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Abstract

Following up on a paper of Balamohan, Kuznetsov, and Tanny, we analyze a variant
of Hofstadter’s Q-sequence and show it is 2-automatic. An automaton computing the
sequence is explicitly given.

1 Introduction

In his 1979 book Gödel, Escher, Bach [7], Douglas Hofstadter introduced the sequence Q(n)
defined by the recursion

Q(n) = Q(n−Q(n− 1)) +Q(n−Q(n− 2))

for n ≥ 2 and Q(1) = Q(2) = 1. Although it has been studied extensively (e.g., [10]),
still little is known about its behavior, and it is not mentioned in standard books about
recurrences (e.g., [6]). It is sequence A005185 in Sloane’s Encyclopedia [12].

Twenty years later, Hofstadter and Huber introduced a family of sequences analogous to
the Q-sequence, and defined by the recursion

Qr,s(n) = Qr,s(n−Qr,s(n− r)) +Qr,s(n−Qr,s(n− s))

for n > s > r [8]. The case r = 1, s = 4 is of particular interest.
Recently Balamohan, Kuznetsov and Tanny [4] gave a nearly complete analysis of the

sequence Q1,4 (called V in their paper). It is defined by

V (1) = V (2) = V (3) = V (4) = 1, and ∀n > 4, V (n) := V (n−V (n−1))+V (n−V (n−4)).
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Here is a short table of the sequence V (sequence A063882 in Sloane’s Encyclopedia [12]).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
V (n) 1 1 1 1 2 3 4 5 5 6 6 7 8 8 9 9 10 11 11 11

Among the results of Balamohan, Kuznetsov, and Tanny is a precise description of the
“frequency” sequence F (n) defined by

F (a) := #{n, V (n) = a}.

Here is a short table of the sequence F (sequence A132157 in Sloane’s Encyclopedia [12]).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
F (n) 4 1 1 1 2 2 1 2 2 1 3 2 1 2 2 1 3 2 1 2

In particular they proved the following theorem [4, Lemmas 13–19 and Table 5].

Theorem 1 (Balamohan, Kuznetsov, Tanny). There exist two (explicit) maps g, h, with
g, h : {1, 2, 3}4 → {1, 2, 3}, such that, for all a > 3

F (2a) = g(F (a− 2), F (a− 1), F (a), F (a+ 1))
F (2a+ 1) = h(F (a− 2), F (a− 1), F (a), F (a+ 1)).

(We note that in Lemma 13 of [4], the quantifiers a ≥ 3 for the equality F (2a) = 2 and
a ≥ 4 for the equality F (2a+ 1) = 2 should have been mentioned.)

In this paper we prove that the sequence (F (n))n≥1 is 2-automatic, which means essen-
tially that F (n) can be computed “in a simple way” from the base-2 representation of n —
in particular, it can be computed in O(logn) time. Furthermore, we give the automaton
explicitly. For definitions and properties of automatic sequences, the reader is referred to
[2]. For some recent related papers, see [9, 5, 11].

2 The main result

We begin this section with a general result on automatic sequences. Before stating the
theorem we need a notation.

Definition 2. Let W = (W (n))n≥0 be a sequence. Let α be an integer in Z. We let W α

denote the sequence defined, for n ≥ −α, by

W α(n) := W (n+ α).
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Definition 3. Let c be an integer ≥ 0. If a sequence (W (n))n≥0 is only defined for n ≥ c,
we assume that the values of W (n) for n ∈ [0, c) are arbitrary.

Theorem 4. Let (U(n))n≥0 be a sequence with values in a finite set A. Let q ≥ 2 be an
integer. Suppose that there exist four nonnegative integers t, a, b, n0, and qt+1 functions from

the set Aa+b+ q
t+1

−1

q−1 to A, denoted f0, f1, . . . , fqt+1−1, such that ∀j ∈ [0, qt+1− 1] and ∀n ≥ n0

U(qt+1n + j) =
fj(U

−a(n), . . . , U−1(n), U0(n), U1(n), . . . , U b(n), U2(n), U3(n), . . . , U qt+1
−1

q−1

(n))

where U1 = U, U2, . . . , U qt+1
−1

q−1

are the subsequences (U(qin + j))n≥0 with i ∈ [0, t] and j ∈

[0, qi − 1], written in some fixed order. Then the sequence (U(n))n≥0 is q-automatic.

