification, namely just continuing when asfgthg assignment was found, thewSolver can
also count all satisfying assignments, or output them; ithsvailable as a compile-time option for the solver. In
Sectiori 4, we will discuss some patterns which we found isfyatg assignments fd¥ (3, t; n) with n < w(2; 3,t). We
do not report run-times for determining (or counting) allgimns in Sectiofil6, but fon = w(2; 3,t) — 1 (empirically)
the run-time is at most the run-time needed to determinetisfiafility for n = w(2; 3,t); for numerical values of
solution-counts see [42].

2.2. Look-ahead solvers

Itis useful for the general picture to consider the gengraperations, as introduced in [45] and further studied in
[25,[26]. These operations transform a clausersigtto a satisfiability-equivalent clause-set via appliocatdf some
forced assignments (i.e., where the opposite assignmenitslwield an unsatisfiable clause-set). Lelbe the empty
clause, which stands for a trivial contradiction just mapsF to {L} in case ofL € F, while otherwiseF is left
unchanged. Now we can recognigeas an operation which is applied recursively to the result wiith literal x set
to true if settingX to true yields{_L} via ro. This scheme yields also the genemafor k € N: as long as there is a
literal x such thaf with X set to true yield$.} viarg_1, setx to true and iterate. The final result, denoted ), is
uniquely determined. Besides the ubiquitous unit-clauspggatiorr; alsor,, called “failed literal elimination”, is
popular for SAT solving, and evan, typically called “double look-ahead”, is used in some sob/always partially,
testing the reductions only for selected variables).

The general scheme for a look-ahead solver (as stipulaté4i€in now generalises the DLL-procedure from
Algorithm[d, by replacing the reductida ~~ r1(F) in Line 3 by the generdf ~ r¢(F) for somek > 1. Furthermore,
for the inspection of a branching variable and the compartadf the heuristical values(v) andw(Vv), now the &ects
of settingvrespv to true and performing,_; reduction are considered. This explains also the notiotook-ahead”:
thery-reduction can be partially achieved at the time when rugthinough all variables, settingv resp.vto true and
applyingry_1 — if this yields{_}, then performing the opposite assignment is justified. &indés the standard for
reduction of a branch, (partial) is the default for the reduction at a ndile.

We see thatawSolver usesk = 1 (so the “look-ahead” usds= 0, and in this senseawSolver is a “look-ahead
solver with zero look-ahead”). The prototypical solver fmingk = 2 is theOKsolver ([46]). In a rather precise
sense theawSolver can be considered at the level-1-version of@keolver (or the latter as the level-2-version of
thetawSolver). Also for the branching heuristic, which is discussed ia tbllowing subsectiontawSolver uses
the same scheme as thksolver, appropriately simplified to the lower level. BothwSolver andOKsolver are
solvers with a “mathematical meaning”, precisely impletivenan algorithm to full extent, with the only magical
numbers the clause-weights used in the branching heuristic

The general scheme for the branching heuristic of a looladiselver, as developed in [48] (Subsection 7.7.2),
is as follows: For a clause-s&t and its direct successé” on a branch (applying the branching assignment and
further reductions), a “distance measutkF, F’) € R.q is chosen, with the meaning the bigger this distance, the
larger the decrease in complexity. The branching heurtstitsiders for each variableits two successoF’, F”
and computes the distance@-, F’), d(F, F”"). Then via a “projection™p : Rﬁo — R, one heuristical valud, :=
p(d(F, F’), d(F, F"")) is obtained. Finally somewith maximalh, is chosen. Choosing which @fr v to be processed
first (important for satisfiable instances) is done via a sBdduteuristic, estimating the satisfiability-probabiktief
F’,F” in some way.

2.3. FromtawSolver-1.0to tawSolver-2.6

We are now turning to the discussion of the branching heaiisttawSolver-2.6 (lines 6, 7 in Algorithni11),
the version developed for this article. FeswSolver-1.0 (used inl[2,!3]) the “Two-sided Jeroslaw-Wang” (2sJW)
rule by Hooker and Vinay [34] was used, which choosesch that the weighted sum of the number of clausds of
containingv is maximal, where the weight of a clause of lenigth 2kl As discussed in [48], the ideas from [34] are

9The look-ahead solversatz andmarch_pl run through the variables once (actually also only considefinteresting” variables by some
criterion), and so they do not computg but only an approximation. The only solver to completelynpaiter; is theOKsolver(while satz and
march_pl search also for sonmg reductions on selected variables).

1%e do not care much here about the order of branching, sircalgorithm is only ective on unsatisfiable problems, where the order does
not matter (while on satisfiable problems local search ishiaster).



actually rather misleading, and this is demonstrated hgmady obtaining a large speed-up through the replacement
of the branching heuristic, as can be seen by the data inoB&{icomparingawSolver-1.0 withtawSolver-2.6).

For a literalx, a clause-sef andk € N let Id';(x) :=){C € F : xe C A|C| = k}| be the “literal degree” ok in the
k-clauses of. The 2sJW-rule consists of three components:

1. The weightwvg(x) of literal x is set asvg (X) == 3, 27% - Id';(x).
2. A variablev with maximalp, (wg (v), we(V)) for p,(a,b) := a+ bis chosen.
3. The literalx € {v, v} to be set first to true is given by the conditian(X) > we(X).

This approach has the following fundamental flaws:

1. The choice of the first branch 6r V) is mixed up with the choice of itself, but very diferent heuristics are

needed:
(a) Forthe choice of the first branch, some form of approxédsatisfiability-probability must be maximised,
(b) while the branching-variable must minimise some appnaxed tree-size for the worst case, thesatis-
fiablecase.
In 2sJW the weights# are only motivated by satisfiability-probabilities, buearsed for the choice ofitself.

2. Once total weightsvr(V), wg (V) have been determined, one number (the projection) musbivgated from
this (to be maximised). 2sJW uses the sum, which, as denateditn [48], corresponds to minimisindawer
boundon the DLL-tree-size — much better is the prodpgfa, b) := a- b, which corresponds to minimising an
upper boundn the tree-size.

So the improved heuristic (which nowadays, when extendpdogpiately to take the look-ahead into account, is the
basis for all look-ahead solvers) chooses clause-weightss, - - - € R.o, from which the total weight

WE (%) 1= > wic- ldE (%)
k

is determined, and chooses a variablgth maximal
P (Wi (v), We (V) = Wi (V) - Wi (V).

The meaning of these weights is completelffetient from the argumentation in_[34]: as mentioned, satiifia
probabilities have no place here. The underlying distaneasure i, wi- v*(F’), whereF’ is the resulting clause-set
after performing the branch-assignment and the subsequesduction, while/X(F’) is the number ohew kclauses
in F’. When setting literak to true, then Ié(T() is an “approximation” of the number of new clauses of lenigthl
(since in the clauses containimghis literal is removed).

The WeightswkoK for the 0Ksolver have been experimentally determined as roughly Since the value of the
first weight is arbitrary, the weights are rescaled\/gﬁ< = 1, obtaining then each new weight by multiplication with
1/5. Nowws, for thetawSolver is a stand-in for the number of new 1-clauses, which are leahnidltheOKsolver
by the look-ahead; accordingly it seems plausible that weweeds a relatively higher weight. We rescale here the
weights tows = 1 (note that for theawSolver the weightwy concerns new clauses of lendtk 1). Empirically we
determinedv, = 4.85,w, = 0.354,ws = 0.11,ws = 0.0694, and thereafter a factor @i—s thus starting withw, the
next weights are obtained by multiplying with (rounded@$85,1/2.82,1/3.22,1/1.59,1/1.46, .. ..

For the choice of the first branch there are two main schersafisaussed in [48] (Subsection 7.9). Roughly, the
target now is to get rid fd (satisfy) as many short clauses as possible (since shtatesas are bigger obstructions for
satisfiability Both schemes amount to choose litexad {v, v} with wi.(x) > wi(X) for some weightsy,. For the
Franco-estimator we havég = — log(1-27%), while for the Johnson-estimator we havg= 27K IntheOKsolverthe
Franco-estimator is used. But for thewSolver with its emphasis on unsatisfiable instances, while the ctation
of the heuristic is very time-sensitive (much more so thartfe 0Ksolver), actually just the same weightg = w
are used.

while for a good branching variable we wantd@ateas many short clauses as possible (via setting literaldge)fa

10



As one can see from the data in Sectidén 6, on ordinary van derd&a problems the new heuristic yields a
reduction in the size of the DLL-tree by a factor increasirgrf 2 to 5 for fort = 12,..., 16 (comparingawSolver-
2.6 withtawSolver-1.0), and for palindromic problems by a factor increasigf 5 to 20 fort = 17,.. ., 23[9 we
do not present the data, but most of the reduction in nodetdewue to the replacement of the sum as projection
by the product (the optimised clause-weights only furthgriove the node reduction by at most 50% for the biggest
instances, compared with a simple but reasonable scheen2 ik

2.4. The implementation

ThetawSolver is written in modern @+ (C++11, to be precise), with around 1000 lines of code, with catapl
input- and output-facilities, error handling and variooesnpile-time options for implementations. The code is hyghl
optimised for run-time speed, but at the same time exprg#isenconcepts via appropriate abstractions, relying on the
expressiveness of+G- both at the abstraction- and the implementation-levelhabthe compiler can do a good job
producing éicient code.

Look-ahead solvers are often “eager”, that is, they remtethe clause-set at each node of the DLL-tree in such a
way, that the current (“residual”) clause-set is visiblétte solver, and precisely the current clauses can be ackesse
On the other hand, conflict-driven solvers are all “lazy‘attls, the initial clause-set is not updated, and the state of
the current clause-set has to be inferred via the curreigrasent to the variables. The representation of the input
clause-seF by thetawSolver now is “mostly lazy”:

1. Assignments to variables are entered into a global array,

2. Viathe usual occurrence lists, for each litetraine obtains access to all the clau€es F with x € C.

3. This representation &f is static (is not updated), and in this sense we have a laagtiatture.

4. But the status of clauses, which is either inactive (wladisfied) or active, and their length (in the active case)
is handled eagerly, by storing status and length for eaaiseland updating this information appropriately. So
at each node, when running through the occurrence listisastin the input), for each clause we can see directly
whether the clause is active and in this case its currenttieng

5. When doing an assignment, then the clause-lengths aegadgdf a literal is falsified in a clause, the length is
decreased by one, and if a literal is satisfied, the statuseoflause is set to inactive.

6. For each active clause containing a variable which igyaesi, there is exactly one change (either decrease in
length or going from active to inactive). This change is ezdénto a change-list.

7. When backtracking, then the assignment is simply undgrgoing through the change-list in reverse order,
and undoing the changes to the clauses.

No counters are maintained for the literal degre&6dd Instead, the heuristic is computed by running through all
literal occurrences in the original input for the unasshierals, and adding the contributions of the clauses Wwhic
are still active (this is the use of maintaining the lengtlaafause).

When doing unit-clause propagation, the basic choice istlvengperforming a BFS search, by using a first-
in-first-out strategy for the processing of derived undudes, of a DFS search, using a last-in-first-out strategy.
BFS is slightly easier to implement, but on the palindromd®Winstances needs roughly 10% more unit-clauses to
propagatet, while on ordinary vdW-instances it uses less propagatibosigh the dference is less than 2%, and thus
DFS is the default. This can also be motivated by the conaiaberthat newly derived unit-clauses can be considered
to be “more expensive”, and thus should be treated as soorsaghfe.

Look-ahead solvers in general rely on the distance for brawvaluation to be positive, while a zero value should
indicate that a special reduction can be performed. Andddderhen counting new clauses, then the weighted sum
being zero means that an autarky has been found, a partighasnt not creating new clauses, which means that all
touched clauses are satisfied; see El]?hus starting with th@Ksolver, look-ahead solvers looked out for such
autarkies, and applied them when found ([31, 48]). Now foeedook-ahead solver like theawSolver, these
autarkies are just pure literals (only occurring in one sigt in the other). Their elimination causes a slight runeti
increase, without changing much anything else, and so tautteéhey are not eliminated but not chosen for branching
(if there are still non-pure literals).

12¢ awSolver-2.6 additionally has the implementation improved, so tiates are processed now twice as fast as wétSolver-1.0.
Bthe final result is uniquely determined, but in general tteseemany ways to get there
14The point about autarkies is that they can be applied safiifjaequivalently.

11



2.5. The optimal projection: the-function
In [48] it is shown that the~-function is the best generic projection in the followingise:

e Ther-function is defined for arbitrary tuplese R", n € N, namelyr(a) € R, is the uniquex > 1 such that
>hoxE =1

e This projection induces a linear order on the set of all surrhriching tuplesé (of arbitrary length) by defining
a < bif 7(a) < 7(b); here "a < b” means that is better tharb.

e Theorem 7.5.3 in [48] shows that when imposing some genemagistency-constraints on the comparison
of branching tuples (where it is of importance that branghirples can have arbitrary length), then there is
precisely one such linear order on the set of branching supkmely the one induced by

Now specific solvers might have a special built-in bias, andre importantly, the theorem is not applicable when
considering only branching tuples of length 2 (as it is theedar ordinary boolean SAT solving). But nevertheless,
considering ther-function as projection (more precisely, since we maximhigeojection values, /Ir is used) is an

interesting option, and leads to thewSolver-2.6 (with “z” in place of “t”):
P (Wi (V), W (V)) 1= 1/7(We (V), We (V).

In this context it makes sense to definitely forbid distanakies 0, and thus pure literals are now elimindfeth
Section 6 we see thabwSolver-2.6 is faster tharawSolver-2.6 on large palindromic problems due to a much
reduced node-count, but on ordinary problems the nodetcsiaps basically the same, and then the overhead for
computingp, makes therawSolver-2.6 slower.

The weights forrawSolver-2.6 have been empirically determinedvas= 7, w,; = 0.31,ws = 0.19, and then a

factor ofr17; so starting withw, the next weights are obtained by multiplying with711/3.22,1/1.63,1/1.7, . ..

3. Computational results on w(2; 3 t)

This section is concerned with the numbers w(2).3 The discussion of the computation of w(219) is the
subject of Subsectidn3.1. Conjectures on the values of3ytpfor 20 < t < 30 are presented in Subsection 3.2, and
also further lower bounds for 3¢ t < 39 are given there. Finally in Subsect[on|3.3, we update dingecture on the
(quadratic) growth of w(2; 3).

3.1. w(2;3,19)= 349

The lower bound w(2;319) > 349 was obtained by Kullmann_[49] using local search algari and it could
not be improved any further using these incomplete algastibecause, as we now know, the bound is tight). An
example of a good partition of the 9dt 2, .. ., 348} is as follows:

1#01%01*%01%01401°0101*101°01°01°01701°01*401:01020%1201*°0101*%0
11%01201°01701%°01*%01201*°011%01401*°0120120101°01°01*401°01*4012.

To finish the search, i.e., to decide that a current lower Hafra certain van der Waerden number is exact, one
might require many years of CPU-time. Discovering a new vanWaerden number has always been a challenge,
as it requires to explore the search space completely, widsta size exponential in the number of variables in the
corresponding satisfiability instance. To prove that ataimse withn variables is unsatisfiable, the DLL algorithm has
to implicitly enumerate all the™cases. So the algorithm systematically explores all ptesséses, however without
actually explicitly evaluating all of them — herein lies thgength (and the challenge) for SAT solving.

15That is, only eliminating those literals (by settiRgo true) withwg (x) = 0; these eliminations might create further pure literalsich will be
eliminated when in the child node the branching variablesputed, and so on.

18\we consider the values for the weights as reasonable aldrealues. A deeper understanding, based on the theoryopedtln [48], is left
for future investigations.

12



In Subsectiol_1.712, we gave an overview on the area of loliging hard SAT problems from a general SAT
perspective, and we are concerned here with method (iBfslied totawSolver. We find the simplest division of
the computation of the search into parts, that have no prieress communication among themselves, together with
the observation of some patterns, very successful. Namielyeh (depth)L € Ny of the DLL-tree is chosen, where
the level considers only the decisions (ignoring the vaemimferred via unit-clause propagation), and the@btrees
rooted at that level are distributed among the processors.

To show the unsatisfiability of (3,19; 349), we have usethwSolver-1.0 and 2.2 GHz AMD Opteron 64-bit
processors (200 of them) from therrus cluster at Concordia University for running the distriliteranches of
the DLL-tree. The valug = 8 was chosen, splitting the search space ifte=2256 independent parts (subtrees)
Po, ..., P2ss. The total CPU-time of all processor together was roughl§ y€ars (the first pa®, alone has taken
roughly 60 years of CPU-tim@ For the prediction of run-times for the sub-tasks, the feilg observation made
in Ahmed [3] was used. Recall that feawSolver-1.0 (Algorithm1) the branching rule was to select a vagakith
maximalwe (V) + We (V) = Y (Ide(v) +1de (V) - 27K, where for the first branck € {v, v} with 3, ldg (V) - 27 > 3 Ide (V)
is chosen. Now the observation is that the parts (sub-tiettedLL-tree)Pg, P1, P2, P4, Pg, P16, P32, Pes, P12g are
bigger than the others parts, aRglis the biggest.

