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Abstract

In this paper we present results and conjectures on the ordinary van der Waerden numbers w(2; 3, t) and on the new
palindromic van der Waerden numberspdw(2; 3, t). We have computed the exact value of the previously unknown
number w(2; 3, 19)= 349, and we provide new lower bounds for 20≤ t ≤ 39, where for 20≤ t ≤ 30 we conjecture
these bounds to be exact. The lower bounds for w(2; 3, t) with 24 ≤ t ≤ 30 refute the conjecture that w(2; 3, t) ≤ t2

as suggested in [14]. Based on the known values of w(2; 3, t), we investigate regularities to better understand the
lower bounds of w(2; 3, t). Motivated by such regularities, we introduce palindromic van der Waerden numbers
pdw(k; t0, . . . , tk−1), which are defined as the ordinary numbers w(k; t0, . . . , tk−1), but where only palindromic solutions
are considered, reading the same from both ends. Different from the situation for ordinary van der Waerden numbers,
these “numbers” need actually to be pairs of numbers. We compute pdw(2; 3, t) for 3 ≤ t ≤ 27, and we provide bounds
for t ≤ 39, which we believe to be exact fort ≤ 35. All computations are based on SAT solving, and we discussthe
various relations between SAT solving and Ramsey theory. Especially we introduce a novel (open-source) SAT solver,
thetawSolver, which performs best on the SAT instances studied here, and which is actually the original DLL-solver
([18]), but with an efficient implementation and a modern heuristic typical for look-ahead solvers (applying the theory
developed in [48]).
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1. Introduction

We consider Ramsey theory and its connections to computer science (see [58] for a survey) by exploring a rather
recent link, especially to algorithms and formal methods, namely to SAT solving. SAT is the problem of finding
a satisfying assignment for a propositional formula. SinceRamsey problems can naturally be formulated as SAT
problems, SAT solvers can be used to compute numbers from Ramsey theory. In the present article, we consider
van der Waerden numbers ([69]), where SAT had its biggest success in Ramsey theory, namely the determination of
w(2; 6, 6)= 1132 in [43], the first new diagonal van der Waerden (short “vdW”) number after almost 30 years.
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Definition 1.1. We useN = {x ∈ Z : x ≥ 1}, N0 = N ∪ {0}. An arithmetic progressionof lengtht ∈ N is a subset
p ⊂ N of length|p| = t and of the formp = {a+ i · d : i ∈ {0, . . . , t − 1}} for somea, d ∈ N. A block partitionof length
k ∈ N of a setX is a tuple (P0, . . . ,Pk−1) of lengthk of subsets ofX (possibly empty) which are pairwise disjoint
(Pi ∩ P j = ∅ for i , j) and withP0 ∪ · · · ∪ Pk−1 = X. Thevan der Waerden numberw(k; t0, t1, . . . , tk−1) ∈ N for
k, t0, . . . , tk−1 ∈ N is the smallestn ∈ N such that for any block partition (P0, . . . ,Pk−1) of lengthk of {1, . . . , n} there
exists aj ∈ {0, . . . , k− 1} such thatP j contains an arithmetic progression of lengtht j .

That we have w(k; t0, t1, . . . , tk−1) > n can be certified by an appropriate block partition of{1, . . . , n}; such partitions
are the solutions of the SAT problems to be constructed, and we call them “good partitions”:

Definition 1.2. A good partitionof {1, . . . , n} (wheren ∈ N0) w.r.t. parameterst0, t1, . . . , tk−1 is a block partition
(P0, . . . ,Pk−1) of {1, . . . , n} containing no blockP j with an arithmetic progression of lengtht j (for any j).

So there exists a good partition of{1, . . . , n} if and only if n < w(k; t0, t1, . . . , tk−1). For everyk, t0, . . . , tk−1 ∈ N the
only block partition of{1, . . . , 0} = ∅ is (∅, . . . , ∅), and this is a good partition. In this paper, we are interested in the
specific van der Waerden numbers w(2; 3, t), t ≥ 3. Specialising the general definition we obtain:

w(2; 3, t) is the smallestn ∈ N, such that
for all P0,P1 ⊆ {1, . . . , n} with P0 ∩ P1 = ∅ andP0 ∪ P1 = {1, . . . , n}

eitherP0 has an arithmetic progression of size 3 orP1 has an arithmetic progression of sizet, or both.

The known exact values of w(2; 3, t) are shown in Table 1 (with our contribution in bold).

t 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819
w(2; 3, t) 9 18 22 32 46 58 77 97 114 135 160 186 218 238 279 312349

Table 1: Known values for w(2; 3, t)

As references and for relevant information on the above numbers, see Chvátal [15], Brown [13], Beeler and O’Neil
[7], Kouril [43], Landman, Robertson and Culver [53], and Ahmed [2, 3, 4, 5].2 Recently, Kullmann [49]3 reported
the following lower bounds

w(2; 3, 19)≥ 349,w(2; 3, 20)≥ 389,w(2; 3, 21)≥ 416.

We confirm the exact value of w(2; 3, 19) = 349, and we extend the list of lower bounds up tot = 39. Brown,
Landman, and Robertson [14], showed the lower bound w(2; 3, t) > t2−1/ log logt for t ≥ 4 · 10316, and observed that
w(2; 3, t) ≤ t2 for 5 ≤ t ≤ 16, suggesting that this might hold for allt. Our lower bounds in Subsection 3.2 however
prove that there aret with w(2; 3, t) > t2. We provide an improved upper bound 1.675t2 in Subsection 3.3 (satisfying
all known values and lower bounds of w(2; 3, t)).

We also present a new type of van-der-Waerden-like numbers,namelypalindromic number-pairs, obtained by the
constraint on good partitions that they must be symmetric under reflection at the mid-point of the interval{1, . . . , n}.
Perceived originally only as a heuristic tool for studying ordinary van der Waerden numbers, it turned out that these
numbers are interesting objects on their own. An interesting phenomenon is that we no longer have the standard
behaviour of the SAT instances with increasingn, where

• first all instances are satisfiable (forn < w(k; t0, . . . , tk−1)), and from a certain point on (the van der Waerden
number) all instances are unsatisfiable (forn ≥ w(k; t0, . . . , tk−1)),

• but now first again all instances are satisfiable (forn ≤ p), then we have a region with strict alternation between
unsatisfiability and satisfiability, and only from a second point on all instances are unsatisfiable (forn ≥ q).

2This sequence ishttp://oeis.org/A007783 in the “On-Line Encyclopedia of Integer Sequences”.
3the conference article [50] contains only material relatedto Green-Tao numbers and SAT
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These two turning points constitute the palindromic “number” pdw(2; 3, t) = (p, q) as pairs of natural numbers. We
were able to compute pdw(2; 3, t) for t ≤ 27. We also provide (conjectured) values fort ≤ 39.4 The full definition is
in Section 5, while the special case experimentally studiedin this paper is defined as follows:

In pdw(2; 3, t) = (p, q),
the numberq is the smallest number such that for alln ≥ q and

for all P0,P1 ⊆ {1, . . . , n} with P0 ∩ P1 = ∅ andP0 ∪ P1 = {1, . . . , n} with the property,
that for allv ∈ {1, . . . , n} we havev ∈ P0⇔ n+ 1− v ∈ P0 andv ∈ P1⇔ n+ 1− v ∈ P1,

eitherP0 has an arithmetic progression of size 3 orP1 has an arithmetic progression of sizet, or both.
While p is the largest number such that for alln ≤ p and for all such (P0,P1)

neitherP0 has an arithmetic progression of size 3 norP1 has an arithmetic progression of sizet.

In the ordinary case of plain partitions (without the additional symmetry condition) we havep+ 1 = q, and thus one
uses just one number (instead of a pair), however here we can have a “palindromic span”, that is,p + 1 < q can
happen for the palindromic case. The reason is that from a good partition of{1, . . . , n} we obtain a good partition of
{1, . . . , n− 1} by simple removingn, however for “good palindromic partitions” besides removingn we also need to
remove the corresponding vertex 1 (due to the palindromicity condition).

Apparently the most advanced special algorithm (and implementation) for computing (mixed) van der Waerden
numbers is the algorithm/implementation developed in [63]. For computing w(2; 3, 17) = 279, with this special
algorithm a run-time of 552 days is reported (page 113); the machine used should be at most 30% slower than the
machine used in our experiments, and so this should translate into at least 400 days on our machine. As we can see in
Table 9, thetawSolver-2.6 used is 85-times faster, while Table 10 shows, thatCube & Conquer is around 40-times
faster. These algorithms know nothing about the specific problem, and are just given the generic SAT formulation of
the underlying hypergraph colouring problem. So it seems that SAT solving does a good job here.5

1.1. Using SAT solvers

As explored in Dransfield et al. [19], Herwig et al. [27], Kouril [43, 42], Ahmed [2, 3], and Kullmann [49,
50], we can generate an instanceF(t0, . . . , tk−1; n) of the satisfiability problem (for definition, see any of theabove
references) corresponding to w(k; t0, t1, . . . , tk−1) and integern, such thatF(t0, . . . , tk−1; n) is satisfiable if and only if
n < w(k; t0, t1, . . . , tk−1). In particular, the instanceF(3, t; n) corresponding to w(2; 3, t) with n variables consists of the
following clauses:

(a) {xa, xa+d, xa+2d} with a ≥ 1, d ≥ 1, a+ 2d ≤ n, and

(b) {xa, xa+d, · · · , xa+d(t−1)} with a ≥ 1, d ≥ 1, a+ d(t − 1) ≤ n,

where an assignmentxi = ε encodesi ∈ Pε for ε ∈ {0, 1} (if xi is not assigned but the formula is satisfied, then
i can be arbitrarily placed in either of the blocks of the partition). The (“positive”) clauses (a) (consisting only of
variables), constructed from all arithmetic progressionsof length 3 in{1, . . . , n}, prohibit the existence of an arithmetic
progression of length 3 inP0. And the (“negative”) clauses (b) (consisting only of negated variables), constructed from
all arithmetic progressions of lengtht in {1, . . . , n}, prohibit the existence of an arithmetic progression of length t in
P1. To check the satisfiability of the generated instance, we need to use a “SAT solver”. A complete SAT solver finds
a satisfying assignment if one exists, and otherwise correctly says that no satisfying assignment exists and the formula
is unsatisfiable. One of the earliest complete algorithms isthe DLL algorithm ([18]), and our algorithm for computing
w(2; 3, 19)≤ 349, discussed in Section 2, actually implements this very basic scheme, using modern heuristics.

SAT solving has progressed much beyond this simple algorithm, and the handbook [12] gives an overview (where
[70] discusses some applications of SAT to combinatorics).There in [17] we find a general overview on complete
SAT algorithms, while [40] gives an overview on incomplete algorithms. For complete algorithms especially the

4The sequence pdw(2; 3, t) is http://oeis.org/A198684 , http://oeis.org/A198685 in the “On-Line Encyclopedia of Integer Se-
quences” (the first and the second components).

5As discussed in Subsection 2.1, for enumerating all solutions for n = w(2; 3, 17)− 1 = 278 withtawSolver-2.6 we need at most the time
needed for determining unsatisfiability; in this special case we have actually precisely one solution.
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algorithms derived from the DLL algorithm are of importance, and there are two families, namely the (earlier) “look-
ahead solvers” outlined in [31], and the (later) “conflict-driven solvers” (or “CDCL” like “conflict-driven clause-
learning”) outlined in [55]. In Section 6 we will discuss howgeneral SAT solvers perform on the problems from this
article. The motivation for our choice of the most basic DLL algorithm for tackling the unsatisfiability of the instance
F(3, 19; 349), already employed in [3] and discussed in Subsection 3.1, is, that on these special problems classes
this basic algorithm together with a modern heuristic is very competitive — best on ordinary problem instances, and
beaten on palindromic instances only by the theCube & Conquer method.6 And then it is also instructive to use such
an algorithm, which due to its simplicity might enable greater insight. Another advantage of its simplicity is, that it
can also count and enumerate the solutions, but in this article we focus mostly on mere SAT solving; see [22] for an
overview on counting solutions.

Local-search based incomplete algorithms (see Ubcsat-suite [67]) are generally faster than a DLL-like algorithm
in finding a satisfying assignment (on such combinatorial problems), and this is also the case for the instances of
this article. However they may fail to deliver a satisfying assignment when there exists one, and they can not prove
unsatisfiability. If they succeed on our instances, then they deliver a good partition, and thus a lower bound for a
certain van der Waerden number. So such incomplete algorithms are used for obtaining good partitions and improving
lower bounds of van der Waerden numbers. When they fail to improve the lower bound any further, we need to turn
to a complete algorithm.

1.1.1. Informed versus uninformed SAT solving
We use general SAT solvers, and the new solvers developed by us are also general SAT solvers, which can run

without modification on any SAT problem; these solvers just run on the naked and natural SAT formulation of the
problem, without giving them further information. More specifically, to show unsatisfiability we have developed the
tawSolver (Section 2) and theCube & Conquer-method (Subsection 6.1.1), while to find satisfying assignments we
have selected local-search algorithms (Subsection 6.2).

On the other end of the spectrum is [43, 42], which uses a highly specialised method, which involves a variety of
specialised SAT solvers on specialised hardware, in combination with some special insights into the problem domain.
For finding satisfying assignments we have the methods developed in [27, 30, 29]. For more examples on informed
search to compute van der Waerden numbers, see also Section 2of [5].

Our “uninformed approach” has stronger bearings on generalSAT solving, while the informed approach can be
more efficient for producing numerical results (however it seems to need a lot of effort to beat general SAT solvers (by
specialised SAT solvers); as we have already reported, our general methods are at least on the instances of this paper
much faster than the dedicated (non-SAT-based) method in [63]).

1.1.2. Parallel/distributed SAT solving
The problems we consider are computationally hard, and for the hardest of them in this paper, computation of

w(2; 3, 19)= 349, a single processor, even when run for a long time, is not enough. Hence some form of parallelisation
or distribution of the work is needed. Four levels of parallelisation have been considered for general-purpose SAT
solving (in a variety of schemes):

(i) Processor-level parallelisation: This helps only for very special algorithms, and can only achieve some relatively
small speed-up; see [33] for an example which exploits parallel bit-operations. It seems to play no role for the
problems we are considering.

(ii) Computer-level parallelisation: Here it is exploitedthat currently a single (standard) computer can contain up
to, say, 16 relatively independent processing units, working on shared memory. So threads (or processes) can
run in parallel, using one (or more) of the following generalforms of collaboration:

(a) Partitioning the work via partitioning the instance (see below); [71, 39] are “classical” examples.
(b) Using the same algorithm running in various nodes on the same problem, exploiting randomisation and/or

sharing of learned results; see [36, 24] for recent examples.

6TheCube & Conquer method, developed originally on the instances of this article, combines a look-ahead solver with a conflict-driven solver,
and is faster by a factor of two on palindromic instances.
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(c) Using some portfolio approach, running different algorithms on the same problem, exploiting that various
algorithms can behave very differently and unpredictably; see [23] for the first example.

Often these approaches are combined in various ways; see [62, 21, 37, 38] for recent examples. Approaches (b)
and (c) do not seem to be of much use for the well-specified problem domain of hard instances from Ramsey
theory. Only (a) is relevant, but in a more extreme form (see below). In the context of (ii), still only relatively
“easy” problems (compared to the hard problems from Ramsey theory) are tackled.

(iii) Parallelisation on a cluster of computers: Here up to,say, 100 computers are considered, with restricted com-
munication (though typically still non-trivial). In this case, the approach (ii)(a) becomes more dominant, but
other considerations of (ii) are still relevant. For hard problems this form of computation is a common approach.

(iv) Internet computation, with completely independent computers, and only very basic communication between
the centre and the machines: In principle, the number of computers is unbounded. Since progress must be
guaranteed, and the instances for which Internet computation is applied would be very hard, at the global level
only (ii)(a) is applicable (while at a local level all the other schemes can in principle be applied). Yet there is no
real example for a SAT computation at this level.

We remark that the classical area of “high performance computing” seems to be of no relevance for SAT solving, since
the basic SAT algorithms like unit-clause propagation are,different from typical forms of numerical computation, in-
herently sequential (compare also our remarks to (i)). However using dedicated hardware with specialised algorithms
has been utilised in [43, 42], yielding the currently most efficient machinery for computing van der Waerden numbers.

A major advantage of the DLL solver architecture (which has been further developed into so-called “look-ahead”
SAT solvers) is that the computation is easily parallelisable and distributable: Just compute the tree only up to a certain
depthd, and solve the (up to) 2d sub-problems at leveld. Only minimal interaction is required: The sub-problems are
solved independently, and in case one sub-problem has been found satisfiable, then the whole search can be aborted
(for the purpose of mere SAT-solving; for counting all solutions of course the search needs to be completed). And
the sub-problems are accessible via the partial assignmentconstituting the path from the root to the corresponding
leaf, and thus also require only small storage space. This isthe core of method (ii)(a) from above, and will be further
considered in Subsection 3.1 (for our special example class).

In the subsequent subsection we will discuss the general merits of applying SAT solving to (hard) Ramsey prob-
lems. One spin-off of this combination lies in pushing the frontier of large computations. As a first example we have
developed in [32, 68], motivated by the considerations of the present article, an improved method for (ii)(a) called
“Cube & Conquer”, which is also relevant for industrial problems (typically from the verification area). One aspect
exploited here is that for extremely hard problems, splitting into millions of sub-instances is needed. In the literature
until now (see above for examples) only splitting as required, by at most hundreds of processors, has been performed,
while it turned out that the above “extreme splitting”, whencombined with “modern” (CDCL) SAT solvers, is even
beneficial when considered as a (hybrid) solver on a single-processor, and this for a large range of problem instances.