Before proving this theorem we recall the Euclidean division of an integer in Z by a
positive integer.

Lemma 5. Let S be an integer in Z and Q be a positive integer. Then there exist X ∈ Z

and an integer Y , 0 ≤ Y < Q, such that S = QX + Y .

Proof. Let X = ⌊S/Q⌋ and Y = S−Q⌊S/Q⌋. Then 0 ≤ S/Q−⌊S/Q⌋ < 1, so, multiplying
by Q, we get 0 ≤ Y < Q. �

Proof of Theorem 4. To prove that the sequence U = (U(n))n≥0 is q-automatic, it suffices
to find a finite set of sequences E that contains U , such that if V = (V (n))n≥0 belongs to E ,
then, for any r ∈ [0, q − 1] the sequence (V (qn + r))n≥0 also belongs to E . Fix two positive

integers A and B such that A ≥ max(n0,
q(a+1)
q−1

) and B ≥ q(b+1)
q−1

. Recall that U1 = U ,

U2, . . . , U qt+1
−1

q−1

are the sequences (U(qin + j))n≥0 with i ∈ [0, t] and j ∈ [0, qi − 1]. Also

recall that the sequence Uα
k is defined by Uα

k (n) := Uk(n + α). Let E be the (finite) set of
sequences defined by

V ∈ E ⇐⇒ ∃ℓ ∈ [1,
qt+1 − 1

q − 1
], ∃k ∈ [−A,B], ∀n ≥ A, V (n) = Uk

ℓ (n).

Now let V be a sequence in E . Take r ∈ [0, q−1]. There exist ℓ ∈ [1, q
t+1−1
q−1

] and k ∈ [−A,B]
such that for all n ≥ A, we have

V (qn + r) = Uk
ℓ (qn+ r) = Uℓ(qn+ r + k).

Hence for some i ≤ t and j ∈ [0, qi − 1]

V (qn + r) = U(qi(qn+ r + k) + j).

Write qi(r + k) + j = qi+1x+ y, with x ∈ Z and y ∈ [0, qi+1 − 1], so that

V (qn+ r) = U(qi+1(n+ x) + y).
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Note that
qi+1x ≤ qi+1x+ y = qi(r + k) + j < qi(r + k + 1)

and
qi+1x = qi(r + k) + j − y > qi(r + k)− qi+1

Hence
r + k − q

q
< x <

r + k + 1

q
·

We distinguish two cases.

Case 1: i < t. Then i+ 1 ≤ t. Thus there exists ℓ′ ∈ [1, q
t+1−1
q−1

] such that, for n ≥ A,

V (qn + r) = U(qi+1(n+ x) + y) = Uℓ′(n+ x) = Ux
ell′(n).

Now x > r+k−q

q
≥ r−A−q

q
≥ −A−q

q
≥ −A (since A ≥ q(a+1)

q−1
≥ q

q−1
), and x < r+k+1

q
≤ q+B

q
≤ B

(since B ≥ q(b+1)
q−1

≥ q

q−1
). This shows that the sequence (V (qn+ r))n≥0 belongs to E .

Case 2: i = t. Then i + 1 = t + 1. From the hypothesis and the condition A ≥ n0, we can
write, for n ≥ A,

V (qn+ r) = U(qt+1(n + x) + y) =
fy(U

x−a(n), . . . , Ux−1(n), Ux(n), Ux+1(n), . . . , Ux+b(n), Ux
2 (n), U

x
3 (n), . . . , U

x
qt+1

−1

q−1

(n)).

