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Abstract

Let d = (d1, d2, . . . , dn) be a vector of nonnegative integers. We study the number

of symmetric 0-1 matrices whose row sum vector equals d. While previous work has

focussed on the case of zero diagonal, we allow diagonal entries to equal 1. Specifically,

for D ∈ {1, 2} we define the set GD(d) of all n × n symmetric 0-1 matrices with row

sums given by d, where each diagonal entry is multiplied by D when forming the row

sum. We obtain asymptotically precise formulae for |GD(d)| in the sparse range (where,

roughly, the maximum row sum is o(n1/2)), and in the dense range (where, roughly, the

average row sum is proportional to n and the row sums do not vary greatly). The case

D = 1 corresponds to enumeration by the usual row sum of matrices. The case D = 2

corresponds to enumeration by degree sequence of undirected graphs with loops but

no repeated edges, due to the convention that a loop contributes 2 to the degree of its

incident vertex. We also analyse the distribution of the trace of a random element of

GD(d), and prove that it is well approximated by a binomial distribution in the dense

range, and by a Poisson binomial distribution in the sparse range.

1 Introduction

Let d = (d1, d2, . . . , dn) be a vector of nonnegative integers. Define G(d) to be the number

of n× n symmetric matrices over {0, 1} with zero diagonal, such that row j sums to dj, for

j = 1, . . . , n.

∗Research supported by the Australian Research Council.
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The quantity G(d) has been well studied, as cited below. In this paper we consider the

case where the diagonal need not be zero. For D ∈ {1, 2} define GD(d) to be the set of n×n

symmetric matrices A = (ajk) over {0, 1} such that

Dajj +
∑

1≤k≤n, k 6=j

ajk = dj for j = 1, . . . , n.

We wish to find an asymptotic formula for

GD(d) = |GD(d)|.

The case of D = 1 corresponds to enumeration by row sum of symmetric 0-1 matrices.

If we interpret A as the adjacency matrix of a simple undirected graph with loops, then

the case of D = 2 corresponds to enumeration by degree sequence of simple undirected

graphs with loops. Such graphs arise in various applications including the study of graph

homomorphisms [9] and sign patterns [4].

Throughout the paper we will refer to a nonzero entry on the diagonal of a 0-1 matrix as

a loop. For ℓ = 0, 1, . . . , n, let GD(d, ℓ) be the set of matrices in GD(d) with exactly ℓ loops

(that is, with trace ℓ), and let GD(d, ℓ) = |GD(d, ℓ)|. Clearly we have GD(d, 0) = G(d) and

GD(d) =
∑n

ℓ=0GD(d, ℓ). We also note here that G1(d, ℓ) = 0 unless
∑n

j=1 dj has the same

parity as ℓ, and G2(d, ℓ) = 0 unless
∑n

j=1 dj is even.

When dj = d for j = 1, . . . , n, we write GD(d) = GD(n, d) and refer to this as the regular

case.

We will use the following parameters frequently:

S =

n∑

j=1

dj, d =
S

n
,

λ =
d

n− 1
, dmax = max

j
dj,

R =
n∑

j=1

(dj − d)2, Sr =
n∑

j=1

[dj]r (r = 2, 3),

where [a]r = a(a− 1) · · · (a− r + 1) denotes the falling factorial.

Throughout the paper, the asymptotic notation O(f(m)) refers to the passage of the

variable m to infinity. (Usually m = n or m = S.) In the dense setting we also use a

modified notation Õ(f(n)), which is to be taken as a shorthand for O
(
f(n)ncε

)
with c a

numerical constant (perhaps a different constant for each occurrence). We write Ω(g(n)) to

indicate any function which is greater than Cg(n) for some constant C > 0 and sufficiently

large n.
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It appears that there is very little prior research on GD(d). The most general result, by

Bender and Canfield, dates from 1978.

Theorem 1.1 ([3]). Suppose that 1 ≤ dmax = O(1). Then

G1(d) =
1√
2

(
S

e

)S/2( n∏

j=1

dj!

)−1

exp

(√
S − 1

4
− S2

S
− S2

2

4S2
+ o(1)

)

uniformly as S → ∞.

Note that G1(n, 1) is the number of involutions on n letters (and also the number of

Young tableaux with n cells, see [20, A000085]). The asymptotic expansion of G1(n, 1) was

previously known, see [5, 19]. We found no prior asymptotic work on G2(d) at all.

In the case of D = 1, a graph with n vertices and ℓ loops can be mapped to a graph with

n+ 1 vertices and no loops, by introducing a new vertex and replacing each loop by an edge

to this vertex. This mapping is bijective and hence

G1

(
(d1, . . . , dn), ℓ

)
= G

(
(d1, . . . , dn, ℓ)

)
.

However, this doesn’t seem to be of much use in asymptotic enumeration, since the important

values of ℓ place the degree sequence (d1, . . . , dn, ℓ) out of range of existing explicit estimates.

Our approach to estimating GD(d) will be to sum over all possible diagonals using the

existing estimates for G(d). The main estimates we will use are the following two theorems.

The history of previous results on G(d) is summarized in [14] and [16].

McKay and Wormald [17, Theorem 5.2] proved the following asymptotic formula for G(d)

in the sparse regime.

Theorem 1.2 ([17]). If 1 ≤ dmax = o(S1/3) then

G(d) =
S!

(S/2)! 2S/2
∏n

j=1 dj!
exp

(
−S2

2S
− S2

2

4S2
− S2

2S3

2S4
+

S4
2

4S5
+

S2
3

6S3
+O

(
d3max

S

))
,

uniformly as S → ∞, with S even.

In the case of dense matrices, the following result was due to McKay and Wormald [16]

except that we will use an improved error term from a generalization by McKay [15]. A

less explicit formula allowing a wider variation of the degrees was proved by Barvinok and

Hartigan [2].
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Theorem 1.3 ([15]). Let a, b > 0 be constants such that a+ b < 1
2
. Then there is a constant

ε0 = ε0(a, b) > 0 such that the following holds. Suppose that dj − d is uniformly O(n1/2+ε0)

for j = 1, . . . , n and that

min{d, n− d− 1} ≥ n

3a logn

for sufficiently large n. Then provided S is even we have

G(d) =
√

2
(
λλ(1 − λ)1−λ

)(n
2) exp

(
1

4
− R2

4λ2(1 − λ)2n4
+O(n−b)

) n∏

j=1

(
n−1

dj

)
. (1.1)

This formula also matches the sparse case under slightly more restricted conditions than

Theorem 1.2 and is conjectured to hold in the intermediate domain as well (see [18, Theorem

2.5] and the conjecture stated immediately thereafter).

Note that Theorem 1.3 remains true if ε0(a, b) is decreased (but is still positive), since

the conditions of the theorem become stronger.

We now state our main enumeration theorems, starting with the dense regime.

Theorem 1.4. Let a, b > 0 be constants such that a + b < 1
2
. Then there is a constant

ε = ε(a, b) > 0 such that the following holds. Suppose that dj − d is uniformly O(n1/2+ε) for

j = 1, . . . , n and that

min{d, n− d} ≥ n

3a logn
(1.2)

for sufficiently large n. For D ∈ {1, 2}, define

µD =
d

n+D − 1
,

and let

Q1(d, ℓ) =
1

4
+

(ℓ− d)2

4d(n− d)
− (ℓ− d)2R

2d2(n− d)2
− R2

4d2(n− d)2
,

Q2(d, ℓ) =
1

4
− ℓ(n− ℓ)

µ2(1 − µ2)n2
− R2

4µ2
2(1 − µ2)2n4

+
R

µ2(1 − µ2)n2

+
(1 − 2µ2)(ℓ− µ2n)R

µ2
2(1 − µ2)2n3

− 2(ℓ− µ2n)2R

µ2
2(1 − µ2)2n4

.

When ℓ has the same parity as S we have

G1(d, ℓ) =
√

2
(
µµ1
1 (1 − µ1)

1−µ1
)n2/2

(
n

ℓ

)
µ
ℓ/2
1 (1 − µ1)

(n−ℓ)/2

× exp
(
Q1(d, ℓ) +O(n−b)

) n∏

j=1

(
n

dj

)
,
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while for ℓ = 0, . . . , n and even S we have

G2(d, ℓ) =
√

2
(
µµ2

2 (1 − µ2)
1−µ2

)(n+1
2 )

(
n

ℓ

)
µℓ
2 (1 − µ2)

n−ℓ

× exp
(
Q2(d, ℓ) +O(n−b)

) n∏

j=1

(
n+ 1

dj

)
.

Defining

ℓ̄1 =
d1/2n

d1/2 + (n− d)1/2
, ℓ̄2 = µ2n =

dn

n + 1
,

we have

G1(d) =
1√
2

(
µµ1

1 (1 − µ1)
1−µ1

)n2/2(
µ
1/2
1 + (1 − µ1)

1/2
)n

× exp
(
Q1(d, ℓ̄1) +O(n−b)

) n∏

j=1

(
n

dj

)

and, for even S,

G2(d) =
√

2
(
µµ2

2 (1 − µ2)
1−µ2

)(n+1
2 )

exp
(
Q2(d, ℓ̄2) +O(n−b)

) n∏

j=1

(
n+1

dj

)
.