1.1.3. Synergies between Ramsey theory and SAT
For Ramsey-numbers (see [57] for an overview on exact results), relatively precise asymptotic bounds exist, and

due to the inherent symmetry, relatively specialised methods for solving concrete instances have an advantage. Van-
der-Waerden-like numbers seem harder to tackle, both asymptotically and exactly, and perhaps the only way ever to
know the precise values is by computation (and perhaps this is also true for Ramsey-numbers, only more structures
are to be exploited). SAT solvers are especially suited for the task, since the computational problems are hypergraph-
colouring problems, which, at least for two colours, have canonical translations into SAT problems (as only considered
in this paper). For more colours, see the approach started in[50], while for a general theory of multi-valued SAT close
to hypergraph-colouring, see [51, 52].

Through applying and improving SAT solvers (as in the present article), Ramsey theory itself acquires an applied
side. Perhaps unknown to many mathematicians is the fact, that whenever for example a recent microchip is employed,
this likely involves SAT solving, playing an important (though typically hidden) role in its development, by providing
the underlying “engines” for its verification; see the recent handbook [12] to get some impression of this astounding
development. Now we believe that problem instances from Ramsey theory are good benchmarks, serving to improve
SAT solvers on hard instances:
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• Unlike with random instances (see [1] for an overview), instances from Ramsey theory are “structured” in
various ways. One special structure which one finds in all these instances is that they are layered by the number
of vertices (the same structural pattern is repeated again and again, on growing scales).

• A major advantage of random instances is their scalability,that is, we can create relatively easily instances of
the same “structure” and different sizes. With instances from Ramsey theory we can also vary the parameters,
however due to the possibly large and unknown growth of Ramsey-like numbers, controlling satisfiability and
hardness is more complicated here. This possible disadvantage can be overcome through computational studies
like in this paper, which serve to calibrate the scale via precise numerical data, so that the field of SAT instances
from Ramsey-theory becomes accessible (one knows for initial parameter values the satisfiability status and
(apparent) solving complexity, and gets a feeling what happens beyond that).

• In this paper, we consider two instance classes: instances related to ordinary van der Waerden numbers w(2; 3, t)
and instances related to the palindromic forms pdw(2; 3, t). Now already with these two classes, the two main
types of complete SAT solvers, “look-ahead” (see [31]) and “conflict-driven” (see [55]), are covered in the sense
that they dominate on one class each (and are (relatively) efficient); see Section 6 for further details. On the
other hand, for random instances only look-ahead solvers are efficient (for complete solvers).

• Especially for local-search methods (see [40] for an overview), these problems are hard, but not overwhelmingly
so (for the ranges considered), and thus all the given lower bounds can trigger further progress (and insight) into
the solution process in a relatively simple engineering-like manner (by studying which algorithms work best
where).

• On the other hand, for upper bounds we need to show unsatisfiability, which is much harder (we can only solve
much smaller instances). All applications of SAT solving inhardware verification are “unsatisfiability-driven”
(see [9, 44] for introductions). So future progress in solving hard Ramsey instances might trigger a breakthrough
in tackling unsatisfiability, and should then also improve these industrial applications.

We believe that for better SAT solving, established hard problem instances are needed in a great variety, and we
believe that Ramsey theory offers this potential. To begin the process of applying Ramsey theory in this direc-
tion, problem instances from this paper (as well as related to [50]) have been used in the SAT 2011 competition
(http://www.satcompetition.org/2011/). As already mentioned in the previous subsection, the firstfruits of
the collaboration between SAT and Ramsey theory appeared in[32, 68], yielding a method for tackling hard problems
with strong scalability.

Finally, the interaction between Ramsey theory and SAT should yield new insights for Ramsey theory itself:

1. The numerical data can yield conjectures on growth rates;see Subsection 3.3.
2. The good partitions found can yield conjectures on patterns; see Section 4.
3. New forms of Ramsey problems can be found through algorithmic considerations; see Section 5.
4. The SAT solving process, consideredin detail, acts like a microscope, enabling insights into the structure of

the problem instances which are out of sight for Ramsey theory yet. For approaches towards structures in SAT
instances, which we hope to study in the future, see [61, 41].

1.2. The results of this paper

In Section 2, we present the new SAT solver,tawSolver-2.6, with superior performance on the instances con-
sidered in this paper (only for palindromic instances the new hybrid methodCube & Conquer is superior). Section
3 contains our results on the numbers w(2; 3, t). We discuss the computation of the one new van der Waerden num-
ber, and present further conjectures regarding precise values7 and the growth rate. In Section 4, we investigate some
patterns we found in the good partitions (establishing the lower bounds). In Section 5, we introduce palindromic
problems and the corresponding palindromic number-pairs.Finally in Section 6, we discuss the observations on the
use of the various SAT solvers involved.

7to establish these conjectures will require major advancesin SAT solving

7

http://www.satcompetition.org/2011/


In this paper, we represent partitions of w(2; 3, t) as bitstrings. For example, the partitionP0 = {1, 4, 5, 8} and
P1 = {2, 3, 6, 7}, which is an example of a good partition of{1, 2, . . . , 8}, where 8= w(2; 3, 3)− 1, is represented as
01100110, or more compactly as 01202120, using exponentiation to denote repetition of bits.

2. ThetawSolver

We now discuss thetawSolver, an open-source SAT solver, created by the first author with aspecial focus on
van der Waerden problems (version 1.0), and improved by the second author through an improved branching heuristic
(version 2.6).8 Algorithm 1 shows that the basic algorithm of thetawSolver is the simplest possible (reasonable)
DLL-scheme, just branching on a variable plus unit-clause propagation. As we can see in Section 6, it is the strongest
SAT solver on the instances considered in this paper, only beaten on palindromic problems by the new hybrid scheme
Cube & Conquer, which came out as a result on research on the instances of this paper.

2.1. The basic structure
Algorithm 1 specifies thetawSolver, which for inputF (a formula or “clause-set”) decides satisfiability:

1. Lines 3-5 is “unit-clause propagation” (UCP), denoted bythe functionr1, which sets literalsx in the currentF
to true while there are unit-clauses{x} ∈ F.

(a) Setting a literalx to true in a clause-setF is performed by first removing all clauses fromF containingx,
and removing the elementx from the remaining clauses.

(b) r1 finds a contradiction (Line 4) by finding two unit-clauses{v} and{v} (i.e.,v∧ ¬v).
(c) While r1 finds a satisfying assignment (Line 5) if all clauses vanished (have been satisfied).

2. Lines 6-7 give the branching heuristic, which yields the branching literalx, first set to true, then to false, in the
recursive call of thetawSolver.

(a) p(a, b) ∈ R>0 for a, b ∈ R>0 in Line 6 is the “projection”, and we consider three choicesp+, p∗, pτ.
(b) wF (x) for literal x is a heuristical value, measuring in a sense the “progress achieved” when settingx

to FALSE (“progress” in the sense of the instance becoming more constrained, so that more unit-clause
propagations are to be expected).

(c) The details are specified in Subsections 2.3, 2.5.
3. The implementation is discussed in Subsection 2.4.
4. The tree of recursive calls made by the solver is called theDLL-treeof F.

Besides the choice of the heuristic, this is the basic SAT solver as published in [18]. The implementation is optimised
for the needs of the branching heuristic, which requires to know from each (original) clause in the inputF whether it
has been satisfied meanwhile, and if not, what is its current length.

Algorithm 1 tawSolver

1: Global variableF, initialised by the input.
2: function DLL( ) : returns SAT or UNSAT for the currentF
3: UpdateF to r1(F)
4: If contradiction found viar1, then goto 12
5: If satisfying assignment found viar1, then return SAT
6: Choose variablev with maximalp(wF(v),wF(v))
7: If wF (v) ≥ wF (v), thenx := v, elsex := v
8: Setx to TRUE inF; if DLL( ) = SAT, then return SAT
9: Undo assignment ofx

10: Setx to TRUE inF; if DLL( ) = SAT, then return SAT
11: Undo assignment ofx
12: Undo assignments made byr1

13: Return UNSAT
14: end function

8http://sourceforge.net/projects/tawsolver/ , and in theOKlibrary:
https://github.com/OKullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/tawSolver.cpp
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With a small modification, namely just continuing when a satisfying assignment was found, thetawSolver can
also count all satisfying assignments, or output them; thisis available as a compile-time option for the solver. In
Section 4, we will discuss some patterns which we found in satisfying assignments forF(3, t; n) with n < w(2; 3, t). We
do not report run-times for determining (or counting) all solutions in Section 6, but forn = w(2; 3, t)− 1 (empirically)
the run-time is at most the run-time needed to determine unsatisfiability for n = w(2; 3, t); for numerical values of
solution-counts see [42].

2.2. Look-ahead solvers

It is useful for the general picture to consider the generalrk-operations, as introduced in [45] and further studied in
[25, 26]. These operations transform a clause-setF into a satisfiability-equivalent clause-set via application of some
forced assignments (i.e., where the opposite assignments would yield an unsatisfiable clause-set). Let⊥ be the empty
clause, which stands for a trivial contradiction.r0 just mapsF to {⊥} in case of⊥ ∈ F, while otherwiseF is left
unchanged. Now we can recogniser1 as an operation which is applied recursively to the result ofF with literal x set
to true if settingx to true yields{⊥} via r0. This scheme yields also the generalrk for k ∈ N: as long as there is a
literal x such thatF with x set to true yields{⊥} via rk−1, setx to true and iterate. The final result, denoted byrk(F), is
uniquely determined. Besides the ubiquitous unit-clause propagationr1 alsor2, called “failed literal elimination”, is
popular for SAT solving, and evenr3, typically called “double look-ahead”, is used in some solvers (always partially,
testing the reductions only for selected variables).

The general scheme for a look-ahead solver (as stipulated in[48]) now generalises the DLL-procedure from
Algorithm 1, by replacing the reductionF  r1(F) in Line 3 by the generalF  rk(F) for somek ≥ 1. Furthermore,
for the inspection of a branching variable and the computation of the heuristical valuesw(v) andw(v), now the effects
of settingv resp.v to true and performingrk−1 reduction are considered. This explains also the notion of “look-ahead”:
therk-reduction can be partially achieved at the time when running through all variablesv, settingv resp.v to true and
applyingrk−1 — if this yields {⊥}, then performing the opposite assignment is justified. Since r1 is the standard for
reduction of a branch, (partial)r2 is the default for the reduction at a node.9

We see thattawSolver usesk = 1 (so the “look-ahead” usesk = 0, and in this sensetawSolver is a “look-ahead
solver with zero look-ahead”). The prototypical solver forusingk = 2 is theOKsolver ([46]). In a rather precise
sense thetawSolver can be considered at the level-1-version of theOKsolver (or the latter as the level-2-version of
thetawSolver). Also for the branching heuristic, which is discussed in the following subsection,tawSolver uses
the same scheme as theOKsolver, appropriately simplified to the lower level. BothtawSolver andOKsolver are
solvers with a “mathematical meaning”, precisely implementing an algorithm to full extent, with the only magical
numbers the clause-weights used in the branching heuristic.

The general scheme for the branching heuristic of a look-ahead solver, as developed in [48] (Subsection 7.7.2),
is as follows: For a clause-setF and its direct successorF′ on a branch (applying the branching assignment and
further reductions), a “distance measure”d(F, F′) ∈ R>0 is chosen, with the meaning the bigger this distance, the
larger the decrease in complexity. The branching heuristicconsiders for each variablev its two successorF′, F′′

and computes the distancesd(F, F′), d(F, F′′). Then via a “projection”p : R2
>0 → R>0 one heuristical valuehv :=

p(d(F, F′), d(F, F′′)) is obtained. Finally somev with maximalhv is chosen. Choosing which ofv or v to be processed
first (important for satisfiable instances) is done via a second heuristic, estimating the satisfiability-probabilities of
F′, F′′ in some way.

2.3. FromtawSolver-1.0 totawSolver-2.6

We are now turning to the discussion of the branching heuristic in tawSolver-2.6 (lines 6, 7 in Algorithm 1),
the version developed for this article. FortawSolver-1.0 (used in [2, 3]) the “Two-sided Jeroslaw-Wang” (2sJW)
rule by Hooker and Vinay [34] was used, which choosesv such that the weighted sum of the number of clauses ofF
containingv is maximal, where the weight of a clause of lengthk is 2−k.10 As discussed in [48], the ideas from [34] are

9The look-ahead solverssatz andmarch pl run through the variables once (actually also only considering “interesting” variables by some
criterion), and so they do not computer2, but only an approximation. The only solver to completely computer2 is theOKsolver(while satz and
march pl search also for somer3 reductions on selected variables).

10We do not care much here about the order of branching, since the algorithm is only effective on unsatisfiable problems, where the order does
not matter (while on satisfiable problems local search is much faster).
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actually rather misleading, and this is demonstrated here again by obtaining a large speed-up through the replacement
of the branching heuristic, as can be seen by the data in Section 6 (comparingtawSolver-1.0 withtawSolver-2.6).

For a literalx, a clause-setF andk ∈ N let ldk
F (x) := |{C ∈ F : x ∈ C ∧ |C| = k}| be the “literal degree” ofx in the

k-clauses ofF. The 2sJW-rule consists of three components:

1. The weightwF (x) of literal x is set aswF (x) :=
∑

k 2−k · ldk
F (x).

2. A variablev with maximalp+(wF (v),wF(v)) for p+(a, b) := a+ b is chosen.
3. The literalx ∈ {v, v} to be set first to true is given by the conditionwF (x) ≥ wF (x).

This approach has the following fundamental flaws:

1. The choice of the first branch (v or v) is mixed up with the choice ofv itself, but very different heuristics are
needed:

(a) For the choice of the first branch, some form of approximatedsatisfiability-probability must be maximised,
(b) while the branching-variable must minimise some approximated tree-size for the worst case, theunsatis-

fiablecase.
In 2sJW the weights 2−k are only motivated by satisfiability-probabilities, but are used for the choice ofv itself.

2. Once total weightswF (v),wF(v) have been determined, one number (the projection) must be computed from
this (to be maximised). 2sJW uses the sum, which, as demonstrated in [48], corresponds to minimising alower
boundon the DLL-tree-size — much better is the productp∗(a, b) := a · b, which corresponds to minimising an
upper boundon the tree-size.

So the improved heuristic (which nowadays, when extended appropriately to take the look-ahead into account, is the
basis for all look-ahead solvers) chooses clause-weightsw2,w3, · · · ∈ R>0, from which the total weight

wF (x) :=
∑

k

wk · ldk
F (x)

is determined, and chooses a variablev with maximal

p∗(wF (v),wF(v)) = wF (v) · wF (v).

The meaning of these weights is completely different from the argumentation in [34]: as mentioned, satisfiability-
probabilities have no place here. The underlying distance measure is

∑
k wk ·ν

k(F′), whereF′ is the resulting clause-set
after performing the branch-assignment and the subsequentrk-reduction, whileνk(F′) is the number ofnew k-clauses
in F′. When setting literalx to true, then ldkF (x) is an “approximation” of the number of new clauses of lengthk − 1
(since in the clauses containingx this literal is removed).

The weightswOK
k for theOKsolver have been experimentally determined as roughly 5−k. Since the value of the

first weight is arbitrary, the weights are rescaled towOK
2 = 1, obtaining then each new weight by multiplication with

1/5. Noww2 for thetawSolver is a stand-in for the number of new 1-clauses, which are handled in theOKsolver
by the look-ahead; accordingly it seems plausible that noww2 needs a relatively higher weight. We rescale here the
weights tow3 = 1 (note that for thetawSolver the weightwk concerns new clauses of lengthk− 1). Empirically we
determinedw2 = 4.85,w4 = 0.354,w5 = 0.11,w6 = 0.0694, and thereafter a factor of11.46; thus starting withw2 the
next weights are obtained by multiplying with (rounded) 1/4.85, 1/2.82, 1/3.22,1/1.59,1/1.46, . . . .

For the choice of the first branch there are two main schemes, as discussed in [48] (Subsection 7.9). Roughly, the
target now is to get rid off (satisfy) as many short clauses as possible (since shorter clauses are bigger obstructions for
satisfiability).11 Both schemes amount to choose literalx ∈ {v, v} with w′F (x) ≥ w′F (x) for some weightsw′k. For the
Franco-estimator we havew′k = − log(1−2−k), while for the Johnson-estimator we havew′k = 2−k. In theOKsolver the
Franco-estimator is used. But for thetawSolver with its emphasis on unsatisfiable instances, while the computation
of the heuristic is very time-sensitive (much more so than for theOKsolver), actually just the same weightsw′k = wk

are used.

11While for a good branching variable we want tocreateas many short clauses as possible (via setting literals to false)!
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As one can see from the data in Section 6, on ordinary van der Waerden problems the new heuristic yields a
reduction in the size of the DLL-tree by a factor increasing from 2 to 5 for fort = 12, . . . , 16 (comparingtawSolver-
2.6 withtawSolver-1.0), and for palindromic problems by a factor increasing from 5 to 20 fort = 17, . . . , 23.12 We
do not present the data, but most of the reduction in node-count is due to the replacement of the sum as projection
by the product (the optimised clause-weights only further improve the node reduction by at most 50% for the biggest
instances, compared with a simple but reasonable scheme like 2−k).

2.4. The implementation
ThetawSolver is written in modern C++ (C++11, to be precise), with around 1000 lines of code, with complete

input- and output-facilities, error handling and various compile-time options for implementations. The code is highly
optimised for run-time speed, but at the same time expressing the concepts via appropriate abstractions, relying on the
expressiveness of C++ both at the abstraction- and the implementation-level, so that the compiler can do a good job
producing efficient code.