To prove that the sequence (V (qn+r))n≥0 belongs to E , it suffices to prove that all sequences

Uβ for β ∈ [x − a, x + b] and all sequences Ux
ℓ for ℓ ∈ [1, qt+1−1

q−1
] belong to E , and to use

composition of maps. But we have

β ≥ x− a >
r + k − q

q
− a ≥

−A− q

q
− a ≥ −A

(recall that A ≥ q(a+1)
q−1

) and

β ≤ x+ b <
r + k + 1

q
+ b ≤

q +B

q
+ b ≤ B

(recall that B ≥ q(b+1)
q−1

). This implies that all sequences occurring in the arguments of fy
above belong to E . �

Remark 6. Theorem 4 above is similar to (but different from) [3, Theorem 6, p. 5] on k-
regular sequences. That theorem implies Theorem 4 above in the case where the maps fj
are linear.

Corollary 7. The sequence F = (F (n))n≥0 is 2-automatic.

Proof. It suffices to use the theorem recalled in the first section, after having extended the
sequence F by F (0) = 0. �
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3 An explicit automaton

In this section we provide an explicit automaton1 to calculate the sequence F .

The automaton is constructed in two stages. First, we give an automaton A with the
property that reading n in base 2 takes us to a state q with the property that the four
values F (n + a) for −2 ≤ a ≤ 1 are completely determined by q. Next, we show that A
can be minimized to give an automaton B computing F (n). We remark that we assume
throughout that the automaton reads the ordinary base-2 representation of n from “left to
right”, ending at the least significant digit, although we do allow the possibility of leading
zeros at the start.

Let us start with the description of A = (Q,Σ,∆, δ, q0, τ). The machine A has 33 states
with strings as names; Σ = {0, 1}; ∆ = {0, 1, 2, 3, 4}4, q0 = ǫ. The transition function δ and
the output map τ are given in Table 1 below.

We introduce some notation. Let [w] denote the integer represented by the binary string
w in base 2. Thus, for example, [00110] = [110] = 6. Note that [ǫ] = 0, where ǫ denotes the
empty string. If F is our sequence defined above, then by F (a..a+ i−1) we mean the string
of length i given by the values of the function F at a, a + 1, . . . , a+ i− 1.

Our intent is that if w is a binary string, then τ(δ(q0, w)) is the string of length 4 given
by F (n− 2..n+ 1), where n = [w]. (Note that we define F (0) = F (−1) = F (−2) = 0.)

To prove that this automaton computes F (n) correctly, it suffices to show that

(a) for each state q we have τ(q) = F ([q]− 2)F ([q]− 1)F ([q])F ([q] + 1); and

(b) if p = δ(q, a) for two states p, q ∈ Q and a ∈ {0, 1}, then F ([px]) = F ([qax]) for all
strings x.

Part (a) can be verified by a computation, which we omit. For example, since [111001111] =
463, the claim τ(111001111) = 2133 means F (461..464) = 2133, which can easily be checked.

Part (b) requires a tedious simultaneous induction on all the assertions, by induction on
|x|. Not surprisingly, we omit most of the details and just prove a single representative case.

Consider the transition δ(100, 1) = 110. Here we must prove that

F ([1001x]) = F ([110x]) (1)

for all strings x. We do so by induction on x. The base case is x = ǫ, and we have
F ([1001]) = F (9) = 2 and F ([110]) = F (6) = 2.

For the induction step, we use the fact that [4, Table 5] shows that F (2a) and F (2a+1)
is completely determined by F (a−2), F (a−1), F (a), and F (a+1). It thus suffices to check
that F ([1001x] + a) = F ([110x] + a) for −2 ≤ a ≤ 1; doing so will then prove (1) for x0 and
x1, thus completing the induction.

The only cases that require any computation are when [x] = 0 and a = −1,−2, or [x] = 1
and a = −2, or x is a number of the form 2j − 1 for some j ≥ 1 and a = 1.

1In honor of Alf van der Poorten, we cannot resist quoting Voltaire: “Impuissantes machines/ Automates
pensants mus par des mains divines.”
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Case 1: x = 0j for some j ≥ 0. If j = 0 then this is the assertion that F ([1001] + a) =
F ([110] + a) for −2 ≤ a ≤ 1, which is the same as the claim that F (7..10) = F (4..7). But
F (7..10) = 1221 = F (4..7).