Meanwhile our result w(2;,39) = 349 has been reproduced|ini[42], via an alternative SAT sglapproach (see
Subsectiof 1.711). At least at this time there seems to bemgpetitive alternative to SAT solving. See Secfibn 6 for
further remarks on SAT solving for these instances in génknaould be highly desirable to be able to substantially
compress the resolution proofs obtained from the solves,rsm that a proof object would be obtained which could
be verified by certified software (and hardware); see [165&one recent literature.

3.2. Some new conjectures

In Table2, we provide conjectured values of w(2)3or t = 20,21,...,30. We have used thécsat suite [67]

of local-search based satisfiability algorithms for getiegagood partitions, which provide a proof of these lower
bounds; sep Appendix _A.1 for the certificates. In Subse@i@nwe provide details of the algorithms used to find
the good partitions. The characteristics of the searches stech that we believe these values to be optimal, namely
with the right settings, these bounds can be found rathekiyiand in the past, all such conjectures turned out to
be true (though, as discussed below, the situation getsexdakt = 29, 30). However, since local search based
algorithms are incomplete (they may fail to deliver a sgirgf assignment, and hence a good partition when there
exists one), it remains to prove exactness of the numbeng @sicomplete satisfiability solver or some complete
colouring algorithm.

t | 20 21 22 23 24 25 26 27 28 29 30
w(2;3t) > | 389 416 464 516 593 656 727 770 827 868 903

Table 2: Conjectured precise lower bounds for w(2) 3

We observe that far= 24, 25, .. ., 30 we have w(2; 3) > t?, which refutes the possibility thatt : w(2; 3,t) < t?,
as suggested in_[14], based on the exact values fgrts< 16 known by then. Further (strict) lower bounds we
found are in Tabl€I3 (where now we think it is likely that théseinds can be improved; dee Appendix ]A.2 for the
certificates).

t |31 32 3 34 35 36 37 38 39
w(2;3t) > | 930 1006 1063 1143 1204 1257 1338 1378 1418

Table 3: Further lower bounds for w(2;t3

17ComparingtawSolver-1.0 withtawSolver-2.6, as we can see in Talle 9, the series of quotigrtld-time/ new-time, fort = 12,...,16is
(rounded) 43,5.6,6.8,9.4, 12.8. This can be approximated well by the lay; = 1.3-q;, which would yield fort = 19 the factor 18-1.3% ~ 28.1.
So we would expect withawSolver-2.6 at least a speed-up by a factor 20, which would reduc2@fe/ears to 10 years. Another approximation
is obtained by considering Talilé 9: we see that for each steptfto t + 1 the run-time always increases by less than a factor of 10e vidr
t = 17 we use less than five days, which would yield at most 500 fibmyts= 19 with tawSolver-2.6.

13



That we conjecture the data of Table 2 to be true, that is,tleatised local-search algorithm is strong enough,
while for the data of TablE]3 that algorithm seems too wealetxh the solution, has the following background in
the data: As we report in Subsectlonl6.2, in the range 24 33 the local-search algorithm RoTS from fiiecsat
suite was found best-performing. This algorithm is usedninngremental fashion, initialising the search by known
solutions for smallen. This approach fot = 28, with a cut-¢f 5 - 10° rounds, found a solution far = 826, and
in 1000 independent runs (non-incremental) two solutioesafound. But with cut-ff 107 in 1000 runs and cutfb
2- 107 in 500 runs no solutions was found. From our experience thesns “pretty safe” for a conjecture. We are
entering now a transition period. Foe 29 the iterative approach with cuff® - 10° found the solution fon = 867,
while cut-af 10’ found no solution fon = 868 in 1000 runs. For = 30 the iterative approach managed to find a
solution forn = 897; restarting it with cut-® 108 found a solution fon = 902, while forn = 903 no solution with
that cut-dtf was found in 300 runs. So we see that alrebgy30 is stretching it. However far = 31 the iterative
approach with cut-6 10° only reachedh = 919 (despite restarts), while we happen to have a palindreatition for
n = 930 (these are much easier to find; see Subs€ciidon 5.3). Emberwe believe we definitely over-stretched the
abilities of the algorithm.

3.3. A conjecture on the upper bound

An important theoretical question is the growth-rate¢ e w(2; 3 t). Although the precise relation “w(2;t) <
t2” has been invalidated by our results, quadratic growthssti#ms appropriate (see [49] for a more general conjecture
on polynomial growth for van der Waerden numbers in certéiections of the parameter space; indeed in some
directions linear growth is proven there):

Conjecture 3.1. There exists a constaat- 1 such that w(2; 3) < ct?.

See Conjecture_4.4 for a strengthening. To determine themubest guess far, and to give some heuristic
justification for Conjecture_3l1, we observe the known exalites and lower bounds, and we arrive at the following
possible recursion:

w(2;3t) <w(2;3t—1)+d(t-1),

for4 <t < 39 and some > 0, with w(2; 3 3) = 9. So we make the Ansatz w(2;tB< w; := 9+ Z};é d-i,fort> 3,
whered := ma>g3=94 w in case w(2; 3t) is not known, we use the lower bounds from Talbl€s| 2, 3. From
our data we obtaid = 393318 = 77 (sed Appendix BJ1). We have (geometric sum)= 9t2 — 3dt+ 9 - 2d < §t?,

and so we obtain

. d2_772 2
W(2i31) < 5t = 22t? < 16757,

which satisfies all data regarding w(2iBpresented so far.

4. Patterns in the good partitions

In this section, we investigate the set of all good partiionrresponding to certain van der Waerden numbers
w(2; 3,t) for patterns. As described in Section 1]1.1, the motivatiehind this section is to obtain more problem-
specific information on the solution-patterns, which malphe design heuristics to reduce search-space while com-
puting specific van der Waerden numbers.

Let S(t) denote the set of all binary strings each of which represggbod partition of the sét, 2,...,w(2; 3 t)—

1}. GeneratingS(t) involves traversing the respective search space conhplétet ng(B), ni(B), andngy(B) be the
number of zeros, ones, and double-zeros, respectively,bitsiing B (note that three consecutive zeros are not
possible in anyB € S(t)). Let EP1SB) denote the sequence of powers of 1 in a bitstBng et ny(B) andn,(B) denote
the number of peaks (local maxima) and valleys (local minjmespectively, in EP1%) (not necessarily strict). For
example, for the compact bitstring@01°01%01'01001°01801°001011013010028 (with np = 16, n; = 60 and
N = 4), we have the following EP1S, with p and v, marking peaks waatbys, respectively, corresponding to
changes in magnitudes.

8631358531368
p v p Vv p
14



And for B = 1'01'012012013013 we haveny(B) = 5, n1(B) = 12, ngo(B) = 0, while there is one valley followed
by one peak, and thug(B) = ny(B) = 1.

4.1. Number of 0’'s and 00’s

In this section, we determine the number miiB) : B € S(t)}, maxng(B) : B € S(t)}, and maxng(B) : B € S(t)}
for 3 <t < 14. Observations in Tab[é 4 lead us to Conjectlres 4.1 and 4.2

Table 4: Zeros in good partitions ¢f, 2, ..., w(2; 3,t) — 1}

w(2;3,t) | (min{no(B) : B € S(t)}, | maxneo(B) : B € S(t)}
maxny(B) : B € S(1)})
w(2;3,3) 4,4 2
w(2;3,4) (6, 6) 2
w(2;3,5) (7,9) 2
w(2;3,6) (8,10) 4
w(2;3,7) (11, 12) 3
w(2;3,8) (14, 14) 1
w(2;3,9) (16, 16) 4
w(2; 3, 10) (29, 21) 5
w(2;311) (29, 22) 5
w(2;312) (22, 22) 1
w(2;3,13) (25, 29) 5
w(2;3,14) (29, 29) 4

It seems that there is little variation concerning the tatahber of zeros:

Conjecture 4.1. There exists a constaat> 0 such thainyg(B) — ng(B’)| < ct, VB, B’ € S(t) witht > 3.
And there seem to be very few consecutive zeros:

Conjecture 4.2. There exists a constaat> 0 such thahgy(B) < ct, VB € S(t) with t > 3.

4.2. Numberof1's

In this section, we determirle = min{ny(EP1SB)) + n,(EP1SB)) : B € S(t)}, as well as minimum and maximum
values ofny(B) over all B € S(t). The observations in Tablé 5 lead us to Conjectlirdd 4.3 atid Questions 4.1 and
4.2

Table 5: Selected good-partitions{df 2, ..., w(2;31t)-1)

w(2;31t) A good partition B corresponding to T T min{n.(B) : B € S(t)},
maxn;(B) : B € S(t)}
w(2;33)=9 12001200 1 (4,4)
(2 2)
w(2;34) =18 13001:013001%013 5 (11, 11)
(31313)
w(2;35)=22 001°001*014001*01* 4 (12, 14)
(31441)
w(2;3,6) =32 01500150130015001° 3 (21, 23)
(55355)
w(2;37)=46 1101101401201°01*01'001°01°01%01°0 8 (33, 34)
(11425413525)
w(2;38)=58 14012014011014013015001501301401101401201* 12 (43, 43)
(42414355341421)
Continued on Next Page. .

15



Table 5: Selected good-partitions{df 2, .. ., w(2;3t)-1)

w(2;3t) A good partition B corresponding to T T min{n;(B) : B € S(t)},
maxn(B) : B € S(t)}

w(2;3,9) =77 1800180130110120015018015001201 0130160018 5 (60, 60)
(863135853136 8)

w(2;3,10) = 97 170140120150012001701401801101801400150012001801° 13 (75, 77)
(742527481846 2829)

w(2;311) = 114 011°0140016011°012001°01601:01°001:001:°01600100 11 11 (91, 94)
(1046 10296191106 10 10)

w(2;312)= 135 1901801°012013010170120102301110? 17 (112, 112)
111013010201701101301201°01801°
(989231721311 1131271329829)

w(2;313) =160 1101501120140011001°011°01201401110110 15 (130, 134)
1601°012013017011°0110015011201°014012
(16124 116102411 1692371015125 4 2)

Again, there seems little variation concerning the totahber of ones:
Conjecture 4.3. There exists a constaat> 0 such thain;(B) — ny(B)| < ct, VB, B’ € S(t) witht > 3.
Stronger than Conjecture .3, the number of ones seems lesgy to the vdW-number for the previous
Conjecture 4.4. There exists a constaat> 0 such thatw(2; 3t — 1) — ny(B)| < ct, VB € S(t).
This conjecture also implies the earlier conjecture on thedgatic growth of w(2; 3):
Lemma 4.1. Conjecturé 44 implies Conjectdre ¥.3 and Conjediure 3.1.

Proof. Conjecturé_4]3 follows by the triangle inequality. Conjeef3.1 follows, if fort large enough we can show
no(B) < ny(B) for all B € S(T), and this is a special case of Szemerédi’'s Theorem ([6@j)ch for arithmetic
progressions of size 3 was already proven in[f9jamely that the relative size of maximum independent atude
the hypergraph of arithmetic progressions of size 3 in thalers 1...,t goes to 0 witht — co. O

We turn to the growth of the number of peaks and valleys:

Question 4.1.For each positive constantioes there existtsuch that for alt > t’, n,(EP1S8))+n,(EP1SB)) > ct,
(t > 3) VB e S(t)? (We conjecture yes).

We conclude with the observation, that fos 3 there do not seem to be long plateaus for the numbers of ones:

Question 4.2. Is there a good partitioB € S(t), (t > 4) with 3 consecutive numbers equal in EPBR( (Note that,
for t = 3, the partition 201*001*01! has four consecutive exponents, which are the same.)

4.3. How can it help for SAT solving?

If one of the above conjectures (or some other conjecturaktaut to be true, and if moreover the numerical
constants have good estimates, then they can be used fotridstsearch space. When using a general purpose SAT
solver, this can be achieved by adding further constrainsgems however that these constraints do not help with the
search, even if we assume that they are true, since theyadéfioult to handle for the solver. It seems the problem is
that these constraints do not mix well with the original geob formulation, and a deeper integration is needed. Such
an integration was achieved in the case of the palindromristcaint, which is the subject of the following section —
here an organic new problem formulation could be estalddisivbere the additional restriction doesn’t appear as an
“add-on”, but establishes a natural new problem class.

18seehttp: //rothstheorem.wikidot . com/on-certain-sets-of-integers

16


http://rothstheorem.wikidot.com/on-certain-sets-of-integers

5. Palindromes

Recall Definition$ TI1, T12:

1. for givenk € N (the number of “colours”),
2. to,..., 1 (the lengths of arithmetic progressions),
3. andn € N (the number of vertices)

we consider block partition$, . .., Pc-1) of {1, ..., n} such that nd® contains an arithmetic progression of length
ti — these are the “good partitions”, andkmp, . .., tk-1) € N is the smallesh such that no good partition exists.
If (Po,...,Px1) is a good partition of1,...,n} w.r.t. ty,...,t1, then for 1< n” < n we obtain a good partition of
{1,...,n"}w.rt.to,...,t1 by just removing vertices’ + 1, ..., nfrom their blocks. Thus W to, .. ., tx_1) completely
determines for whiclm € N good partitions exist, namely exactly for< w(k; to, . . ., tk-1).

Definition 5.1. Forne Nletm, : {1,...,n} — {1,..., n} (with “m” like “mirror”) defined by m,(v) := n+1-v. This
map is extended t8 C {1,...,n} as usual: m(S) := {my(v) : ve S}.

Now if (Po, ..., Px_1) is a good partition w.r.m, then also (m(Py), . .., my(Pk-1)) is a good partition w.r.tn. So
it is of interest to consider self-symmetric partitionstfwin,(P;) = P; for all i):

Definition 5.2. A good palindromic partitiorof {1, ..., n} w.r.t. parametert, ..., t_1, wheren,to,...,tx_1 € N,isa
good partition off1,...,n} w.r.t.to, . . ., ti_q such that for allj € {0, ...,k — 1} holds m\(P;) = P;.

We call these special good partitions “palindromic”, sirecélock partition can be represented as a string of
numbers ovel0,...,k — 1}, and then the block partition is palindromig the string is a palindrome (reads the
same forwards and backwards). For example, the strid@0%0 represents a good palindromic partition kot 2,
to = t; = 3 andn = 8, namely (1,4, 5,8}, {2, 3,6, 7)), and so does({, 3,6, 8}, {2,4,5,7}), represented by 018010,
while ({1, 2,5, 6}, (3,4, 7, 8}), represented by 08001, is a good partition which is not palindromic.

For givenk andty, ..., tx_1 again we want to completely determine (in theory) for whictio good palindromic
partitions exist and for which not. The key is the followingservation (which follows also from Lemmias4.2,15.3).

Lemma 5.1. Consider fixed, to, . .., t_1, andn > 3. From a good palindromic partitio®§, . . ., Px_1) of {1,...,n}
we obtain a good palindromic partitio®y, ..., P, _,) of {1,...,n— 2} by removing vertices . and replacing the
remaining vertices by v -1, thatis,P/ :={v-1:ve P\ {1, n}}.

Proof. The notion of a good partition dfl, ..., n} w.r.t. w(; to, ..., t_1), as defined in Definition Il 2, can be gener-
alised to good patrtitions of arbitrafly C Z by demanding that for every block partitioRy . . ., Px_1) of T into k parts
no partP; contains an arithmetic progression of sizeln the remainder of the proof we omit the “w.id, . . ., tk_1".

If T has a good partition, then also every subset has a goodguarhy restricting the blocks accordingly, and for
everyd e Z alsod+ T = {d + x : x € T} has a good partition, by shifting the blocks as well.

We can also generalise the notion of a good palindromictjartio intervalsT = {a,a+ 1,...,b} c Z fora < b,
defining now the mirror-mapy, : T — T viave T - b+ a - v(m, in Definition[5.1 is the special casa, = my ).

Again, if T has a good palindromic partition, thei+ T for d € Z has as well. But for subsets @f we can
only consider sub-intervalf’ = {&, ..., Db’}, where from both sides we have taken away equal amounts.ig Hat
a<a <b <bwitha -a=b-b we have, that from a good palindromic partition fbrwe can obtain a good
palindromic partition fofT’ (by just restricting the blocks).

So from a good palindromic partition ¢f, . . ., n} we obtain a good palindromic partition df, . . ., n— 2} by first
restricting tof2, . . ., n — 1} and then shifting by-1. O

Corollary 5.1.1. If there is no good palindromic partition ¢f, . . ., n}, then there is no good palindromic partition of
{1,...,n+2-i}foralli € No.