In Theorem 1.6 we will prove that ℓ̄D is close to the expected number of loops in a

randomly chosen element of GD(d). For the reader’s convenience, we note that

Q2(d, ℓ̄2) = −1

4

(
1 − R

µ2(1 − µ2)n2

)(
3 − R

µ2(1 − µ2)n2

)
.

Unfortunately, the expression for Q1(d, ℓ̄1) does not simplify much. In the case of regular

graphs we have R = 0, so the formulae for QD(d, ℓ) simplify greatly and in particular

Q1(d, ℓ̄1) =
n

2n+ 4
√
d(n− d)

.

Our main result for the sparse case is the following.

Theorem 1.5. Suppose that 1 ≤ dmax = o(S1/3). Then

G1(d) =
1√
2

(
S

e

)S/2( n∏

j=1

dj!

)−1

exp

(√
S − 1

4
− S2

S
− S2

2

4S2

+
7

24S1/2
+

S2

S3/2
+

S3

3S3/2
+

S2
2

2S5/2
− S2

2S3

2S4
+

S4
2

4S5
+

S2
3

6S3
+O

(
d3max

S

))

uniformly as S → ∞, and

G2(d) =
√

2

(
S

e

)S/2( n∏

j=1

dj!

)−1

exp

(
S2

2S
− S2

2

4S2
− S2

2S3

2S4
+

S4
2

4S5
+

S2
3

6S3
+O

(
d3max

S

))

uniformly as S → ∞ with S even.
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If S is even then we may replace the factor
√

2 (S/e)S/2 by S!/
(
(S/2)! 2S/2

)
. In the regular

case the formulae simplify as follows.

Corollary 1.1. Suppose that 1 ≤ d = o(n1/2). Then

G1(n, d) =
1√
2

(d!)−n

(
nd

e

)nd/2

× exp

(
2 − 2d− d2

4
+

24(n− 1)d+ 20d2 + 11

24
√
nd

− d3

12n
+O

(
d2

n

))

uniformly as n→ ∞, and

G2(n, d) =
√

2 (d!)−n

(
nd

e

)nd/2

exp

(
−(d− 1)(d− 3)

4
− d3

12n
+O

(
d2

n

))

uniformly as n→ ∞ with nd even.

Again, if nd is even then the factor
√

2 (nd/e)nd/2 may be replaced by (nd)!/
(
(nd/2)! 2nd/2

)
.

Theorems 1.4 and 1.5 are proved in Section 2 and 3, respectively. Along the way we

prove some technical results (Lemmas 2.1, 3.2, 3.3) which may be of independent interest.

But first, in Section 1.1 we state a theorem on the distribution of the trace of a random

element of GD(d), and discuss some interesting features of this distribution. Theorem 1.6

is proved in Section 4. Finally in Section 5 we state a conjecture regarding the number of

regular graphs with loops, for all possible degrees.

1.1 The distribution of the trace

The calculations we will give in the process of proving Theorems 1.4 and 1.5 will provide some

information on the distribution of the trace of a random element of GD(d). We summarize

that information here.

For p = (p1, . . . , pn) ∈ [0, 1]n, let X1, . . . , Xn be independent random variables with

Prob(Xj = 0) = 1−pj and Prob(Xj = 1) = pj for each j. The Poisson binomial distribution

PB(p) is the distribution of
∑n

j=1Xj. Define

PB(p, ℓ) = Prob
( n∑

j=1

Xj = ℓ
)
.

The special case p = (p, p, . . . , p) gives the familiar binomial distribution,

PB((p, . . . , p), ℓ) = Bin(n, p, ℓ) =

(
n

ℓ

)
pℓ(1 − p)n−ℓ.
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Theorem 1.6. Let YD = YD(d) be the random variable given by the trace of an element of

GD(d) chosen uniformly at random.

(i) If the conditions of Theorem 1.4 hold then, for ℓ = 0, . . . , n,

Prob(Y1 = ℓ) =
(
2 +O(n−b)

)
Bin(n, ℓ̄1/n, ℓ) +O(e−nΩ(1)

),

E(Y1) = ℓ̄1
(
1 +O(n−b)

)
,

Var(Y1) = ℓ̄1(1 − ℓ̄1/n)
(
1 +O(n−b)

)
,

Prob(Y2 = ℓ) =
(
1 +O(n−b)

)
Bin(n, ℓ̄2/n, ℓ) +O(e−nΩ(1)

),

E(Y2) = ℓ̄2
(
1 +O(n−b)

)
,

Var(Y2) = ℓ̄2(1 − ℓ̄2/n)
(
1 +O(n−b)

)
,

where ℓ must have the same parity as S in the D = 1 case and S must be even in the

D = 2 case.

(ii) Define p′ = (p′1, . . . , p
′
n) and p′′ = (p′′1, . . . , p

′′
n), where for j = 1, . . . , n,

p′j =
dj√
S
− dj(2dj − 1)

2S
+

d3j
S3/2

+
dj(dj − 2)S2

S5/2
− djS

2
2

2S7/2
,

p′′j =
dj(dj − 1)

S
.

If the conditions of Theorem 1.5 hold then, for ℓ = 0, . . . , n,

Prob(Y1 = ℓ) =

(
2 +O

(
d3max

S
+ S−1/3

))
PB(p′, ℓ) +O(e−SΩ(1)

),

E(Y1) =
√
S − S2

S
− 1

2
+O

(
d3max

S1/2

)

Var(Y1) =
√
S − 2S2

S
− 1 +O

(
d3max

S1/2

)

Prob(Y2 = ℓ) =

(
1 +O

(
d2max

S2/3
+ S−1/3

))
PB(p′′, ℓ) +O(e−SΩ(1)

),

E(Y2) =

(
1 +O

(
d3max

S

))
S2

S
,

Var(Y2) =

(
1 +O

(
d3max

S

))
S2

S
,

where ℓ must have the same parity as S in the D = 1 case and S must be even in the

D = 2 case.
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The parameter µD can be thought of as measuring the density of entries equal to 1,

while YD/n is the density of loops in a randomly chosen element of GD(d). In the dense

range of Theorem 1.6 we see that Y2/n is concentrated near the same value µ2, while Y1/n

is concentrated near
ℓ̄1
n

=

√
µ1√

µ1 +
√

1 − µ1

.

Figure 1.1 illustrates this curious difference between D = 1 and D = 2.

D=2

D=1

µD

Figure 1: The expected density of the diagonal as a function of the overall density µD.

When D = 1, Theorem 1.6 tells us that the most significant term in E(YD) depends only

on S and not on d, within the range of d values allowed by the theorem. To explore this

further, let An(S) be the set of all n×n symmetric 0-1 matrices with exactly S entries equal

to 1. The number of matrices in An(S) with exactly ℓ loops is

(
n

ℓ

)((
n
2

)

S−ℓ
2

)

when S and ℓ have the same parity, and 0 otherwise. For 1 ≤ S ≤ n2 − 1, it can be proved

that the maximum value of this function occurs either at ℓ̄1 rounded up to an integer of the

same parity as S or ℓ̄1 rounded down to such an integer. On the basis of experiments, we

conjecture that the mean number of loops in An(S) always lies in (ℓ̄1 − 1
2
, ℓ̄1 + 1

2
).

Also note that ℓ̄1 ∼
√
S for S = o(n2), matching the leading term of E(Y1) in the sparse

case.

8



When D = 2 we consider instead the set Bn(S) of all graphs with loops allowed, with

n vertices and S/2 edges (loops counting twice). Matrices which correspond to graphs in

Bn(S) can be formed by choosing S/2 entries on or below the main diagonal, setting these

equal to 1, then adding this matrix to its transpose. (Nonzero entries on the diagonal all

equal 2, which is their contribution to the row sum.) The number of graphs in Bn(S) with

exactly ℓ loops is (
n

ℓ

)( (
n
2

)

S/2 − ℓ

)
.

Up to scaling, this is the hypergeometric distribution with parameters
((

n+1
2

)
, n, S/2

)
and

mean S/(n + 1) = µ2n.

The binomial distributions in part (i) of the theorem are asymptotically normal, as is well

known. The Poisson binomial distributions in part (ii) of the theorem are asymptotically

normal for Y1 (see [8]), and asymptotically Poisson for Y2, by Le Cam’s Theorem [11] (see

also [1, Equation 1.1]).

2 The dense case

In this section we prove Theorem 1.4.

2.1 A technical lemma

We will require a technical lemma which might be of some independent interest. If β =

(β1, . . . , βn) is a vector of real numbers and ℓ = 0, . . . , n, define

Uℓ(β) =
∑

1≤j1<···<jℓ≤n

ℓ∏

s=1

eβjs .