Look-ahead solvers are often “eager”, that is, they represent the clause-set at each node of the DLL-tree in such a
way, that the current (“residual”) clause-set is visible tothe solver, and precisely the current clauses can be accessed.
On the other hand, conflict-driven solvers are all “lazy”, that is, the initial clause-set is not updated, and the state of
the current clause-set has to be inferred via the current assignment to the variables. The representation of the input
clause-setF by thetawSolver now is “mostly lazy”:

1. Assignments to variables are entered into a global array,
2. Via the usual occurrence lists, for each literalx one obtains access to all the clausesC ∈ F with x ∈ C.
3. This representation ofF is static (is not updated), and in this sense we have a lazy datastructure.
4. But the status of clauses, which is either inactive (when satisfied) or active, and their length (in the active case)

is handled eagerly, by storing status and length for each clause and updating this information appropriately. So
at each node, when running through the occurrence lists (still as in the input), for each clause we can see directly
whether the clause is active and in this case its current length.

5. When doing an assignment, then the clause-lengths are updated: if a literal is falsified in a clause, the length is
decreased by one, and if a literal is satisfied, the status of the clause is set to inactive.

6. For each active clause containing a variable which is assigned, there is exactly one change (either decrease in
length or going from active to inactive). This change is entered into a change-list.

7. When backtracking, then the assignment is simply undone by going through the change-list in reverse order,
and undoing the changes to the clauses.

No counters are maintained for the literal degrees ldk(x). Instead, the heuristic is computed by running through all
literal occurrences in the original input for the unassigned literals, and adding the contributions of the clauses which
are still active (this is the use of maintaining the length ofa clause).

When doing unit-clause propagation, the basic choice is whether performing a BFS search, by using a first-
in-first-out strategy for the processing of derived unit-clauses, of a DFS search, using a last-in-first-out strategy.
BFS is slightly easier to implement, but on the palindromic vdW-instances needs roughly 10% more unit-clauses to
propagate13, while on ordinary vdW-instances it uses less propagations, though the difference is less than 2%, and thus
DFS is the default. This can also be motivated by the consideration that newly derived unit-clauses can be considered
to be “more expensive”, and thus should be treated as soon as possible.

Look-ahead solvers in general rely on the distance for branch-evaluation to be positive, while a zero value should
indicate that a special reduction can be performed. And indeed, when counting new clauses, then the weighted sum
being zero means that an autarky has been found, a partial assignment not creating new clauses, which means that all
touched clauses are satisfied; see [41].14 Thus starting with theOKsolver, look-ahead solvers looked out for such
autarkies, and applied them when found ([31, 48]). Now for a zero-look-ahead solver like thetawSolver, these
autarkies are just pure literals (only occurring in one sign, not in the other). Their elimination causes a slight run-time
increase, without changing much anything else, and so by default they are not eliminated but not chosen for branching
(if there are still non-pure literals).

12tawSolver-2.6 additionally has the implementation improved, so thatnodes are processed now twice as fast as withtawSolver-1.0.
13the final result is uniquely determined, but in general thereare many ways to get there
14The point about autarkies is that they can be applied satisfiability-equivalently.
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2.5. The optimal projection: theτ-function

In [48] it is shown that theτ-function is the best generic projection in the following sense:

• Theτ-function is defined for arbitrary tuplesa ∈ R
n, n ∈ N, namelyτ(a) ∈ R>0 is the uniquex ≥ 1 such that∑n

i=1 x−ai = 1.

• This projection induces a linear order on the set of all such “branching tuples”a (of arbitrary length) by defining
a ≤ b if τ(a) ≤ τ(b); here “a ≤ b” means thata is better thanb.

• Theorem 7.5.3 in [48] shows that when imposing some general consistency-constraints on the comparison
of branching tuples (where it is of importance that branching tuples can have arbitrary length), then there is
precisely one such linear order on the set of branching tuples, namely the one induced byτ.

Now specific solvers might have a special built-in bias, and,more importantly, the theorem is not applicable when
considering only branching tuples of length 2 (as it is the case for ordinary boolean SAT solving). But nevertheless,
considering theτ-function as projection (more precisely, since we maximised projection values, 1/τ is used) is an
interesting option, and leads to theτawSolver-2.6 (with “τ” in place of “t”):

pτ(wF(v),wF(v)) := 1/τ(wF(v),wF(v)).

In this context it makes sense to definitely forbid distance-values 0, and thus pure literals are now eliminated.15 In
Section 6 we see thatτawSolver-2.6 is faster thantawSolver-2.6 on large palindromic problems due to a much
reduced node-count, but on ordinary problems the node-count stays basically the same, and then the overhead for
computingpτ makes theτawSolver-2.6 slower.

The weights forτawSolver-2.6 have been empirically determined asw2 = 7, w4 = 0.31,w5 = 0.19, and then a
factor of 1

1.7; so starting withw2 the next weights are obtained by multiplying with 1/7, 1/3.22, 1/1.63, 1/1.7, . . . .16

3. Computational results on w(2; 3, t)

This section is concerned with the numbers w(2; 3, t). The discussion of the computation of w(2; 3, 19) is the
subject of Subsection 3.1. Conjectures on the values of w(2;3, t) for 20≤ t ≤ 30 are presented in Subsection 3.2, and
also further lower bounds for 31≤ t ≤ 39 are given there. Finally in Subsection 3.3, we update the conjecture on the
(quadratic) growth of w(2; 3, t).

3.1. w(2; 3, 19)= 349

The lower bound w(2; 3, 19) ≥ 349 was obtained by Kullmann [49] using local search algorithms and it could
not be improved any further using these incomplete algorithms (because, as we now know, the bound is tight). An
example of a good partition of the set{1, 2, . . . , 348} is as follows:

140160118013014015014011101901301601701501140116010120212011501401120

1150120150170110011301201150112014011501202120101901601140150114012.

To finish the search, i.e., to decide that a current lower bound of a certain van der Waerden number is exact, one
might require many years of CPU-time. Discovering a new van der Waerden number has always been a challenge,
as it requires to explore the search space completely, whichhas a size exponential in the number of variables in the
corresponding satisfiability instance. To prove that an instance withn variables is unsatisfiable, the DLL algorithm has
to implicitly enumerate all the 2n cases. So the algorithm systematically explores all possible cases, however without
actually explicitly evaluating all of them — herein lies thestrength (and the challenge) for SAT solving.

15That is, only eliminating those literals (by settingx to true) withwF (x) = 0; these eliminations might create further pure literals, which will be
eliminated when in the child node the branching variable is computed, and so on.

16We consider the values for the weights as reasonable all-round values. A deeper understanding, based on the theory developed in [48], is left
for future investigations.
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In Subsection 1.1.2, we gave an overview on the area of distributing hard SAT problems from a general SAT
perspective, and we are concerned here with method (ii)(a),applied totawSolver. We find the simplest division of
the computation of the search into parts, that have no inter-process communication among themselves, together with
the observation of some patterns, very successful. Namely alevel (depth)L ∈ N0 of the DLL-tree is chosen, where
the level considers only the decisions (ignoring the variables inferred via unit-clause propagation), and the 2L subtrees
rooted at that level are distributed among the processors.

To show the unsatisfiability ofF(3, 19; 349), we have usedtawSolver-1.0 and 2.2 GHz AMD Opteron 64-bit
processors (200 of them) from thecirrus cluster at Concordia University for running the distributed branches of
the DLL-tree. The valueL = 8 was chosen, splitting the search space into 28 = 256 independent parts (subtrees)
P0, . . . ,P255. The total CPU-time of all processor together was roughly 196 years (the first partP0 alone has taken
roughly 60 years of CPU-time).17 For the prediction of run-times for the sub-tasks, the following observation made
in Ahmed [3] was used. Recall that fortawSolver-1.0 (Algorithm 1) the branching rule was to select a variable with
maximalwF (v)+wF(v) =

∑
k(ldF(v)+ ldF (v)) ·2−k, where for the first branchx ∈ {v, v} with

∑
k ldF (v) ·2−k ≥

∑
k ldF (v)

is chosen. Now the observation is that the parts (sub-trees of the DLL-tree)P0,P1,P2,P4,P8,P16,P32,P64,P128 are
bigger than the others parts, andP0 is the biggest.

Meanwhile our result w(2; 3, 19)= 349 has been reproduced in [42], via an alternative SAT solving approach (see
Subsection 1.1.1). At least at this time there seems to be no competitive alternative to SAT solving. See Section 6 for
further remarks on SAT solving for these instances in general. It would be highly desirable to be able to substantially
compress the resolution proofs obtained from the solver runs, so that a proof object would be obtained which could
be verified by certified software (and hardware); see [16] forsome recent literature.

3.2. Some new conjectures

In Table 2, we provide conjectured values of w(2; 3, t) for t = 20, 21, . . . , 30. We have used theUbcsat suite [67]
of local-search based satisfiability algorithms for generating good partitions, which provide a proof of these lower
bounds; see Appendix A.1 for the certificates. In Subsection6.2 we provide details of the algorithms used to find
the good partitions. The characteristics of the searches were such that we believe these values to be optimal, namely
with the right settings, these bounds can be found rather quickly, and in the past, all such conjectures turned out to
be true (though, as discussed below, the situation gets weaker for t = 29, 30). However, since local search based
algorithms are incomplete (they may fail to deliver a satisfying assignment, and hence a good partition when there
exists one), it remains to prove exactness of the numbers using a complete satisfiability solver or some complete
colouring algorithm.

t 20 21 22 23 24 25 26 27 28 29 30
w(2; 3, t) ≥ 389 416 464 516 593 656 727 770 827 868 903

Table 2: Conjectured precise lower bounds for w(2; 3, t)

We observe that fort = 24, 25, . . . , 30 we have w(2; 3, t) > t2, which refutes the possibility that∀ t : w(2; 3, t) ≤ t2,
as suggested in [14], based on the exact values for 5≤ t ≤ 16 known by then. Further (strict) lower bounds we
found are in Table 3 (where now we think it is likely that thesebounds can be improved; see Appendix A.2 for the
certificates).

t 31 32 33 34 35 36 37 38 39
w(2; 3, t) > 930 1006 1063 1143 1204 1257 1338 1378 1418

Table 3: Further lower bounds for w(2; 3, t)

17ComparingtawSolver-1.0 withtawSolver-2.6, as we can see in Table 9, the series of quotientsqi = old-time/ new-time, fort = 12, . . . , 16 is
(rounded) 4.3, 5.6, 6.8,9.4, 12.8. This can be approximated well by the lawqi+1 = 1.3·qi , which would yield fort = 19 the factor 12.8·1.33 ≈ 28.1.
So we would expect withtawSolver-2.6 at least a speed-up by a factor 20, which would reduce the200 years to 10 years. Another approximation
is obtained by considering Table 9: we see that for each step from t to t + 1 the run-time always increases by less than a factor of 10, while for
t = 17 we use less than five days, which would yield at most 500 daysfor t = 19 withtawSolver-2.6.
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That we conjecture the data of Table 2 to be true, that is, thatthe used local-search algorithm is strong enough,
while for the data of Table 3 that algorithm seems too weak to reach the solution, has the following background in
the data: As we report in Subsection 6.2, in the range 24≤ t ≤ 33 the local-search algorithm RoTS from theUbcsat
suite was found best-performing. This algorithm is used in an incremental fashion, initialising the search by known
solutions for smallern. This approach fort = 28, with a cut-off 5 · 106 rounds, found a solution forn = 826, and
in 1000 independent runs (non-incremental) two solutions were found. But with cut-off 107 in 1000 runs and cut-off
2 · 107 in 500 runs no solutions was found. From our experience this seems “pretty safe” for a conjecture. We are
entering now a transition period. Fort = 29 the iterative approach with cut-off 5 · 106 found the solution forn = 867,
while cut-off 107 found no solution forn = 868 in 1000 runs. Fort = 30 the iterative approach managed to find a
solution forn = 897; restarting it with cut-off 108 found a solution forn = 902, while forn = 903 no solution with
that cut-off was found in 300 runs. So we see that alreadyt = 30 is stretching it. However fort = 31 the iterative
approach with cut-off 108 only reachedn = 919 (despite restarts), while we happen to have a palindromic solution for
n = 930 (these are much easier to find; see Subsection 5.3). So here now we believe we definitely over-stretched the
abilities of the algorithm.

3.3. A conjecture on the upper bound

An important theoretical question is the growth-rate oft 7→ w(2; 3, t). Although the precise relation “w(2;r, t) ≤
t2” has been invalidated by our results, quadratic growth still seems appropriate (see [49] for a more general conjecture
on polynomial growth for van der Waerden numbers in certain directions of the parameter space; indeed in some
directions linear growth is proven there):

Conjecture 3.1. There exists a constantc > 1 such that w(2; 3, t) ≤ ct2.

See Conjecture 4.4 for a strengthening. To determine the current best guess forc, and to give some heuristic
justification for Conjecture 3.1, we observe the known exactvalues and lower bounds, and we arrive at the following
possible recursion:

w(2; 3, t) ≤ w(2; 3, t − 1)+ d(t − 1),

for 4 ≤ t ≤ 39 and somed > 0, with w(2; 3, 3) = 9. So we make the Ansatz w(2; 3, t) ≤ wt := 9+
∑t−1

i=3 d · i, for t ≥ 3,
whered := max39

t=4
w(2;3,t)−w(2;3,t−1)

t−1 ; in case w(2; 3, t) is not known, we use the lower bounds from Tables 2, 3. From
our data we obtaind = 593−516

23 = 77
23 (see Appendix B.1). We have (geometric sum)wt =

d
2t2 − 3

2dt + 9− 2d < d
2t2,

and so we obtain

w(2; 3, t) ≤
d
2

t2 =
77
46

t2 < 1.675t2,

which satisfies all data regarding w(2; 3, t) presented so far.

4. Patterns in the good partitions

In this section, we investigate the set of all good partitions corresponding to certain van der Waerden numbers
w(2; 3, t) for patterns. As described in Section 1.1.1, the motivation behind this section is to obtain more problem-
specific information on the solution-patterns, which may help to design heuristics to reduce search-space while com-
puting specific van der Waerden numbers.

Let S(t) denote the set of all binary strings each of which represents a good partition of the set{1, 2, . . . ,w(2; 3, t)−
1}. GeneratingS(t) involves traversing the respective search space completely. Let n0(B), n1(B), andn00(B) be the
number of zeros, ones, and double-zeros, respectively, in abitstring B (note that three consecutive zeros are not
possible in anyB ∈ S(t)). Let EP1S(B) denote the sequence of powers of 1 in a bitstringB. Letnp(B) andnv(B) denote
the number of peaks (local maxima) and valleys (local minima), respectively, in EP1S(B) (not necessarily strict). For
example, for the compact bitstring 180016013011013001501801500130110130160018 (with n0 = 16, n1 = 60 and
n00 = 4), we have the following EP1S, with p and v, marking peaks andvalleys, respectively, corresponding to
changes in magnitudes.

8
p

6 3 1
v

3 5 8
p

5 3 1
v

3 6 8
p
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And for B = 11011012012013013 we haven0(B) = 5, n1(B) = 12, n00(B) = 0, while there is one valley followed
by one peak, and thusnv(B) = np(B) = 1.

4.1. Number of 0’s and 00’s

In this section, we determine the number min{n0(B) : B ∈ S(t)}, max{n0(B) : B ∈ S(t)}, and max{n00(B) : B ∈ S(t)}
for 3 ≤ t ≤ 14. Observations in Table 4 lead us to Conjectures 4.1 and 4.2.

Table 4: Zeros in good partitions of{1, 2, . . . ,w(2; 3, t) − 1}

w(2; 3, t) (min{n0(B) : B ∈ S(t)}, max{n00(B) : B ∈ S(t)}
max{n0(B) : B ∈ S(t)})

w(2; 3, 3) (4, 4) 2
w(2; 3, 4) (6, 6) 2
w(2; 3, 5) (7, 9) 2
w(2; 3, 6) (8, 10) 4
w(2; 3, 7) (11, 12) 3
w(2; 3, 8) (14, 14) 1
w(2; 3, 9) (16, 16) 4
w(2; 3, 10) (19, 21) 5
w(2; 3, 11) (19, 22) 5
w(2; 3, 12) (22, 22) 1
w(2; 3, 13) (25, 29) 5
w(2; 3, 14) (29, 29) 4

It seems that there is little variation concerning the totalnumber of zeros:

Conjecture 4.1. There exists a constantc > 0 such that|n0(B) − n0(B′)| ≤ ct, ∀B, B′ ∈ S(t) with t ≥ 3.

And there seem to be very few consecutive zeros:

Conjecture 4.2. There exists a constantc > 0 such thatn00(B) < ct, ∀B ∈ S(t) with t ≥ 3.

4.2. Number of 1’s

In this section, we determineT = min{np(EP1S(B))+nv(EP1S(B)) : B ∈ S(t)}, as well as minimum and maximum
values ofn1(B) over all B ∈ S(t). The observations in Table 5 lead us to Conjectures 4.3, 4.4, and Questions 4.1 and
4.2.