Proof. If there would be a good palindromic partition{df . .., n+ 2-i}, then by repeated applications of Lemmd 5.1
we would obtain a good palindromic partition{df . . ., n}. O

17



Since by van der Waerden’s theorem we know there alwayssesdshen such that for alh’ > n no good palin-
dromic partition exists, we get that the existence of godohgdeomic partitions w.r.t. fixedo, . . ., tx_1 is determined
by two numbers, the endpoiptof “always exists” respqg of “never exists”, with alternating behaviour in the intarv
in-between:

Corollary 5.1.2. Consider the maximab € Ny such that for allh < p good palindromic partitions exist, and the
minimal g € N such that for alh > g no good palindromic partitions exist. Then- p is an odd natural number,
where no good palindromic partition exists for 1, but p + 2 again has a good palindromic partition, and so on
alternately, until fromg on no good palindromic partition exists anymore.

Proof. By Corollary[5.1.1 there is no good palindromic partitiom fo+ 1 + 2i and alli € Ny. Now for the first

i € Np, such thatp + 2 + 2i has no good palindromic partition, we lgt := (p+ 2 + 2i) — 1. We have a good
palindromic partition foig — 1 by definition ofi (as the smallest sudhresp. in case af = 0 by definition ofp. We
haveq +2j=(p+2+2))—-1+2j=p+1+2(+j)for j e Np, and thus there is no good palindromic partition for
g + 2j. And if there would be a good palindromic partition figr+ 1 + 2j = p + 2 + 2i + 2j, then by Corollary 5.1]1
there would be a good palindromic partition for 2 + 2i. So we have’ = g. O

Definition 5.3. The palindromic van-der-Waerden numbedw(k; to, . .., t-1) € Ng is defined as the paip(q) such
that p is the largesp € Ny with the property, that for all I n < p there exists a good palindromic partition of
{1,...,n}, while qis the smallest € N such that for nan > q there exists a good palindromic partition{df. . ., n}.
We use pdwK; to, ..., tk-1)1 = p and pdwk; to, ..., t-1)2 = q. S0 0< pdw(;to,...,t-1)1 < pdw(;to,...,tk-1)2 <
W(k, to, ..., tkfl)-

Thepalindromic gapis

pdgk;to, ..., k1) := w(k;to,. .., tk-1) — pdw(K; to, . .., tk-1)2 € No,

while thepalindromic sparis defined as

pdsk;to, . .., t-1) = pdw(k; to, . .., tx_1)2 — pdw(K; to, . . ., tk_1)1 € N.

To certify that wk; to, ..., tk-1) = n holds means to show that there exists a good partitigid,of.,n — 1} and
that there is no good partition of For palindromic number-pairs we need to double ttiere

Theorem 5.1. To certify that pdwk; to, . . ., tk_1) = (p, g) holds, exactly the following needs to be shown for (arbjtya
pe Ny, geNwith p<q:

(i) there are good palindromic partitions{f ..., p— 1} and{1,...,q- 1} w.r.t.to,..., t1;
(ii) there are no good palindromic partitions{@f..., p+ 1} and{1,...,q+ 1} w.r.t.to,..., tk_1.

Proof. The given conditions are necessary for pki, . .., tk_1) = (p, q) by the defining properties gf andg. We
show that they are $licient to establish pdw(to, . .., t«_1) = (p, q). First we have by Corollafy5.7.1 that pis odd,
since otherwise + 1 having no good palindromic partitions would yield tlggt 1 would have no good palindromic
partition. Then, again by Corollafy 5.1.1, ali> g + 1 have no good palindromic partition, while allx p — 1 have
good palindromic partitions. By Corollafy 5.1.2 we must raawve pdwk; to, .. ., t-1) = (p, Q). O

5.1. Palindromic vdW-hypergraphs

Recall that a finite hypergrap® is a pairG = (V,E), whereV is a finite set (of “vertices”) andt is a set of
subsets o¥/ (the “hyperedges”); one writég(G) := V andE(G) := E. The essence of the (finite) van der Waerden
problem (which we will now often abbreviate as “vdW-problgis given by the hypergraphs apq) of arithmetic
progressions with progression lengta N and the numbem € Ny of vertices:

e V(apg,n)) :=1{1,...,n}
e E(apt,n)) :={pc{l,...,n}: parithmetic progression of length

18



For example ap(®) = ({1, 2, 3,4,5},{{1, 2, 3}, {2, 3,4}, {1, 3,5}, {3, 4, 5}}). Considering hypergraphs, the reader might
wonder how determination of vdW-numbers fits with hypergraplouring. While the determination of diagonal
vdW-numbers is an ordinary hypergraph colouring probleon,general vdW-numbers a more general concept of
hypergraph colouring is to be used, involving the simultarsecolouring of several hypergraphs in the following
sense: The diagonal vdW-numberkat . . ., t) for k,t € N is the smallesh € N such that the hypergraph &)

is notk-colourable, where in generalkacolouring of a hypergrap® is a mapf : V(G) — {1,..., k} such that no
hyperedge is “monochromatic”, that is, every hyperedge gelteast two dierent values byf. For the general vdW-
number wk; to, . . ., tk_1) we now consider for each colouke {0, ..., k— 1} the hypergraph ap(n), and we forbid (to
formulate “good partition”) for eachthat there is a hyperedge in §pf)) monocoloured with colour (while we do
not care about the other colours here). Accordingly the 8#deding of “w(2; 3t) > n?”, as discussed in Subsection
[L.7, exactly consists of the two hypergraphs apf&nd ap{, n) represented by positive resp. negative clauses.

The task now is to define the palindromic version pday)(of the hypergraph of arithmetic progressions, so that
for diagonal palindromic vdW-numbers pdaf, ...,t) = (p,g) we have, thay is minimal for the condition that
for all n > q the hypergraph pdap6) is notk-colourable, whilep is maximal for the condition that for afi < p
the hypergraph i&-colourable. Furthermore we should have that for two-cadiproblems (i.ek = 2) the SAT-
encoding of “pdw(2t, t1) > n ?” (satisfiableff the answer is yes) consists exactly of the two hypergrapagadn),
pdap(;, n) represented by positive resp. negative clauses (whilméwe than two colours generalised clause-sets can
be used; see [50]).

Consider fixed € N andn € Ng. Obviously pdag(0) := ap,0) = ({},{}), and so assume > 1. Recall the
permutationm = my, of {1,...,n} from Definition[5.1. As every permutatiom induces an equivalence relatien
on{l,...,n} by considering the cycles, which here, simaés an involution (self-inverse), just has the equivalence
classedl,...,n}/ ~ = {{v, f(V)}}len. n Of size 1 or 2 comprising the elements and their images. Nwtent has
a fixed point (an equivalence class of size ff)niis odd, in which case the unique fixed point%l. The idea
now is to defineny : {1,...,n} — {1,...,n}, which chooses from each equivalence class one representsd
m(v) € {v,m(v)} andv ~ w & nv(v) = m'(w)), and to let pdag(n) be the image of ap(n) undernt, that is,
(m'(V(apt, n))), {7 (H)}Hee@pe,n))- Naturally we chooser (v) to be the smaller of andm(v). Now it occurs that
images of arithmetic progressions undg&rcan subsume each other, i.e., for, H, € E(ap(, n)) with H; # H, we
can havar'(H;) c m'(Hy), and so we define pdapf) as the image of ap(n) undernt, where also all subsumed
hyperedges are removed (so we only keep the minimal hypesadtder the subset-relation).

Definition 5.4. Fort € N andn € Ny the hypergraph pdapf) is defined as follows:

e V(pdapt.n)) :={1.....[31}

e E(pdapt, n)) is the set of minimal elements w.rg. of the set ofm,(H) for H € E(apg, n)), wherent, :
{1,....n} = V(pdapg, n)) is defined by (v) := vforv < [31andny(v) :=n+1-vforv>[2].

Using ap(35) = ({1,2,3,4,5},{{1,2,3},{2,3,4},{1, 3,5}, {3,4,5}}) as above, we havev({1,2,3})) = {1,2,3},
nY({2,3,4}) = {2,3}, M ({1, 3,5}) = {1, 3} andn ({3, 4, 5}) = {1, 2, 3}, whence pdap(d) = ({1, 2, 3}, {{1, 3}, {2, 3}}).

Lemma 5.2. Considert € N andn € Ny. The hypergraph pdap6) is embedded into the hypergraph pdap¢+ 2)
via the mape : V(pdapg, n)) — V(pdap€, n + 2)) given byv - v + 1.

Proof. First we note thalV(pdap€, n+2))| = |V(pdapf, n))|+1, and so the range efis V(pdap(, n+2))\{1}. LetG be
the hypergraph with vertex s€(pdap(, n+2))\ {1}, whose hyperedges are all those hyperettyesE(pdapf, n+ 2))
with 1 ¢ H. We show thaeis an (hypergraph-)isomorphism from pdgpj to G, which proves the assertion.

Now obviously the underlying hypergraph am) is embedded into the underlying &p(+ 2) via the underlying
mapv € V(apt,n)) — v+ 1 € V(apt, n + 2)), where the image of this embedding is given by the hypgrgmvith
vertex seV(apt, n+ 2)) \ {1, n+ 2}, and where the hyperedges are thbise E(apt, n + 2)) with 1, n+ 2 ¢ H. Since
m.,(n+2)=1andmy(v) = m ,(v+1)-1forv e {1,...,n}, the assertion follows from the fact that there are
no hyperedgesl, H’ € E(apt,n+ 2)) withHn{1,n+2} # 0, H' n{L,n+ 2} = 0 andm,(H) c n7,,(H’) (thus
nt . ,(H’) can only be removed from pddpg + 2) by subsumptions already at work in pdapf), and this is trivial
since le m( ,(H) but1¢ nv ,,(H’). O

19



The SAT-translation of “Is there a good palindromic paotitiof {1, ..., n} w.r.t. to, t; ?” is accomplished similar
to the translation of “w(2fp, t;) > n ?”, now using pdafg, n), pdapfi, n) instead of apg, n), apts, n):

Lemma 5.3. Considetty, t; € N, tg < t1, andn € Ny. Let the boolean clause-sléﬁd(to, t1, n) be defined as follows:
e the variable-setigl, ...,[31} (= V(pdap(o, n)) = V(pdap(s. n)));
¢ the hyperedges of pdap(n) are directly used as positive clauses;
e the hyperedgel of pdap(i, n) yield negative claus€§}ycy.

Then there exists a good palindromic partition if and on§Pf(to, t1, n) is satisfiable, where the satisfying assignments
are in one-to-one correspondence to the good palindromiitipas of {1, ..., n} w.r.t. (to, t1). O

For more than two colours, Lemmab.3 can be generalised Img gsineralised clause-sets, as in [50], and there
one also finds the “generic translation”, a general schenranslate generalised clause-sets (with non-boolean vari
ables) into boolean clause-sets (see also [51, 52]).

5.2. Precise values
See Subsectidn 8.1 for details of the computation.

Table 6: Palindromic vdW-numbers pdw(21B

t | pdw(2;3t) | pds(2;3t) | pdg(2;3t)
3 (6,9) 3 0
4 | (1516) 1 2
5| (16,21) 5 1
6 | (30,31) 1 1
7 | (41,44) 3 2
8 | (5257) 5 1
9 | (6277) 15 0
10| (9394) 1 3
11| (110113) 3 1
12 | (126135) 0
13 | (142 155) 13 5
14 | (174183) 3
15| (200 205) 13
16 | (232237) 5 1
17 | (256 279) 23 0
18 | (299312) 13 0
19 | (338347) 9 2

Continued on Next Page. .|.

20



Table 6: Palindromic vdW-numbers pdw(2{B

\ t \de(2;3t) pds(2;3t) | pdg(2;3t)

20 | (380,389) 9 >0
21 | (400 405) 5 > 11
22 | (444,463) 19 >1
23 | (506,507) 1 >9
24 | (568 593) 25 >0
25 | (586,607) 21 > 49
26 | (634 643) 9 > 84
27 | (664 699) 35 > 71

5.3. Conjectured values and bounds

For 28< t < 39 we have reasonable values on pdw(2),3vhich are given in Tablel 7, and which we believe to
be exact fot < 35. These values have been computed by local-search megeedSubsectidn 8.2), and thus for sure
we can only say that they present lower bounds. We obtairectnjed values for the palindromic span (which might
however be too large or too small) and conjectured valuethopalindromic gap (which additionally depend on the
conjectured values from Subsection]3.2, whiletfar31 we only have the lower bounds from Subsedfioh 3.2).

Table 7:  Conjectured palindromic vdW-numbers pdw(2) 3

t | pdw(2;3t) > | pds(2;3t) ~ | pdg(2;3t) ~
28 (728 743) 15 84
29 (810 821) 11 47
30 (844 855) 11 48
31| (916931) 15 0
32| (958963) 5 44
33| (996 1005) 9 59
34 | (1054 1081) 27 63
35| (1114 1155) 41 50
36 | (11861213) 27 45
37 | (12721295) 23 44
38 | (1336 1369) 33 10
39 | (1406 1411) 5 8

For the certificates for these lower bounds[see Appendix A.3.

5.4. Open problems
The relation between ordinary and palindromic vdW-numbeesof special interest:

21



¢ It seems the palindromic span can become arbitrarily largase-in relative terms? Perhaps the span shows a
periodic behaviour, oscillating between small and large?

e Similar questions are to be asked for the gap. Does it at&ire\0 infinitely often?

Do the hypergraphs pdapf) have interesting properties (more basic than their chtiemambers)? A basic exercise
would be to estimate the number of hyperedges and their.sirethe subsequent Subsectlon]6.1 we find data that
SAT solvers behave ratherffirent on palindromic vdW-problems (compared to ordinagbfgms). It seems that
palindromic problems are more “structured” than ordinaiglgpems — can this be made more precise? Perhaps the
hypergraphs pdap) show characteristic fierences to the hypergraphs@pj, which could explain the behaviour

of SAT solvers?

5.5. Remarks on the use of symmetries

The heuristic use of symmetries for finding good partitioas been studied in [2[7,120,29] (while for symmetries
in the context of general SAT solving seel[60]). Especiakyfind there an emphasis on “internal symmetries”, which
are not found in the problem, but are imposed on the solutions

The good palindromic partitions introduced in this sect&wa more restricted in the sense, that they are based
on the symmetriesn from Subsectio 5]1 of the clause-s&tsexpressing “W; to, t1,...,t-1) > n?” (i.e., we
havem(F) = F; recall Subsection 1l.1), which then is imposed as an inteyrametry on the potential solution by
demanding that the solutions be self-symmetricl In [27]léation symmetric” certificates are mentioned, which for
evenn are the same as good palindromic partitions, however fomdtigy ignore vertex 1, not the mid-poif§] as
we do. This definition in [27] serves to maintain monotomi¢ite., a solution fon + 1 yields a solution fon, while
we obtain one only fon— 1 (LemmdX5.1l). We believe that palindromicity is a more ratootion, but further studies
are needed here to compare these two notions.

Other internal symmetries used In [27, 30, 29] are obtainechbdular additions and multiplications (these are
central to the approaches there), based on the method fréjridbconstructing lower bounds for diagonal vdW-
numbers. No generalisations are known for the mixed proble@mare considering.

Finally we wish to emphasise that we do not consider palimicity as a mere heuristic for finding lower bounds,
but we get an interesting variation of the vdW-problem iroiten right, which hopefully will help to develop a better
understanding of the vdW-problem itself in the future.

6. Experiments with SAT solvers

We conclude by summarising the experimental results anghtsgained by running SAT solvers on the instances
considered in this paper. All the solvers (plus build emvin@nts), generators and the data are available in the
OKlibrary ([47]); se Appendix B for more information.

For determining unsatisfiability we consider complete SAlvars in Subsection 8.1. In general, for (ordinary)
vdW-problems look-ahead solvers seem to perform bettardbaflict-driven solvers, while for palindromic problems
it seems to be the opposite. HowevemSolver-2.6 is the best (single) solver for both classes.

The hybrid approaciGube & Conquer, was developed precisely on the instances of this papelisesssed in
[32] (further developments one finds in [68]). This appro#&cthird-best on vdW-problems (afteawSolver-2.6
andrawSolver-2.6), and best on palindromic vdW-problems (befea@Solver-2.6 andtawSolver-2.6).

We conclude this section in Subsectionl 6.2 by remarks omipbéete SAT solvers, used to obtain lower bounds
(determine satisfiability).

For the experiments we used a 64-bit workstation with 32 GBVRa#ad Intel i5-2320 CPUs (6144 KB cache)
running with 3 GHz, where we only employed a single CPU.

6.1. Complete solvers

Complete SAT solvers exist in mainly two forms, “look-ahaadi/ers” and “conflict-driven solvers”; see [55/ 31]
for general overviews on these solver paradigms. BesidasatfSolver (see Sectiohl2), for our experimentation we
use the following (publicly available) complete solverdjigh give a good coverage of state of the art SAT solving
and of the winners of recent SAT competitions and SAT Hces

19The (parent) SAT competition homepage ih&tp: //www.satcompetition.org with links to each individual competition.