Lemma 2.1. Define β̄ = 1
n

∑n
j=1 βj and suppose that βj − β̄ = Õ(n−1/2) uniformly for

j = 1, . . . , n. Then, for sufficiently small ε > 0, we have

Uℓ(β) =

(
n

ℓ

)
exp

(
ℓβ̄ +

ℓ(n− ℓ)

2n2

n∑

j=1

(βj − β̄)2 + Õ(n−1/2)

)
,

uniformly for ℓ = 0, . . . , n.

Proof. The factor eℓβ̄ can be removed by replacing each βj by βj − β̄, so it suffices to prove

the lemma for
∑n

j=1 βj = β̄ = 0.

9



We divide the proof into three parts, depending on ℓ. Let B = maxj|βj|. Choose a

constant c ≥ 0 such that Bn1/2−cε = o(1).

First assume that n1/2−cε ≤ ℓ ≤ n − n1/2−cε. Since Uℓ(β) is the coefficient of yℓ in∏n
j=1(1 + eβjy), we can estimate it using the saddle point method. We choose the contour

to be a circle of radius r centered at the origin, where

r =
ℓ

n− ℓ
.

For j = 1, . . . , n let

ψj =
eβjr

1 + eβjr
.

Changing variable according to y = reiθ and applying Cauchy’s theorem, we obtain

Uℓ(β) = P (β)

∫ π

−π

F (θ) dθ,

where

P (β) =

∏n
j=1(1 + reβj )

2πrℓ
, F (θ) =

∏n
j=1

(
1 + ψj(e

iθ − 1)
)

eiℓθ
.

The coefficient ψj satisfies

ψj =
ℓ

n
+
ℓ(n− ℓ)

n2
βj +

ℓ(n− ℓ)(n− 2ℓ)

2n3
β2
j + Õ(β3

j ) (2.1)

=
ℓ

n

(
1 + Õ(n−1/2)

)
.

We now divide the domain of integration into the two subdomains |θ| ≤ θ0 and |θ| > θ0,

where

θ0 =

√
n

ℓ(n− ℓ)
log n.

Expanding F (θ) for |θ| ≤ θ0, we find using (2.1) that

F (θ) = exp

(
−iℓθ + i

n∑

j=1

ψjθ − 1
2

n∑

j=1

ψj(1 − ψj) θ
2

− 1
6
i

n∑

j=1

ψj(1 − ψj)(1 − 2ψj) θ
3 +O

(
ℓ(n− ℓ)n−1θ40

))

= exp

(
−ℓ(n− ℓ)

2n
θ2 +O(1)

iℓ(n− ℓ)

n
θ3 + Õ(n−1/2)

)
,

where the O(1) term is independent of θ. Since the interval |θ| ≤ θ0 is symmetric about 0,

we can instead integrate

1
2

(
F (−θ) + F (θ)

)
= exp

(
−ℓ(n− ℓ)

2n
θ2 + Õ(n−1/2)

)
.
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Furthermore, ∫ ∞

θ0

exp

(
−ℓ(n− ℓ)

2n
θ2 + Õ(n−1/2)

)
dθ = n−Ω(log n)

(and similarly for the lower tail) and hence

∫ θ0

−θ0

F (θ) dθ =

√
2πn

ℓ(n− ℓ)
exp

(
Õ(n−1/2)

)
.

For the complementary subdomain |θ| > θ0, note that

|1 + ψj(e
iθ − 1)| =

√
1 − 2ψj(1 − ψj)(1 − cos θ) ,

which is a decreasing function for θ ∈ (θ0, π). Therefore, |F (θ)| ≤ |F (θ0)| for |θ| > θ0. Since

1 − cos y ≥ 2y2/π2 when −π ≤ y ≤ π, we have

|F (θ0)| =

n∏

j=1

√
1 − 2ψj(1 − ψj)(1 − cos θ0)

≤ exp

(
−2 log2 n

π2
+ Õ(n−1/2)

)

= n−Ω(log n).

Hence ∫ π

−π

F (θ) dθ = n−Ω(log n) +

∫ θ0

−θ0

F (θ) dθ =

√
2πn

ℓ(n− ℓ)
exp

(
Õ(n−1/2)

)
.

Finally, we calculate that

P (β) =
nn

2πℓℓ(n− ℓ)n−ℓ

n∏

j=1

1 + reβj

1 + r

=
nn

2πℓℓ(n− ℓ)n−ℓ
exp

(
ℓ(n− ℓ)

2n2

n∑

j=1

β2
j + Õ(n−1/2)

)
.

Therefore

Uℓ(β) =
nn+1/2

√
2π ℓℓ+1/2(n− ℓ)n−ℓ+1/2

exp

(
ℓ(n− ℓ)

2n2

n∑

j=1

β2
j + Õ(n−1/2)

)
,

which equals the expression in the lemma, by Stirling’s formula.

We next consider the case that 0 ≤ ℓ < n1/2−cε. Expand Uℓ(β) =
∑

s≥0 Ts/s!, where

Ts =
∑

1≤j1<···<jℓ≤n

(βj1 + · · · + βjℓ)
s.
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It follows from [7, Lemma 5] that

T0 =

(
n

ℓ

)
, T1 = 0, T2 =

(
n

ℓ

)
O(ℓB2) and T3 =

(
n

ℓ

)
O(ℓB3). (2.2)

We proceed to bound Ts for s ≥ 4. Let
∑′

j1,...,jℓ

denote the sum over all sequences (j1, . . . , jℓ) ∈

{1, . . . , n}ℓ with ℓ distinct entries. Applying the multinomial theorem, we have

Ts =
1

ℓ!

∑

m1+···+mℓ=s

(
s

m1, . . . , mℓ

)
B(m1, . . . , mℓ),

where

B(m1, . . . , mℓ) =
∑′

j1,...,jℓ

βm1
j1

· · ·βmℓ
jℓ
.

Let M1 be the set of all compositions m = (m1, . . . , mℓ) of s such that mi = 1 for some i,

and let M2 be the set of all other compositions of s. For all m we have

|B(m)| ≤ [n]ℓB
s,

using the falling factorial. For m ∈ M1, suppose as a representative case that mℓ = 1. Then

B(m) =
∑′

j1,...,jℓ

βm1
j1

· · ·βmℓ
jℓ

=
∑′

j1,...,jℓ−1

βm1
j1

· · ·βmℓ−1

jℓ−1

∑

jℓ /∈{j1,...,jℓ−1}
βjℓ

= −
∑′

j1,...,jℓ−1

βm1
j1

· · ·βmℓ−1

jℓ−1

∑

jℓ∈{j1,...,jℓ−1}
βjℓ,

where the last step uses the assumption
∑n

j=1 βj = 0. This shows that for m ∈ M1 we have

|B(m)| ≤ ℓ[n]ℓ−1B
s = O(ℓ/n)[n]ℓB

s.

Consequently

|Ts| ≤
(
n

ℓ

)
Bs

(
O(ℓ/n)

∑

m∈M1

(
s

m1, . . . , mℓ

)
+

∑

m∈M2

(
s

m1, . . . , mℓ

))
.

Furthermore ∑

m∈M1

(
s

m1, . . . , mℓ

)
≤ ℓs.

Next, notice that for any fixed integer s ≥ 4,

Cs =
∑

m∈M2

(
s

m1, . . . , mℓ

)

12



is the coefficient of xs in the Maclaurin expansion of s! (ex − x)ℓ. Since that expansion has

nonnegative coefficients, Cs ≤ s! η−s(eη − η)ℓ for any η > 0. Substituting η =
√
s/ℓ and

using the fact that (e
√
x −√

x)1/x < 2 for x > 0 gives

Cs ≤ s! (s/ℓ)−s/2
(
e
√

s/ℓ −
√
s/ℓ

)ℓ ≤ s!
(
2
√
ℓ/s

)s
.

Hence we have, for any fixed integer s ≥ 4,

|Ts| ≤
(
n

ℓ

)(
O(ℓ/n) ℓs + s!

(
2
√
ℓ/s

)s)
. (2.3)

Using (2.2) for s ≤ 3 and (2.3) for s ≥ 4, gives

Uℓ(β) =

(
n

ℓ

)(
1 + Õ(n−1/2) +O(ℓ/n)

∑

s≥4

1

s!
Bsℓs +O(1)

∑

s≥4

Bs
(
2
√
ℓ/s

)s)
.

Since Bℓ = o(1) and B
√
ℓ = Õ(n−1/4), the first sum in the above expression is O(ℓ/n) =

Õ(n−1/2), while the second sum is at most

∑

s≥4

Bs ℓs/2 = O(B4ℓ2) = Õ(n−1).

Hence

Uℓ(β) =

(
n

ℓ

)(
1 + Õ(n−1/2)

)
,

which matches the lemma for this range of ℓ values.

For the remaining range n−n1/2−cε < ℓ ≤ n, we can apply the identity Uℓ(β) = Un−ℓ(−β),

which is a consequence of
∑

j βj = 0. The lemma is thus proved.

