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We find general solutions to the generating-function equation cflx)zq = F(Z)X7 where X is a
complex number and F'(z) is a convergent power series with F'(0) # 0. We then use these results to
derive finite expressions containing only integers or simple fractions for partition functions and for
Euler, Bernoulli, and Stirling numbers.

I. INTRODUCTION AND MAIN RESULT

Generating functions are often used as a compact way to define special number sequences and functions as the
coefficients in a power-series expansion of more elementary functions. One example of this is the partition function
p(n), (sequence A000041 in OEIS [1]), the number of partitions of n into positive integers. It has the generating
function (E]
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Some other examples of generating functions are those for the Bernoulli and the Euler numbers:
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The solutions of generating-function equations can often be found from recursion relations. Some of them can also be
calculated directly by using various expressions, such as Laplace’s determinental formula for the Bernoulli numbers
[3], which we write in the form:
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Vella @] has derived expressions for B,, and for E,, as sums over the partitions (or, alternatively, over the compositions)
of n using a method based on the Faa di Bruno formula for the higher derivatives of composite functions. Concerning
the partition function, Rademacher ﬂz, B] derived an exact formula, an improvement over the Hardy-Ramanujan
asymptotic formula, which however involves an infinite sum of rather complicated, non-integer terms. More recently,
Bruinier and Ono ﬂa] have derived an explicit formula for the partition function as a finite sum of algebraic numbers
that requires finding a sufficiently precise approximation to an auxiliary function.

In the following theorem, we present methods for solving generating-function equations for the case where the
right-hand side is expressible in terms of a convergent, non-zero-near-the-origin power series. We will then apply this
theorem to solve for the partition function and other objects which have the appropriate generating functions. In the
following, the notations
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will denote, respectively, multinomial coefficients and generalized binomial coefficients.
Our main result is:

Theorem 1 Let F(z) be a holomorphic function in a neighborhood of the origin with the series expansion Z;O:O aqz9,

with ag # 0, and let X be a complex number. Then the coefficients c](DX) in the generating-function equation

Z c](DX)zp =F(2)¥
p=0

are given by the two equivalent expressions:
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where K =k +---+ k&, and
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The proof of (II) requires some additional machinery and will be postponed to Section II.
Proof of (I): Since (ap + a1z +--+)% — (ap + a1z + - - - + a,2P)* ~ zPT1 the coefficient of the z? term is the same
in the two sums, so in determining the c](DX) coefficient we need deal only with the finite sum. Using the generalized

binomial theorem, we write
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In the second line we’ve applied a multinomial expansion to (Zqzl aqz?)N. We now write Z2mkm — Yoo 2%05, 5 mkm

and interchange the order of the sums:
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After the interchange, the k,’s are fixed in the sum over N and only the N =k +--- + k, (= K) term contributes.
We are interested in the coefficient of z? in this sum, which is thus
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As stated above, this is also the coefficient of zP in the infinite sum. QED.

The Kroneker delta in eq.(6) restricts the sums over the k’s to a sum over the partitions of p. The multinomial
coefficient in this formula counts the number of unique ways the parts can be ordered. As a sum instead over
compositions, eq.(6) becomes
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As a corollary, we have the multinomial identity:
Corollary 1 For fized p,
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Proof: We set X = —1 and a, = 1/¢!, so that (3~ a,29)* = e~* and so o = (—=1)?/pl. Then, from eq, (7),
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Multiplying both sides by p! gives the result.
QED
We now apply Part (I) of Theorem 1 to eq.(1) and use Euler’s pentagonal theorem:
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where the exponents 0,1,2,5,7,12,... are generalized pentagonal numbers (sequence A001318): ¢, = (3m? —

m)/2, m=0,£1,4+2,--- [2]. p(n) is then equal to a sum over the pentagonal partitions of n:
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where ¢y is the largest GPN < n. Eq.(10) thus expresses p(n) as a finite sum of integers. The number of terms in
the sum is the number of partitions of n into generalized pentagonal numbers, (sequence A095699). For example, 9
has 10 pentagonal partitions, (9=7+2=74+141=---=1+4+---4+1), and p(9) is
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From the as-yet-to-be-proven Part IT of the theorem, p(n) is also expressible as a (k+ 1) x (k+ 1) determinant, for
any integer k > n;
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This reduces to the form stated in the theorem by successive expansions by minors along the top row. Form (11) will
prove more useful in some of the following discussions, but it can be reduced (by expansions in minors) to the n X n



determinant,
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II. MATRIX FORMALISM

Matrices which are constant along all diagonals are Toeplitz matrices. We will be concerned in this section with
lower-triangular Toeplitz (LTT) matrices. A nondegenerate LTT matrix is one with non-zero diagonal elements; if
the diagonal elements are equal to 1, it is then a unit LTT matrix.