22


http://www.satcompetition.org

e Look-ahead solvers:

— OKsolver ([46]), a solver with well-defined behaviour, no ad-hoc ligtigs, and which applies complete
ro (at every node). This solver won gold at the SAT 2002 comipetit

— satz ([54]), a solver which applies partia} andrs. In the0Klibrary we maintain version 215, with
improvedcorrected ifoutput and coding standard.

— march_pl ([2€]), a solver applying partiab, r3, and resolution- and equivalence-preprocessiagch pl
contains the same underlying technology as its siblingesskvarch_{rw,hi,ks,dl,eq}, which won
gold, silver and bronze at the 2004 to 2011 SAT competitiords BAT races. We use thel (partial
lookahead) version. -

e Conflict-driven solvers:

— MiniSat family:

x MiniSat ([2Q]), version 2.0 and 2.2, the latest version of this vesitablished solver, used as starting
point for many new conflict-driven solvers. Previous vensievon gold at the SAT Race 2006 and
2008, as well as numerous bronze and silver awards at the &Apetition 2007.

x CryptoMiniSat ([64]), a MiniSat derivative designed specifically to tackle hard cryptogiap
problems. This solver won gold at SAT Race 2010 and gold dwersat the SAT competition 2011.
We use version 2.9.6.

x Glucose ([6]), a MiniSat derivative utilising a new clause scoring scheme and agiyetearnt-
clause deletion. This solver won gold in both SAT 2011 coritipatand SAT Challenge 2012. We
use versions 2.0 and 2.2.

— Lingeling family:

* PicoSAT ([8]), a conflict-driven solver using an aggressive restadtegy, compact data-structures,
and dfering proof-trace options to allow for unsatisfiability chkéng. This solver won gold and silver
at the SAT competition 2007. We use the latest version 913.

x PrecoSAT ([[L0]), integrates th&ATeLite preprocessor intBicoSAT, applying various reductions
including partialr, at certain nodes in the search tree. This solver won gold dvet at the SAT
2009 competition. We use the latest version 570.

* Lingeling([11]), based o®recoSAT, focuses further on integrating preprocessing and seigatcd,
ducing new algorithms and data-structures to speed up thelseiques and reduce memory footprint.
As with PrecoSAT, this solver applies partiab at specially chosen nodes in the search tree. This
solver won bronze at the SAT 2011 competition and silver @iSAT Race 2010. We use the latest
versionala-b02aala-121013.

6.1.1. Cube-and-Conquer

TheCube & Conquer method uses a look-ahead solver as the “cube-solvertisglihe instance into subinstances
small enough such that the “conquer-solver”, a conflictehiisolver, can solve almost all sub-instances in at most a
few seconds. We use tlisolver as the cube-solver arMiniSat as the conquer-solver. The main (and single)
parameter iD € Ny, the cut-df depth for theOKsolver: the DLL-tree created by théKsolver is cut df when
the number of assignments reaclizswhere it is important that this includedl assignment®n the path, not just
the decisions, but also the forced assignments found, andr, — only in this way a relatively balanced load is
guaranteed. The data reported in Tabl8$1D, 14 shows fissbdahe cube-phase, namely

e D (cut-of depth),
e the number of nodes in the (truncated) DLL-tree of iigolver,
¢ the time needed (this includes writing the partial assigmseepresenting the sub-instances to files),

e and the numbeN of sub-instances.
23



For the conquer-phase we have:
¢ the median and maximum time for solving the sub-instancesihySat,
¢ the sum of conflicts over all sub-instances,
e and the total time used MiniSat.

Finally the overall total time is reported, which does naflire the time used by the processing-script, which applies
the partial assignments to the original instance and pregiso the sub-instances: this adds an overhead of nearly
20% for the smallest problem, but this proportion becomesllemfor larger problems, and is less than 1% for the
largest problems.

6.1.2. VdW-problems
We consider the (unsatisfiable) instances to determinegherbounds for w(2;,3) with 12 <t < 17; in Tabld8
we give basic data for these instances (pl&sl8, 19).

t n c C3 Ct 4

12| 135 5,251 | 4,489 | 762 | 22,611
13| 160| 7,308 | 6,320 | 988 | 31,804
14| 186 | 9,795 | 8,556 | 1,239| 43,014
15| 218 13,362| 11,772| 1,590| 59,166
16 | 238| 15,812| 14,042 1,770| 70,446
17| 279 21,616| 19,321 2,295| 96,978
18 | 312 || 26,889| 24,180| 2,709 | 121,302
19| 349 33,487| 30,276 3,211 | 151,837

Table 8: Instance data fét(3, t; n), wheren is the number of vertices as well as the number of varialdlescs + ¢; is the number of clauses;
the number of clauses of lengthand¢ = 3c3 + tc; is the number of literal occurrences.

In Table[®, we see the running times and number of n@deflicts for the SAT solvers. We see that in general
look-ahead solvers here have the upper hand over confligtrdsolvers, with theawSolver-2.6 with a large margin
the fastest solver. Regarding conflict-driven solvers, eeethat version 2.2 fafiniSat is superior over version 2.0,
while for Glucose it is the opposite. The low node-count fairch pl seems due to the preprocessing phase, which
adds a large number of resolvents to the original instartts:réduces the node-count, but increases the run-time.
Compared to the other look-ahead solvers, the strengthuolver-2.6 is that the number of nodes is just larger by
a factor of most 3, while processing of each node happens fagtér. Compared with the strongest conflict-driven
solver,MiniSat-2.2, we see that the node-counttafuSolver-2.6 is considerably less than the number of conflicts
used byMiniSat, and that one node is processed somewhat faster than onietconfl

One aspect important here for the superiority of look-alsedder is the “tightness” of the problem formulation.
Consider for examplé = 12, not withn = 135 as in TableEl&.]9, but with = 1000; this yieldsc = 294455,
C3 = 249500,c¢;2 = 44,955, and? = 1,287,960, which is now a highly redundant problem instance. te@iSolver-
2.6 we obtain 1,311,511 nodes and 2,868 sec, anddf@Bolver-2.6 we get 935,475 nodes and 2,452 sec, while
for MiniSat-2.2 we get 1,140,616 conflicts and 159 sec. We seeafthaitSat-2.2 was able to utilise the additional
clauses to determine unsatisfiability with fewer conflietsd with a run-time not muchi&cted by the large increase
in problem size, while fotawSolver-2.6 the run-time (naturally) explodes, and the number afesostayed the
samé? If we consider a typical branching-heuristics for look-atisolvers (as discussed in Subsediioh 2.3), then we
see that locality of the search process is not taken intoideration, and thus for non-tight problem formulations the
solver can “switch attention” again and again. This is vafjedent from heuristics for conflict-driven solvers, which

20The0Ksolver yields a more extreme example: the run was aborted afte668%ec and 603,177 nodes, where yet only %49the search
space was visited (so that the solver was still working onmletimg the first branch at the root of the tree, making veowsprogress towards
%50). This shows the big overhead caused byrgheeduction, and the danger of a heuristic which (numegizaees opportunities “all over the
place”, and thus can not focus on one relevant part of thet.inpu

24



via “clause-activity” have a strong focus on locality of seaing. Furthermore, look-ahead solvers consider much

more of the whole input, for example thawSolver considers always all remaining variables and their occuee
for the branching heuristic, while conflict-driven solvelisnot use such global heuristics.

t= 12 13 | 14 | 15 | 16 | 17
tawSolver-2.6 11 83 673 5,010 42,356 401,940
961,949 | 5,638,667 | 35,085,795| 194,035,915| 1,462,429,351 10,258,378,909
TawSolver-2.6 19 143 1,068 7,607 59,585
953,179 | 5,869,055| 35,668,687 | 200,208,507 | 1,479,620,647
tawSolver-1.0 47 463 4,577 47,006 532,416
1,790,733| 13,722,975 102,268,511 774,872,707 | 8,120,609,615
satz 77 711 6,233 54,913 562,161
262,304 | 1,698,185| 10,822,316| 66,595,028 | 599,520,428
march_pl 185 1,849 17,018 175,614
47,963 279,061 1,975,338 11,959,263
OKsolver 216 3,806 47,598
281,381 | 2,970,723 | 22,470,241
MiniSat-2.2 107 1,716 16,836 190,211
5,963,349| 63,901,998 463,984,635 3,205,639,994
MiniSat-2.0 273 3,022 33,391 274,457
1,454,696| 9,298,288 | 60,091,581 314,678,660
PrecoSAT 211 2,777 47,624
2,425,722| 16,978,254| 140,816,236
PicoSAT 259 4,258 48,372
9,643,671| 82,811,468 576,692,221
Glucose-2.0 58 781 84,334
1,263,087| 8,377,487 | 163,500,051
Lingeling 519 7,651 107,243
1,659,607| 24,124,525| 176,909,499
CryptoMiniSat 212 4,630 141,636
2,109,106| 18,137,202 205,583,043
Glucose-2.2 94 1,412 >940,040
1,444,017| 10,447,051 aborted

Table 9: Complete solvers on unsatisfiable instark@st; n) for computing w(2; 3t) (witht = 12...,16 andn = 135160 186 218 238). The
first line is run-time in seconds, the second line is the nurobaodes for look-ahead solvers resp. number of confliatedaflict-driven solvers.

Finally we consideCube & Conquer, with the 0Ksolver as Cube-solver andiniSat-2.2 as Conquer-solver,

in Table[I0. We see that the combination is vastly superi@aith of the two solvers involved, and approaches in
performance the best solver, thewSolver-2.6 (but still slower by a factor of two).

25



t= | 13 | 14 | 15 | 16 | 17

D 20 30 35 40 50

nds 3,197 27,053 64,663 209,593 1,399,505

t 10 146 821 3,248 23,546

N 1599 13,527 32,331 104,797 699,751

t: med, max|| 0.06,049 | 0.06, 068 0.16, 39 0.46, 296 0.8, 199

¥ cfs 8,479,987| 59,402,586| 361,511,501 3,723,995,164 35,931,491,146
>t 120 961 6,888 80,056 1,006,718
totalt 130 1,107 7,709 83,304 1,030,264
factor 132 15.2 247 NA NA

Table 10: Cube & Conquer, via the 0Ksolver as the cube-solver, arMiniSat-2.2 as the conquer-solver. Times are in seconds. “fac®r” i
run-time ofMiniSat-2.2, divided by total time offube & Conquer. The run-times of th@Ksolver includes writing all data-files (the partial
assignments), the run-times fniSat include reading the files. $Geconds are roughly J.days.

6.1.3. Palindromic vdW-problems

The data for the palindromic problems we considered is stiowWwable[11. Recall that for palindromic problems,
that is, the determination of pdw(2;t3 = (n1, ny), we have to determine two numbers: thesuch that alFP4(3, t, n)
with n < n; are satisfiable, whil&P9(3,t,n; + 1) is unsatisfiable, and, for which FPY(3,t, n) is unsatisfiable for
all n > ny, while FP4(3,t,n, — 1) is satisfiable. In order to do so, as shown in Thedremh 5elpthin unsatisfiable
instances are fam, andn, + 1. To reduce the amount of data, we don’t show the data foettves critical points, but
for np, which is easier than, + 1 (in our range by a factor of around five; possible due to thetfeat except of one
casen, happens to be odd here, as discussed in the next paragragimgaader tham;.

For FPY(3,t, n) with oddn we can determine that the middle verﬁé}% can not be element of the first block of the
partition (belonging to progression-size 3), since theother vertex could be in the first block (due to the palindromi
property and the symmetric position of the middle verter} then we would have an arithmetic progression of size
t in the second block. Due to this (and there might be othemregs palindromic problems for oduare easier
(running times can go up by a factor of 10 for ev§

t n v c ¢ C C3 Criy21 Cryzer Gt

17| 279 || 140 | 10,536| 45,139 | 185 9,357 25 0 969
18 | 312 156 | 13,277| 58,763 | 52 11,954 9 0 1,262
19| 347 174 16,208| 70,414 | 230 14,586 28 0 1,364
20 | 389 || 195| 20,327| 88,944 | 258 18,393 10 19 1,647
21| 405 | 203 | 21,950| 96,305 | 269 19,958 29 0 1,694
22 | 463 || 232 | 28,650| 126,560| 308 26,171 11 21 2,139
23 | 507 || 254 | 34,289 152,236| 337 31,448 34 0 2,470
24 | 593 || 297 | 46,881| 209,792| 394 43,156 12 24 3,295
25| 607 || 304 | 48,979| 219,525| 404 45,237 37 0 3,301
26 | 643 || 322 | 54,843| 246,503| 428 50,813 12 24 3,566
27 | 699 || 350 | 64,719| 292,102| 465 60,133 38 0 4,083

Table 11: Instance data f&P4(3,t, n), wherev is the number of variables,= ¢, + c3 + Cit/21 + Cpt/21+1 + Gt is the number of clauses;, the number
of clauses of length, and¢ is the number of literal occurrences.

First we consider the look-ahead solvers in Tdble 12. ComgarwSolver with the other solvers, we see a
similar behaviour as with (ordinary) vdW-problems, but mextreme so. The node-counttdwSolver-2.6 and
tawSolver-2.6 is not much worse than the “real” look-ahead solversh wkception ofnarch_pl (where again a
large number of inferred clauses is added by the solver) wigak performance of th&Ksolver is (likely) explained

21we remark that while for examplerecoSAT determines this forced variable right at the beginnings thinot the case for thginiSat
versions, which infer that fact rather late, and they argpédrtby adding the corresponding unit-clause to the instance

26



by the instances not having manyreductions (recall thalKsolver is completel\eliminating failed literals, as the
only solver), and so the overhead is prohibitive (the savinghode-count don’t payff). satz only investigates %10
of the most promising variables fos-reductions, and additionally looks for somgreductions. This strategy here
works far better thaBKsolver’s “strategy” (but theDKsolver deliberately doesn’'t employ a “strategy” here, since
the aim is to have a stable and “mathematical meaningful’esil nevertheless still the overhead is too large.

An interesting aspect is that for largethe more complex heuristic (i.e., projection)afiSolver-2.6 compared
to tawSolver-2.6 pays €. This is diferent from ordinary vdW-problems. And as the comparisoh witwSolver-
1.0 shows, the heuristic (mostly the projection) is of griegportance here (more pronounced than for ordinary
vdW-problems).

t || rawSolver-2.6 | tawSolver-2.6| satz | tawSolver-1.0 | marchpl | OKsolver
17 1 0.8 12 7 35 18
32,855 32,697 16,466 143,319 1,448 5,023
18 11 8 182 60 269 335
276,249 279,309 208,873 1,063,979 12,289 100,803
19 13 10 143 134 500 322
283,229 285,037 123,199 2,009,635 12,423 62,009
20 48 39 701 738 1,980 1,419
894,777 897,529 459,899 9,076,261 39,681 206,617
21 115 101 2,592 2,541 5,053 3,636
2,144,743 2,239,371 1,567,736 | 30,470,349 99,493 490,841
22 564 525 9,418 18,306 25,841 47,593
8,427,503 8,683,035 4,393,139 | 170,414,771 | 376,285 | 3,197,173
23 1,547 1,695 35,633 86,869 77,763 132,150
19,858,971 21,565,129 | 12,587,868 573,190,251 | 876,315 | 7,461,907
24 8,558 26,724
79,790,419 198,685,857
25 22,841
219,575,127

Table 12: Look-ahead solvers on unsatisfiable instaR€&8, t; n) for computing w(2; 3t) (with t = 17, ..., 25 andn = 279...,607). The first
line is run-time in seconds, the second line is the numbepdés.

The conflict-driven solvers are shown in Tablgé 13. We seettiet are not competitive withawSolver-2.6 or
tawSolver-2.6, however now most of them are better than the “real” labkad solvers. HeleiniSat-2.2 is better
thanMiniSat-2.0, andGlucose-2.2 is better thalucose-2.0, so we show only data for the newest versions. With
Glucose wWe see a pattern which we observed also at other (hard) oestdasses: for smaller instand&sicose is
better tharMiniSat, but from a certain point on the performanceGafucose becomes very bad. This is likely due
to the more aggressive restart strategy, which pdlyfoo smaller instances, but from a certain point on the solver
becomes essentially incomplete.

27



t || MiniSat | Glucose | PrecoSAT | Lingeling | CryptoMiniSat
17 0.8 0.8 1.2 3.7 3.6
34,426 34,826 41,961 57,306 59,443
18 19 14 25 59 78
607,908 340,568 506,793 919,123 871,916
19 19 15 24 61 72
568,924 336,861 485,357 915,107 765,301
20 118 66 131 355 384
2,852,150 1,132,012 1,799,145 | 3,633,502 3,071,462
21 423 228 445 1,060 1,418
9,179,642 2,903,573 4,687,589 | 8,672,073 8,458,496
22 3,151 1,631 2,825 8,428 14,321
51,582,064 13,397,451 22,283,651 | 41,696,062 49,716,762
23 8,191 6,817 9,280 28,543 55,544
108,028,217, 36,314,064 54,951,563 | 104,007,799 141,249,316
24 54,678 > 992,540 82,750 152,076
476,716,936| > 1,100,664,795 261,084,988 285,546,948
aborted

Table 13: Conflict-driven solvers on unsatisfiable instari@®!(3, t; n) for computing w(2; 3t) (with t = 17,..., 24 andn = 279,...,593). The
first line is run-time in seconds, the second line is the nurobeonflicts.