2.2 Proof of the dense theorem (Theorem 1.4)

Suppose that a, b > 0 are constants such that a + b < 1
2
, and d is such that (1.2) holds

and dj − d is uniformly O(n1/2+ε) for j = 1, . . . , n and some ε > 0. In the following, we

will assume that ε is sufficiently small. Later in the proof we will infer that we can take

ε = ε(a, b) for some function ε(a, b) > 0, as required by Theorem 1.4.

Every vector z = (z1, . . . , zn) ∈ {0, 1}n is a potential diagonal of one of our matrices.

Define |z| =
∑n

j=1 zj and for ℓ = 0, . . . , n let

Λℓ = {z ∈ Λ : |z| = ℓ}. (2.4)

13



If Dℓ and S have the same parity then

GD(d, ℓ) =
∑

z∈Λℓ

G(d−Dz). (2.5)

We proceed by applying Theorem 1.3 to estimate G(d −Dz) and then summing the result

over all z ∈ Λℓ. Note that the average entry of d−Dz is d−Dℓ/n.

Let â be any constant such that a < â < 1
2
− b and let ε0 = ε0(â, b) be the positive

constant guaranteed by Theorem 1.3. Then for ℓ = 0, . . . , n we have

min

{
d− Dℓ

n
, n− d+

Dℓ

n

}
≥ n

3â log n

for sufficiently large n. Provided ε ≤ ε0, we have that (dj −Dzj) − (d−Dℓ/n) is uniformly

O(n1/2+ε0) for j = 1, . . . , n. So Theorem 1.3 with the constants (â, b) applies to every vector

d−Dz, using the value ε0 = ε0(â, b) guaranteed by that theorem.

Next we will compare factors from the expression for G(d − Dz) given by (1.1) with

corresponding factors from the formula for GD(d, ℓ) given in Theorem 1.4. Let λℓ denote

the density of d−Dz for any z ∈ Λℓ. That is,

λℓ =
d

n− 1
− Dℓ

n(n− 1)
= µD − D(ℓ− µDn)

n(n− 1)
.

Also let δj = dj − d for j = 1, . . . , n, which allows us to write R =
∑n

j=1 δ
2
j . Then

(
λλℓ
ℓ (1 − λℓ)

1−λℓ
)(n

2)

(
µµD

D (1 − µD)1−µD
)(n

2)+Dn/2
= µ

−Dℓ/2
D (1 − µD)−D(n−ℓ)/2 exp

(
D2(ℓ− µDn)2

4µD(1 − µD)n2
+ Õ(n−1)

)
.

Using the expansion [m]k = mk exp
(
−k(k−1)

2m
+O(k3/m2)

)
, valid when m → ∞ such that

k = o(m2/3), we find that

(
n−1

dj−Dzj

)

(
n+D−1

dj

) = µ
Dzj
D (1 − µD)D(1−zj) exp

(
−D(D − 1)(µD − zj)

2

2µD(1 − µD)n

− D(µD − zj)δj
µD(1 − µD)n

−
D(µD − zj)

2δ2j
2µ2

D(1 − µD)2n2
+ Õ(n−3/2)

)
.
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Since z2j = zj and
∑n

j=1 zj = ℓ, we obtain

n∏

j=1

(
n−1

dj−Dzj

)

(
n+D−1

dj

) = µDℓ
D (1 − µD)D(n−ℓ)

× exp

(
−D(D − 1)

2
− D(D − 1)(1 − 2µD)(ℓ− µDn)

2µD(1 − µD)n
− DR

2(1 − µD)2n2

+
n∑

j=1

(
Dδj

µD(1 − µD)n
−

D(1 − 2µD)δ2j
2µ2

D(1 − µD)2n2

)
zj + Õ(n−1/2)

)
.

Finally, apart from the O(n−b) error term, the expression inside the exponential in (1.1) for

d−Dz is

1

4
−

(∑n
j=1(dj −Dzj − λℓ(n− 1))2

)2

4λ2ℓ(1 − λℓ)2n4
=

1

4
− R2

4µ2
D(1 − µD)2n4

+ Õ(n−1/2).

Combining these expressions gives

G(d−Dz) = A V (ℓ) exp

( n∑

j=1

βjzj

)
(2.6)

where

A =
√

2
(
µµD

D (1 − µD)1−µD
)(n

2)+Dn/2
n∏

j=1

(
n+D−1

dj

)
exp

(
O(n−b) + Õ(n−1/2)

)
, (2.7)

V (ℓ) = µ
ℓD/2
D (1 − µD)(n−ℓ)D/2 exp

(
1

4
− D(D − 1)

2
− D(D − 1)(1 − 2µD)(ℓ− µDn)

2µD(1 − µD)n

+
D2(ℓ− µDn)2

4µD(1 − µD)n2
− DR

2(1 − µD)2n2
− R2

4µ2
D(1 − µD)2n4

)
,

βj =
Dδj

µD(1 − µD)n
−

D(1 − 2µD)δ2j
2µ2

D(1 − µD)2n2
for j = 1, . . . , n.

Next we must sum over all z ∈ Λℓ. Note that βj = Õ(n−1/2) for j = 1, . . . , n, and the

average of β1, . . . , βn is

β̄ = − D(1 − 2µD)R

2µ2
D(1 − µD)2n3

= Õ(n−1).

Hence Lemma 2.1 applies and shows that

∑

z∈Λℓ

exp

( n∑

j=1

βjzj

)
=

(
n

ℓ

)
exp

(
ℓβ̄ +

ℓ(n− ℓ)

2n2

n∑

j=1

(βj − β̄)2 + Õ(n−1/2)

)

=

(
n

ℓ

)
exp

(
D2ℓ(n− ℓ)R

2µ2
D(1 − µD)2n4

− D(1 − 2µD)ℓR

2µ2
D(1 − µD)2n3

+ Õ(n−1/2)

)
. (2.8)
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Combining (2.5) and (2.6)–(2.8) gives

GD(d, ℓ) = A

(
n

ℓ

)
µ
ℓD/2
D (1 − µD)(n−ℓ)D/2 exp

(
QD(d, ℓ) + Õ(n−1/2)

)
(2.9)

where QD(d, ℓ) is defined in the statement of Theorem 1.4 for D ∈ {1, 2}.

Next we will estimate GD(d) by summing (2.9) over allowable values of ℓ. Recall the

definition of ℓ̄D given in the theorem statement. Ignoring the factor A which is independent

of ℓ, we calculate

n∑

ℓ=0

(
n

ℓ

)
µ
Dℓ/2
D (1 − µD)D(n−ℓ)/2 exp

(
QD(d, ℓ) + Õ(n−1/2)

)

= (1 − µD)Dn/2
n∑

ℓ=0

(
n

ℓ

)(
µD

1 − µD

)Dℓ/2

exp
(
QD(d, ℓ̄D) + Õ(n−1(ℓ− ℓ̄D) + n−1/2)

)

= (1 − µD)Dn/2 exp(QD(d, ℓ̄D))
n∑

ℓ=0

(
n

ℓ

)(
µD

1 − µD

)Dℓ/2

exp
(
Õ(n−1(ℓ− ℓ̄D) + n−1/2)

)
.

(2.10)

If |ℓ − ℓ̄D| ≤ n1/2+η for some constant η > 0 then the error term in the corresponding

summand is Õ(n−1/2), so these summands are essentially terms from a binomial expansion.

If |ℓ− ℓ̄D| > n1/2+η then

(
n

ℓ

)(
µD

1 − µD

)Dℓ/2

≤ exp(−Ω(n2η)), exp
(
Õ(n−1(ℓ− ℓ̄D))

)
= exp(Õ(1)), (2.11)

so the contribution from the tails of the sum is negligible. Therefore

n∑

ℓ=0

(
n

ℓ

)(
µD

1 − µD

)Dℓ/2

exp

(
Õ

(
ℓ− ℓ̄D
n

+ n−1/2

))

= exp(Õ(n−1/2))

n∑

ℓ=0

(
n

ℓ

)(
µD

1 − µD

)Dℓ/2

(2.12)

=

(
1 +

(
µD

1 − µD

)D/2)n

exp
(
Õ(n−1/2)

)
. (2.13)

The preceding calculations hold for any sufficiently small ε > 0, so in particular they

hold for some ε = ε(a, b) such that ε ≤ ε0 and the Õ(n−1/2) error terms in (2.7), (2.9) and

(2.13) are all O(n−b). Then the claimed formulae for GD(d, ℓ) follow immediately from (2.7)

and (2.9).

Furthermore, multiplying (2.13) by A (1 − µD)Dn/2 exp(QD(d, ℓ̄D)) using (2.7) and sub-

stituting D = 2 gives the desired formula for G2(d).
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For D = 1, we must sum over only those values of ℓ with the same parity as S. That

is, we must replace (2.12) with a sum over just the even (or just the odd) values of ℓ. By

standard properties of the binomial distribution, the parity-restricted sum is half the full

sum, within additive error O(n−b), say. (This also follows from Lemma 3.3 when µ1 6= 1
2
,

and hence when µ1 = 1/2 by analytic continuation.) The additive error can be absorbed

into the relative error in (2.13), since the main factor there is Ω(1). This gives the desired

formula for G1(d), completing the proof.