Table 5: Selected good-partitions of{1,2, . . . ,w(2; 3, t) − 1}

w(2; 3, t) A good partition B corresponding to T T min{n1(B) : B ∈ S(t)},
max{n1(B) : B ∈ S(t)}

w(2; 3,3) = 9 12001200 1 (4, 4)
(2 2)

w(2; 3, 4) = 18 1300110130011013 5 (11, 11)
(3 1 3 1 3)

w(2; 3, 5) = 22 001300110140014011 4 (12, 14)
(3 1 4 4 1)

w(2; 3, 6) = 32 015001501300150015 3 (21, 23)
(5 5 3 5 5)

w(2; 3, 7) = 46 1101101401201501401100130150120150 8 (33, 34)
(1 1 4 2 5 4 1 3 5 2 5)

w(2; 3, 8) = 58 140120140110140130150015013014011014012011 12 (43, 43)
(4 2 4 1 4 3 5 5 3 4 1 4 2 1)

Continued on Next Page. . .
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Table 5: Selected good-partitions of{1,2, . . . ,w(2; 3, t) − 1}

w(2; 3, t) A good partition B corresponding to T T min{n1(B) : B ∈ S(t)},
max{n1(B) : B ∈ S(t)}

w(2; 3, 9) = 77 180016013011013001501801500130110130160018 5 (60, 60)
(8 6 3 1 3 5 8 5 3 1 3 6 8)

w(2; 3,10)= 97 1701401201500120017014018011018014001600120018019 13 (75, 77)
(7 4 2 5 2 7 4 8 1 8 4 6 2 8 9)

w(2; 3, 11)= 114 0110014001601100120019016011019001100110016001100110 11 (91, 94)
(10 4 6 10 2 9 6 1 9 1 10 6 10 10)

w(2; 3, 12)= 135 1901801901201301101701201013011102 17 (112, 112)
11101301012017011013012019018019

(9 8 9 2 3 1 7 2 1 3 11 11 3 1 2 7 1 3 2 9 8 9)

w(2; 3, 13)= 160 110160112014001110016011001201401110110 15 (130, 134)
16019012013017011001100150112015014012

(1 6 12 4 11 6 10 2 4 11 1 6 9 2 3 7 10 1 5 12 5 4 2)

Again, there seems little variation concerning the total number of ones:

Conjecture 4.3. There exists a constantc > 0 such that|n1(B) − n1(B′)| ≤ ct, ∀B, B′ ∈ S(t) with t ≥ 3.

Stronger than Conjecture 4.3, the number of ones seems very close to the vdW-number for the previoust:

Conjecture 4.4. There exists a constantc > 0 such that|w(2; 3, t − 1)− n1(B)| < ct, ∀B ∈ S(t).

This conjecture also implies the earlier conjecture on the quadratic growth of w(2; 3, t):

Lemma 4.1. Conjecture 4.4 implies Conjecture 4.3 and Conjecture 3.1.

Proof. Conjecture 4.3 follows by the triangle inequality. Conjecture 3.1 follows, if fort large enough we can show
n0(B) ≤ n1(B) for all B ∈ S(T), and this is a special case of Szemerédi’s Theorem ([66]),which for arithmetic
progressions of size 3 was already proven in [59]18, namely that the relative size of maximum independent subsets of
the hypergraph of arithmetic progressions of size 3 in the numbers 1, . . . , t goes to 0 witht → ∞.

We turn to the growth of the number of peaks and valleys:

Question 4.1.For each positive constantcdoes there exist at′ such that for allt ≥ t′, np(EP1S(B))+nv(EP1S(B)) ≥ ct,
(t ≥ 3) ∀B ∈ S(t)? (We conjecture yes).

We conclude with the observation, that fort > 3 there do not seem to be long plateaus for the numbers of ones:

Question 4.2. Is there a good partitionB ∈ S(t), (t ≥ 4) with 3 consecutive numbers equal in EP1S(B)? (Note that,
for t = 3, the partition 110110011011 has four consecutive exponents, which are the same.)

4.3. How can it help for SAT solving?

If one of the above conjectures (or some other conjecture) turns out to be true, and if moreover the numerical
constants have good estimates, then they can be used to restrict the search space. When using a general purpose SAT
solver, this can be achieved by adding further constraints.It seems however that these constraints do not help with the
search, even if we assume that they are true, since they are too difficult to handle for the solver. It seems the problem is
that these constraints do not mix well with the original problem formulation, and a deeper integration is needed. Such
an integration was achieved in the case of the palindromic constraint, which is the subject of the following section —
here an organic new problem formulation could be established, where the additional restriction doesn’t appear as an
“add-on”, but establishes a natural new problem class.

18seehttp://rothstheorem.wikidot.com/on-certain-sets-of-integers
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5. Palindromes

Recall Definitions 1.1, 1.2:

1. for givenk ∈ N (the number of “colours”),
2. t0, . . . , tk−1 (the lengths of arithmetic progressions),
3. andn ∈ N (the number of vertices)

we consider block partitions (P0, . . . ,Pk−1) of {1, . . . , n} such that noPi contains an arithmetic progression of length
ti — these are the “good partitions”, and w(k; t0, . . . , tk−1) ∈ N is the smallestn such that no good partition exists.
If (P0, . . . ,Pk−1) is a good partition of{1, . . . , n} w.r.t. t0, . . . , tk−1, then for 1≤ n′ ≤ n we obtain a good partition of
{1, . . . , n′} w.r.t. t0, . . . , tk−1 by just removing verticesn′+1, . . . , n from their blocks. Thus w(k; t0, . . . , tk−1) completely
determines for whichn ∈ N good partitions exist, namely exactly forn < w(k; t0, . . . , tk−1).

Definition 5.1. Forn ∈ N let mn : {1, . . . , n} → {1, . . . , n} (with “m” like “mirror”) defined by mn(v) := n+1−v. This
map is extended toS ⊆ {1, . . . , n} as usual: mn(S) := {mn(v) : v ∈ S}.

Now if (P0, . . . ,Pk−1) is a good partition w.r.t.n, then also (mn(P0), . . . ,mn(Pk−1)) is a good partition w.r.t.n. So
it is of interest to consider self-symmetric partitions (with mn(Pi) = Pi for all i):

Definition 5.2. A good palindromic partitionof {1, . . . , n} w.r.t. parameterst0, . . . , tk−1, wheren, t0, . . . , tk−1 ∈ N, is a
good partition of{1, . . . , n} w.r.t. t0, . . . , tk−1 such that for allj ∈ {0, . . . , k− 1} holds mn(P j) = P j .

We call these special good partitions “palindromic”, sincea block partition can be represented as a string of
numbers over{0, . . . , k − 1}, and then the block partition is palindromic iff the string is a palindrome (reads the
same forwards and backwards). For example, the string 01200120 represents a good palindromic partition fork = 2,
t0 = t1 = 3 andn = 8, namely ({1, 4, 5, 8}, {2, 3, 6, 7}), and so does ({1, 3, 6, 8}, {2, 4, 5, 7}), represented by 01012010,
while ({1, 2, 5, 6}, {3, 4, 7, 8}), represented by 00120012, is a good partition which is not palindromic.

For givenk andt0, . . . , tk−1 again we want to completely determine (in theory) for whichn do good palindromic
partitions exist and for which not. The key is the following observation (which follows also from Lemmas 5.2, 5.3).

Lemma 5.1. Consider fixedk, t0, . . . , tk−1, andn ≥ 3. From a good palindromic partition (P0, . . . ,Pk−1) of {1, . . . , n}
we obtain a good palindromic partition (P′0, . . . ,P

′
k−1) of {1, . . . , n − 2} by removing vertices 1, n and replacing the

remaining verticesv by v− 1, that is,P′i := {v− 1 : v ∈ Pi \ {1, n}}.

Proof. The notion of a good partition of{1, . . . , n} w.r.t. w(k; t0, . . . , tk−1), as defined in Definition 1.2, can be gener-
alised to good partitions of arbitraryT ⊆ Z by demanding that for every block partition (P0, . . . ,Pk−1) of T into k parts
no partP j contains an arithmetic progression of sizet j . In the remainder of the proof we omit the “w.r.t.t0, . . . , tk−1”.

If T has a good partition, then also every subset has a good partition, by restricting the blocks accordingly, and for
everyd ∈ Z alsod + T = {d+ x : x ∈ T} has a good partition, by shifting the blocks as well.

We can also generalise the notion of a good palindromic partition to intervalsT = {a, a+ 1, . . . , b} ⊂ Z for a < b,
defining now the mirror-mapma,b : T → T via v ∈ T 7→ b+ a− v (mn in Definition 5.1 is the special casemn = m1,n).

Again, if T has a good palindromic partition, thend + T for d ∈ Z has as well. But for subsets ofT we can
only consider sub-intervalsT′ = {a′, . . . , b′}, where from both sides we have taken away equal amounts. Thatis, for
a ≤ a′ < b′ ≤ b with a′ − a = b − b′ we have, that from a good palindromic partition forT we can obtain a good
palindromic partition forT′ (by just restricting the blocks).

So from a good palindromic partition of{1, . . . , n} we obtain a good palindromic partition of{1, . . . , n− 2} by first
restricting to{2, . . . , n− 1} and then shifting by−1.

Corollary 5.1.1. If there is no good palindromic partition of{1, . . . , n}, then there is no good palindromic partition of
{1, . . . , n+ 2 · i} for all i ∈ N0.

Proof. If there would be a good palindromic partition of{1, . . . , n+ 2 · i}, then by repeated applications of Lemma 5.1
we would obtain a good palindromic partition of{1, . . . , n}.
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Since by van der Waerden’s theorem we know there always exists somen such that for alln′ ≥ n no good palin-
dromic partition exists, we get that the existence of good palindromic partitions w.r.t. fixedt0, . . . , tk−1 is determined
by two numbers, the endpointp of “always exists” resp.q of “never exists”, with alternating behaviour in the interval
in-between:

Corollary 5.1.2. Consider the maximalp ∈ N0 such that for alln ≤ p good palindromic partitions exist, and the
minimal q ∈ N such that for alln ≥ q no good palindromic partitions exist. Thenq − p is an odd natural number,
where no good palindromic partition exists forp + 1, but p + 2 again has a good palindromic partition, and so on
alternately, until fromq on no good palindromic partition exists anymore.

Proof. By Corollary 5.1.1 there is no good palindromic partition for p + 1 + 2i and all i ∈ N0. Now for the first
i ∈ N0, such thatp + 2 + 2i has no good palindromic partition, we letq′ := (p + 2 + 2i) − 1. We have a good
palindromic partition forq− 1 by definition ofi (as the smallest suchi) resp. in case ofi = 0 by definition ofp. We
haveq′ + 2 j = (p+ 2+ 2i) − 1+ 2 j = p+ 1+ 2(i + j) for j ∈ N0, and thus there is no good palindromic partition for
q′ + 2 j. And if there would be a good palindromic partition forq′ + 1+ 2 j = p+ 2+ 2i + 2 j, then by Corollary 5.1.1
there would be a good palindromic partition forp+ 2+ 2i. So we haveq′ = q.

Definition 5.3. Thepalindromic van-der-Waerden numberpdw(k; t0, . . . , tk−1) ∈ N2
0 is defined as the pair (p, q) such

that p is the largestp ∈ N0 with the property, that for all 1≤ n ≤ p there exists a good palindromic partition of
{1, . . . , n}, while q is the smallestq ∈ N such that for non ≥ q there exists a good palindromic partition of{1, . . . , n}.
We use pdw(k; t0, . . . , tk−1)1 = p and pdw(k; t0, . . . , tk−1)2 = q. So 0≤ pdw(k; t0, . . . , tk−1)1 < pdw(k; t0, . . . , tk−1)2 ≤

w(k; t0, . . . , tk−1).
Thepalindromic gapis

pdg(k; t0, . . . , tk−1) := w(k; t0, . . . , tk−1) − pdw(k; t0, . . . , tk−1)2 ∈ N0,

while thepalindromic spanis defined as

pds(k; t0, . . . , tk−1) := pdw(k; t0, . . . , tk−1)2 − pdw(k; t0, . . . , tk−1)1 ∈ N.

To certify that w(k; t0, . . . , tk−1) = n holds means to show that there exists a good partition of{1, . . . , n − 1} and
that there is no good partition ofn. For palindromic number-pairs we need to double the effort:

Theorem 5.1.To certify that pdw(k; t0, . . . , tk−1) = (p, q) holds, exactly the following needs to be shown for (arbitrary)
p ∈ N0, q ∈ N with p < q:

(i) there are good palindromic partitions of{1, . . . , p− 1} and{1, . . . , q− 1} w.r.t. t0, . . . , tk−1;
(ii) there are no good palindromic partitions of{1, . . . , p+ 1} and{1, . . . , q+ 1} w.r.t. t0, . . . , tk−1.

Proof. The given conditions are necessary for pdw(k; t0, . . . , tk−1) = (p, q) by the defining properties ofp andq. We
show that they are sufficient to establish pdw(k; t0, . . . , tk−1) = (p, q). First we have by Corollary 5.1.1 thatq− p is odd,
since otherwisep+ 1 having no good palindromic partitions would yield thatq− 1 would have no good palindromic
partition. Then, again by Corollary 5.1.1, alln ≥ q+ 1 have no good palindromic partition, while alln ≤ p− 1 have
good palindromic partitions. By Corollary 5.1.2 we must nowhave pdw(k; t0, . . . , tk−1) = (p, q).

5.1. Palindromic vdW-hypergraphs

Recall that a finite hypergraphG is a pairG = (V,E), whereV is a finite set (of “vertices”) andE is a set of
subsets ofV (the “hyperedges”); one writesV(G) := V andE(G) := E. The essence of the (finite) van der Waerden
problem (which we will now often abbreviate as “vdW-problem”) is given by the hypergraphs ap(t, n) of arithmetic
progressions with progression lengtht ∈ N and the numbern ∈ N0 of vertices:

• V(ap(t, n)) := {1, . . . , n}

• E(ap(t, n)) := {p ⊆ {1, . . . , n} : p arithmetic progression of lengtht}.
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For example ap(3, 5) = ({1, 2, 3, 4, 5}, {{1, 2, 3}, {2,3, 4}, {1,3,5}, {3, 4,5}}). Considering hypergraphs, the reader might
wonder how determination of vdW-numbers fits with hypergraph colouring. While the determination of diagonal
vdW-numbers is an ordinary hypergraph colouring problem, for general vdW-numbers a more general concept of
hypergraph colouring is to be used, involving the simultaneous colouring of several hypergraphs in the following
sense: The diagonal vdW-number w(k; t, . . . , t) for k, t ∈ N is the smallestn ∈ N such that the hypergraph ap(t, n)
is notk-colourable, where in general ak-colouring of a hypergraphG is a mapf : V(G) → {1, . . . , k} such that no
hyperedge is “monochromatic”, that is, every hyperedge gets at least two different values byf . For the general vdW-
number w(k; t0, . . . , tk−1) we now consider for each colouri ∈ {0, . . . , k− 1} the hypergraph ap(ti , n), and we forbid (to
formulate “good partition”) for eachi that there is a hyperedge in ap(ti , n) monocoloured with colouri (while we do
not care about the other colours here). Accordingly the SAT-encoding of “w(2; 3, t) > n ?”, as discussed in Subsection
1.1, exactly consists of the two hypergraphs ap(3, n) and ap(t, n) represented by positive resp. negative clauses.

The task now is to define the palindromic version pdap(t, n) of the hypergraph of arithmetic progressions, so that
for diagonal palindromic vdW-numbers pdw(k; t, . . . , t) = (p, q) we have, thatq is minimal for the condition that
for all n ≥ q the hypergraph pdap(t, n) is notk-colourable, whilep is maximal for the condition that for alln ≤ p
the hypergraph isk-colourable. Furthermore we should have that for two-coloured problems (i.e.,k = 2) the SAT-
encoding of “pdw(2;t0, t1) > n ?” (satisfiable iff the answer is yes) consists exactly of the two hypergraphs pdap(t0, n),
pdap(t1, n) represented by positive resp. negative clauses (while formore than two colours generalised clause-sets can
be used; see [50]).

Consider fixedt ∈ N andn ∈ N0. Obviously pdap(t, 0) := ap(t, 0) = ({}, {}), and so assumen ≥ 1. Recall the
permutationm = mn of {1, . . . , n} from Definition 5.1. As every permutation,m induces an equivalence relation∼
on {1, . . . , n} by considering the cycles, which here, sincem is an involution (self-inverse), just has the equivalence
classes{1, . . . , n}/∼ = {{v, f (v)}}v∈{1,...,n} of size 1 or 2 comprising the elements and their images. Note that m has
a fixed point (an equivalence class of size 1) iff n is odd, in which case the unique fixed point isn+1

2 . The idea
now is to definem′ : {1, . . . , n} → {1, . . . , n}, which chooses from each equivalence class one representative (so
m′(v) ∈ {v,m(v)} and v ∼ w ⇔ m′(v) = m′(w)), and to let pdap(t, n) be the image of ap(t, n) underm′, that is,
(m′(V(ap(t, n))), {m′(H)}H∈E(ap(t,n))). Naturally we choosem′(v) to be the smaller ofv andm(v). Now it occurs that
images of arithmetic progressions underm′ can subsume each other, i.e., forH1,H2 ∈ E(ap(t, n)) with H1 , H2 we
can havem′(H1) ⊂ m′(H2), and so we define pdap(t, n) as the image of ap(t, n) underm′, where also all subsumed
hyperedges are removed (so we only keep the minimal hyperedges under the subset-relation).

Definition 5.4. For t ∈ N andn ∈ N0 the hypergraph pdap(t, n) is defined as follows:

• V(pdap(t, n)) := {1, . . . , ⌈ n
2⌉}

• E(pdap(t, n)) is the set of minimal elements w.r.t.⊆ of the set ofm′n(H) for H ∈ E(ap(t, n)), wherem′n :
{1, . . . , n} → V(pdap(t, n)) is defined bym′n(v) := v for v ≤ ⌈ n

2⌉ andm′n(v) := n+ 1− v for v > ⌈ n
2⌉.

Using ap(3, 5) = ({1, 2, 3, 4, 5}, {{1, 2, 3}, {2, 3, 4}, {1,3, 5}, {3,4,5}}) as above, we havem′({1, 2, 3}) = {1, 2, 3},
m′({2, 3, 4}) = {2, 3}, m′({1, 3, 5}) = {1, 3} andm′({3, 4, 5}) = {1, 2, 3}, whence pdap(3, 5) = ({1, 2, 3}, {{1, 3}, {2, 3}}).

Lemma 5.2. Considert ∈ N andn ∈ N0. The hypergraph pdap(t, n) is embedded into the hypergraph pdap(t, n+ 2)
via the mape : V(pdap(t, n))→ V(pdap(t, n+ 2)) given byv 7→ v+ 1.