Finally we considetube & Conquer in Table[T4. We see that this is now the fastest solver ove¥alicose-2.2
is %10 faster, but since this is only a small amount, for cstesicy we stick wittiniSat-2.2.

t= || 23 | 24 | 25 | 26 | 27
D 25 35 45 55 65
nds 1,717 5,559 17,633 77,161 220,069
t 106 500 1,752 7,889 25,478
N 859 2,780 8,817 38,581 110,032
t: med, max|| 0.95, 176 12,27 0.81, 47 0.95, 58 0.82, 125
X cfs 27,308,572 93,831,664| 258,829,555 1,231,383,588 3,423,841,749
>t 1,095 4,466 11,822 55,306 172,033
totalt 1,201 4,966 13,574 63,195 197,511
factor 1.3 17 17 NA NA

Table 14: Cube & Conquer, via the OKsolver as the cube-solver, antiniSat-2.2 as the conquer-solver. Times are in seconds. “fac®r” i
run-time of best solver, i.erawSolver-2.6, divided by total time ofube & Conquer. 10° seconds are roughly. 2 days.

6.2. Incomplete solvers (stochastic local search)

In theOK1ibrary we use thé&bcsat suite (see [67]) of local-search algorithms in version @-Zhe considered
algorithms are GSAT, GWSAT, GSAT-TABU, HSAT, HWSAT, WALKSAWALKSAT-TABU, WALKSAT-TABU-
NoNull, Novelty, Novelty, Novelty++, Novelty+p, Adaptive Novelty, RNovelty, RNovelty, SAPS, RSAPS,
SAPSNR, PAWS, DDFW, G2WSAT, Adaptive G2WSat, VW1, VW2, RoTS, IR SAMD. The performance of
local-search algorithms is very much instance-dependedtso a good choice of algorithms is essential. Our exper-
iments yield the following selection criteria:

e For standard problems (Sectign 3) the best advice seems BSAT-TABU fort < 23, to use RoTS far> 23,
and to use Adaptive G2WSat for- 33 (also trying DDFW then).

e For the palindromic problems (Sectioh 5) GSAT-TABU is thet@gorithm.

28



For a givent in principle we let these algorithm run for=t + 1,t + 2,...,, until the search seems unable to find
a solution. But running these algorithms from scratch orsehedW-problems is much lesffective than using an
incremental approach, based on a solution founahferl, respectively for palindromic vdW-problems on a solution
found forn — 2 (according to Lemm@aH.1), as initial guess, and repealiisgprocess for the next this helps to

go much quicker through the easier part of the search spégmé¢siblen), and also seems to help for the harder
problems. Finally, we recall that in Subsection| 3.2 we exygld how we made the distinction between lower bounds
we conjecture to be exact and sheer lower bounds.

7. Conclusion

This article presented the following contributions to thedds of Ramsey theory and SAT solving:
e Study of w(2; 3t):

1. determination of w(2;,3L9) = 349;

2. lower bounds for w(2;,3) with 20 < t < 30, conjectured to be exact;

3. further lower bounds for 3% t < 39;

4. improved conjecture on the growth rate of w(2)3
5. various observations on structural properties of goatitjmms.

e Introduction and study of pdw(2; 8:

1. basic definitions and properties;

2. determination of pdw(2;,3) fort < 27;

3. lower bounds for pdw(2;,3) with 28 < t < 35, conjectured to be exact;
4. further lower bounds for 36 t < 39.

e SAT solving:

1. introduced the new SAT-solveawSolver, with the basic implementation given bgwSolver-1.0, and
the versions with improved heuristic bywSolver-2.6 andrawSolver-2.6;

2. experimental comparison with current look-ahead andictwdriven solvers;

3. comparison and data for the néwbe & Conquer method,;

4. experimental determination of good local-search atiyors for lower bounds.

We hope that these investigations contribute to a bettegnstahding of the connections between Ramsey theory and
SAT solving. The following seem relevant research direwifor future investigations:

e Showing w(2;320) = 389 (recall Subsectidn 3.2) should be in reach witfvSolver-2.6, while showing
w(2; 3,21) = 416 seems to require new (algorithmic) insight (when usinglar computational resources).

Conjecturé_311 states that the lower bound from [14] for \8(8);is tight up to a small factor.

In Sectiorl4 four conjectures on patterns in good partitamespresented (one implying Conjectlred 3.1).

In Subsectiof 514 various open problems on palindromic eaVherden numbers are stated.

Considering SAT solving:

1. Understand the fierences between ordinary and palindromic problems:

— Why is the projection relatively more important for the paliomic problems? (So that theffdir-
ence betweenawSolver-2.6 andtawSolver-1.0is more pronounced, amdwSolver-2.6 becomes
faster thartawSolver-2.6 on bigger instances.)

— Why do we have dferent behaviour of look-ahead versus conflict-driven ssl¥e

2. Can the branching heuristic @hwSolver for the instances of this paper be much further improved?
Especially can we gain some understanding of the weights?

3. How to understand the successtabe & Conquer ? Does its success indicate that there are important
dag-like structures in good resolution refutations of th&tances of these classes, which are dispersed
locally, so that ordinary conflict-driven solvers have geohs exploiting them?

29



Acknowledgements

The authors would like to thank Donald Knuth, the Editor amel anonymous referees for their valuable sugges-
tions and helpful comments.

References

[1] Dimitris Achlioptas. Random satisfiability. In Biere ak [12], chapter 8, pages 245-270.

[2] Tanbir Ahmed. Some new van der Waerden numbers and soméeraVaerden-type numbetstegers 9:65-76, 2009. #A6.

[3] Tanbir Ahmed. Two new van der Waerden numbers: w(2;3ahit) w(2;3,18)Integers 10:369-377, 2010. #A32.

[4] Tanbir Ahmed. On computation of exact van der Waerdenlmens Integers 12(3):417-425, 2012. #A71.

[5] Tanbir Ahmed. Some more van der Waerden numhdwarnal of Integer Sequenceks(4), 2013. #13.4.4.

[6] Gilles Audemard and Laurent Simon. Predicting learatisks quality in modern SAT solvers. ICAI'09 Proceedings of the 21st Interna-
tional Joint Conference on Artificial intelligencpages 399-404. AAAI, 2009.

[7] Michael D. Beeler and Patrick E. O’'Neil. Some new van dexdfen number®Discrete Mathematic28(2):135-146, 1979.

[8] Armin Biere. Picosat essentialdournal on Satisfiability, Boolean Modeling and Computatié:75-97, 2008.

[9] Armin Biere. Bounded model checking. In Biere et al.| [1&}apter 14, pages 455-481.

[10] Armin Biere. Rre,i}coSAT@SC'09nhttp://fmv. jku.at/precosat/preicosat-sc09.pdf} 2009.

[11] Armin Biere. Lingeling and friends entering the SAT @bage 2012. In Adrian Balint, Anton Belov, Daniel Diepoldi-
mon Gerber, Matti Jarvisalo, and Carsten Sinz, editd®?sceedings of SAT Challenge 2012: Solver and Benchmaricripes
tions, volume B-2012-2 ofDepartment of Computer Science Series of Publicationpdges 33-34. University of Helsinki, 2012.
https://helda.helsinki.fi/bitstream/handle/10138/34218/sc2012_proceedings.pdf.

[12] Armin Biere, Marijn J.H. Heule, Hans van Maaren, and yiotalsh, editorsHandbook of Satisfiabilifyvolume 185 ofFrontiers in Artificial
Intelligence and ApplicationdOS Press, February 2009.

[13] T. C. Brown. Some new van der Waerden numbers (prelimirgport). Notices of the American Mathematical Soci&¥:432, 1974.

[14] Tom Brown, Bruce M. Landman, and Aaron Robertson. Bauod some van der Waerden numbedsurnal of Combinatorial Theory,
Series A115:1304-1309, 2008.

[15] V. Chvatal. Some unknown van der Waerden numbers. i Buy, editor,Combinatorial Structures and their Applicatignsages 31-33.
Gordon and Breach, New York, 1970.

[16] Scott Cotton. Two techniques for minimizing resolutioroofs. In Strichman and Szeider|[65], pages 306—312. }3BR78-3-642-14185-0.

[17] Adnan Darwiche and Knot Pipatsrisawat. Complete ators. In Biere et al.[12], chapter 3, pages 99-130.

[18] Martin Davis, George Logemann, and Donald Loveland. #hine program for theorem-provinGommunication of the ACM:394-397,
1962.

[19] Michael R. Dransfield, Lengning Liu, Victor W. Marek, dMiroslaw Truszczyhski. Satisfiability and computing \@er Waerden numbers.
The Electronic Journal of Combinatoric$1(#R41), 2004.

[20] Niklas E€n and Niklas Sorensson. An extensible SAlar. In Enrico Giunchiglia and Armando Tacchella, editdtheory and Applications
of Satisfiability Testing 200%olume 2919 of ecture Notes in Computer Scienpages 502-518, Berlin, 2004. Springer. ISBN 3-540-20851-
8.

[21] Luis Gil, Paulo Flores, and Luis Miguel Silveira. PEtSa parallel version of MiniSAT Journal on Satisfiability, Boolean Modeling and
Computation 6:71-98, 2009.

[22] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Mmdmting. In Biere et al. [12], chapter 20, pages 633—-654.

[23] Jun Gu. The multi-SAT algorithmDiscrete Applied Mathematic86-97:111-126, 1999.

[24] Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdas. Saversification and intensification in parallel SAT solgi InCP’10 Proceed-
ings of the 16th international conference on Principles anakctice of constraint programmingolume 6308 of_ecture Notes in Computer
Sciencepages 252-265. Springer-Verlag, 2010.

[25] Matthew Gwynne and Oliver Kullmann. Generalising amifying SLUR and unit-refutation completeness. In Peter Emde Boas, Frans
C. A. Groen, Giuseppe F. Italiano, Jerzy Nawrocki, and Hh&dck, editorsSOFSEM 2013: Theory and Practice of Computer Science
volume 7741 oLecture Notes in Computer Science (LNGges 220-232. Springer, 2013.

[26] Matthew Gwynne and Oliver Kullmann. Generalising wifutation completeness and SLUR via nested input raseolutJournal of
Automated Reasoning§2(1):31-65, January 2014.

[27] P.R.Herwig, M.J.H. Heule, P.M. van Lambalgen, and hh Maaren. A new method to construct lower bounds for van dezfdém numbers.
The Electronic Journal of Combinatoric&4(#R6), 2007.

[28] Marijn Heule, Mark Dufour, Joris van Zwieten, and HarenvWWaaren. Marcleq: Implementing additional reasoning into afiaient
look-ahead SAT solver. In Hoos and Mitchell [35], pages 388 ISBN 3-540-27829-X.

[29] Marijn Heule and Toby Walsh. Internal symmetry. In PéefFlener and Justin Pearson, editditse 10th International Workshop on Symmetry
in Constraint Satisfaction Problems (SymCon’lilgges 19-33, 2010.

[30] Marijn Heule and Toby Walsh. Symmetry within solutiorie Proceedings of the Twenty-Fourth AAAI Conference on Alflotelligence
(AAAI-10) pages 77-82, 2010.

[31] Marijn J. H. Heule and Hans van Maaren. Look-ahead b&#&dsolvers. In Biere et al. [12], chapter 5, pages 155-184.

[32] Marijn J.H. Heule, Oliver Kullmann, Siert Wieringa, @Armin Biere. Cube and conquer: Guiding CDCL SAT solversdnkbaheads. In Ker-
stin Eder, Joao Lourenco, and Onn Shehory, editdesdware and Software: Verification and Testing (HVC 2Q04b)ume 7261 oL ecture
Notes in Computer Science (LNCBages 50-65. Springer, 2072t tp://cs.swan.ac.uk/~ csoliver/papers.html1#CuCo2011|

[33] Marijn J.H. Heule and Hans van Maaren. Parallel SAT isgwsing bit-level operationsJournal on Satisfiability, Boolean Modeling and
Computation4:99-116, 2008.

30


http://fmv.jku.at/precosat/preicosat-sc09.pdf
https://helda.helsinki.fi/bitstream/handle/10138/34218/sc2012_proceedings.pdf
http://cs.swan.ac.uk/~csoliver/papers.html#CuCo2011

[34] John N. Hooker and V. Vinay. Branching rules for satisfity. Journal of Automated Reasonintp:359-383, 1995.

[35] Holger H. Hoos and David G. Mitchell, editorslheory and Applications of Satisfiability Testing 20@dlume 3542 of_ecture Notes in
Computer ScienceBerlin, 2005. Springer. ISBN 3-540-27829-X.

[36] Antti E. Hyvarinen, Tommi Junttila, and llkka Niengel Incorporating clause learning in grid-based random&ad solving. Journal on
Satisfiability, Boolean Modeling and Computati@?223-244, 2009.

[37] Antti E. Hyvarinen, Tommi Junttila, and llkka Niengel Partitioning search spaces of a randomized searchl*IA 2009: Proceedings of
the Xlth International Conference of the Italian Assoa@atior Artificial Intelligence Reggio Emilia on Emergent Bpectives in Atrtificial
Intelligence volume 5883 oLecture Notes in Computer Scienpages 243—-252. Springer-Verlag, 2009.

[38] Antti E. Hyvarinen, Tommi Junttila, and llkka Niengel Partitioning SAT instances for distributed solving.LIRAR'10 Proceedings of the
17th international conference on Logic for programmingtifagial intelligence, and reasoning/olume 6397 oLecture Notes in Computer
Sciencepages 372-386. Springer-Verlag, 2010.

[39] Bernard Jurkowiak, Chu Min Li, and Gil Utard. A paraligtion scheme based on work stealing for a class of SAT sohdurnal of
Automated Reasoning4(1):73-101, January 2005.

[40] Henry A. Kautz, Ashish Sabharwal, and Bart Selman. inptete algorithms. In Biere et al. [12], chapter 6, pages-283.

[41] Hans Kleine Buning and Oliver Kullmann. Minimal unisdiability and autarkies. In Biere et al. [12], chapter 1agps 339—-401.

[42] Michal Kouril. Computing the van der Waerden numi€B, 4) = 293. INTEGERS: Electronic Journal of Combinatorial Number Tiyeo
12(A46):1-13, 2012.

[43] Michal Kouril and Jerome L. Paul. The van der Waerden beriV(2, 6) is 1132.Experimental Mathematicd7(1):53—-61, 2008.

[44] Daniel Kroening. Software verification. In Biere et [lZ], chapter 16, pages 505-532.

[45] Oliver Kullmann. Investigating a general hierarchypaflynomially decidable classes of CNF's based on shortlikeeresolution proofs.
Technical Report TR99-041, Electronic Colloquium on Cotatianal Complexity (ECCC), October 1999.

[46] Oliver Kullmann. Investigating the behaviour of a SAGN\ger on random formulas. Technical Report CSR 23-2002,rSea University,
Computer Science Report Series (available figrp: //www-compsci.swan.ac.uk/reports/2002.html), October 2002. 119 pages.

[47] Oliver Kullmann. TheOKlibrary: Introducing a "holistic” research platform for (genesald) SAT solving.Studies in Logic2(1):20-53,
2009.

[48] Oliver Kullmann. Fundaments of branching heuristizsBiere et al.|[12], chapter 7, pages 205-244.

[49] Oliver Kullmann. Exact Ramsey theory: Green-Tao nuralamd SAT. Technical Report arXiv:1004.0653v2 [cs.DMKiay April 2010.

[50] Oliver Kullmann. Green-Tao numbers and SAT. In Strigtmand Szeider [65], pages 352—-362. ISBN-13 978-3-6428-018

[51] Oliver Kullmann. Constraint satisfaction problemsdiausal form |: Autarkies and deficiencyrundamenta Informaticael09(1):27-81,
2011.

[52] Oliver Kullmann. Constraint satisfaction problemsiausal form II: Minimal unsatisfiability and conflict striuce. Fundamenta Informati-
cag 109(1):83-119, 2011.

[53] Bruce Landman, Aaron Robertson, and Clay Culver. Soeveexact van der Waerden numbefdTEGERS: Electronic Journal of Combi-
natorial Number Theory5(2):1-11, 2005. #A10.

[54] Chu Min Li and Anbulagan. Heuristics based on unit pgat&on for satisfiability problems. |Rroceedings of 15th International Joint
Conference on Artificial Intelligence (IJCAI'9;7pages 366—371. Morgan Kaufmann Publishers, 1997.

[55] Joao P. Marques-Silva, Ines Lynce, and Sharad Maliknfli@b-driven clause learning SAT solvers. In Biere et al][ichapter 4, pages
131-153.

[56] John R. Rabung. Some progression-free partitionstageted using Folkman’s methodCanadian Mathematical Bulletjri22(1):87-91,
1979.