Infinite-dimensional LTT matrices have the form
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The determinant of a k-dimensional lower-triangular matrix is the product of it’s diagonal elements; if the matrix is

also Toeplitz, then its determinant is ak.

We define the infinite-dimensional lower shift matrix J as

0
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The pth power of J has elements (JP);; = d,,_;; these matrices obey the relations JPJ? = J9JP = JPt4. Any
infinite-dimensional LTT matrix can be expanded out in non-negative powers of J:
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The product of two infinite-dimensional LTT matrices is
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A similar expression can be written for finite-dimensional LTT matrices, with the J’s replaced by finite lower shift
matrices. LTT matrices, whether finite- or infinite-dimensional, thus commute with one another.

Lemma 1 Let A be an infinite-dimensional nondegenerate LTT matrix:
o0

A= Zanq, ag # 0.
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Then the inverse of A is an LTT matriz with coefficients
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for any integer k > p.
Proof: We have
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and therefore Y o0 bsJ* = A™'. QED

It is clear that this proof still holds if the J’s are replaced by finite-dimensional lower shift matrices and the sums
over ¢ and s are finite. Thus, the coefficients of the inverse of a finite k-dimensional (nondegenerate) LTT matrix are
given by the same formula, and we have the result:

Lemma 2 The inverse of a k-dimensional LTT matrix is equal to the k-dimensional truncation of the inverse of the
corresponding infinite-dimensional LTT matrix.
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Lemma 3 If A= Zgio apJ? is an infinite-dimensional nondegenerate LTT matriz and X is a complex number, then
A raised to the power X is
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Proof: As before, we first consider the finite-sum case. Let z be some nonzero complex number. We then define Z
as the infinite row vector
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Multiplying Z by J on the right, we have ZJ = 2Z. Therefore, ZJ9 = 297 and, by linearity, Z(>_ ¢, J?) = (3_ cq29)Z.
Then, if F(z) is a holomorphic, nonzero function of z in a neighborhood U of the origin, ZF(J) = F(z)Z for all
z € U, where F(J) is the LTT matrix obtained by replacing z by J in the Taylor series expansion of F(z). Since
(> oo apzP)X, ag # 0 is such a function, we can write,
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z is otherwise arbitrary, so we have
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For fixed s < p, k11 =--- =k, = 0 in the sums over the k’s as a result of the restriction s = ky + - - - + pk,:
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The equality in the lemma is then demonstrated by letting p — oo in this equation. QED
We now have the necessary machinery to prove the second part of Theorem 1.

Proof of Thm 1,(I1I): From the proof of Lemma 3, the coefficients in the expansion of (> apJp)X in powers
of J are the same as in the expansion of (> apzp)X in powers of z; i.e.,

Z cqz! = (Z aqzq> iff Z cqJ! = <Z anq> (23)
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We can therefore use Lemma 1, written in the form
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(taking k = p), with the replacement A = 3> a,J? — A = (X a,J?) ™ (and thus ag — 1/af), to solve for céX) as a
determinant in the form (II) in the theorem. QED.
In a straightforward fashion, eq. (23) generalizes to
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The ¢, coefficients are then:
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Gradshteyn and Ryzhik [§] give an equivalent expression for these coefficients for the case n =2, X3 =1, Xo = —1.
Returning to the partition function: MacMahon’s recurrence relation [2],
p(n) —p(n —1) =p(n = 2) +p(n = 5) + p(n = 7) = p(n — 12) —p(n = 15) + --- = 0, (27)

follows directly from expression (11); setting k = n in that equation, the sum on the right in (27) is equal to the
determinant
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which is zero since the first and last columns are equal.
Expressed in terms of the J matrices, expression (12) for p(n) is

qm <n+1
p(n) = det |—JT + Z (—1)m+ ( Jm=1Bm+2)/2 | j(m+1)(3m-2)/2 )] (28)
nxn
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where J7 is the transpose of J and the notation [ ]nxn means the n x n truncation of an infinite-dimensional matrix.
And, by relation (23), we have the compact matrix equivalent of p(n)’s generating-function equation:
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p(1)  p(0) 0 0 -1 1 0 0
p(2)  p(1) p(0) 0 = | -1 -1 1 0 - (29)
p(k) plk—1) p(k—2) - p(0) do dos dis o 1