3 The sparse case

In this section we prove Theorem 1.5.

3.1 Some useful results

First, we present two lemmas involving the Poisson binomial distribution, which we intro-

duced in Section 1.1. Let p = (p1, . . . , pn) satisfy 0 ≤ p1, . . . , pn ≤ 1 and let X be a random

variable with distribution PB(p). The mean of X is X̄ = E(X) =
∑n

j=1 pj . The following

tail bounds are standard.

Lemma 3.1. If X is a Poisson binomial random variable then, for any s ≥ 0, we have

Pr(X − X̄ ≤ −s) ≤ exp

(
− s2

2X̄

)
,

Pr
(
X − X̄ ≥ s

)
≤ exp

(
−X̄ϕ

(
s

X̄

))
,

where ϕ(x) = (1 + x) log(1 + x) − x.

Proof. These bounds are attributed to Chernoff, see [10, Theorems 2.1 and 2.8] and [6,

Theorem 3.2].

Lemma 3.2. Let X be a random variable with Poisson binomial distribution PB(p) and

mean X̄ ≤ n/(logn)2. For a fixed constant C > 0, let f : R → R be a function such that

|f(x)| ≤ C

(
x2

n
+

|x|
n1/2

)
for |x| ≤ n.

Then

E
(
exp(f(X − X̄))

)
= 1 + E

(
f(X − X̄)

)
+O

(
E(f(X − X̄)2 )

)
+ n−Ω(logn)

= exp
(
E
(
f(X − X̄)

)
+O

(
E(f(X − X̄)2 )

)
+ n−Ω(logn)

)
. (3.1)
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In particular, the contribution to this expectation from values of X with |X − X̄| > n1/2 is

∑

ℓ, |ℓ−X̄|>n1/2

Pr(X = ℓ) exp
(
f(ℓ− X̄)

)
= n−Ω(logn). (3.2)

Proof. Define g(x) = ef(x) − 1 − f(x). Note that |g(x)| ≤ e|f(x)| for all x, which implies that

|g(x)| ≤ exp

(
C x2

n
+
C |x|
n1/2

)
for |x| ≤ n. (3.3)

We write

E
(
g(X − X̄)

)
= Σ1 + Σ2 + Σ3

where

Σ1 =
∑

ℓ, |ℓ−X̄|≤n1/2

Pr(X = ℓ) g(ℓ− X̄),

Σ2 =
∑

ℓ, ℓ−X̄>n1/2

Pr(X = ℓ) g(ℓ− X̄),

Σ3 =
∑

ℓ, ℓ−X̄<−n1/2

Pr(X = ℓ) g(ℓ− X̄).

In each of these sums, ℓ is a nonnegative integer in {0, . . . , n} which satisfies the additional

constraint given. We now bound these three sums in turn.

For Σ1, note that when |ℓ− X̄| ≤ n1/2 we have f(ℓ− X̄) ≤ 2C = O(1). Hence

g(ℓ− X̄) = O
(
f(ℓ− X̄)2

)

uniformly for all ℓ in this range. It follows that
∑

ℓ, |ℓ−X̄|≤n1/2 Pr(X = ℓ) f(ℓ − X̄)2 ≤
E(f(X − X̄)2), and hence

Σ1 = O
(
E(f(X − X̄)2)

)
. (3.4)

Now we consider Σ2. Since X̄ϕ(s/X̄) is a decreasing function of X̄ , and X̄ ≤ n/(logn)2

by assumption, Lemma 3.1 shows that

Pr
(
X − X̄ ≥ s

)
≤ exp

(
− n

log2 n
ϕ

(
s log2 n

n

))
.

Applying (3.3) shows that Σ2 is bounded above by

n max
n1/2<s≤n

exp
(
L1(s)

)
,

where

L1(s) =
Cs2

n
+

Cs

n1/2
− n

log2 n
ϕ

(
s log2 n

n

)
.
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Now

L′
1(s) =

2Cs

n
+

C

n1/2
− log

(
1 +

s log2 n

n

)
,

which is negative for sufficiently large n for s ∈ {n1/2, n}. Also L′′′
1 (s) > 0 for all s ≥ 0, so

it must be that L′
1(s) < 0 for n1/2 ≤ s ≤ n when n is sufficiently large. It follows that the

maximum of L1 on the interval [n1/2, n] occurs at s = n1/2. Since L1(n
1/2) = −1

2
log2 n+O(1),

we deduce that

Σ2 = n exp
(
−Ω(log2 n)

)
= n−Ω(log n). (3.5)

A bound on Σ3 can be obtained similarly. Using the first bound in Lemma 3.1, we find

Σ3 ≤ n max
n1/2<s≤n

exp
(
L2(s)

)
,

where

L2(s) =
Cs2

n
+

Cs

n1/2
− s2 log2 n

2n
.

By the same argument as before, the maximum of L2(s) occurs at s = n1/2 for sufficiently

large n, and we conclude that Σ3 = n−Ω(log n), which together with (3.5) implies (3.2).

Combining (3.2) and (3.4) establishes (3.1), completing the proof.

For a given function f : {0, 1, . . . , n} → R, define the polynomial f̂ : Rn → R by

f̂(y1, . . . , yn) =
∑

(x1,...,xn)∈{0,1}n
f(x1 + · · · + xn)

n∏

j=1

y
xj

j (1 − yj)
1−xj .

(Note that this is indeed a polynomial in y1, . . . , yn, since 1 − xj ∈ {0, 1}.) In the case that

0 ≤ y1, . . . , yn ≤ 1, we have

f̂(y1, . . . , yn) = E
(
f(Y )

)
, (3.6)

where Y is a random variable with distribution PB
(
(y1, . . . , yn)

)
.

The following lemma will be used when D = 1 to handle the parity restriction on the

number of loops.

Lemma 3.3. Fix (p1, . . . , pn) ∈ [0, 1]n such that pj 6= 1
2
for j = 1, . . . , n. Define

rj = − pj
1 − 2pj

for j = 1, . . . , n, and let

Z =
n∏

j=1

(1 − 2pj).
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Then for ρ = 0, 1,

∑

(x1,...,xn)∈{0,1}n

x1+···+xn≡ρ (mod 2)

f(x1 + · · · + xn)

n∏

j=1

p
xj

j (1 − pj)
1−xj

= 1
2
f̂(p1, . . . , pn) + (−1)ρ 1

2
Z f̂(r1, . . . , rn).

Proof. Let X be a random variable with Poisson binomial distribution PB
(
(p1, . . . , pn)

)
.

The probability generating function for X is

P (w) =

n∑

t=0

wt Pr(X = t) =

n∏

j=1

(1 − pj + pjw).

Note that

f̂(p1, . . . , pn) =
n∑

t=0

f(t) Pr(X = t) =
n∑

t=0

f(t) [wt]P (w). (3.7)

Now

P (−w) =
n∏

j=1

(1 − pj − pjw) = Z
n∏

j=1

(1 − rj + rjw).

This expression has the same algebraic form as P (w), but with rj in place of pj for j =

1, . . . , n. Therefore, by comparison with (3.7) we have

n∑

t=0

f(t) [wt]P (−w) = Z f̂(r1, . . . , rn).

Hence we calculate that

∑

(x1,...,xn)∈{0,1}n

x1+···+xn≡ρ (mod 2)

f(x1 + · · · + xn)

n∏

j=1

p
xj

j (1 − pj)
1−xj

=
∑

t=0,...,n

t≡ρ (mod 2)

f(t) Pr(X = t)

=
∑

t=0,...,n

t≡ρ (mod 2)

f(t) [wt]
(
1
2
P (w) + (−1)ρ 1

2
P (−w)

)

=
n∑

t=0

f(t) [wt]
(
1
2
P (w) + (−1)ρ 1

2
P (−w)

)

= 1
2
f̂(p1, . . . , pn) + 1

2
(−1)ρ Z f̂(r1, . . . , rn),

as claimed.
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3.2 Proof of the sparse theorem (Theorem 1.5)

We now prove Theorem 1.5. Assume throughout this section that 1 ≤ dmax = o(S1/3) and

that S is even if D = 2. Furthermore, note that deleting vertices of degree zero does not

affect either the value of GD(d) or the formulae for it given in Theorem 1.5. Hence we

assume without loss of generality that dj ≥ 1 for j = 1, . . . , n.

Let

H(d) =
√

2

(
S

e

)S/2( n∏

j=1

dj !

)−1

exp

(
−S2

2S
− S2

2

4S2
− S2

2S3

2S4
+

S4
2

4S5
+

S2
3

6S3

)
.

Using Stirling’s approximation, Theorem 1.2 can be restated as follows: when S is even and

1 ≤ dmax = o(S1/3), then

G(d) = H(d) exp
(
O(d3max/S)

)
, (3.8)

uniformly as S → ∞. We proceed to estimate GD(d)/H(d).