[57] Stanistaw P. Radziszowski. Small Ramsey numbEns. Electronic Journal of CombinatoricAugust 2009. Dynamic Surveys DS1, Revision
12; seenttp://www.combinatorics.org/Surveys.

[58] Vera Rosta. Ramsey theory applicatiorie Electronic Journal of CombinatoricBecember 2004. Dynamic Surveys DS13, Revision 1;
seehttp://www.combinatorics.org/Surveys.

[59] K.F. Roth. On certain sets of integedurnal of the London Mathematical SociepB:245-252, 1953.

[60] Karem A. Sakallah. Symmetry and satisfiability. In Biest al. [12], chapter 10, pages 289-338.

[61] Marko Samer and Stefan Szeider. Fixed-parameteratvdity. In Biere et al.|[12], chapter 13, pages 425-454.

[62] Tobias Schubert, Matthew Lewis, and Bernd Becker. PaXIl: Parallel SAT solving with threads and message passifmurnal on
Satisfiability, Boolean Modeling and Computatj@?203-222, 2009.

[63] Pascal Schweitzer. Problems of Unknown Complexity: Graph isomorphism and Rgmstheoretic num-
bers PhD thesis, Universitadt des Saarlandes, Saarbriicken009.2 Revised version,  April  2012;
http://www.mpi-inf.mpg.de/~pascal/docs/thesis_pascal_schweitzer.pdf.

[64] Mate Soos, Karsten Nohl, and Claude Castelluccia. rightgy SAT solvers to cryptographic problems. In Oliver iKuginn, editor,;Theory
and Applications of Satisfiability Testing - SAT 2p08lume 5584 olecture Notes in Computer Sciengages 244-257. Springer, 2009.
http://planete.inrialpes.fr/~soos/publications/Extending_SAT_2009.pdf.

[65] Ofer Strichman and Stefan Szeider, editofieory and Applications of Satisfiability Testing - SAT 204flume LNCS 6175 of ecture
Notes in Computer SciencBpringer, 2010. ISBN-13 978-3-642-14185-0.

[66] E.Szemerédi. On sets of integers containind etements in arithmetic progressioficta Arithmetica27:299-345, 1975.

[67] Dave A.D. Tompkins and Holger H. Hoos. UBCSAT: An implemtation and experimentation environment for SLS algoritHor SAT and
MAX-SAT. In Hoos and Mitchell|[35], pages 306—-320. ISBN 3e627829-X.

[68] Peter van der Tak, Marijn J. H. Heule, and Armin Biere. n@arrent Cube-and-Conquer. In Alessandro Cimatti and Rol&ebastiani,
editors, Theory and Applications of Satisfiability Testing - SAT 20ddume 7317 of_ecture Notes in Computer Science (LNQ®ges
475-476. Springer, 2012.

[69] B.L.van der Waerden. Beweis einer Baudetschen VermngutNieuw Archief voor Wiskungé5:212-216, 1927.

[70] Hantao Zhang. Combinatorial designs by SAT solversBibre et al.|[12], chapter 17, pages 533-568.

31


http://www-compsci.swan.ac.uk/reports/2002.html
http://arxiv.org/abs/1004.0653
http://www.combinatorics.org/Surveys
http://www.combinatorics.org/Surveys
http://www.mpi-inf.mpg.de/~pascal/docs/thesis_pascal_schweitzer.pdf
http://planete.inrialpes.fr/~soos/publications/Extending_SAT_2009.pdf

[71] Hantao Zhang, Maria Paola Bonacina, and Jie Hsiang.TRSA distributed propositional prover and its applicatiomuasigroup problems.
Journal of Symbolic Computatipa1:1-18, 1996.

Appendix A. Certificates

Appendix A.1. Conjectured precise lower boundsi@2; 3, t)
The certificate fot = 20 is also palindromic (while for = 24 a palindromic certificate is given in Subsection

/APpendix A3).
w(2; 3,20)> 389,
1*°01**01*01’0107*01*%01°01%0101*40%130%101°01*%01°01*010°01%011°01*%01801*%01*°01°01°010*01°
01'%01°010*1°0°1'*0101'01°01°01%0101'01%011011°
w(2;3,21)> 416
1801170107°0102°01%20%1%°01*%013010201*20%1°0%101*°01*%0101 (*1801*%01%°01*%010101'01801*%0?
1011'01*%01301071801°01°0%11201°011°0101'0101101%°
w(2; 3,22) > 464
120%1170%1°01120107+°011°01%01*°01*01701°01*201°010201801%0102°01*%01°01701*01*%01%01*°01*2
0107%01°0%1''0?1°011%0101%01*°01201%°01%01701°011201°0107°01801°01°01*?01°01’01**
w(2;3,23)> 516
10%1%01'7010101°01%°01%01°012°0101201%0?101*01*°01%01*01*%01°01*°0101°01*°01"01*'01°0101*°01%0
1210711901°01201201(*1*0107%10711101°0°1°01%01*%010°01801°01%°01°01%01%°01
w(2;3,24)> 593
12101'801'%01*01701°01010130°1801701%01201%°0°1%0101*°0101%0?1?°01201%01701°01*80102°01%* 01’0
11°01'01%'01°0107*%01°01'01301%01%°071301'011°01'01%0°1?°01°01%01"01%0°1%01**0101°01'01*01 %0180 1
w(2;3,25)> 656
1%01201%°01801701%°01801*010°0117011°01220%120101:°01701*%01*021%01%01701 021301 01*01% 0103
01°01°01*"01801'01*%01*01%01%01*%0?1801701*°01801%0101'01*°01%°01°01* 0?1201 01:°01°01*“0
1*02%01%01701*021%01*%01*01*"0102301%0%1%401801°
w(2;3,26)> 727,
11%01%01%°0101*°01%01**01°01'071201°01°01°01%°01*0101'01* '01*°010110°101001*01%01*8
01%01°01*401*%01%01%01*°01%01*1*01*301*0101*°01*01*80110°1201°01%01°01%%01°0101'011°0101*°
0101*'0%1%201001401%01*%01°011401*%01%%01%01°01%01%01*8013012°

32



w(2;3,27)> 770,
1%%01°01°01'%01*'01001*'01°01'01%01%°0*1*?011°01*°01*01°01°01°01*°01%°0230*
1801°012°01%0101%01701%01°010°101'0120%1%401°011'0107201%011701301°0102012°0%12011°01%2
01301°01°01"%017201°0°1%01°01?°01801*%01'01°01°01(*101**01°01801*°011°01"°02°
w(2;3,28)> 827.
1?701'°017°0101'%01%01"%017°0101"°0101'0*1°0101°01°0*1*%01°01°01**01"*01*'01**0
1'°010°101%°01'0107°01*%01''01°0101°0101701'701*°0101'01* '01**01*01*%0*1*010 01’
01*%01301°01'*01*?01%%01%01'*01*%010*1*%01°01%01077°01*¥01*101°01%0107*%01*°%01°011%01°01"°
w(2;3,29)> 868
11%012101%801101'%012012017012°0101:%01*'01°0170%12011701°0%101*°%01°01130107201*'01%01701*
012°0107201°01**01%°01*°012°0120%1°013011°01*012°010701°012°01*%0?1201' '01°0?1011°01°013010 2
01°01701°01°01701012°0107011'01%01201'012°01301%01°01'%01%°01°01?"018
w(2;3,30)> 903
12201%01%2012°01'0107P0107%%01*201%°01701°01°011101°0%1°071*%017018010°01°01%%0101301%01%2
01801070%1*0107201**0101%°01%°01*01%%0%1'0102°01%201%0?1011%01%01*01701*%01%01%01%8
01701°0120%1'%01%0180102°011*0101*%012°010012°01*%01%0°1*301*?01%01?"01%°0 14
Appendix A.2. Further lower bounds fa(2; 3, t)
The certificate fot = 31 is also palindromic.
w(2;3,31)> 930
1*201%°01%%011°01%01%01%01%*01*%01**01*%0?11%01*01*%01801°0101%1*'01*°01*°01801°018010*01801*°
01%01%01*01%01%°011401*%01301°01°0101*01201*01*%01°01°01%01*°0114012°01*01*®01°01011°0 18
01*0102801°01%01%°01%°01'"01'%10101801*°01%01*%?1801**01*%01*01*01301°01*%0 10110112
w(2;3,32)> 1006
11%012%01°011101%01*%01401%012012201201°01701*°0120101*%011301°01%01701%01*%01°011401201701*%011°
0101%80%1201*%01°012*01?"01%01001'01*01*%012012*011°01°0101 '01*°0?1*01%%01°011*0%1801°0170
11101%01%°0107128014017021%011%01%01°01%%0113013011%01220120112017012%012°01201°01*01220180128
w(2;3,33)> 1063
1%°01°01*01'*01*'01*01%01*%0101°01*%01%°01*°01010°1%01*°01°01*01'°01%°0101*%017?01°01*0101°01°0
101°01%°0101*%01*0%1*01%01*01201%%01%017012°01*01*°01°0?1 801 010011401*%012801%01°0 1801401’
01*01%01'%01'*01°01*01201*01*'0102°011401?°01*40°1%01'°01%01*°01%011°01?"01*801*?01012°01%°012%01 "3

33



w(2;3,34)> 1143
1%201'0102012°012%0120%1%°01%011701%01°01°01%%01%°01%°0%1%0180°1013%01*801°01%%01°011"01%0170%1%%01°
01?0107%0?1701%021°017'01%401*°0101%°011°01801%0°1%801701%011*01%701(?1%°0101*01701%01%°0%1%%01701%0
1°01'°018012201°0107101°01%701201°01%°01%401°01%°011°01%012%01°010°01*%01'%01*01%°01*%01%¢017 0130132
w(2;3,35)> 1204
13401%01801%?01%0%1'°01%°01701*01*01%°01701?101°01°01*%01%201 0112012012017 01 0%1*01%01701*01°01%01%0
1201501%%01'°0180102°017011°01%0180 1301801 012°01*801201%20%1%01°012701*0 1201301201011 7018010 2°011301%2
01801°017017%01*%01*°01*01%2010220102°01*301*01°01°0101*°017011°01*%01*011301%401*201%*01%%01%0%1%40 134
w(2;3,36)> 1257.
1'%012301%01*201%01101%°0101*01°01%201*201°01%°0101*011 7012011010 120101 0°0%1*201°011601%201%011°0%10
1°01%012°01'°01%201°01201*01701%%01"01%%01401%°01%%01*%01°01°01%01*'010*401°01*°01%°01201°01%%01°01**0
1%01201%01201'°01°01%°01%01°01%*01*%01*°0?101*01%01*"01701*%01%101%%010°011°012601%01*0%1*%01*01%018010
17201%%01%°01%80101%3
w(2;3,37)> 1338
1°01%301%°01%01'%0°1801*01°01*%01*°01%*01*°01"0170°170101*%01%01°01%201801%%01%01°01°01401%1 0?1?0112
01701%%01%?01%0102201%201%01*01*1011"01'%0?120102°01701%?01%°01%%01 0 0?1*01%'01%01* 013014017 01%01’
01*01%°01°01%%01*°01°01*010?°01'°01%01"20101"'01%01*%01°01*401%011°01?7013°0%1%010£01%201%012701¢*170
1290 1401140 1160 1180 1140 12 102 11 10 15
w(2;3,38)> 1378
1*%01*01701"%01%0101°01*°01"%01"°01(*1*°0101°01**01*°01'01*°01"01"01°01°01*%0*1**01**01**01"01*
0°1%017°01°0101'%017°01*%01'%01°01"%010%'01°01*'01°01*°01"°01°01'°01°01°°0101°01'°01°01*°01*0?1*01*®
01*%01*01°0101°01*°01701*%0°101**01°0101*°01°0*1°01°701'%01°01*%01017°01°01*?01'%01"%0°101*°0
1'°01*°01'010101°01*'01'0101°01*°01%01%°
w(2;3,39)> 1418
1201%01*%01%4010%°012%01°01702201%%01%°01%0%1801%401*%01°01%701*%01*01701°01%°01°01*%0 1*01%601*
0%17801201%01%201%01*%01%%01'"01%01701*%01*101°01%01%%01%01%01*01%0120180101°01'°010**01%%0 136
01°01201°01%*%01%°01%01°01701'01%01%%011°01°’0107°01%01°01*'010*1601%20%1'101%4012201°012°0%1°0?
1201%201%0°1°01%01'°01%01701*01%°018012%01%01%%01%%01°°

Appendix A.3. Good palindromic partitions

Table[A.T5 gives good palindromic partitions for— 1, n; — 1 with (ng, np) = pdw(2; 3t), 3 <t < 39, according
to the values in Tabldg B] 7. Due to the palindromic propéotythe corresponding we only show the partition of
{1,....151}, so that for example the good palindromic partitiof@11%0 fort = 3 andn = 8 is compressed to 6Q.
Note that such compressed partitions correspond exadifetsolution of~P%(3, t, n) as defined in Lemnia3.3.

34



Table A.15: Good palindromic partitions for pdw(21B~ 1 according to Theorefn 3.1, Part (i)

t pdw(2;3t) -1 Good palindromic partitions
3 (5.,8) 120, 1071
4 (14,15) 01020, 12010212
5 (15,20) 140212, 1201010
6 (29,30) 12015021301, 150215021
7 (40,43) 0140108021501, 021401201501401
8 (51,56) 17012013021014013, 1201201401010130150
9 (61,76) 14013021°01201501401, 1802160130108021°014
10 (92,93) 1901401(71°021071°014, 1901802120216021401801
11 (109 112) 1%021%01°01?18071%0102£01*014, 12010£0101'0170?1501%0150101:°01
12 (125 134) 1'10102£01(?1011°01801°0140102, 1°01801°012010101'012010£01%10
13 (141, 154) 10120111011°01(*14011°011101(?16012, 11°0140111014011°01(?130%1011°01401201*
14 (173182) 1201701%01%01701°011%01010150100120%17, 140?12018010101°01°018017010£01%0211%012
15 199 1501'90170°1#01701°01701°01*°01°01*201°01201401
204 1110150120120111013015012021201110101:00113012
16 231 11401°0190150120214011201301701202112018015011°01
236 1'501°012071401°01(?1°011401°0%11101°01701°013
17 255 1'401%6010701'0101°01°01301°01201*10101701°0130718
278 1401°01°01%01*°01°01°0180711°0102°0170102£01*20101:601°0%1
18 298 12012011%0150101:6021401170120150101-301201501201°011202110017
311 160180130117021302112011601701°021 0714012017 0140140119015
19 337 11101201015071%012011°01*707102801 (7 1*701101201°07101*°01201°013
346 11101%%015010°017010201201'801°010120%1140130120101201%0101:201*301°
20 379 116021011°01*80150160%12015015011°0101:60130101:601201°0?11°010201°
388 11901110140170102011201°01401014021302101°011801°01401001301100116014
21 399 1601002111013014016011°011°01701201301:°0160214016012011201160211°01 015018017
404 118010°0213011301°0211°010201011%0170101:401801012°0102011°0102701
22 443 1201801701801*°018017010720170102£0160?11601°01201012°0101:6011°013012010
462 118011701501401701(?150115011°011402101602120180114021701401190122011°0111014021°
23 505 1110122012002190140180215012202130216011°011201201110110015021302122016019014011°0 110
506 172071'801201*°01%0120180%1'801°011%0120%1°011°0120102°01*°01*01*°011°01 (P 16011011°
24 567 01'8018071'501801710218011601(?160120114011°012°01°01'401201°0?101160180%121018 0
1140212013
592 12101180116014017016010140130218017013012012°0213017011°0170130212°01201301701°0118
0100121017015
25 585 1'°01°01807121011°0?1011°014011201°01°01(*1801°0180?101°01°011301%4011°01 (P 11501%*
071401°022
606 124014011°011701801401230101:2015011201202130180150122016018013021°0112015011201023
0140170213011°01

Continued on Next Page. .