Proof. First we note that|V(pdap(t, n+2))| = |V(pdap(t, n))|+1, and so the range ofe is V(pdap(t, n+2))\{1}. LetG be
the hypergraph with vertex setV(pdap(t, n+2))\ {1}, whose hyperedges are all those hyperedgesH ∈ E(pdap(t, n+2))
with 1 < H. We show thate is an (hypergraph-)isomorphism from pdap(t, n) to G, which proves the assertion.

Now obviously the underlying hypergraph ap(t, n) is embedded into the underlying ap(t, n+ 2) via the underlying
mapv ∈ V(ap(t, n)) 7→ v + 1 ∈ V(ap(t, n+ 2)), where the image of this embedding is given by the hypergraph with
vertex setV(ap(t, n+ 2)) \ {1, n+ 2}, and where the hyperedges are thoseH ∈ E(ap(t, n+ 2)) with 1, n+ 2 < H. Since
m′n+2(n + 2) = 1 andm′n(v) = m′n+2(v + 1) − 1 for v ∈ {1, . . . , n}, the assertion follows from the fact that there are
no hyperedgesH,H′ ∈ E(ap(t, n + 2)) with H ∩ {1, n + 2} , ∅, H′ ∩ {1, n + 2} = ∅ andm′n+2(H) ⊂ m′n+2(H′) (thus
m′n+2(H′) can only be removed from pdap(t, n+ 2) by subsumptions already at work in pdap(t, n)), and this is trivial
since 1∈ m′n+2(H) but 1< m′n+2(H′).
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The SAT-translation of “Is there a good palindromic partition of {1, . . . , n} w.r.t. t0, t1 ?” is accomplished similar
to the translation of “w(2;t0, t1) > n ?”, now using pdap(t0, n), pdap(t1, n) instead of ap(t0, n), ap(t1, n):

Lemma 5.3. Considert0, t1 ∈ N, t0 ≤ t1, andn ∈ N0. Let the boolean clause-setFpd(t0, t1, n) be defined as follows:

• the variable-set is{1, . . . , ⌈ n
2⌉} (= V(pdap(t0, n)) = V(pdap(t1, n)));

• the hyperedges of pdap(t0, n) are directly used as positive clauses;

• the hyperedgesH of pdap(t1, n) yield negative clauses{v}v∈H .

Then there exists a good palindromic partition if and only ifFpd(t0, t1, n) is satisfiable, where the satisfying assignments
are in one-to-one correspondence to the good palindromic partitions of {1, . . . , n} w.r.t. (t0, t1).

For more than two colours, Lemma 5.3 can be generalised by using generalised clause-sets, as in [50], and there
one also finds the “generic translation”, a general scheme totranslate generalised clause-sets (with non-boolean vari-
ables) into boolean clause-sets (see also [51, 52]).

5.2. Precise values

See Subsection 6.1 for details of the computation.

Table 6: Palindromic vdW-numbers pdw(2; 3, t)

t pdw(2; 3, t) pds(2; 3, t) pdg(2; 3, t)

3 (6, 9) 3 0

4 (15, 16) 1 2

5 (16, 21) 5 1

6 (30, 31) 1 1

7 (41, 44) 3 2

8 (52, 57) 5 1

9 (62, 77) 15 0

10 (93, 94) 1 3

11 (110, 113) 3 1

12 (126, 135) 9 0

13 (142, 155) 13 5

14 (174, 183) 9 3

15 (200, 205) 5 13

16 (232, 237) 5 1

17 (256, 279) 23 0

18 (299, 312) 13 0

19 (338, 347) 9 2

Continued on Next Page. . .
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Table 6: Palindromic vdW-numbers pdw(2; 3, t)

t pdw(2; 3, t) pds(2; 3, t) pdg(2; 3, t)

20 (380, 389) 9 ≥ 0

21 (400, 405) 5 ≥ 11

22 (444, 463) 19 ≥ 1

23 (506, 507) 1 ≥ 9

24 (568, 593) 25 ≥ 0

25 (586, 607) 21 ≥ 49

26 (634, 643) 9 ≥ 84

27 (664, 699) 35 ≥ 71

5.3. Conjectured values and bounds

For 28≤ t ≤ 39 we have reasonable values on pdw(2; 3, t), which are given in Table 7, and which we believe to
be exact fort ≤ 35. These values have been computed by local-search methods(see Subsection 6.2), and thus for sure
we can only say that they present lower bounds. We obtain conjectured values for the palindromic span (which might
however be too large or too small) and conjectured values forthe palindromic gap (which additionally depend on the
conjectured values from Subsection 3.2, while fort ≥ 31 we only have the lower bounds from Subsection 3.2).

Table 7: Conjectured palindromic vdW-numbers pdw(2; 3, t)

t pdw(2; 3, t) ≥ pds(2; 3, t) ∼ pdg(2; 3, t) ∼

28 (728, 743) 15 84

29 (810, 821) 11 47

30 (844, 855) 11 48

31 (916, 931) 15 0

32 (958, 963) 5 44

33 (996, 1005) 9 59

34 (1054, 1081) 27 63

35 (1114, 1155) 41 50

36 (1186, 1213) 27 45

37 (1272, 1295) 23 44

38 (1336, 1369) 33 10

39 (1406, 1411) 5 8

For the certificates for these lower bounds see Appendix A.3.

5.4. Open problems

The relation between ordinary and palindromic vdW-numbersare of special interest:
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• It seems the palindromic span can become arbitrarily large —also in relative terms? Perhaps the span shows a
periodic behaviour, oscillating between small and large?

• Similar questions are to be asked for the gap. Does it attain value 0 infinitely often?

Do the hypergraphs pdap(t, n) have interesting properties (more basic than their chromatic numbers)? A basic exercise
would be to estimate the number of hyperedges and their sizes. In the subsequent Subsection 6.1 we find data that
SAT solvers behave rather different on palindromic vdW-problems (compared to ordinary problems). It seems that
palindromic problems are more “structured” than ordinary problems — can this be made more precise? Perhaps the
hypergraphs pdap(t, n) show characteristic differences to the hypergraphs ap(t, n), which could explain the behaviour
of SAT solvers?

5.5. Remarks on the use of symmetries
The heuristic use of symmetries for finding good partitions has been studied in [27, 30, 29] (while for symmetries

in the context of general SAT solving see [60]). Especially we find there an emphasis on “internal symmetries”, which
are not found in the problem, but are imposed on the solutions.

The good palindromic partitions introduced in this sectionare more restricted in the sense, that they are based
on the symmetriesm from Subsection 5.1 of the clause-setsF expressing “w(k; t0, t1, . . . , tk−1) > n ?” (i.e., we
havem(F) = F; recall Subsection 1.1), which then is imposed as an internal symmetry on the potential solution by
demanding that the solutions be self-symmetric. In [27] “reflection symmetric” certificates are mentioned, which for
evenn are the same as good palindromic partitions, however for oddn they ignore vertex 1, not the mid-point⌈ n

2⌉ as
we do. This definition in [27] serves to maintain monotonicity (i.e., a solution forn+ 1 yields a solution forn, while
we obtain one only forn−1 (Lemma 5.1). We believe that palindromicity is a more natural notion, but further studies
are needed here to compare these two notions.

Other internal symmetries used in [27, 30, 29] are obtained by modular additions and multiplications (these are
central to the approaches there), based on the method from [56] for constructing lower bounds for diagonal vdW-
numbers. No generalisations are known for the mixed problems we are considering.

Finally we wish to emphasise that we do not consider palindromicity as a mere heuristic for finding lower bounds,
but we get an interesting variation of the vdW-problem in itsown right, which hopefully will help to develop a better
understanding of the vdW-problem itself in the future.

6. Experiments with SAT solvers

We conclude by summarising the experimental results and insights gained by running SAT solvers on the instances
considered in this paper. All the solvers (plus build environments), generators and the data are available in the
OKlibrary ([47]); see Appendix B for more information.

For determining unsatisfiability we consider complete SAT solvers in Subsection 6.1. In general, for (ordinary)
vdW-problems look-ahead solvers seem to perform better than conflict-driven solvers, while for palindromic problems
it seems to be the opposite. HowevertawSolver-2.6 is the best (single) solver for both classes.

The hybrid approach,Cube & Conquer, was developed precisely on the instances of this paper, as discussed in
[32] (further developments one finds in [68]). This approachis third-best on vdW-problems (aftertawSolver-2.6
andτawSolver-2.6), and best on palindromic vdW-problems (beforeτawSolver-2.6 andtawSolver-2.6).

We conclude this section in Subsection 6.2 by remarks on incomplete SAT solvers, used to obtain lower bounds
(determine satisfiability).

For the experiments we used a 64-bit workstation with 32 GB RAM and Intel i5-2320 CPUs (6144 KB cache)
running with 3 GHz, where we only employed a single CPU.

6.1. Complete solvers
Complete SAT solvers exist in mainly two forms, “look-aheadsolvers” and “conflict-driven solvers”; see [55, 31]

for general overviews on these solver paradigms. Besides thetawSolver (see Section 2), for our experimentation we
use the following (publicly available) complete solvers, which give a good coverage of state of the art SAT solving
and of the winners of recent SAT competitions and SAT races19:

19The (parent) SAT competition homepage is athttp://www.satcompetition.org with links to each individual competition.
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• Look-ahead solvers:

– OKsolver ([46]), a solver with well-defined behaviour, no ad-hoc heuristics, and which applies complete
r2 (at every node). This solver won gold at the SAT 2002 competition.

– satz ([54]), a solver which applies partialr2 andr3. In theOKlibrary we maintain version 215, with
improved/corrected in/output and coding standard.

– march pl ([28]), a solver applying partialr2, r3, and resolution- and equivalence-preprocessing.march pl

contains the same underlying technology as its sibling solversmarch {rw,hi,ks,dl,eq}, which won
gold, silver and bronze at the 2004 to 2011 SAT competitions and SAT races. We use thepl (partial
lookahead) version.

• Conflict-driven solvers:

– MiniSat family:

∗ MiniSat ([20]), version 2.0 and 2.2, the latest version of this well-established solver, used as starting
point for many new conflict-driven solvers. Previous versions won gold at the SAT Race 2006 and
2008, as well as numerous bronze and silver awards at the SAT competition 2007.

∗ CryptoMiniSat ([64]), a MiniSat derivative designed specifically to tackle hard cryptographic
problems. This solver won gold at SAT Race 2010 and gold and silver at the SAT competition 2011.
We use version 2.9.6.

∗ Glucose ([6]), a MiniSat derivative utilising a new clause scoring scheme and aggressive learnt-
clause deletion. This solver won gold in both SAT 2011 competition and SAT Challenge 2012. We
use versions 2.0 and 2.2.

– Lingeling family:

∗ PicoSAT ([8]), a conflict-driven solver using an aggressive restartstrategy, compact data-structures,
and offering proof-trace options to allow for unsatisfiability checking. This solver won gold and silver
at the SAT competition 2007. We use the latest version 913.

∗ PrecoSAT ([10]), integrates theSATeLite preprocessor intoPicoSAT, applying various reductions
including partialr2 at certain nodes in the search tree. This solver won gold and silver at the SAT
2009 competition. We use the latest version 570.

∗ Lingeling([11]), based onPrecoSAT, focuses further on integrating preprocessing and search,intro-
ducing new algorithms and data-structures to speed up thesetechniques and reduce memory footprint.
As with PrecoSAT, this solver applies partialr2 at specially chosen nodes in the search tree. This
solver won bronze at the SAT 2011 competition and silver at the SAT Race 2010. We use the latest
versionala-b02aa1a-121013.

6.1.1. Cube-and-Conquer
TheCube & Conquermethod uses a look-ahead solver as the “cube-solver”, splitting the instance into subinstances

small enough such that the “conquer-solver”, a conflict-driven solver, can solve almost all sub-instances in at most a
few seconds. We use theOKsolver as the cube-solver andMiniSat as the conquer-solver. The main (and single)
parameter isD ∈ N0, the cut-off depth for theOKsolver: the DLL-tree created by theOKsolver is cut off when
the number of assignments reachesD, where it is important that this includesall assignmentson the path, not just
the decisions, but also the forced assignments found byr1 andr2 — only in this way a relatively balanced load is
guaranteed. The data reported in Tables 10, 14 shows first data on the cube-phase, namely

• D (cut-off depth),

• the number of nodes in the (truncated) DLL-tree of theOKsolver,

• the time needed (this includes writing the partial assignments representing the sub-instances to files),

• and the numberN of sub-instances.
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For the conquer-phase we have:

• the median and maximum time for solving the sub-instances byMiniSat,

• the sum of conflicts over all sub-instances,

• and the total time used byMiniSat.

Finally the overall total time is reported, which does not include the time used by the processing-script, which applies
the partial assignments to the original instance and produces so the sub-instances: this adds an overhead of nearly
20% for the smallest problem, but this proportion becomes smaller for larger problems, and is less than 1% for the
largest problems.

6.1.2. VdW-problems
We consider the (unsatisfiable) instances to determine the upper bounds for w(2; 3, t) with 12≤ t ≤ 17; in Table 8

we give basic data for these instances (plust = 18, 19).

t n c c3 ct ℓ

12 135 5,251 4,489 762 22,611
13 160 7,308 6,320 988 31,804
14 186 9,795 8,556 1,239 43,014
15 218 13,362 11,772 1,590 59,166
16 238 15,812 14,042 1,770 70,446
17 279 21,616 19,321 2,295 96,978
18 312 26,889 24,180 2,709 121,302
19 349 33,487 30,276 3,211 151,837

Table 8: Instance data forF(3, t; n), wheren is the number of vertices as well as the number of variables,c = c3 + ct is the number of clauses,ci

the number of clauses of lengthi, andℓ = 3c3 + tct is the number of literal occurrences.

In Table 9, we see the running times and number of nodes/conflicts for the SAT solvers. We see that in general
look-ahead solvers here have the upper hand over conflict-driven solvers, with thetawSolver-2.6 with a large margin
the fastest solver. Regarding conflict-driven solvers, we see that version 2.2 forMiniSat is superior over version 2.0,
while for Glucose it is the opposite. The low node-count formarch pl seems due to the preprocessing phase, which
adds a large number of resolvents to the original instance: this reduces the node-count, but increases the run-time.
Compared to the other look-ahead solvers, the strength oftawSolver-2.6 is that the number of nodes is just larger by
a factor of most 3, while processing of each node happens muchfaster. Compared with the strongest conflict-driven
solver,MiniSat-2.2, we see that the node-count oftawSolver-2.6 is considerably less than the number of conflicts
used byMiniSat, and that one node is processed somewhat faster than one conflict.

One aspect important here for the superiority of look-aheadsolver is the “tightness” of the problem formulation.
Consider for examplet = 12, not withn = 135 as in Tables 8, 9, but withn = 1000; this yieldsc = 294,455,
c3 = 249,500,c12 = 44,955, andℓ = 1,287,960, which is now a highly redundant problem instance. FortawSolver-
2.6 we obtain 1,311,511 nodes and 2,868 sec, and forτawSolver-2.6 we get 935,475 nodes and 2,452 sec, while
for MiniSat-2.2 we get 1,140,616 conflicts and 159 sec. We see thatMiniSat-2.2 was able to utilise the additional
clauses to determine unsatisfiability with fewer conflicts,and with a run-time not much affected by the large increase
in problem size, while fortawSolver-2.6 the run-time (naturally) explodes, and the number of nodes stayed the
same.20 If we consider a typical branching-heuristics for look-ahead solvers (as discussed in Subsection 2.3), then we
see that locality of the search process is not taken into consideration, and thus for non-tight problem formulations the
solver can “switch attention” again and again. This is very different from heuristics for conflict-driven solvers, which

20TheOKsolver yields a more extreme example: the run was aborted after 657,648 sec and 603,177 nodes, where yet only %49.2 of the search
space was visited (so that the solver was still working on completing the first branch at the root of the tree, making very slow progress towards
%50). This shows the big overhead caused by ther2-reduction, and the danger of a heuristic which (numerically) sees opportunities “all over the
place”, and thus can not focus on one relevant part of the input.
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via “clause-activity” have a strong focus on locality of reasoning. Furthermore, look-ahead solvers consider much
more of the whole input, for example thetawSolver considers always all remaining variables and their occurrences
for the branching heuristic, while conflict-driven solversdo not use such global heuristics.

t = 12 13 14 15 16 17

tawSolver-2.6 11 83 673 5,010 42,356 401,940
961,949 5,638,667 35,085,795 194,035,915 1,462,429,351 10,258,378,909

τawSolver-2.6 19 143 1,068 7,607 59,585
953,179 5,869,055 35,668,687 200,208,507 1,479,620,647

tawSolver-1.0 47 463 4,577 47,006 532,416
1,790,733 13,722,975 102,268,511 774,872,707 8,120,609,615

satz 77 711 6,233 54,913 562,161
262,304 1,698,185 10,822,316 66,595,028 599,520,428

march pl 185 1,849 17,018 175,614
47,963 279,061 1,975,338 11,959,263

OKsolver 216 3,806 47,598
281,381 2,970,723 22,470,241

MiniSat-2.2 107 1,716 16,836 190,211
5,963,349 63,901,998 463,984,635 3,205,639,994

MiniSat-2.0 273 3,022 33,391 274,457
1,454,696 9,298,288 60,091,581 314,678,660

PrecoSAT 211 2,777 47,624
2,425,722 16,978,254 140,816,236

PicoSAT 259 4,258 48,372
9,643,671 82,811,468 576,692,221

Glucose-2.0 58 781 84,334
1,263,087 8,377,487 163,500,051

Lingeling 519 7,651 107,243
1,659,607 24,124,525 176,909,499

CryptoMiniSat 212 4,630 141,636
2,109,106 18,137,202 205,583,043

Glucose-2.2 94 1,412 >940,040
1,444,017 10,447,051 aborted

Table 9: Complete solvers on unsatisfiable instancesF(3, t; n) for computing w(2; 3, t) (with t = 12, . . . , 16 andn = 135, 160, 186, 218, 238). The
first line is run-time in seconds, the second line is the number of nodes for look-ahead solvers resp. number of conflicts for conflict-driven solvers.