Define

Λ(1) = {z ∈ {0, 1}n : for j = 1, . . . , n, if dj < D then zj = 0},
Λ(2) = {z ∈ {0, 1}n : |z| ≡ S (mod 2)}

and let

Λ =




Λ(1) ∩ Λ(2) if D = 1,

Λ(1) if D = 2.

(Recall that |z| denotes the number of entries of z equal to 1.) Then

GD(d) = H(d)
∑

z∈Λ

G(d−Dz)

H(d)
. (3.9)

Our strategy is to compare the ratio G(d−Dz)/H(d) to the ratio H(d−Dz)/H(d), which

we now investigate.

Lemma 3.4. For j = 1, . . . , n, define

aj =
[dj]D
SD/2

exp(∆ + γj),

where

γj = −D(D + 1)

2S
− D(D + 2)S2

2S2
− DS2

2

2S3
+

(
D

S
+
DS2

S2

)
dj
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for j = 1, . . . , n, and ∆ is defined by

∆ =





1
2S1/2 − S2

2S2 if D = 1,

0 if D = 2.

Define K(z) by

H(d−Dz)

H(d)
= exp

(
K(z)

) n∏

j=1

a
zj
j . (3.10)

Then there are functions K ′, K ′′ : {0, 1, . . . , n} → R which satisfy

K ′(ℓ), K ′′(ℓ) = −∆ℓ+
D2ℓ2

4S
+
D3ℓ3

12S2
+O

(
d2maxℓ

2

S2
+
ℓ4

S3
+
d3max

S

)
(3.11)

such that

K ′(|z|) ≤ K(z) ≤ K ′′(|z|) (3.12)

for all z ∈ Λ with |z| ≤ S/3.

Proof. Define the function

M(d, z) = − S2(z)

2S1(z)
+
S2

2S
− S2(z)2

4S1(z)2
+

S2
2

4S2
− S2(z)2S3(z)

2S1(z)4
+
S2
2S3

2S4

+
S2(z)4

4S1(z)5
− S4

2

4S5
+

S3(z)2

6S1(z)3
− S2

3

6S3
,

where Sr(z) =
∑n

j=1[dj −Dzj ]r for r = 1, 2, 3. Then

H(d−Dz)

H(d)
= exp(M(d, z))

(
e

S

)Dℓ/2(
1 − Dℓ

S

)(S−Dℓ)/2 n∏

j=1

([dj ]D)zj

= exp(M(d, z)) exp

(
D2ℓ2

4S
+
D3ℓ3

12S2
+O

(
ℓ4

S3

)) n∏

j=1

(
[dj]D
SD/2

)zj

.

Now

S1(z) = S −Dℓ,

S2(z) = S2 − 2DW1 +D(D + 1)ℓ,

S3(z) = S3 − 3DW2 + 3D(D + 1)W1 −D(D + 1)(D + 2)ℓ,

where Wr =
∑n

j=1[dj]r zj for r = 1, 2. Making these substitutions gives

M(d, z) = O

(
d3max

S
+
d2maxℓ

2

S2

)
+

n∑

j=1

γjzj.

Since the terms involving ∆ cancel, this completes the proof. The lemma is in fact true for

any ∆, but the value we have chosen will be useful in proving Lemma 3.6.

22



We now calculate some important quantities which will be needed later.

Lemma 3.5. When D = 1,

n∑

j=1

aj
1 + aj

=
√
S − 1

2
+

1

8S1/2
− S2

S
+

2S2

S3/2
+

S3

S3/2
+

S2
2

2S5/2
+O

(
d3max

S

)
,

n∑

j=1

log(1 + aj) =
√
S − 1

24S1/2
− S2

2S
+

S2

2S3/2
+

S3

3S3/2
+

S2
2

2S5/2
+O

(
d3max

S

)
.

When D = 2,

n∑

j=1

aj
1 + aj

=
S2

S
exp

(
O(d2max/S)

)
,

n∑

j=1

log(1 + aj) =
S2

S
exp

(
O(d2max/S)

)
.

Proof. For D = 1 we have

∆ = O(S−1/2), γj = O

(
d2max

S

)
+O

(
dmax

S

)
dj,

and find that

n∑

j=1

aj =
√
S +

1

2
+

1

8S1/2
+

S2
2

2S5/2
+O

(
d3max

S

)
,

n∑

j=1

a2j =
S2

S
+

S2

S3/2
+ 1 +

1

S1/2
+O

(
d3max

S

)
,

n∑

j=1

a3j =
S3

S3/2
+

3S2

S3/2
+

1

S1/2
+O

(
d3max

S

)
,

n∑

j=1

a4j = O

(
d3max

S

)
,

(3.13)

from which the result follows. When D = 2 we have

n∑

j=1

aj =
S2

S
+O

(
d2maxS2

S2

)
,

n∑

j=1

a2j = O

(
d2maxS2

S2

)
,

which imply the result in this case.

Next we calculate the sum of the right hand side of (3.10) over all z ∈ {0, 1}n (subject

to a parity constraint if D = 1), after dividing by the factor
∏n

j=1(1 + aj).
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Lemma 3.6. Let K∗ be either of the functions K ′, K ′′ defined in Lemma 3.4.

If D = 1 then for ρ ∈ {0, 1},

∑

z∈{0,1}n

|z|≡ρ (mod 2)

exp
(
K∗(|z|)

) n∏

j=1

a
zj
j

1 + aj
= 1

2
exp

(
−1

4
+

1

3S1/2
+

S2

2S3/2
+O

(
d3max

S

))
.

If D = 2 then
∑

z∈{0,1}n
exp

(
K∗(|z|)

) n∏

j=1

a
zj
j

1 + aj
= exp

(
O(d3max/S)

)
.

Proof. Define p = (p1, . . . , pn) where pj = aj/(1+aj) for j = 1, . . . , n, and let X be a random

variable with Poisson binomial distribution PB(p). Then

∑

z∈{0,1}n
exp(K∗(|z|))

n∏

j=1

a
zj
j

1 + aj
= E

(
exp(K∗(X))

)
.

The expectation of X is X̄ =
∑n

j=1 pj , which has been calculated for D = 1, 2 in Lemma 3.5.

First suppose that D = 1. Recall from Lemma 3.5 that

n∑

j=1

pj =
√
S + O(dmax) =

√
S + o(S1/3).

From (3.2) we know that

∑

|z|>3
√
S

exp(K∗(|z|))
n∏

j=1

a
zj
j

1 + aj
= n−Ω(log n).

Next we observe that by Lemma 3.1,

∑

|
√
S−|z||>S1/3

n∏

j=1

a
zj
j

1 + aj
= O(e−S1/6

).

For ℓ−
√
S = O(S1/3) we have, using (3.11),

exp
(
K∗(ℓ)

)
= exp

(
−1

4
+O(d3max/S)

)
f(ℓ), (3.14)

where

f(ℓ) =
ℓ4

32S2
− ℓ3

8S3/2
+

(
7

16S
+

S2

8S5/2
+

13

48S3/2

)
ℓ2

+

(
− 5

8S1/2
+

S2

4S2
− 7

24S

)
ℓ+

41

32
+

S2

8S3/2
+

5

48S1/2
.
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Since K∗(ℓ) = O(1) for ℓ = O(
√
S ), it follows that

∑

|z|≡ρ (mod 2)

exp(K∗(|z|))
n∏

j=1

a
zj
j

1 + aj

= n−Ω(log n) + exp
(
−1

4
+O(d3max/S)

) ∑

|z|≡ρ (mod 2)

f(|z|)
n∏

j=1

a
zj
j

1 + aj
. (3.15)

We now apply Lemma 3.3 to estimate the sum on the right hand side. The small order

moments of X are

E(X2) = X̄2 +

n∑

j=1

pj(1 − pj),

E(X3) = X̄ + 3X̄2 + X̄3 − 3

n∑

j=1

p2j − 3X̄

n∑

j=1

p2j + 2

n∑

j=1

p3j ,

E(X4) = X̄ + 7X̄2 + 6X̄3 + X̄4 −
(
6X̄2 − 18X̄ + 7)

n∑

j=1

p2j

+ 3

( n∑

j=1

p2j

)2

+ (8X̄ + 12)

n∑

j=1

p3j − 6

n∑

j=1

p4j .

(3.16)

Substituting (3.13) into these expressions gives

E(Xk) =





1 if k = 0;
√
S − S2/S − 1

2
+O(d3max/S

1/2) if k = 1;

S − 2S2/S
1/2 +O(d3max) if k = 2;

S3/2 − 3S2 + 3
2
S +O(d3maxS

1/2) if k = 3;

S2 + 4S3/2 − 4S1/2S2 +O(d3maxS) if k = 4.