35




Table A.15: Good palindromic partitions for pdw(21B~ 1 according to Theorefn 3.1, Part (i)

t pdw(2;3t) -1 Good palindromic partitions
26 > 633 1301130140112012°0121016011801701°0170211201140?1401201140125012014021 14011202
114014012011301401°012801
> 642 1'5012%0150130140114012011%0111011°0216011201°017 01140%11102101+3014011 70140113015
01701801401°0113011701°
27 > 663 1180118012201501130212101401°02120180120130180%112011801°011401501°01 8011202
112011402190120125014014
> 698 1220180125011901250111021°010°013017021°011401230130211°0117021301°011201110170
19021701210112011301601
28 > 727 1260150113018012901130119011901120115017021120101:2021#01°01201150122011501201°0
1501120101:3011401801120140110012
> 742 121012201070125011°010222011021°017013017021°0114012702119011 7021201501201 1017
01°0?1701210112011301%01
29 > 809 122012°0128011301301601401160122011601110112021201701°011°01110130150122010 801240
1'101%01%01°011101*2011101201?40?1301*2
> 820 11301(?11601150114010101201270140?1140112011601017011°0170160116012012°01°014 01210
11501701%011301602111012°0121010°01°01*
30 > 843 12901250211701°01°02122017011°01°01401°0211701130180128015011°0101:°01501801°0
11201240113014011°012011501°01(?1150111
> 854 12°01022010170140116018011401210?1701301201130114014011013011101240140119017 01250110
0214011802115011101°01070130121011801°0113
31 > 915 11201301401701110180116011°014013014011°012°01°0126013010124018011601 (1250130180
12011%012010230124017013012401201028012°011101011601°
> 930 11201190116011901°0130140140112011401180211°014011301801°0107°011701150116018015018
0101018011°011601°01'8014012°011401601201°01°01*301*01
32 > 957 124013017011901°0140117013°021601°01240211101180140117011°011°011101701170?130
123011201110170?13012°01401°0170122017011201%°01201601
> 962 1110211801210150120117011°0101160113013012401°01201230112012302150124010°02101°0117
011501°011901°901240150120150212301270180119012
33 > 995 13101022°0170211201013°01701°0180111013011301180112011101301011°0214017 012101140128
01011101302117013°01°01028013201201801°0130180130113
> 1004 1201°0122014013201201°02101701°01230118013°01 (?16011201°01°01°011°0111014011 70110
12602118011001230112011501°01120160218021301310112
34 > 1053 1°01101210101*012701801201%20120101%011%010201%%01301401%01%60101:20130116016
0133021°01401310120101:0140131013012017021220102013°013
> 1080 123021°01220113012502121018011°01110180214012°010201°0121018014 0123014 018012*
0119012001402120127011901401201260102°01801°01170140211201210213013
35 > 1113 17011201%101280130116010230140101:°0180114012801°01120121012302101°0130121012012%0
150114011501301(*101°0117011°0123010201201°01210114013°01250110017
> 1154 12801801'801°01°012°01°01°01°011201°0101:°01250128011301801°0130125012°013012101°0
1100120134010012011°01170120127011901802160101202119013°0121017
36 > 1185 160128011°01160128013501401701220101201801201301°01150120101°013°012501120130140
18011101701401180107701201201401°012101301280124012301302101320150111011°0115
> 1212 130125011%0124015014011701*3011°01801201(?132011°0113012°0101'01*201013012°010£01401%?
01018014011°013201°011801201502130124015012°011301140170122014018
37 > 1271 1300160115013012201(?115021280170128012013011301220211201301 (?13601280116021 0116

0123011301801301°0112017012°011601501 011501 (F133013°02150112011701501°01201401°

Continued on Next Page. .

36




Table A.15: Good palindromic partitions for pdw(21B~ 1 according to Theorefn 3.1, Part (i)

t pdw(2;3t) -1 Good palindromic partitions
> 1294 170124013101°01301%°01001401%201%40102£01%2018012201201701201301%301°01%2011°0 10
01°01°0101201701'°012°01°0130102011°017201?801*2018011018010£01%2012%01401*%01°
38 > 1335 1190135011201801120170102%014010°01*301201701%201340?11301701260101'01%701*%0101*
01%60?107%7011%0101701*801°0%16012°011802150128010*0%11°01°0136016015
> 1368 11101701%601%202130718012°0101-101%301401%601801%8017014012°011°01?201*018014 01 *01°
01*01*01%301240117011%014017201701*701801°07140177012°0118017201301°07125011°012701
39 > 1405 101*%01°01601201°0133014011°0%12801014012°0118015011°0101*60?122013%01 01101201 01:101?2
013%01401*1012107101*301301%2011°01*201801110140?11°01%60113015012601201%01 (P 1150111014
> 1410 1301%401740130132014018071%°0112017011601101°01°012°01601°01*°01°01*°01 023011602131

01201'%01701°01°017201°011701(*1°01*0180?1801201'701301%201°01120134010 4015013012017

Appendix B. Using theOKlibrary

TheOKlibrary, available ahttp://www.ok-sat-1library.org, iS an open-source research and development
platform for SAT-solving and related areas (attacking hamblems); see [47] for some general information. For
the purpose of reproduction of all results, one can use théDG¥4cea9abf851424ca56f2ad0e4b8be2d707b041c2”
(package 0014@ For the purposes of this article the following componengsdirectly relevant:

e The OKlibrary provides an already rather extensive library of functiomsthe computer algebra system
Maxima®l. For example all hypergraph generators discussed in ttiiseaand all vdW- and palindromic vdW-
numbers can be computed and investigated at this level.

e For computations which take more time+€ implementations are available.
e TheOKlibrary provides easy access to (original) SAT solvers and relaigld {as “external source@.
¢ Finally these components are integrated into tools for ingppand evaluating experime@.

In the following sections we demonstrate the use of theds.t&@me general technical remarks:

1. TheinstalledKlibrary lives inside directorgKplatform.
2. Inside this directory thBaxima-installation is called vi@k1ib --maxima on the (Linux) command-line.

3. The G-+ programs as well as the external sources, here the variols&@xers, are placed on the path of the
(Linux) user, and are thus callable by their name on the comatiae (anywhere).

Appendix B.1. Numbers and certificates

All known vdW-numbers and palindromic vdW-numbers and knd@unds are available at the computer-algebra
level in theOK1ibrary (usingMaxima). For example the (known) numbers w(2t)3and pdw(2; 3t) are printed as

follows (where inside theK1ibrary we typically use the letter “k” for the length of an arithneeti progression, not
“t” as in this article):

22\/ia the Git ID one can identify the versions of programs usethe article. The package provides the sources and a bistdray Since
building depends on the environment (the operating systestatt with), there can not be a guarantee for the build toed; but perhaps later (or
earlier) packages need to be used.

2%http://maxima.sourceforge.net/
24The aim is to serve as a comprehensive collection, also aiaing “historical” versions.
25|n general we use thie system for statistical evaluation.

37


http://www.ok-sat-library.org
http://maxima.sourceforge.net/

OKplatform> oklib --maxima
(%i1) oklib_load_all();
(%12) output(N) := block([L],

print(" k vdw pdvdw span gap"),

for k : 3 thru N do (L : [3,k],

printf (true, ""2,d ~12,a "27,a “12,a ~“12,a"%",
k, vanderwaerden(L), pdvanderwaerden(L), pd_span(L), pd_gap(L))))$

(%13) output(40);

k  vdw pdvdw span gap
3 9 [6,9] 3 0
4 18 [15,16] 1 2
5 22 [16,21] 5 1
6 32 [30,31] 1 1
7 46 [41,44] 3 2
8 58 [62,57] 5 1
9 77 [62,77] 15 0
10 97 [93,94] 1 3
11 114 [110,113] 3 1
12 135 [126,135] 9 0
13 160 [142,155] 13 5
14 186 [174,183] 9 3
15 218 [200,205] 5 13
16 238 [232,237] 5 1
17 279 [256,279] 23 0
18 312 [299,312] 13 0
19 349 [338,347] 9 2
20 [389,inf-1] [380,389] 9 [0,inf-390]
21 [416,inf-1] [400,405] 5 [11,inf-406]
22 [464,inf-1] [444,463] 19 [1,inf-464]
23 [516,inf-1] [506,507] 1 [9,inf-508]
24 [593,inf-1] [568,593] 25 [0,inf-594]
25 [656,inf-1] [586,607] 21 [49,inf-608]
26 [727,inf-1] [634,643] 9 [84,inf-644]
27 [770,inf-1] [664,699] 35 [71,inf-700]
28 [827,inf-1] [[728,inf-1],[743,inf-1]] [15,0] [84,0]
29 [868,inf-1] [[810,inf-1],[821,inf-1]] [11,0] [47,0]
30 [903,inf-1] [[844,inf-1],[855,inf-1]] [11,0] [48,0]
31 [931,inf-1] [[916,inf-1],[931,inf-1]] [15,0] [0,0]
32 [1007,inf-1] [[958,inf-1],[963,inf-1]] [5,0] [44,0]
33 [1064,inf-1] [[996,inf-1],[1005,inf-1]] [9,0] [59,0]
34 [1144,inf-1] [[1054,inf-1],[1081,inf-1]]1 [27,0] [63,0]
35 [1205,inf-1] [[1114,inf-1],[1155,inf-1]] [41,0] [50,0]
36 [1258,inf-1] [[1186,inf-1],[1213,inf-1]] [27,0] [45,0]
37 [1339,inf-1] [[1272,inf-1],[1295,inf-1]] [23,0] [44,0]
38 [1379,inf-1] [[1336,inf-1],[1369,inf-1]] [33,0] [10,0]
39 [1419,inf-1] [[1406,inf-1],[1411,inf-1]1]1 [5,0] [8,0]
40 unknown unknown unknown unknown

As one can see, if only bounds are known instead of a precisdarn resp. number-paing, q), then the numbers
x € {n, p, q} are replaced by paira(b) with a < x < b. Hereb = inf-1 indicates that the number is finite, but no more

38



precise upper bounds are kno@hSo for example we only know currently that w(229) > 389, and this is shown
by the interval [389inf—1]. Span and gap are simply computed according to definitibeye inmaxima the symbol
inf is treated here like an unknown. That impligef — inf = 0, and thus for palindromic span and gap the “0” in the
second position indicate that the numbers in the first postcould go up or down. For example w(228) > 389
and pdw(2; 320) = (380, 389), whence nothing can be said about pdg(203= w(2; 3, 20)— pdw(2; 3 20), except
the trivialities that it is at least 0 and less than infinitye fatter becomed if — 1) — 389= inf — 390.

Also the certificates (good partitions) are available, inaas representations. First the certificate for w(2@® >
389 (see Subsectipn Appendix_A.1), for which we check thiatiit fact a palindromic certificate:

(%14) full_certificate_string_vdw_3k(20);

(%o4) ["17{193}01°{11}01°{4}01°{7}0101"{4}01"{13}01°{9}01"{4}0101~{14}
0~{2}1°{3}0°{2}101°{9}01°{18}01"{9}01~{4}0101"{5}01"{3}01"{10}01"~ {16}
01~{8}01°{16}01"{10}01~{3}01°{5}0101"{4}01~{9}01~{18}01°{9}010~ {231~ {3}
0°{2}1°{143}0101°{4}01°{9}01°{13}01"{4}0101" {7301~ {4301~ {11301~ {19}"]

(%15) certificate_pdvdw_p([3,20],388,full_certificate_vdw_3k(20) [1]);

(%05) true

And here certificates for palindromic number-pairs:

(%16) cfull_certificate_string_pdvdw_3k(34);

(ho6) [["17{9301"°{14}01"{21}0101"{4}01"{27}01"{8}01"{24}01~{32}01"{3}0
1°{4}01°{163}01°{13}0101"{2}01"{33}01"{3}01"°{4}01"{3}01"{16}0101"{13}
01°{3}01"{16}01"{6}01"{33}0"{2}1°{9}01"{4}01"{31}01"{2}0101~{16}01" {4}
017{31}01"{3}01{2}01"{7}0"{2}1°{22}0101°{8}01~{30}01"{3}"1,

["1~{23}0"{2}17{9}01~{22}01"{13}01"{25}0~{2}1"{21}01"{8}01~{15}0
1~{11}01"{18}0"{2}1~{4}01"{20}0101"{2}01~{5}01~{21}01~{8}01"{4}01"{23}
01~{4}01~{8}01"{21}01~{10}01"{20}01"{4}0"{2}1"{2}01"{27}01~{10}01"~{4}0
17{2301~{2630101"{25}01~{8}01"{9}01"{17}01~{4}0"{2}1~{12}01"~ {2130~ {2}
1~{3}01~{3}"11]

(%17) extract_data_certificates_pdvdw_3k(34);

(%o7) [[3,34],1054,1081,

[[10,25,47,49,54,82,91,116,149,153,158,175,189,191,194,228,232,
237,241,258,260,274,278,295,302,336,337,347,352,384,387,389,
406,411,443,447,450,458,459,482,484,493,524]],

[[24,25,35,58,72,98,99,121,130,146,158,177,178,183,204,206,209,
215,237,246,251,275,280,289,311,322,343,348,349,352,380,391,
396,399,426,428,454,463,473,491,496,497,510,532,533,537]]]

With the first command we get the representation of the goetitipas as used in this paper (where now for the
palindromic situation we have two good partition accordimd@heoreni 5]1), while the second command yields a list
with five elements: first the parameter tuple, then the twopmments of the palindromic number-pair, and then two
lists with the good partitions available, now representedive block in the partition for the second colour.

Analysing the patterns according to Secfidn 4, and applifiege measurements to the certificates stored in the
OKlibrary for 20 < t < 39 is done as follows:

(%18) for k : 20 thru 39 do
print(k,firste(vanderwaerden3k(k)),
map (analyse_certificate,full_certificate_vdw_3k(k)));
20 389 [[[48,340],[44,45],[4,37]1,[5,27],[20,1]1]1]
21 416 [[[50,365],[43,44],[7,34],[13,26],[8,11]]
22 464 [[[54,409],[51,52],[3,47],[5,40],[27,11]1]

28| principle there exist theoretical upper bounds, but faicfical purposes these bounds are completely useless.

39



23 516 [[[59,456],[53,54],[6,45]1,[12,36],[17,1]1]]

24 593 [[[63,529], [57,58], [6,54]1,[13,37],[20,1]1]]

25 656 [[[74,581],[69,70],[5,64]1,[11,45],[16,2]]]

26 727 [[[78,648],[72,72],[6,64],[13,42],[21,1]1]]

27 770 [[[79,690],[72,73],[7,65],[15,58],[11,2]]]

28 827 [[[79,747],[74,75],[5,64]1,[11,44],[19,1]1]]

29 868 [[[81,786],[76,77],[5,69]1,[11,57],[27,1]1]]

30 903 [[[83,819],[76,77],[7,671,[13,57],[15,1]1]]

31 931 [[[82,848],[80,81]1,[2,771,[5,53],[58,111]

32 1007 [[[87,919],[82,83],[5,78],[9,62],[29,111]

33 1064 [[[89,974]1,[85,86],[4,801,[9,58],[25,111]

34 1144 [[[96,1047],[87,88],[9,80]1,[19,63],[23,211]
35 1205 [[[95,1109],[91,92],[4,84]1,[9,67]1,[41,111]
36 1258 [[[101,1156],[97,98],[4,88],[9,72],[42,1]1]]
37 1339 [[[105,1233]1,[97,98]1,[8,901,[17,65],[30,2]11]
38 1379 [[[104,1274]1,[96,97],[8,911,[17,73],[26,111]
39 1419 [[[105,1313],[98,99],[7,95],[13,72],[46,1]11]

Per line we print out three items; the lower bound on w(2;,3) and the list of data for each stored certificate. Now
currently we have only stored one certificate for eachk20< 39, and thus the third item contains just one list, with
five pairs for the dierent statistic&] These five pairs have the following meaning:

1. First comeag andn;.

2. Then come the numbers of ternfsaid E (we don't use “00” here, and so these terms alternate, arsctitimir
numbers dier at most by one).

3. Then from these counts the cases wgith 1 are excluded; thus the first element of the painis

4. Now these exponenssare putin the list, and the sums of the numbers of peaks ateysare computed; again
for block 0 and block 1 of the partition, and thus now the seloslement of the pair igp + ny.

5. Finally for these lists of exponents the maximal size ofraarval with constant values is computed; thus if
there were a second element of the pair with value 3 or grehter Question 412 would have been answered in
the positive.

The value ofd from Subsection 313 is computed as follows:

(%19) lmax(Delta_l(map(firste,create_list(vanderwaerden([3,k]) ,k,3,39)))
/create_list(k,k,3,38));

(%09) 77/23

(%110) round_£dd(77/23/2,3);

(%010) 1.674

Appendix B.2. Hypergraphs

The hypergraphs are available at Maxima-level, and the ctaipnally expensive palindromic hypergraph also
at C++ level:

(%111) arithprog_hg(3,5);

(%ot11) [{1,2,3,4,5},{{1,2,3},{1,3,5},{2,3,4},{3,4,5}}]
(%112) arithprog_pd_hg(3,5);

(ho12) [{1,2,3},{{1,3},{2,3}}]

> PdVanderWaerden-03-DNDEBUG 3 5

2"'we found more than one solution in each case, but always werijas to the one stored; there seems to be a clustering otisnk, and
perhaps there is always only one (or very few) cluster.