Finally we considerCube & Conquer, with theOKsolver as Cube-solver andMiniSat-2.2 as Conquer-solver,
in Table 10. We see that the combination is vastly superior toeach of the two solvers involved, and approaches in
performance the best solver, thetawSolver-2.6 (but still slower by a factor of two).
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t = 13 14 15 16 17

D 20 30 35 40 50
nds 3,197 27,053 64,663 209,593 1,399,505
t 10 146 821 3,248 23,546
N 1599 13,527 32,331 104,797 699,751

t: med, max 0.06, 0.49 0.06, 0.68 0.16, 3.9 0.46, 29.6 0.8, 199
Σ cfs 8,479,987 59,402,586 361,511,501 3,723,995,162 35,931,491,146
Σ t 120 961 6,888 80,056 1,006,718

total t 130 1,107 7,709 83,304 1,030,264
factor 13.2 15.2 24.7 NA NA

Table 10: Cube & Conquer, via theOKsolver as the cube-solver, andMiniSat-2.2 as the conquer-solver. Times are in seconds. “factor” is
run-time ofMiniSat-2.2, divided by total time ofCube & Conquer. The run-times of theOKsolver includes writing all data-files (the partial
assignments), the run-times ofMiniSat include reading the files. 106 seconds are roughly 11.6 days.

6.1.3. Palindromic vdW-problems
The data for the palindromic problems we considered is shownin Table 11. Recall that for palindromic problems,

that is, the determination of pdw(2; 3, t) = (n1, n2), we have to determine two numbers: then1 such that allFpd(3, t, n)
with n ≤ n1 are satisfiable, whileFpd(3, t, n1 + 1) is unsatisfiable, andn2 for which Fpd(3, t, n) is unsatisfiable for
all n ≥ n2, while Fpd(3, t, n2 − 1) is satisfiable. In order to do so, as shown in Theorem 5.1, the main unsatisfiable
instances are forn1 andn2 + 1. To reduce the amount of data, we don’t show the data for these two critical points, but
for n2, which is easier thann2 + 1 (in our range by a factor of around five; possible due to the fact that except of one
casen2 happens to be odd here, as discussed in the next paragraph), and harder thann1.

ForFpd(3, t, n) with oddn we can determine that the middle vertexn+1
2 can not be element of the first block of the

partition (belonging to progression-size 3), since then noother vertex could be in the first block (due to the palindromic
property and the symmetric position of the middle vertex), and then we would have an arithmetic progression of size
t in the second block. Due to this (and there might be other reasons), palindromic problems for oddn are easier
(running times can go up by a factor of 10 for evenn).21

t n v c ℓ c2 c3 c⌈t/2⌉ c⌈t/2⌉+1 ct

17 279 140 10,536 45,139 185 9,357 25 0 969
18 312 156 13,277 58,763 52 11,954 9 0 1,262
19 347 174 16,208 70,414 230 14,586 28 0 1,364
20 389 195 20,327 88,944 258 18,393 10 19 1,647
21 405 203 21,950 96,305 269 19,958 29 0 1,694
22 463 232 28,650 126,560 308 26,171 11 21 2,139
23 507 254 34,289 152,236 337 31,448 34 0 2,470
24 593 297 46,881 209,792 394 43,156 12 24 3,295
25 607 304 48,979 219,525 404 45,237 37 0 3,301
26 643 322 54,843 246,503 428 50,813 12 24 3,566
27 699 350 64,719 292,102 465 60,133 38 0 4,083

Table 11: Instance data forFpd(3, t, n), wherev is the number of variables,c = c2 + c3 + c⌈t/2⌉ + c⌈t/2⌉+1 + ct is the number of clauses,ci the number
of clauses of lengthi, andℓ is the number of literal occurrences.

First we consider the look-ahead solvers in Table 12. Comparing tawSolver with the other solvers, we see a
similar behaviour as with (ordinary) vdW-problems, but more extreme so. The node-count oftawSolver-2.6 and
τawSolver-2.6 is not much worse than the “real” look-ahead solvers, with exception ofmarch pl (where again a
large number of inferred clauses is added by the solver). Theweak performance of theOKsolver is (likely) explained

21We remark that while for examplePrecoSAT determines this forced variable right at the beginning, this is not the case for theMiniSat
versions, which infer that fact rather late, and they are helped by adding the corresponding unit-clause to the instance.
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by the instances not having manyr2-reductions (recall thatOKsolver is completelyeliminating failed literals, as the
only solver), and so the overhead is prohibitive (the savings in node-count don’t pay off). satz only investigates %10
of the most promising variables forr2-reductions, and additionally looks for somer3-reductions. This strategy here
works far better thanOKsolver’s “strategy” (but theOKsolver deliberately doesn’t employ a “strategy” here, since
the aim is to have a stable and “mathematical meaningful” solver); nevertheless still the overhead is too large.

An interesting aspect is that for largert the more complex heuristic (i.e., projection) ofτawSolver-2.6 compared
to tawSolver-2.6 pays off. This is different from ordinary vdW-problems. And as the comparison with tawSolver-
1.0 shows, the heuristic (mostly the projection) is of greatimportance here (more pronounced than for ordinary
vdW-problems).

t τawSolver-2.6 tawSolver-2.6 satz tawSolver-1.0 march pl OKsolver

17 1 0.8 12 7 35 18
32,855 32,697 16,466 143,319 1,448 5,023

18 11 8 182 60 269 335
276,249 279,309 208,873 1,063,979 12,289 100,803

19 13 10 143 134 500 322
283,229 285,037 123,199 2,009,635 12,423 62,009

20 48 39 701 738 1,980 1,419
894,777 897,529 459,899 9,076,261 39,681 206,617

21 115 101 2,592 2,541 5,053 3,536
2,144,743 2,239,371 1,567,736 30,470,349 99,493 490,841

22 564 525 9,418 18,306 25,841 47,593
8,427,503 8,683,035 4,393,139 170,414,771 376,285 3,197,173

23 1,547 1,695 35,633 86,869 77,763 132,150
19,858,971 21,565,129 12,587,868 573,190,251 876,315 7,461,907

24 8,558 26,724
79,790,419 198,685,857

25 22,841
219,575,127

Table 12: Look-ahead solvers on unsatisfiable instancesFpd(3, t; n) for computing w(2; 3, t) (with t = 17, . . . , 25 andn = 279, . . . , 607). The first
line is run-time in seconds, the second line is the number of nodes.

The conflict-driven solvers are shown in Table 13. We see thatthey are not competitive withtawSolver-2.6 or
τawSolver-2.6, however now most of them are better than the “real” look-ahead solvers. HereMiniSat-2.2 is better
thanMiniSat-2.0, andGlucose-2.2 is better thanGlucose-2.0, so we show only data for the newest versions. With
Glucose we see a pattern which we observed also at other (hard) instance classes: for smaller instancesGlucose is
better thanMiniSat, but from a certain point on the performance ofGlucose becomes very bad. This is likely due
to the more aggressive restart strategy, which pays off for smaller instances, but from a certain point on the solver
becomes essentially incomplete.
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t MiniSat Glucose PrecoSAT Lingeling CryptoMiniSat

17 0.8 0.8 1.2 3.7 3.6
34,426 34,826 41,961 57,306 59,443

18 19 14 25 59 78
607,908 340,568 506,793 919,123 871,916

19 19 15 24 61 72
568,924 336,861 485,357 915,107 765,301

20 118 66 131 355 384
2,852,150 1,132,012 1,799,145 3,633,502 3,071,462

21 423 228 445 1,060 1,418
9,179,642 2,903,573 4,687,589 8,672,073 8,458,496

22 3,151 1,631 2,825 8,428 14,321
51,582,064 13,397,451 22,283,651 41,696,062 49,716,762

23 8,191 6,817 9,280 28,543 55,544
108,028,217 36,314,064 54,951,563 104,007,799 141,249,316

24 54,678 > 992,540 82,750 152,076
476,716,936 > 1,100,664,795 261,084,988 285,546,948

aborted

Table 13: Conflict-driven solvers on unsatisfiable instances Fpd(3, t; n) for computing w(2; 3, t) (with t = 17, . . . , 24 andn = 279, . . . , 593). The
first line is run-time in seconds, the second line is the number of conflicts.

Finally we considerCube & Conquer in Table 14. We see that this is now the fastest solver overall. Glucose-2.2
is %10 faster, but since this is only a small amount, for consistency we stick withMiniSat-2.2.

t = 23 24 25 26 27

D 25 35 45 55 65
nds 1,717 5,559 17,633 77,161 220,069
t 106 500 1,752 7,889 25,478
N 859 2,780 8,817 38,581 110,032

t: med, max 0.95, 17.6 1.2, 27 0.81, 47 0.95, 58 0.82, 125
Σ cfs 27,308,572 93,831,664 258,829,555 1,231,383,588 3,423,841,749
Σ t 1,095 4,466 11,822 55,306 172,033

total t 1,201 4,966 13,574 63,195 197,511
factor 1.3 1.7 1.7 NA NA

Table 14: Cube & Conquer, via theOKsolver as the cube-solver, andMiniSat-2.2 as the conquer-solver. Times are in seconds. “factor” is
run-time of best solver, i.e.,τawSolver-2.6, divided by total time ofCube & Conquer. 105 seconds are roughly 1.2 days.

6.2. Incomplete solvers (stochastic local search)

In theOKlibrary we use theUbcsat suite (see [67]) of local-search algorithms in version 1-2-0. The considered
algorithms are GSAT, GWSAT, GSAT-TABU, HSAT, HWSAT, WALKSAT, WALKSAT-TABU, WALKSAT-TABU-
NoNull, Novelty, Novelty+, Novelty++, Novelty+p, Adaptive Novelty+, RNovelty, RNovelty+, SAPS, RSAPS,
SAPS/NR, PAWS, DDFW, G2WSAT, Adaptive G2WSat, VW1, VW2, RoTS, IRoTS, SAMD. The performance of
local-search algorithms is very much instance-dependent,and so a good choice of algorithms is essential. Our exper-
iments yield the following selection criteria:

• For standard problems (Section 3) the best advice seems to use GSAT-TABU fort ≤ 23, to use RoTS fort > 23,
and to use Adaptive G2WSat fort > 33 (also trying DDFW then).

• For the palindromic problems (Section 5) GSAT-TABU is the best algorithm.
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For a givent in principle we let these algorithm run forn = t + 1, t + 2, . . . ,, until the search seems unable to find
a solution. But running these algorithms from scratch on these vdW-problems is much less effective than using an
incremental approach, based on a solution found forn− 1, respectively for palindromic vdW-problems on a solution
found for n − 2 (according to Lemma 5.1), as initial guess, and repeating this process for the nextn: this helps to
go much quicker through the easier part of the search space (of possiblen), and also seems to help for the harder
problems. Finally, we recall that in Subsection 3.2 we explained how we made the distinction between lower bounds
we conjecture to be exact and sheer lower bounds.

7. Conclusion

This article presented the following contributions to the fields of Ramsey theory and SAT solving:

• Study of w(2; 3, t):

1. determination of w(2; 3, 19)= 349;
2. lower bounds for w(2; 3, t) with 20≤ t ≤ 30, conjectured to be exact;
3. further lower bounds for 31≤ t ≤ 39;
4. improved conjecture on the growth rate of w(2; 3, t);
5. various observations on structural properties of good partitions.

• Introduction and study of pdw(2; 3, t):

1. basic definitions and properties;
2. determination of pdw(2; 3, t) for t ≤ 27;
3. lower bounds for pdw(2; 3, t) with 28≤ t ≤ 35, conjectured to be exact;
4. further lower bounds for 36≤ t ≤ 39.

• SAT solving:

1. introduced the new SAT-solvertawSolver, with the basic implementation given bytawSolver-1.0, and
the versions with improved heuristic bytawSolver-2.6 andτawSolver-2.6;

2. experimental comparison with current look-ahead and conflict-driven solvers;
3. comparison and data for the newCube & Conquer method;
4. experimental determination of good local-search algorithms for lower bounds.

We hope that these investigations contribute to a better understanding of the connections between Ramsey theory and
SAT solving. The following seem relevant research directions for future investigations:

• Showing w(2; 3, 20) = 389 (recall Subsection 3.2) should be in reach withtawSolver-2.6, while showing
w(2; 3, 21)= 416 seems to require new (algorithmic) insight (when using similar computational resources).

• Conjecture 3.1 states that the lower bound from [14] for w(2;3, t) is tight up to a small factor.

• In Section 4 four conjectures on patterns in good partitionsare presented (one implying Conjecture 3.1).

• In Subsection 5.4 various open problems on palindromic van der Waerden numbers are stated.

• Considering SAT solving:

1. Understand the differences between ordinary and palindromic problems:
– Why is the projection relatively more important for the palindromic problems? (So that the differ-

ence betweentawSolver-2.6 andtawSolver-1.0 is more pronounced, andτawSolver-2.6 becomes
faster thantawSolver-2.6 on bigger instances.)

– Why do we have different behaviour of look-ahead versus conflict-driven solvers?
2. Can the branching heuristic oftawSolver for the instances of this paper be much further improved?

Especially can we gain some understanding of the weights?
3. How to understand the success ofCube & Conquer ? Does its success indicate that there are important

dag-like structures in good resolution refutations of the instances of these classes, which are dispersed
locally, so that ordinary conflict-driven solvers have problems exploiting them?
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Appendix A. Certificates

Appendix A.1. Conjectured precise lower bounds forw(2; 3, t)

The certificate fort = 20 is also palindromic (while fort = 24 a palindromic certificate is given in Subsection
Appendix A.3).

w(2; 3, 20)≥ 389.

11901110140170101401130190140101140213021019011801901401015013011001160180116011001301501014019

0118019010213021140101401901130140101701401110119

w(2; 3, 21)≥ 416.

1801170101601019011202119011801301012011202150210110011801301021801120120011801301017018011202

101170118013010218015016021120160115010140101110120

w(2; 3, 22)≥ 464.

12021170219011201011201150120110014017015011201901013018013010190112015017014011001201150112

01011201902117021901120101120115012011001401701501120190101301801501901120150170111

w(2; 3, 23)≥ 516.

14021201170140101150116014015012001012018021014011501201401160190110010190110017011701601011901160

12102119016012011201021401012001130211101902160140113010130180190120015011801301

w(2; 3, 24)≥ 593.

1210118011601401701601011401302180170130120120021301701150170130212001201301701901180101601210170

1100170121016010118019017013012012002130170115017013021200120130170180213011401016017014011601180121

w(2; 3, 25)≥ 656.

11601201190180170119018014010150117011001210212010110017011201401301601701110130113014011701013

016021601170180170113011401201401130218017011901801401017011501100190111021201011001501140

140130160170111013011301401170101301602124018019

w(2; 3, 26)≥ 727.

11001230110010120014011101601110212015016015012301401017011701160101110212010130140120118

0130150114011201160140119018010214011301140101200140118011102120150160150123014010170115010116

0101110212010130140120118019011401120116014011901801201180130125
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w(2; 3, 27)≥ 770.

124013015011801170101201210130170120120021120115011001110130190160113012201302

1801501200160101160170130150102101210120211401901170101201301170130150101201200211201150122

01301901601130122013021801501200180116017013015010210124016018012001150116015

w(2; 3, 28)≥ 827.

1270110012201011601130116012001401160101110212010130160211801301501140112012101140

113010214012301401012501180111013010130140170117011001017011701110140113021201013017

0118013015011401120116014011401130102118019014010125011801110190140101230110019011201160110

w(2; 3, 29)≥ 868.

115012101180117011801210120170125010112011701601702120117015021011001601130101201170116017014

012001012015011101250110012501202116013011001401200101201601200114021201170150210110016011301012

0190170190160170140120010120117012501201701250130116016011201250160127018

w(2; 3, 30)≥ 903.

12201160122012601701018010122011201160170160190111016021150211301701801012301601280170130140122

018010120211101012201110114013011901401160211101015012801602101100120114017011001230160128

0170150120211801201801013011101011601250101401230116014021130112013012701100114

Appendix A.2. Further lower bounds forw(2; 3, t)

The certificate fort = 31 is also palindromic.

w(2; 3, 31)> 930.

1120119011601100190130140114011201140118021100140113018015010110011701150116018015018010140180119

011601501180140125011401160130190160113011101201110113016019013011601140125014011801501160119018

0140101801501801160115011701100101501801130140110021180114011201140140130190110011601190112

w(2; 3, 32)> 1006.

1150126015011101401140140116012801220120150170119012010116011301501301701401130190114012801701150110

01021180212011301601210127012010180170114011301201240110015010117011002140128019011102180160170

111013011001021280114011701301120113015011601130130110012201201120170128012001201501401220180128

w(2; 3, 33)> 1063.

1290160114011101210114012011801011501120125011601011102140110015011301160120012011301220150140101190190

140190115010118011102140130140120128016017012901401190110021180114010150114011601280160120018014017

0114014011801110190140120140117010130114012901180212011001201190120110012701180112014012001901240113

33



w(2; 3, 34)> 1143.

13201701018012901230130211001301170120190150116011501200212018021013101180160112016011701301702126016

01201012402170120130121012401100111012001100118016021280170130114012701021200101401701201200212801701180

190110018012801501021013012701201501320124016012501100120123012010190113011001110120011201160170130133

w(2; 3, 35)> 1204.

134012401801220130211001290170140114011501701210160150113012201011201201120170111021401301701180150130140

1201601340119018010150117011001201180130118010129011801301320212015012701160124013011201011701801012001130122

0180160170121011201190111012201018010150113011401901150101100170115011301401130124011201210123016021240134

w(2; 3, 36)> 1257.

1100133011601120160111012501014015012011201601290101401170126012101011201301012021130150116013201201190210

1401301250110013201501201140170110011701160140120011601130150112013011101013401901100130013015012601901110

160120133012011001201200160130124011601190210140130117017011601210126010150116012601301402113014012018010

122011601200128010133

w(2; 3, 37)> 1338.