Hence

f̂(p1, . . . , pn) = E
(
f(X)

)
= exp

(
1

3S1/2
+

S2

2S3/2
+O

(
d3max

S

))

where f̂ is the function obtained from f as in (3.6). Let fk be the polynomial defined by

fk(t) = tk for all t ∈ R, for k = 1, 2, 3, 4. Since E(Xk) = f̂k(p1, . . . , pn), replacing each pj

with rj in (3.16) leads to the following (abusing notation slightly to define the abbreviation
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f̂1 in the first line):

f̂1 = f̂1(r1, . . . , rn) =

n∑

j=1

rj = O(
√
S ),

f̂2(r1, . . . , rn) = f̂ 2
1 +

n∑

j=1

rj(1 − rj) = O(S),

f̂3(r1, . . . , rn) = f̂1 + 3f̂ 2
1 + f̂ 3

1 − 3
n∑

j=1

r2j − 3f̂1

n∑

j=1

r2j + 2
n∑

j=1

r3j = O(S3/2),

f̂4(r1, . . . , rn) = f̂1 + 7f̂ 2
1 + 6f̂ 3

1 + f̂ 4
1 −

(
6f̂ 2

1 − 18f̂1 + 7)

n∑

j=1

r2j

+ 3

( n∑

j=1

r2j

)2

+ (8f̂1 + 12)
n∑

j=1

r3j − 6
n∑

j=1

r4j = O(S4).

From this we conclude that f̂(r1, . . . , rn) = O(1). Furthermore,

Z = exp

(
−Ω

( n∑

j=1

pj

))
= e−Ω(

√
S).

Thus by Lemma 3.3 we obtain

∑

|z|≡ρ (mod 2)

f(|z|)
n∏

j=1

a
zj
j

1 + aj
= 1

2
exp

(
1

3S1/2
+

S2

2S3/2
+O

(
d3max

S

))
.

Combining this with (3.15) establishes the lemma when D = 1.

Next suppose that D = 2. Expanding K∗ around X̄ gives

K∗(X) = h(X − X̄) +O(d3max/S) (3.17)

where h : R → R is a function which satisfies

h(y) = O

(
dmax

S

)
y +O

(
1

S

)
y2 (3.18)

for |y| ≤ S. Recall our assumption that dj ≥ 1 for j = 1, . . . , n, which implies that S ≥ n.

Hence the function h satisfies the conditions of Lemma 3.2 for some constant C > 0. We

proceed to apply this lemma, specifically (3.1).

The second and fourth central moments of X are

E
(
(X − X̄)2

)
=

n∑

j=1

pj(1 − pj) = O(X̄),

E
(
(X − X̄)4

)
= 3 E

(
(X − X̄)2

)2
+

n∑

j=1

pj(1 − pj)(1 − 6pj + 6p2j) = O(X̄ + X̄2).

(3.19)
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Recall from Lemma 3.5 that X̄ = O(dmax), and also note that |y| ≤ 1 + y2. From (3.18) and

(3.19), we have

E
(
h(X − X̄)

)
= O(dmax/S)

(
1 + E((X − X̄)2)

)
= O(d2max/S).

Similarly, from (3.18) by applying (3.19) and using the inequality (u+ v)2 ≤ 2(u2 + v2), we

obtain

E
(
h(X − X̄)2

)
= O(d2max/S

2) E
(
(X − X̄)2

)
+O(S−2) E

(
(X − X̄)4

)
= O(d3max/S

2).

Therefore (3.1) gives

E
(
exp(h(X − X̄))

)
= exp

(
O(d3max/S)

)
.

This completes the proof when D = 2, using (3.17).

We may now prove our main result in the sparse case.

Proof of Theorem 1.5. First suppose that S > n log n. Then Lemma 3.4 applies for all values

of ℓ. Furthermore,

d3max = o(S −Dn)

since S − Dn = Ω(S), so (3.8) can be applied to d − Dz, for all z ∈ Λ. Notice also that

aj = 0 whenever dj < D, so the sum of the right hand side of (3.10) over z ∈ Λ is equal to

the sum over {0, 1}n when D = 2, or over Λ(2) when D = 1. Hence the result follows from

(3.9) using (3.8) and Lemmas 3.4–3.6.

Now suppose that n ≤ S ≤ n logn. We show that terms with |z| > S/3 give a negligible

contribution to GD(d).

It is well known that when S is even, we can write

G(d) =
S!

(S/2)! 2S/2

( n∏

j=1

dj!

)−1

P (d)

where P (d) is a probability, and hence is at most 1. (Indeed, the exp(·) factor in (3.8) is

an approximation to P (d) when dmax = o(S1/3), as proved in [17].) It follows by Stirling’s

approximation that

G(d) = O(1)

(
S

e

)S/2( n∏

j=1

dj!

)−1

for any even value of S. Recall the definition of Λℓ from (2.4). For z ∈ Λℓ we have

G(d−Dz) = O(1)

(
S −Dℓ

e

)(S−Dℓ)/2 ( n∏

j=1

(dj −Dzj)!

)−1

.
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Furthermore,

H(d)−1 = exp
(
O(d2max)

)( e

S

)S/2 n∏

j=1

dj !.

Hence
G(d−Dz)

H(d)
= O(1) exp

(
O(d2max)

)(d2max e

S

)Dℓ/2

.

Therefore, recalling that ℓ ≤ n and ignoring parity for an upper bound,

n∑

ℓ=S/3

∑

z∈Λℓ

G(d−Dz)

H(d)
= O(1) exp

(
O(d2max)

) n∑

ℓ=S/3

(
n

ℓ

)(
d2maxe

S

)Dℓ/2

= O(1) exp
(
O(d2max)

) n∑

ℓ=S/3

(
n

ℓ

)
S−Dℓ/6

= O(1) exp
(
O(d2max)

)
2n S−DS/18

= O
(
S−Ω(S)

)
. (3.20)

Recall that (3.8) applies when ℓ < S/3. Therefore, using (3.8) and Lemma 3.4,

GD(d)

H(d)
= S−Ω(S) +

S/3∑

ℓ=0

∑

z∈Λℓ

G(d−Dz)

H(d)

= O
(
S−Ω(S)

)
+ exp

(
O(d3max/S)

) S/3∑

ℓ=0

∑

z∈Λℓ

exp
(
K(z)

) n∏

j=1

a
zj
j .

Hence, by (3.12),

O
(
S−Ω(S)

)
+ exp

(
O(d3max/S)

) S/3∑

ℓ=0

exp
(
K ′(ℓ)

) ∑

z∈Λℓ

n∏

j=1

a
zj
j

≤ GD(d)

H(d)

≤ O
(
S−Ω(S)

)
+ exp

(
O(d3max/S)

) S/3∑

ℓ=0

exp
(
K ′′(ℓ)

) ∑

z∈Λℓ

n∏

j=1

a
zj
j . (3.21)

Next we would like to show that, in either the lower or upper bound in (3.21), the sum over

ℓ can be extended up to ℓ = n without affecting the answer significantly. Since every term

is positive, zero is a lower bound for the tail of the sum. Again, we ignore the parity issue

for an upper bound. Let K∗ be either K ′ or K ′′. Firstly, note that since n ≤ S we have
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K∗(ℓ) = O(ℓ) uniformly for S/3 ≤ ℓ ≤ n. Furthermore aj = o(S−D/6) for j = 1, . . . , n.

Therefore

n∑

ℓ=S/3

exp
(
K∗(ℓ)

) ∑

z∈Λℓ

n∏

j=1

a
zj
j ≤

n∑

ℓ=S/3

(
n

ℓ

)(
eO(1) S−D/6

)ℓ

≤
n∑

ℓ=S/3

(
n

ℓ

)
S−Dℓ/7

= O
(
S−Ω(S)

)
(3.22)

as in (3.20). Combining this with (3.21) gives

O
(
S−Ω(S)

)
+ exp

(
O(d3max/S)

) ∑

z∈Λ
exp

(
K ′(|z|)

) n∏

j=1

a
zj
j

≤ GD(d)

H(d)

≤ O
(
S−Ω(S)

)
+ exp

(
O(d3max/S)

) ∑

z∈Λ
exp

(
K ′′(|z|)

) n∏

j=1

a
zj
j .

The result now follows from Lemma 3.5 and Lemma 3.6.

4 Proof of Theorem 1.6

Part (i). Under the conditions of Theorem 1.4, the distribution of YD follows directly from

(2.10) and (2.11), noting in the case of D = 1 that the restriction of ℓ to the same parity as

S changes the normalizing factor by 2 to high precision, as explained in the last paragraph of

Section 2.2. The formula for the expectation follows on summing ℓProb(YD = ℓ), since the

error term O(e−nΩ(1)
) contributes negligibly. To see that the same is true for the variance, it

helps to use the cancellation-free formula

Var(Z) =
∑

k<ℓ

Prob(Z = k) Prob(Z = ℓ) (k − ℓ)2, (4.1)

which is true for all discrete random variables Z of finite variance (see for example [12, p. 8]).