Table 1: The automaton A

q δ(q, 0) δ(q, 1) τ(q)
ǫ ǫ 1 0004
1 10 11 0041
10 100 101 0411
11 110 111 4111
100 1000 110 1112
101 1010 1011 1122
110 1100 1101 1221
111 1110 110 2212
1000 1010 1011 2122
1010 1110 10101 2213
1011 10110 10111 2132
1100 1101 1110 1321
1101 11010 11011 3212
1110 11100 11101 2122
10101 101010 101011 1223
10110 10110 10111 2232
10111 1101 1110 2321
11010 101010 110101 1222
11011 111 1000 2221
11100 11010 111001 2213
10111 111010 10111 2132
101010 1010100 11101 1322
101011 101010 101011 3223
110101 1100 1101 3221
111001 1010 1110011 2223
111010 110100 1110101 2232
1010100 11010 111001 3213
1110011 10110 11100111 2133
1110100 11101000 10111 1332
1110101 1101 1110 3321
11100111 1010100 111001111 2323
11101000 110100 1110101 3232
111001111 111010 11100111 2133
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Otherwise j ≥ 1. Then [1001x]− 1 = [10010j]− 1 = [10001j] and [110x]− 1 = [1100j]−
1 = [1011j]. Now by induction we have F ([10001j]) = F ([100011j−1]) = F ([10111j−1]) =
F ([1011j]), as desired.

Similarly, [1001x]−2 = [10010j]−2 = [1001j−10]. Also [110x]−2 = [1100j]−2 = [101j0].
Then by induction we have F ([1001j−10]) = F ([10011j−20]) = F ([10111j−20]) = F ([101j0]),
as desired.
Case 2: x = 0j1 for some j ≥ 0. Then [1001x] − 2 = [10010j1] − 2 = [10001j+1]. Also
[110x]− 2 = [1100j1]− 2 = [101j+2]. By induction we have F ([10001j+1]) = F ([100011j]) =
F ([10111j]) = F ([101j+2], as desired.
Case 3: x = 1j for some j ≥ 1. Then [1001x]+1 = [1010j+1]. Similarly [110x]+1 = [1101j]+
1 = [1110j]. By induction we have F ([1010j+1]) = F ([101000j−1]) = F ([11100j−1]) =
F ([1110j]), as desired.

This completes the proof of correctness of a single transition.
Ultimately, we are not really interested in computing τ(q), but only the image of τ(q)

formed by extracting the third component, which is the one corresponding to F (n). This
means that we can replace τ by τ ′, which is the projection of τ along the third component.
In doing so some of the states of A become equivalent to other states. We can now use the
standard minimization algorithm for automata to produce the 20-state minimal automaton
B = (Q′,Σ,∆, δ′, q0, τ

′) computing F (n). Table 2 below gives the names of the states of Q,
and δ′ and τ ′ for these states.

4 Concluding remarks

It would be interesting to know whether the first difference sequence of the variant of Hof-
stadter’s, i.e., the sequence (V (n + 1) − V (n))n≥0, is also 2-automatic. We already know
that it takes only finitely many values [4, Theorem 1, page 5]. Of course it might well be
the case that this sequence is not automatic: in a very different context, think of the clas-
sical Thue-Morse sequence which is 2-automatic, but whose runlength sequence is not [1].
It would be also interesting to determine for which sequences Qr,s (with the notation in the
introduction) the frequency sequence is automatic.
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Table 2: The automaton B

q δ′(q, 0) δ′(q, 1) τ ′(q)
ǫ ǫ 1 0
1 10 11 4
10 100 101 1
11 110 111 1
100 101 110 1
101 1010 1011 2
111 1110 110 1
1010 1110 10101 1
1011 1011 1100 3
1100 1101 1110 2
1101 11010 11011 1
1110 11100 1011 2
10101 1110 10101 2
11010 1110 110 2
11011 111 101 2
11100 11010 111001 1
111001 1010 1110011 2
110011 1011 11100111 3
11100111 11100 1110011 2
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