1501330122012011202118011401901120115012401190117017021701011201201100122018013201301601190114012102120112

01701260122012010130132013011401110117011802120101301701220132012201012802140131016011701301140121014017

01140135015011601190130140101230110013101120101110130112015011401201100127013002120101801201401270102170

1290140114011601180114012102111015

w(2; 3, 38)> 1378.

13401140170113012201011201230112011301021280140120124011001701290140119018012011802121011401130170117

0214012601301011001200116011801901120101210160137016011501130160112018013201401501190130110012102140118

0128013701601110130110017011302140134015014012501502130127011001501230140122018011201160113021401200

11001330170101140150127017010160211901160130

w(2; 3, 39)> 1418.

12014011301340101200121011901701201360120012021801240112015012701180111017016013001501160140126014

02128012014012016011801260117013017011601110150120122013016014013601240180116016011301013401260136

0160120150116011501301901701110120124011501270101201301901170102136012202111012401280160129021502

1301320120215012011501401701401290180122014013201120130

Appendix A.3. Good palindromic partitions

Table A.15 gives good palindromic partitions forn1 − 1, n2 − 1 with (n1, n2) = pdw(2; 3, t), 3 ≤ t ≤ 39, according
to the values in Tables 6, 7. Due to the palindromic property,for the correspondingn we only show the partition of
{1, . . . , ⌈ n

2⌉}, so that for example the good palindromic partition 01200120 for t = 3 andn = 8 is compressed to 0120.
Note that such compressed partitions correspond exactly tothe solution ofFpd(3, t, n) as defined in Lemma 5.3.
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Table A.15: Good palindromic partitions for pdw(2; 3, t) − 1 according to Theorem 5.1, Part (i)

t pdw(2; 3, t) − 1 Good palindromic partitions

3 (5, 8) 120, 1021

4 (14, 15) 010130, 12010212

5 (15, 20) 140212, 12010140

6 (29, 30) 12015021301, 150215021

7 (40, 43) 01401013021501, 021401201501401

8 (51, 56) 17012013021014013, 12012014010140130150

9 (61, 76) 14013021501201501401, 180216013010130215014

10 (92, 93) 190140102190210219014, 1901802120216021401801

11 (109, 112) 13013019010218021301018014014, 120101301014017021501301601011001

12 (125, 134) 1110101801021011001801501401012, 19018019012013010170120101301110

13 (141, 154) 10120111011001021401100111010216012, 110014011101401100102130210110014012014

14 (173, 182) 120170160130170160110010110015010160120217, 140212018010170180150180170101801202113012

15 199 15011001702140120150170180110013011201501201401

204 1110160190120111013015012021201110101100113012

16 231 1140190160150120214011201301701202112018015011001

236 1150190120214019010219011401902111015012019013

17 255 1140116010120116010150160130190120111010170160130218

278 1401601501301100160150180211001016017010180112010116019021

18 298 12012011601601011602140117012015010113012016012015011202110017

311 1601801301170213021120116017019021021401901701401140110016

19 337 1110120101150213012011601170210180102117011601201302101150120110013

346 11101180150101601701013012011801901012021140130120101120130101120113015

20 379 116021011001180150160212015011501100101160130101160120190211901012019

388 1190111014017010140113019014010114021302101901180190140101501301100116014

21 399 1601016021110130140160110011901701201301100160214016012011201160211901015018017

404 1180101502130113019021190101801011601701011401801012001013011001011701

22 443 13018017018011901801701011201701018011602116015012010120010116011901301201016

462 118011701601401701021501150110011402101602120180114021701401100121011001110140219

23 505 1110122012002190140180216012202130216011001110120111011001602130212201601901401100110

506 122021180120119013012018021180190112012021901190120101601100140110011901021601140110

24 567 0118018021150180121021801160102160120114011001200110011401201602101160180212101802

1140212013

592 121011801160140170160101140130218017013012012002130170115017013021200120130170190118

010160121017015

25 585 119019011802121011502101100114011301501901021801601802101901501130114011001021150121

0214019012

606 124014011001170180140123010112015011201902130180160121016018013021901120150112010123

0140170213011001

Continued on Next Page. . .
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Table A.15: Good palindromic partitions for pdw(2; 3, t) − 1 according to Theorem 5.1, Part (i)

t pdw(2; 3, t) − 1 Good palindromic partitions

26 ≥ 633 130113014011201200121016011801701601702112011402140120114012501201402114011202

1140140120113014019011801

≥ 642 11501230160113014011401201130111011502160112015017011402111021011301401170140113016

01701801401601130117015

27 ≥ 663 11801180122015011302121014019021201801201301802112011801901140150190118011202

112011402190120125014014

≥ 698 12201601250110012501110219010150130170219011401230130211901170213015011201110170
19021701210112011301601

28 ≥ 727 12601501130180119011301100119011201150170211201011202140190120115012201150120190
150112010113011401801120140110012

≥ 742 1210122010140125011001012301110219017013017021901140127021190117021301501120111017

019021701210112011301601

29 ≥ 809 1220120012801130130160140116012201160111011202120170150110011101301501220101301240
111013016019011101120111012012402130112

≥ 820 1130102116011501140101401201270140211401120116016017011001701601160112012001901401210
1150170160113016021110120012101015016014

30 ≥ 843 1290125021170190150212201701100190140190211701130180128015011001011001501801190
112012401130140110012011501901021150111

≥ 854 12901012010170140116011801140121021701301201130114014011601301110124014011001701250110

0214011802115011101501014013012101180190113

31 ≥ 915 112013014017011101801160110014013014011901290160126013010124018011601021250130180
120116012010130124017013012401201012801200111010116015

≥ 930 1120119011601100190130140114011201140118021100140113018015010110011701150116018015018

010140180119011601501180140125011401160130190160113011101

32 ≥ 957 124013017011901601401170130021601501240211101180140117011901100111017011702130
123011201110170213012501401501701220170112013001201601

≥ 962 111021180121015012011701190101160113013012401501201230112012302150124010150210190117

0115016011901901240150120150212301270180119012

33 ≥ 995 131010120017021120140130017019018011101301130118011201110130101100214017012101140128

01011101302117013001601012801320120180150130180130113

≥ 1004 12016012201401320120190210170150123011801300102116011301901601901190111014011701100
12602118011001230112011501901120160218021301310112

34 ≥ 1053 1901140121010140127018012401320130140116011301012013301301401301160101130130116016

013302190140131012010116014013101301201702122010180130013

≥ 1080 1230219012201130125021210180115011101180214012001012015012101801401230140180121

01100120014021201270110014012012601012501801901170140211201210213013

35 ≥ 1113 17011201210128013011601012301401011001801140128019011201210123021015013012101201230
1501140115013010210150117011001230101301201901210114013001250110017

≥ 1154 1280180118016019012901601901601120150101100125012801130180190130125012001301210150
11001201340101301201150117012012701190180216010120211901300121017

36 ≥ 1185 1601280110011601280135014017012301012018012013015011501201011901300125011201301140
18011101701401180101701301201401601210130128012401230130210132015011101100115

≥ 1212 13012501130124015014011701130110018012801021320110011301200101401120101130120010180140132

010128014011901320160118012016021301240160120011301140170123014018

37 ≥ 1271 130016011501130123010211502128017012801201301130122021120130102136012801160210116

0123011301801301901120170129011601501011501021330130021601120117015019012014016

Continued on Next Page. . .
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Table A.15: Good palindromic partitions for pdw(2; 3, t) − 1 according to Theorem 5.1, Part (i)

t pdw(2; 3, t) − 1 Good palindromic partitions

≥ 1294 170124013101601301300101301401220134010180132018012201201701201301230160122011001014

019011901401301701150129016013010120110012201280112018011601801018012201230140112019

38 ≥ 1335 110013501120180112017010133011401015011301201701220134021130170126010140137011301014

01360210127011301017011801902160129011802160128010121021190190136016016

≥ 1368 111017013601320213021801200101110133014011601801280170140126011001220140180140111015

014011101130124011701130140122017011701801902140127012001180122013019021250110012701

39 ≥ 1405 1011601501601201601330140110021280160140129011801601100101360212201330101110120101110122

0133014011101210210113013013201190113018011101240211501360113016012601201301021150111014

≥ 1410 13013401240130132014011802135011201701160111016019012001601901190150110010123011602131

01301120170190160128016011701021901180160218012011701301320150112013401012401150113013017

Appendix B. Using theOKlibrary

TheOKlibrary, available athttp://www.ok-sat-library.org, is an open-source research and development
platform for SAT-solving and related areas (attacking hardproblems); see [47] for some general information. For
the purpose of reproduction of all results, one can use the Git ID “4cea9abf851424ca56f2ad0e4b8be2d707b041c2”
(package 00147).22 For the purposes of this article the following components are directly relevant:

• The OKlibrary provides an already rather extensive library of functions for the computer algebra system
Maxima23. For example all hypergraph generators discussed in this article, and all vdW- and palindromic vdW-
numbers can be computed and investigated at this level.

• For computations which take more time, C++ implementations are available.

• TheOKlibrary provides easy access to (original) SAT solvers and related tools (as “external sources”).24

• Finally these components are integrated into tools for running and evaluating experiments.25

In the following sections we demonstrate the use of these tools. Some general technical remarks:

1. The installedOKlibrary lives inside directoryOKplatform.
2. Inside this directory theMaxima-installation is called viaoklib --maxima on the (Linux) command-line.
3. The C++ programs as well as the external sources, here the various SAT solvers, are placed on the path of the

(Linux) user, and are thus callable by their name on the command-line (anywhere).

Appendix B.1. Numbers and certificates

All known vdW-numbers and palindromic vdW-numbers and known bounds are available at the computer-algebra
level in theOKlibrary (usingMaxima). For example the (known) numbers w(2; 3, t) and pdw(2; 3, t) are printed as
follows (where inside theOKlibrary we typically use the letter “k” for the length of an arithmetical progression, not
“t” as in this article):

22Via the Git ID one can identify the versions of programs used in the article. The package provides the sources and a build system. Since
building depends on the environment (the operating system to start with), there can not be a guarantee for the build to succeed, but perhaps later (or
earlier) packages need to be used.

23http://maxima.sourceforge.net/
24The aim is to serve as a comprehensive collection, also maintaining “historical” versions.
25In general we use theR system for statistical evaluation.
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OKplatform> oklib --maxima

(%i1) oklib_load_all();

(%i2) output(N) := block([L],

print(" k vdw pdvdw span gap"),

for k : 3 thru N do (L : [3,k],

printf(true, "~2,d ~12,a ~27,a ~12,a ~12,a~%",

k, vanderwaerden(L), pdvanderwaerden(L), pd_span(L), pd_gap(L))))$

(%i3) output(40);

k vdw pdvdw span gap

3 9 [6,9] 3 0

4 18 [15,16] 1 2

5 22 [16,21] 5 1

6 32 [30,31] 1 1

7 46 [41,44] 3 2

8 58 [52,57] 5 1

9 77 [62,77] 15 0

10 97 [93,94] 1 3

11 114 [110,113] 3 1

12 135 [126,135] 9 0

13 160 [142,155] 13 5

14 186 [174,183] 9 3

15 218 [200,205] 5 13

16 238 [232,237] 5 1

17 279 [256,279] 23 0

18 312 [299,312] 13 0

19 349 [338,347] 9 2

20 [389,inf-1] [380,389] 9 [0,inf-390]

21 [416,inf-1] [400,405] 5 [11,inf-406]

22 [464,inf-1] [444,463] 19 [1,inf-464]

23 [516,inf-1] [506,507] 1 [9,inf-508]

24 [593,inf-1] [568,593] 25 [0,inf-594]

25 [656,inf-1] [586,607] 21 [49,inf-608]

26 [727,inf-1] [634,643] 9 [84,inf-644]

27 [770,inf-1] [664,699] 35 [71,inf-700]

28 [827,inf-1] [[728,inf-1],[743,inf-1]] [15,0] [84,0]

29 [868,inf-1] [[810,inf-1],[821,inf-1]] [11,0] [47,0]

30 [903,inf-1] [[844,inf-1],[855,inf-1]] [11,0] [48,0]

31 [931,inf-1] [[916,inf-1],[931,inf-1]] [15,0] [0,0]

32 [1007,inf-1] [[958,inf-1],[963,inf-1]] [5,0] [44,0]

33 [1064,inf-1] [[996,inf-1],[1005,inf-1]] [9,0] [59,0]

34 [1144,inf-1] [[1054,inf-1],[1081,inf-1]] [27,0] [63,0]

35 [1205,inf-1] [[1114,inf-1],[1155,inf-1]] [41,0] [50,0]

36 [1258,inf-1] [[1186,inf-1],[1213,inf-1]] [27,0] [45,0]

37 [1339,inf-1] [[1272,inf-1],[1295,inf-1]] [23,0] [44,0]

38 [1379,inf-1] [[1336,inf-1],[1369,inf-1]] [33,0] [10,0]

39 [1419,inf-1] [[1406,inf-1],[1411,inf-1]] [5,0] [8,0]

40 unknown unknown unknown unknown

As one can see, if only bounds are known instead of a precise numbern resp. number-pair (p, q), then the numbers
x ∈ {n, p, q} are replaced by pairs (a, b) with a ≤ x ≤ b. Hereb = inf−1 indicates that the number is finite, but no more
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precise upper bounds are known.26 So for example we only know currently that w(2; 3, 20)≥ 389, and this is shown
by the interval [389, inf−1]. Span and gap are simply computed according to definition,where inmaxima the symbol
inf is treated here like an unknown. That impliesinf−inf = 0, and thus for palindromic span and gap the “0” in the
second position indicate that the numbers in the first positions could go up or down. For example w(2; 3, 20) ≥ 389
and pdw(2; 3, 20)= (380, 389), whence nothing can be said about pdg(2; 3, 20)= w(2; 3, 20)− pdw(2; 3, 20)2 except
the trivialities that it is at least 0 and less than infinity; the latter becomes (inf − 1)− 389= inf − 390.

Also the certificates (good partitions) are available, in various representations. First the certificate for w(2; 3, 20)≥
389 (see Subsection Appendix A.1), for which we check that itis in fact a palindromic certificate:

(%i4) full_certificate_string_vdw_3k(20);

(%o4) ["1^{19}01^{11}01^{4}01^{7}0101^{4}01^{13}01^{9}01^{4}0101^{14}

0^{2}1^{3}0^{2}101^{9}01^{18}01^{9}01^{4}0101^{5}01^{3}01^{10}01^{16}

01^{8}01^{16}01^{10}01^{3}01^{5}0101^{4}01^{9}01^{18}01^{9}010^{2}1^{3}

0^{2}1^{14}0101^{4}01^{9}01^{13}01^{4}0101^{7}01^{4}01^{11}01^{19}"]

(%i5) certificate_pdvdw_p([3,20],388,full_certificate_vdw_3k(20)[1]);

(%o5) true

And here certificates for palindromic number-pairs:

(%i6) cfull_certificate_string_pdvdw_3k(34);

(%o6) [["1^{9}01^{14}01^{21}0101^{4}01^{27}01^{8}01^{24}01^{32}01^{3}0

1^{4}01^{16}01^{13}0101^{2}01^{33}01^{3}01^{4}01^{3}01^{16}0101^{13}

01^{3}01^{16}01^{6}01^{33}0^{2}1^{9}01^{4}01^{31}01^{2}0101^{16}01^{4}

01^{31}01^{3}01^{2}01^{7}0^{2}1^{22}0101^{8}01^{30}01^{3}"],

["1^{23}0^{2}1^{9}01^{22}01^{13}01^{25}0^{2}1^{21}01^{8}01^{15}0

1^{11}01^{18}0^{2}1^{4}01^{20}0101^{2}01^{5}01^{21}01^{8}01^{4}01^{23}

01^{4}01^{8}01^{21}01^{10}01^{20}01^{4}0^{2}1^{2}01^{27}01^{10}01^{4}0

1^{2}01^{26}0101^{25}01^{8}01^{9}01^{17}01^{4}0^{2}1^{12}01^{21}0^{2}

1^{3}01^{3}"]]

(%i7) extract_data_certificates_pdvdw_3k(34);

(%o7) [[3,34],1054,1081,

[[10,25,47,49,54,82,91,116,149,153,158,175,189,191,194,228,232,

237,241,258,260,274,278,295,302,336,337,347,352,384,387,389,

406,411,443,447,450,458,459,482,484,493,524]],

[[24,25,35,58,72,98,99,121,130,146,158,177,178,183,204,206,209,

215,237,246,251,275,280,289,311,322,343,348,349,352,380,391,

396,399,426,428,454,463,473,491,496,497,510,532,533,537]]]

With the first command we get the representation of the good partitions as used in this paper (where now for the
palindromic situation we have two good partition accordingto Theorem 5.1), while the second command yields a list
with five elements: first the parameter tuple, then the two components of the palindromic number-pair, and then two
lists with the good partitions available, now represented via the block in the partition for the second colour.