40



c Palindromised hypergraph with arithmetic-progression length 3
and 5 vertices.

p cnf 3 2
130
230

Appendix B.3. SAT instances
The SAT-instance for considering w(2t3with n vertices is created by the program call
VanderWaerdenCNF-03-DNDEBUG 3 t n,

for example fott = 4 andn = 6

> VanderWaerdenCNF-03-DNDEBUG 3 4 6

> cat VanDerWaerden_2-3-4_6.cnf

c Van der Waerden numbers with partitioning into 2 parts;

SAT generator written by Oliver Kullmann, Swansea, May 2004, October 2010.

c Arithmetical progression sizes k1l = 3, k2 = 4.
¢ Number of elements n = 6.

c Iterating through the arithmetic progressions in colexicographical order.
p cnf 6 9

1230

2340

1350

3450

2460

4560

-1-2-3-40

-2-3-4-50

-3-4-5-60

The SAT-instance for considering pdw(2iBwith n vertices is created by the program call
PdVanderWaerdenCNF-03-DNDEBUG 3 t n,
for example fot =4 andn=9

> PdVanderWaerdenCNF-03-DNDEBUG 3 4 9

> cat VanDerWaerden_pd_2-3-4_9.cnf

c Palindromic van der Waerden problem: 2 parts, arithmetic progressions of
size 3 and 4, and 9 elements, yielding 5 variables.

p cnf 5 10
1230
240
1340
150
250
350
450
-2-40
-1-3-50
-3-4-50

41



Appendix B.4. The SAT solvers

All solvers are installed via theKlibrary; the OKsolver?dis a solver specific to theklibrary, tawSolver-
2.8was developed in it (starting with version 1.0), and A as well asmarch pl are maintained in theklibrary.
Example output for the columin= 12 in Tabld™®, with the instance produced by

> VanderWaerdenCNF-03-DNDEBUG 3 12 135
resp.
> VanderWaerdenCNF-03-DNDEBUG 3 12 134

for the satisfiable case, is provided in the following.

Appendix B.4.1.tawSolver
FirsttawSolver-2.6 (output with one additional line-break for the url):

> tawSolver -v
tawSolver:
authors: Tanbir Ahmed and Oliver Kullmann
url’s:
http://sourceforge.net/projects/tawsolver/
https://github.com/0Kullmann/oklibrary/blob/master/
Satisfiability/Solvers/TawSolver/tawSolver.cpp
Version: 2.6.6
Last change date: 17.8.2013
Mapping k -> weight, for clause-lengths k specified at compile-time:
2->4.85 3->1 4->0.354 5->0.11 6->0.0694
Divisor for open weights: 1.46
Option summary = ""
Macro settings:
LIT_TYPE = std::int32_t (with 31 binary digits)
UCP_STRATEGY = 1
Compiled without TAU_ITERATION
Compiled without ALL_SOLUTIONS
Compiled without PURE_LITERALS
Compiled with NDEBUG
Compiled with optimisation options
Compilation date: Aug 17 2013 21:38:43
Compiler: g++, version 4.7.3
Provided in the OKlibrary http://www.ok-sat-library.org
Git ID = 237cbfc4d9b772a29e125928959af14cb4495d3e

> tawSolver VanDerWaerden_2-3-12_135.cnf

s UNSATISFIABLE

c number_of_variables 135

c number_of_clauses 5251
c maximal_clause_length 12

c number_of_literal_occurrences 22611
¢ running_time(sec) 10.58

2®nttps://github.com/0Kullmann/oklibrary/tree/master/Satisfiability/Solvers/OKsolver/SAT2002
2https://github.com/0Kullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/tawSolver.cpp
3Chttps://github.com/0Kullmann/oklibrary/blob/master/Satisfiability/Solvers/Satz/satz215.2.c

42


https://github.com/OKullmann/oklibrary/tree/master/Satisfiability/Solvers/OKsolver/SAT2002
https://github.com/OKullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/tawSolver.cpp
https://github.com/OKullmann/oklibrary/blob/master/Satisfiability/Solvers/Satz/satz215.2.c

c number_of_nodes 961949

c number_of_binary_nodes 480974

c number_of_1-reductions 11312180

¢ reading-and-set-up_time(sec) 0.004

c file_name VanDerWaerden_2-3-12_135.cnf
c options "

A “binary node” is one with two children, i.e., where the seddranch was not explored since the first branch
was found satisfiable. And a “1-reduction” is one assignnoért literal x to true due to a unit-clauge}. Calling
tawSolver-2.6 happens viatawSolver, and the counting version is calledawSolver.

> ttawSolver VanDerWaerden_2-3-12_135.cnf

s UNSATISFIABLE

c number_of_variables 135

c number_of_clauses 5251

c maximal_clause_length 12

c number_of_literal_occurrences 22611

¢ running_time(sec) 19.29

¢ number_of_nodes 953179

c number_of_binary_nodes 476589

c number_of_1l-reductions 11285634
c number_of_pure_literals 1317

¢ reading-and-set-up_time(sec) 0.005

c file_name VanDerWaerden_2-3-12_135.cnf
c options "PT5"

> ctawSolver VanDerWaerden_2-3-12_135.cnf

s UNSATISFIABLE

c number_of_variables 135

c number_of_clauses 5251

c maximal_clause_length 12

¢ number_of_literal_occurrences 22611

¢ running_time(sec) 10.64

¢ number_of_nodes 961949

¢ number_of_binary_nodes 480974

c number_of_1-reductions 11312180
¢ number_of_solutions 0

¢ reading-and-set-up_time(sec) 0.005

c file_name VanDerWaerden_2-3-12_135.cnf
c options "A19"

Options are reported via acronyms: “P” for pure literals; far the tau-heuristics, followed by the number of itera-
tions of the Newton-Raphson method, and “A’ for all solusipfollowed by the number of decimal digits for counting.
Instead of just counting, we can also output all solutioasgkample to standard output:

> ctawSolver VanDerWaerden_2-3-12_134.cnf -cout

v123456789 -10 11 12 13 14 15 16 17 18 -19 20 21 22 23 24 25 26 27 28
-29 30 31 -32 33 34 35 -36 37 -38 39 40 41 42 43 44 45 -46 47 48 -49 50 -51 52
53 54 -55 56 57 58 59 60 61 62 63 64 65 66 -67 -68 69 70 71 72 73 74 75 76 77
78 79 -80 81 82 83 -84 85 -86 87 88 -89 90 91 92 93 94 95 96 -97 98 -99 100
101 102 -103 104 105 -106 107 108 109 110 111 112 113 114 115 -116 117 118 119
120 121 122 123 124 -125 126 127 128 129 130 131 132 133 134 0

s SATISFIABLE

43



c number_of_variables 134

c number_of_clauses 5172

¢ maximal_clause_length 12

c number_of_literal_occurrences 22266

¢ running_time(sec) 10.56

c number_of_nodes 968509

c number_of_binary_nodes 484254

c number_of_1-reductions 11308431
c number_of_solutions 1

¢ reading-and-set-up_time(sec) 0.004

c file_name VanDerWaerden_2-3-12_134.cnf
c options "A1O"

The solution is given in the DIMACS format for partial assigents, with positive literals setting the underlying
variable totrue, and negative literals setting them talse (so positive literals are the elements of the partition
fort = 12 here). For all options, usawSolver without arguments, or see the source code. Finally we nate th
tawSolver-2.6 andctawSolver are just compilations of theawSolver with specific options sét, namely:

ttawSolver:
-DPURE_LITERALS -DTAU_ITERATION=5

ctawSolver:
-DALL_SOLUTIONS

cttawSolver:
-DTAU_ITERATION=5 -DALL_SOLUTIONS

Appendix B.4.2.satz

Now satz:
> satz215 VanDerWaerden_2-3-12_135.cnf
s UNSATISFIABLE
c sat_status 0
c number_of_variables 135
c initial_number_of_clauses 5251
c reddiff_number_of_clauses 0
¢ running_time(sec) 76.73
¢ number_of_nodes 262304
¢ number_of_binary_nodes 133373
c number_of_pure_literals 55
c number_of_1-reductions 5482044
c number_of_2-look-ahead 30069498
c number_of_2-reductions 1196400
¢ number_of_3-look-ahead 563872
¢ number_of_3-reductions 257097
c file_name VanDerWaerden_2-3-12_135.cnf

Here “reddift” is the “difference due to reduction” in the number of clauses: clauseb&aemoved by subsumption
(not applicable here), while clauses can be added by résol{does not happen here).

3lsee [https://github.com/0Kullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/makefile| for the
makefile in theOKlibrary

44


https://github.com/OKullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/makefile

Appendix B.4.3march_pl
Now march_pl:

march_pl VanDerWaerden_2-3-12_135.cnf

main():: nodeCount: 47963

main() :: dead ends in main: 110

main() :: lookAheadCount: 10456897

main():: unitResolveCount: 274045

main():: time=184.539993

main():: necessary_assignments: 5287

main():: bin_sat: O, bin_unsat 0O

main():: doublelook: #: 421439, succes #: 321732

main():: doublelook: overall 4.150 of all possible doublelooks executed
main():: doublelook: succesrate: 76.341, average DL_trigger: 273.489
UNSATISFIABLE

n o ooo0oo0o0o0o0o0o0 v

Appendix B.4.40Ksolver
And to conclude the complete solvers, tisolver:

OKsolver_2002-03-DNDEBUG VanDerWaerden_2-3-12_135.cnf
UNSATISFIABLE

sat_status 0
initial_maximal_clause_length 12
initial_number_of_variables 135
initial_number_of_clauses 5251
initial_number_of_literal_occurrences 22611
number_of_initial_unit-eliminations 0
reddiff_maximal_clause_length 0
reddiff_number_of_variables 0
reddiff_number_of_clauses 0
reddiff_number_of_literal_occurrences 0O
number_of_2-clauses_after_reduction O
running_time(sec) 215.8
number_of_nodes 281381
number_of_single_nodes 0
number_of_quasi_single_nodes 0
number_of_2-reductions 2049274
number_of_pure_literals 29
number_of_autarkies 0
number_of_missed_single_nodes 0
max_tree_depth 36
proportion_searched 1.000000e+00
proportion_single 0.000000e+00
total_proportion 1
number_of_table_enlargements 0
number_of_l-autarkies 490
number_of_new_2-clauses 0

maximal _number_of_added_2-clauses 0

file_name VanDerWaerden_2-3-12_135.cnf

O 0O 0O 0000000 0 0000000000000 0000 n Vv

45



Appendix B.4.5Ubcsat

If we want to run an algorithm from th@bcsat-suité?d on its own (while running it in the iterative fashion, as
discussed in Subsectibn .2, is shown in the folloying ApiderB.5), for examplggsat-tabu, then this can be done
as follows (using an additional line-break in the commaind-land four additional line-breaks in the first outpuelin
for a cut-df 10°, ten runs, and initial seed 0 (for reproducibility):

> ubcsat-okl -alg gsat-tabu —cutoff 1000000 -runs 10 -seed O

-i VanDerWaerden_2-3-12_134.cnf
# -rclean -r out stdout run,found,best,beststep,steps,seed -r stats stdout
numclauses,numvars,numlits,fps,beststep[mean],steps[meant+max] ,percentsolve,
best [min+max+mean+median] -runs 10 -cutoff 100000 -rflush

-alg gsat-tabu -cutoff 1000000 -runs 10 -seed O

-i VanDerWaerden_2-3-12_134.cnf

sat min osteps msteps seed
10 1 3588 1000000 0
21 0 543154 543154 1492175541
30 1 5687 1000000 367425000
40 1 3152 1000000 3611176606
50 1 164885 1000000 388711246
6 0 1 50599 1000000 4160687068
70 1 3533 1000000 533276301
80 1 94759 1000000 1146607069
90 1 2921 1000000 3903233437
10 0 1 8071 1000000 127100396

Clauses = 5172
Variables = 134
TotalLiterals = 22266
FlipsPerSecond = 513073
BestStep_Mean = 88034.9
Steps_Mean = 954315.4
Steps_Max = 1000000
PercentSuccess = 10.00
BestSolution_Mean = 0.9
BestSolution_Median = 1
BestSolution_Min = 0
BestSolution_Max = 1

Here we use the wrapper-scripicsat—ok, which outputs the output for the runs in a style typical fiatistical
data (easily readable for example by the toff,Rs used in theKlibrary):

1. Firstacomment-line, starting with “#”, showing the paeters passed to th@&csat-program (everything until
“~rflush” is the default, coming fronubcsat-ok1, and after that come the parameters from the command-
line (possibly overriding the defaults)).

2. Then a line with the headings for the six output columuzs:éps is for the number of rounds for reaching the

optimum, whilemsteps is for the maximum number of steps).

. Followed by data for the runs (above, one of the ten runsswesessful).

4. Finally summary statistics (this is not readable by tdikbs R, and needed to be removed; however for a quick
human-readable overview it is useful).

w

32seehttp: //ubcsat . dtompkins . com/
33see link to shell script
34http://www.r-project.org/

46


http://ubcsat.dtompkins.com/
https://github.com/OKullmann/oklibrary/blob/master/Experimentation/ExperimentSystem/ControllingLocalSearch/ubcsat-okl
http://www.r-project.org/

Appendix B.5. Running experiments

For runningUbcsat-algorithm to determine lower bounds on w(2t)3and pdw(2; 3t), also providing “con-
jectures” on the precise values, we have the following tdoting no parameters here serves to print some basic
helper-information). First the general tool for w{z;t1):

> RunVdWk1k2

ERROR [RunVdWk1k2] : Six parameters k1, k2, n0O, alg, runs, cutoff
are needed: The progression-lengths k1,k2, the starting number nO of
vertices, the ubcsat-algorithm, the number of runs, and the cutoff.
An optional seventh parameter is a path for the file containing an
initial assignment for the first ubcsat-run.

The special version with k23, handling our case w(2; a

> RunVdW3k
ERROR [RunVdW3k] : Five parameters k, nO, alg, runs, cutoff
are needed: The progression-length k, the starting number nO of vertices,
the ubcsat-algorithm, the number of runs, and the cutoff.
An optional sixth parameter is a path for the file containing an
initial assignment for the first ubcsat-run.

For example
> RunVdW3k 27 678 gsat-tabu 1000 10000000

starts the investigation of w(2; 37) withn = 678 (ad-hoc, no solution given), where the ctitvalue (the number of
rounds for stochastic local search) i 18nd 1000 runs are executed; frons 679 on the first three runs will use the
solution found fom — 1, while further runs use a random initial assignment.

Handling palindromic instances is done similBty

> RunPdVdWk1k2

ERROR [RunPdVdwk1k2] : Five parameters k1, k2, alg, runs, cutoff
are needed: The progression-lengths kl1,k2, the ubcsat-algorithm,
the number of runs, and the cutoff.

And for running complete solvers on palindromic instanceshavB:

> CRunPdVdWk1k?2
ERROR [CRunPdVdwk1k2]: Three parameters k1, k2, solver, are needed:
The progression-lengths k1, k2 and the SAT solver.

35see link to shell script
36see link to shell script
37se€ link to shell script

47


https://github.com/OKullmann/oklibrary/blob/master/Experimentation/Investigations/RamseyTheory/VanderWaerdenProblems/RunVdW3k
https://github.com/OKullmann/oklibrary/blob/master/Experimentation/Investigations/RamseyTheory/VanderWaerdenProblems/RunPdVdWk1k2
https://github.com/OKullmann/oklibrary/blob/master/Experimentation/Investigations/RamseyTheory/VanderWaerdenProblems/CRunPdVdWk1k2

	1 Introduction
	1.1 Using SAT solvers
	1.1.1 Informed versus uninformed SAT solving
	1.1.2 Parallel/distributed SAT solving
	1.1.3 Synergies between Ramsey theory and SAT

	1.2 The results of this paper

	2 The tawSolver
	2.1 The basic structure
	2.2 Look-ahead solvers
	2.3 From tawSolver-1.0 to tawSolver-2.6
	2.4 The implementation
	2.5 The optimal projection: the -function

	3 Computational results on `39`42`"613A``45`47`"603Aw(2; 3, t)
	3.1 `39`42`"613A``45`47`"603Aw(2; 3, 19)=349
	3.2 Some new conjectures
	3.3 A conjecture on the upper bound

	4 Patterns in the good partitions
	4.1 Number of 0's and 00's
	4.2 Number of 1's
	4.3 How can it help for SAT solving?

	5 Palindromes
	5.1 Palindromic vdW-hypergraphs
	5.2 Precise values
	5.3 Conjectured values and bounds
	5.4 Open problems
	5.5 Remarks on the use of symmetries

	6 Experiments with SAT solvers
	6.1 Complete solvers
	6.1.1 Cube-and-Conquer
	6.1.2 VdW-problems
	6.1.3 Palindromic vdW-problems

	6.2 Incomplete solvers (stochastic local search)

	7 Conclusion
	Appendix  A Certificates
	Appendix  A.1 Conjectured precise lower bounds for `39`42`"613A``45`47`"603Aw(2;3,t)
	Appendix  A.2 Further lower bounds for `39`42`"613A``45`47`"603Aw(2;3,t)
	Appendix  A.3 Good palindromic partitions

	Appendix  B Using the OKlibrary
	Appendix  B.1 Numbers and certificates
	Appendix  B.2 Hypergraphs
	Appendix  B.3 SAT instances
	Appendix  B.4 The SAT solvers
	Appendix  B.4.1 tawSolver
	Appendix  B.4.2 satz
	Appendix  B.4.3 march_pl
	Appendix  B.4.4 OKsolver
	Appendix  B.4.5 Ubcsat

	Appendix  B.5 Running experiments