Part (ii). Now suppose that the conditions of Theorem 1.5 hold and consider the case

D = 1. Let X be a random variable with the Poisson binomial distribution PB(p), where

pj = aj/(1+aj) and aj is defined in Lemma 3.4. From (3.10), (3.14), we find that for ℓ =
√
S+

O(S1/3), the distribution of Y1 is proportional to PB(p) to relative error O(d3max/S+S−1/3).
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Moreover, the weight of both Y1 and X from |ℓ −
√
S | > S1/3 is e−SΩ(1)

, and restriction

of ℓ to the same parity as S contributes a factor of 2 to high precision as in the proof of

Lemma 3.6. This gives, for ℓ = 0, . . . , n,

Prob(Y1 = ℓ) =
(
2 +O(d3max/S + S−1/3)

)
PB(p, ℓ) +O(e−SΩ(1)

).

Next we show that the parameters p′ in the theorem are sufficiently close to the parameters p.

For each j, we find that

pj = exp
(
O(d3max/S

3/2 + S−1)
)
p′j. (4.2)

By definition,

PB(p, ℓ) =
∑

|W |=ℓ

( ∏

j∈W
pj

∏

j /∈W
(1 − pj)

)
,

where the sum is over subsets W ⊆ {1, 2, . . . , n} of size ℓ. Applying (4.2), we find that

PB(p, ℓ) = exp
(
O(d3max/S + S−1/2)

)
PB(p′, ℓ)

for ℓ = O(
√
S ). The tail past

√
S is e−SΩ(1)

for both PB(p) and PB(p′), by Lemma 3.1.

This completes the proof of the distribution for D = 1.

The mean and variance follow as for part (i) to the same relative precision as the distri-

bution, but we can do better by using the more accurate distribution analysed in the proof

of Lemma 3.6. As we have shown in (3.14), for ℓ =
√
S + O(S1/3), which excludes only

exponentially small tails,

Prob(Y1 = ℓ) ∝ exp
(
O(d3max/S)

)
Prob(X = ℓ)f(ℓ) (4.3)

if ℓ has the same parity as S. Define the discrete random variable Z by

Prob(Z = t) ∝ Prob(X = X̄ + t)f(X̄ + t),

whenever X̄ + t is an integer in [0, n] with the same parity as S; and Prob(Z = t) = 0

otherwise. By (4.3) and the argument used in part (i) of this proof,

E(Y1) = exp
(
O(d3max/S)

)(
X̄ + E(Z)

)
,

Var(Y1) = exp
(
O(d3max/S)

)
Var(Z).

For m ≥ 0, define the central moment µm = E
(
(X − X̄)m

)
and the cumulant κm by

logφ(t) =
∞∑

m=1

κm(it)m/m! ,
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where φ(t) =
∏n

j=1

(
pje

it + 1 − pj
)

is the characteristic function of X . We find that κm =

O(
√
S ) for 2 ≤ m ≤ 6. Using the well-known expressions for the central moments in terms

of the cumulants, and the explicit formulae (3.19), we find that

µ2 =
√
S − 2S2

S
− 3

2
+O(d3max/S

1/2),

µ3 = κ3 = O(
√
S ),

µ4 = 3S +O(dmaxS
1/2),

µ5 = κ5 + 10κ3κ2 = O(S),

µ6 = κ6 + 15κ4κ2 + 10κ23 + 15κ32 = O(S3/2).

Thus we calculate

M0 =
n∑

ℓ=0

′
Prob(X = ℓ) f(ℓ) =

1

2
+

1

6S1/2
+

S2

4S3/2
+O(d2max/S),

M1 =
n∑

ℓ=0

′
Prob(X = ℓ) f(ℓ) (ℓ− X̄) = O(d2max/S + S−1/2),

M2 =
n∑

ℓ=0

′
Prob(X = ℓ) f(ℓ) (ℓ− X̄)2 =

√
S

2
− 3S2

4S
− 1

3
+O(d3max/S

1/2),

where the primes indicate that the sums are restricted to ℓ having the same parity as S. The

effect of the parity restriction is handled in the same way as in the proof of Lemma 3.6, and

in fact the first summation is equivalent to Lemma 3.6. Now we have that E(Z) = M1/M0

and Var(Z) = M2/M0 − E(Z)2. From these the mean and variance of Y1 follow.

Finally we consider part (ii) in the case D = 2. Define X as before, with aj as in

Lemma 3.4. By Lemma 3.1, Prob(X ≥ S1/3) = O(e−SΩ(1)
). The same bound holds

for Pr(Y2 > S/3), using the argument leading to (3.20). Combining this with (3.2) and

Lemma 3.4 shows that Pr(Y2 ≥ 2S1/2) = O(e−SΩ(1)
). Finally, since K ′′(ℓ) = O(1) for

ℓ = O(S1/2), we conclude that Pr(Y2 ≥ S1/3) = O(e−SΩ(1)
).

Lemma 3.4 shows that for ℓ ≤ S1/3,

Prob(Y2 = ℓ) = exp
(
O(d3max/S + S−1/3)

)
Prob(X = ℓ).

By the argument above, the ratio of PB(p) to PB(p′′) for ℓ ≤ S1/3 is exp
(
O(d2max/S

2/3)
)
,

since pj = exp
(
O(d2max/S)

)
p′′j for all j. The given estimate of the distribution of Y2 follows.

To obtain the mean and variance of Y2, we use the sharper estimate

Prob(Y2 = ℓ) ∝ exp
(
O(d3max/S)

)
Prob(X = ℓ) (1 + ℓ2/S),
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valid for ℓ ≤ d
3/4
maxS1/4 by Lemma 3.4, with the weight of the tail ℓ > d

3/4
maxS1/4 being expo-

nentially small as usual. Using (3.16) we find that E(X2) = O(d2max), E(X3) = O(d2maxS2/S)

and E(X4) = O(d3maxS2/S), and so

n∑

ℓ=0

Prob(X = ℓ) (1 + ℓ2/S) = 1 +O

(
d2max

S

)
,

n∑

ℓ=0

Prob(X = ℓ) (1 + ℓ2/S) ℓ =
S2

S
+O

(
d2maxS2

S2

)
,

n∑

ℓ=0

Prob(X = ℓ) (1 + ℓ2/S) ℓ2 =
S2
2

S2
+
S2

S
+O

(
d3maxS2

S2

)
,

and from these the expressions for E(Y2) and Var(Y2) follow, recalling the cancellation-free

variance formula (4.1).

5 A conjecture for regular graphs with loops

In the case of D = 2 and d = (d, d, . . . , d), an informal computation provides motivation for

the sparse and dense enumeration formulae and suggests a more general conjecture. Since

D = 2 we have d ∈ {0, 1, . . . , n + 1}. Recall the notations G2(n, d) = G2(d, d, . . . , d) and

µ2 = d/(n+ 1).

Generate a random n-vertex graph by independently choosing each of the
(
n+1
2

)
possible

edges (including loops) with probability µ2. Each d-regular graph has exactly nd/2 edges,

so it occurs with probability

µ
nd/2
2 (1 − µ2)

(n+1
2 )−nd/2. (5.1)

The event that a particular vertex has degree d has probability

(
n− 1

d

)
µd
2 (1 − µ2)

n−d +

(
n− 1

d− 2

)
µd−1
2 (1 − µ2)

n−d+1

=

(
n + 1

d

)
n− 1

n
µd
2 (1 − µ2)

n−d+1. (5.2)

If the vertex degrees were independent (which of course they are not), the number of graphs

would be the n-th power of (5.2) divided by (5.1). Noting that (1 − 1/n)n → e−1, this gives

a “näıve” estimate

Ĝ2(n, d) = e−1

(
n+ 1

d

)n(
µµ2
2 (1 − µ2)

1−µ2
)(n+1

2 )
.
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We can see from Theorem 1.4 that G2(n, d) is larger than Ĝ2(n, d) by a factor close to
√

2 e1/4

whenever min{d, n − d} > cn/ log n for some constant c > 2
3
. Less obviously, the same is

true for 1 ≤ d = o(n1/2) by Theorem 1.5. Recall that the same constant
√

2 e1/4 appears in a

similar context for regular graphs without loops [16]. This leads us to investigate the region

between the coverage of our sparse and dense theorems.

Using the method described in [13], we computed the exact values of G2(n, d) for about

150 nontrivial values of (n, d) up to n = 35. For example,

G2(22, 10) = 7789744323722189254716829156528211234980743220762340514888.

Numerical analysis of these values suggests the following analogue of [16, Conj. 2].

Conjecture 1. Let d = d(n) satisfy 1 ≤ d ≤ n with nd even. Then

G2(n, d) =
√

2

(
n+ 1

d

)n(
µµ2
2 (1 − µ2)

1−µ2
)(n+1

2 )
exp

(
−3

4
+

3c+ 1

12cn
+O(n−2)

)

uniformly as n→ ∞, where µ2 = d/(n+ 1) and c = µ2(1 − µ2)(n+ 1).

The numerical evidence suggests that in fact the term O(n−2) always lies in the interval

(−2/n2, 0) for n ≥ 4.
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