Analysing the patterns according to Section 4, and applyingthese measurements to the certificates stored in the
OKlibrary for 20≤ t ≤ 39 is done as follows:

(%i8) for k : 20 thru 39 do

print(k,firste(vanderwaerden3k(k)),

map(analyse_certificate,full_certificate_vdw_3k(k)));

20 389 [[[48,340],[44,45],[4,37],[5,27],[20,1]]]

21 416 [[[50,365],[43,44],[7,34],[13,26],[8,1]]]

22 464 [[[54,409],[51,52],[3,47],[5,40],[27,1]]]

26In principle there exist theoretical upper bounds, but for practical purposes these bounds are completely useless.
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23 516 [[[59,456],[53,54],[6,45],[12,36],[17,1]]]

24 593 [[[63,529],[57,58],[6,54],[13,37],[20,1]]]

25 656 [[[74,581],[69,70],[5,64],[11,45],[16,2]]]

26 727 [[[78,648],[72,72],[6,64],[13,42],[21,1]]]

27 770 [[[79,690],[72,73],[7,65],[15,58],[11,2]]]

28 827 [[[79,747],[74,75],[5,64],[11,44],[19,1]]]

29 868 [[[81,786],[76,77],[5,69],[11,57],[27,1]]]

30 903 [[[83,819],[76,77],[7,67],[13,57],[15,1]]]

31 931 [[[82,848],[80,81],[2,77],[5,53],[58,1]]]

32 1007 [[[87,919],[82,83],[5,78],[9,62],[29,1]]]

33 1064 [[[89,974],[85,86],[4,80],[9,58],[25,1]]]

34 1144 [[[96,1047],[87,88],[9,80],[19,63],[23,2]]]

35 1205 [[[95,1109],[91,92],[4,84],[9,67],[41,1]]]

36 1258 [[[101,1156],[97,98],[4,88],[9,72],[42,1]]]

37 1339 [[[105,1233],[97,98],[8,90],[17,65],[30,2]]]

38 1379 [[[104,1274],[96,97],[8,91],[17,73],[26,1]]]

39 1419 [[[105,1313],[98,99],[7,95],[13,72],[46,1]]]

Per line we print out three items:t, the lower bound on w(2; 3, t) and the list of data for each stored certificate. Now
currently we have only stored one certificate for each 20≤ t ≤ 39, and thus the third item contains just one list, with
five pairs for the different statistics.27 These five pairs have the following meaning:

1. First comen0 andn1.
2. Then come the numbers of terms 0s and 1s (we don’t use “00” here, and so these terms alternate, and thus their

numbers differ at most by one).
3. Then from these counts the cases withs= 1 are excluded; thus the first element of the pair isn00.
4. Now these exponentssare put in the list, and the sums of the numbers of peaks and valleys are computed; again

for block 0 and block 1 of the partition, and thus now the second element of the pair isnp+ nv.
5. Finally for these lists of exponents the maximal size of aninterval with constant values is computed; thus if

there were a second element of the pair with value 3 or greater, then Question 4.2 would have been answered in
the positive.

The value ofd from Subsection 3.3 is computed as follows:

(%i9) lmax(Delta_l(map(firste,create_list(vanderwaerden([3,k]),k,3,39)))

/create_list(k,k,3,38));

(%o9) 77/23

(%i10) round_fdd(77/23/2,3);

(%o10) 1.674

Appendix B.2. Hypergraphs

The hypergraphs are available at Maxima-level, and the computationally expensive palindromic hypergraph also
at C++ level:

(%i11) arithprog_hg(3,5);

(%o11) [{1,2,3,4,5},{{1,2,3},{1,3,5},{2,3,4},{3,4,5}}]

(%i12) arithprog_pd_hg(3,5);

(%o12) [{1,2,3},{{1,3},{2,3}}]

> PdVanderWaerden-O3-DNDEBUG 3 5

27We found more than one solution in each case, but always very similar to the one stored; there seems to be a clustering of solutions, and
perhaps there is always only one (or very few) cluster.

40



c Palindromised hypergraph with arithmetic-progression length 3

and 5 vertices.

p cnf 3 2

1 3 0

2 3 0

Appendix B.3. SAT instances

The SAT-instance for considering w(2; 3, t) with n vertices is created by the program call

VanderWaerdenCNF-O3-DNDEBUG 3 t n,

for example fort = 4 andn = 6

> VanderWaerdenCNF-O3-DNDEBUG 3 4 6

> cat VanDerWaerden_2-3-4_6.cnf

c Van der Waerden numbers with partitioning into 2 parts;

SAT generator written by Oliver Kullmann, Swansea, May 2004, October 2010.

c Arithmetical progression sizes k1 = 3, k2 = 4.

c Number of elements n = 6.

c Iterating through the arithmetic progressions in colexicographical order.

p cnf 6 9

1 2 3 0

2 3 4 0

1 3 5 0

3 4 5 0

2 4 6 0

4 5 6 0

-1 -2 -3 -4 0

-2 -3 -4 -5 0

-3 -4 -5 -6 0

The SAT-instance for considering pdw(2; 3, t) with n vertices is created by the program call

PdVanderWaerdenCNF-O3-DNDEBUG 3 t n,

for example fort = 4 andn = 9

> PdVanderWaerdenCNF-O3-DNDEBUG 3 4 9

> cat VanDerWaerden_pd_2-3-4_9.cnf

c Palindromic van der Waerden problem: 2 parts, arithmetic progressions of

size 3 and 4, and 9 elements, yielding 5 variables.

p cnf 5 10

1 2 3 0

2 4 0

1 3 4 0

1 5 0

2 5 0

3 5 0

4 5 0

-2 -4 0

-1 -3 -5 0

-3 -4 -5 0
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Appendix B.4. The SAT solvers

All solvers are installed via theOKlibrary; theOKsolver28 is a solver specific to theOKlibrary, tawSolver-
2.629 was developed in it (starting with version 1.0), andsatz30 as well asmarch pl are maintained in theOKlibrary.
Example output for the columnt = 12 in Table 9, with the instance produced by

> VanderWaerdenCNF-O3-DNDEBUG 3 12 135

resp.

> VanderWaerdenCNF-O3-DNDEBUG 3 12 134

for the satisfiable case, is provided in the following.

Appendix B.4.1.tawSolver
FirsttawSolver-2.6 (output with one additional line-break for the url):

> tawSolver -v

tawSolver:

authors: Tanbir Ahmed and Oliver Kullmann

url’s:

http://sourceforge.net/projects/tawsolver/

https://github.com/OKullmann/oklibrary/blob/master/

Satisfiability/Solvers/TawSolver/tawSolver.cpp

Version: 2.6.6

Last change date: 17.8.2013

Mapping k -> weight, for clause-lengths k specified at compile-time:

2->4.85 3->1 4->0.354 5->0.11 6->0.0694

Divisor for open weights: 1.46

Option summary = ""

Macro settings:

LIT_TYPE = std::int32_t (with 31 binary digits)

UCP_STRATEGY = 1

Compiled without TAU_ITERATION

Compiled without ALL_SOLUTIONS

Compiled without PURE_LITERALS

Compiled with NDEBUG

Compiled with optimisation options

Compilation date: Aug 17 2013 21:38:43

Compiler: g++, version 4.7.3

Provided in the OKlibrary http://www.ok-sat-library.org

Git ID = 237cbfc4d9b772a29e125928959af14cb4495d3e

> tawSolver VanDerWaerden_2-3-12_135.cnf

s UNSATISFIABLE

c number_of_variables 135

c number_of_clauses 5251

c maximal_clause_length 12

c number_of_literal_occurrences 22611

c running_time(sec) 10.58

28https://github.com/OKullmann/oklibrary/tree/master/Satisfiability/Solvers/OKsolver/SAT2002
29https://github.com/OKullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/tawSolver.cpp
30https://github.com/OKullmann/oklibrary/blob/master/Satisfiability/Solvers/Satz/satz215.2.c
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c number_of_nodes 961949

c number_of_binary_nodes 480974

c number_of_1-reductions 11312180

c reading-and-set-up_time(sec) 0.004

c file_name VanDerWaerden_2-3-12_135.cnf

c options ""

A “binary node” is one with two children, i.e., where the second branch was not explored since the first branch
was found satisfiable. And a “1-reduction” is one assignmentof a literal x to true due to a unit-clause{x}. Calling
τawSolver-2.6 happens viattawSolver, and the counting version is calledctawSolver.

> ttawSolver VanDerWaerden_2-3-12_135.cnf

s UNSATISFIABLE

c number_of_variables 135

c number_of_clauses 5251

c maximal_clause_length 12

c number_of_literal_occurrences 22611

c running_time(sec) 19.29

c number_of_nodes 953179

c number_of_binary_nodes 476589

c number_of_1-reductions 11285634

c number_of_pure_literals 1317

c reading-and-set-up_time(sec) 0.005

c file_name VanDerWaerden_2-3-12_135.cnf

c options "PT5"

> ctawSolver VanDerWaerden_2-3-12_135.cnf

s UNSATISFIABLE

c number_of_variables 135

c number_of_clauses 5251

c maximal_clause_length 12

c number_of_literal_occurrences 22611

c running_time(sec) 10.64

c number_of_nodes 961949

c number_of_binary_nodes 480974

c number_of_1-reductions 11312180

c number_of_solutions 0

c reading-and-set-up_time(sec) 0.005

c file_name VanDerWaerden_2-3-12_135.cnf

c options "A19"

Options are reported via acronyms: “P” for pure literals, “T” for the tau-heuristics, followed by the number of itera-
tions of the Newton-Raphson method, and “A” for all solutions, followed by the number of decimal digits for counting.
Instead of just counting, we can also output all solutions, for example to standard output:

> ctawSolver VanDerWaerden_2-3-12_134.cnf -cout

v 1 2 3 4 5 6 7 8 9 -10 11 12 13 14 15 16 17 18 -19 20 21 22 23 24 25 26 27 28

-29 30 31 -32 33 34 35 -36 37 -38 39 40 41 42 43 44 45 -46 47 48 -49 50 -51 52

53 54 -55 56 57 58 59 60 61 62 63 64 65 66 -67 -68 69 70 71 72 73 74 75 76 77

78 79 -80 81 82 83 -84 85 -86 87 88 -89 90 91 92 93 94 95 96 -97 98 -99 100

101 102 -103 104 105 -106 107 108 109 110 111 112 113 114 115 -116 117 118 119

120 121 122 123 124 -125 126 127 128 129 130 131 132 133 134 0

s SATISFIABLE
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c number_of_variables 134

c number_of_clauses 5172

c maximal_clause_length 12

c number_of_literal_occurrences 22266

c running_time(sec) 10.56

c number_of_nodes 968509

c number_of_binary_nodes 484254

c number_of_1-reductions 11308431

c number_of_solutions 1

c reading-and-set-up_time(sec) 0.004

c file_name VanDerWaerden_2-3-12_134.cnf

c options "A19"

The solution is given in the DIMACS format for partial assignments, with positive literals setting the underlying
variable totrue, and negative literals setting them tofalse (so positive literals are the elements of the partition
for t = 12 here). For all options, usetawSolver without arguments, or see the source code. Finally we note that
τawSolver-2.6 andctawSolver are just compilations of thetawSolver with specific options set31, namely:

ttawSolver:

-DPURE_LITERALS -DTAU_ITERATION=5

ctawSolver:

-DALL_SOLUTIONS

cttawSolver:

-DTAU_ITERATION=5 -DALL_SOLUTIONS

Appendix B.4.2.satz
Now satz:

> satz215 VanDerWaerden_2-3-12_135.cnf

s UNSATISFIABLE

c sat_status 0

c number_of_variables 135

c initial_number_of_clauses 5251

c reddiff_number_of_clauses 0

c running_time(sec) 76.73

c number_of_nodes 262304

c number_of_binary_nodes 133373

c number_of_pure_literals 55

c number_of_1-reductions 5482044

c number_of_2-look-ahead 30069498

c number_of_2-reductions 1196400

c number_of_3-look-ahead 563872

c number_of_3-reductions 257097

c file_name VanDerWaerden_2-3-12_135.cnf

Here “reddiff” is the “difference due to reduction” in the number of clauses: clauses can be removed by subsumption
(not applicable here), while clauses can be added by resolution (does not happen here).

31see https://github.com/OKullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/makefile for the
makefile in theOKlibrary
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Appendix B.4.3.march pl

Now march pl:

> march_pl VanDerWaerden_2-3-12_135.cnf

c main():: nodeCount: 47963

c main():: dead ends in main: 110

c main():: lookAheadCount: 10456897

c main():: unitResolveCount: 274045

c main():: time=184.539993

c main():: necessary_assignments: 5287

c main():: bin_sat: 0, bin_unsat 0

c main():: doublelook: #: 421439, succes #: 321732

c main():: doublelook: overall 4.150 of all possible doublelooks executed

c main():: doublelook: succesrate: 76.341, average DL_trigger: 273.489

s UNSATISFIABLE

Appendix B.4.4.OKsolver
And to conclude the complete solvers, theOKsolver:

> OKsolver_2002-O3-DNDEBUG VanDerWaerden_2-3-12_135.cnf

s UNSATISFIABLE

c sat_status 0

c initial_maximal_clause_length 12

c initial_number_of_variables 135

c initial_number_of_clauses 5251

c initial_number_of_literal_occurrences 22611

c number_of_initial_unit-eliminations 0

c reddiff_maximal_clause_length 0

c reddiff_number_of_variables 0

c reddiff_number_of_clauses 0

c reddiff_number_of_literal_occurrences 0

c number_of_2-clauses_after_reduction 0

c running_time(sec) 215.8

c number_of_nodes 281381

c number_of_single_nodes 0

c number_of_quasi_single_nodes 0

c number_of_2-reductions 2049274

c number_of_pure_literals 29

c number_of_autarkies 0

c number_of_missed_single_nodes 0

c max_tree_depth 36

c proportion_searched 1.000000e+00

c proportion_single 0.000000e+00

c total_proportion 1

c number_of_table_enlargements 0

c number_of_1-autarkies 490

c number_of_new_2-clauses 0

c maximal_number_of_added_2-clauses 0

c file_name VanDerWaerden_2-3-12_135.cnf
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Appendix B.4.5.Ubcsat
If we want to run an algorithm from theUbcsat-suite32 on its own (while running it in the iterative fashion, as

discussed in Subsection 6.2, is shown in the following Appendix B.5), for examplegsat-tabu, then this can be done
as follows (using an additional line-break in the command-line, and four additional line-breaks in the first output-line),
for a cut-off 106, ten runs, and initial seed 0 (for reproducibility):

> ubcsat-okl -alg gsat-tabu -cutoff 1000000 -runs 10 -seed 0

-i VanDerWaerden_2-3-12_134.cnf

# -rclean -r out stdout run,found,best,beststep,steps,seed -r stats stdout

numclauses,numvars,numlits,fps,beststep[mean],steps[mean+max],percentsolve,

best[min+max+mean+median] -runs 10 -cutoff 100000 -rflush

-alg gsat-tabu -cutoff 1000000 -runs 10 -seed 0

-i VanDerWaerden_2-3-12_134.cnf

sat min osteps msteps seed

1 0 1 3588 1000000 0

2 1 0 543154 543154 1492175541

3 0 1 5687 1000000 367425000

4 0 1 3152 1000000 3611176606

5 0 1 164885 1000000 388711246

6 0 1 50599 1000000 4160687068

7 0 1 3533 1000000 533276301

8 0 1 94759 1000000 1146607069

9 0 1 2921 1000000 3903233437

10 0 1 8071 1000000 127100396

Clauses = 5172

Variables = 134

TotalLiterals = 22266

FlipsPerSecond = 513073

BestStep_Mean = 88034.9

Steps_Mean = 954315.4

Steps_Max = 1000000

PercentSuccess = 10.00

BestSolution_Mean = 0.9

BestSolution_Median = 1

BestSolution_Min = 0

BestSolution_Max = 1

Here we use the wrapper-scriptubcsat-okl33, which outputs the output for the runs in a style typical for statistical
data (easily readable for example by the tool R34, as used in theOKlibrary):

1. First a comment-line, starting with “#”, showing the parameters passed to theubcsat-program(everything until
“-rflush” is the default, coming fromubcsat-okl, and after that come the parameters from the command-
line (possibly overriding the defaults)).

2. Then a line with the headings for the six output columns (osteps is for the number of rounds for reaching the
optimum, whilemsteps is for the maximum number of steps).

3. Followed by data for the runs (above, one of the ten runs wassuccessful).
4. Finally summary statistics (this is not readable by toolslike R, and needed to be removed; however for a quick

human-readable overview it is useful).

32seehttp://ubcsat.dtompkins.com/
33see link to shell script
34http://www.r-project.org/
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Appendix B.5. Running experiments

For runningUbcsat-algorithm to determine lower bounds on w(2; 3, t) and pdw(2; 3, t), also providing “con-
jectures” on the precise values, we have the following tools(using no parameters here serves to print some basic
helper-information). First the general tool for w(2;t0, t1):

> RunVdWk1k2

ERROR[RunVdWk1k2]: Six parameters k1, k2, n0, alg, runs, cutoff

are needed: The progression-lengths k1,k2, the starting number n0 of

vertices, the ubcsat-algorithm, the number of runs, and the cutoff.

An optional seventh parameter is a path for the file containing an

initial assignment for the first ubcsat-run.

The special version with k1=3, handling our case w(2; 3, t):35

> RunVdW3k

ERROR[RunVdW3k]: Five parameters k, n0, alg, runs, cutoff

are needed: The progression-length k, the starting number n0 of vertices,

the ubcsat-algorithm, the number of runs, and the cutoff.

An optional sixth parameter is a path for the file containing an

initial assignment for the first ubcsat-run.

For example

> RunVdW3k 27 678 gsat-tabu 1000 10000000

starts the investigation of w(2; 3, 27) withn = 678 (ad-hoc, no solution given), where the cut-off value (the number of
rounds for stochastic local search) is 106, and 1000 runs are executed; fromn = 679 on the first three runs will use the
solution found forn− 1, while further runs use a random initial assignment.

Handling palindromic instances is done similarly36:

> RunPdVdWk1k2

ERROR[RunPdVdWk1k2]: Five parameters k1, k2, alg, runs, cutoff

are needed: The progression-lengths k1,k2, the ubcsat-algorithm,

the number of runs, and the cutoff.

And for running complete solvers on palindromic instances we have37:

> CRunPdVdWk1k2

ERROR[CRunPdVdWk1k2]: Three parameters k1, k2, solver, are needed:

The progression-lengths k1, k2 and the SAT solver.

35see link to shell script
36see link to shell script
37see link to shell script
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