The generating function for the number of partitions in which no part occurs more than D times is [2]
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We have then from (26), with X1 = —Xo =1,
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By expanding this determinant by minors along the last column, and using the expression (11), we get the relation

+Z p(n — (D 4+ 1)gm),

(33)

which is a generalization of (27), the D = 0 case. If we now take D = 1, p1(n) = ¢(n) = the number of partitions of
n into distinct integers (A000009). This is also, from a result due to Euler [9], the number of partitions of n into odd

integers, and so we have for the odd partition function
q(n) = p(n) —p(n —2) —p(n —4) +p(n —=10) + -+ + (=1)"p(n = 2pm) + - - .
III. APPLICATION TO BERNOULLI, EULER AND STIRLING NUMBERS

Vella’s expression for the nth Bernoulli number, (eq.(a) in his Theorem 11) is, in my notation,

n ( n
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Applying Part I of Theorem 1 to the generating function (2a) for Bernoulli numbers, we have
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As a sum over compositions, this expression becomes
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to be compared to Vella’s result above.
Another expression for the (even-numbered) Bernoulli numbers is obtained from the generating function
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From this we have
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while from the generating function for the Euler numbers (A000364), eq.(2b), we obtain the two expressions,
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By, and FEy, can thus both be expressed as sums over the even compositions of 2p. Since there are no even
compositions of odd numbers, these expressions can be extended to include all of the odd-numbered numbers except
for By. We then have, more generally,

[n/2]
1 1 n
2-2 K=0 1<q1,....qx <|n/2) (2ql+1)(2QK+1) 21]17---7211K
(n #1),
[n/2] n
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This expression for F,, in a different notation, was previously derived by Vella, (eq. (¢) in Thm. 11 [4]). E, can
however also be expressed as a sum over the odd partitions/compositions of n — 1:

Proposition 1 For n >1,

Ln/2] _—
E,= Y (-1 > ( 21 )

o2 1—1
N=1 1<q1,..q2n 1< n/2] » 442N -1

Proof. The sum is over all compositions of n — 1 that contain an odd number of odd parts, which is an empty set
if n — 1 is even. Therefore E, = 0 for odd n, and we only have to prove this equation for even n. The equality is
trivially true for n = 2. We will show that both F, and

=3 DY Y ( » ) (42)

N=1 1<q1,---,q2n-1<p 2 =1, 281 — 1

satisfy the same recursion relation

asy = —1— pi 20 =1 9201, (43)
2p — 2(] 2p—2q-

q=1

Then the equality would, by induction, be valid for all p.
To prove this for Fs,, consider the expression
d 1 d 1

— 2sinh h2z — .
dz coshz +esinhz A cosh 2z dz coshz

This is equal to zero as a result of the identity cosh2z = 2cosh?z — 1. Expanding out sinh z and 1 / coshz and
performing the differentiation in the 1st and 3rd terms, we have, for each power of z,

o 2 L 2uE, ,,

SRR Dhem ety Al (4

which can be rearranged into the form of the recursion relation (43) above.
On the other hand we have
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where we've separated off the N = 1 term and made the substitutions g3 — k1,...,g2ny—1 — kon—_3. We have then,
with N =L +1,

’ (2q1 = 1)! 2612 = D! (2p—2q1 — 22 + 1)!
q1=1¢g2=1
P—aq1—g2+1 p—q1—q2+1 p—q1—q2+1
2p—2q1 —2q2 +1
X —1)Eft ' 16
LZ—1 =1 kZ Zﬁ <2k1—1,...,2/€2L_1—1 (46)
= 1=1 kor—1=1

Setting ¢ = g1 + g2 — 1, this is

asp = — _P*1 - 2q (2p—1)!
w = ; qlz_:l<2q1— ) (29)!(2p —2¢ — 1)!

x (_1)LP§--- pi 2p—2a-1 . (47)
. Uy —1,... 2%y 1 —1

L= k1=1 kop—1=1

The sum over q; equals 22471, evaluated by expanding (1 + 1)2¢ — (1 — 1)?? binomially. The remaining sum over L
and ki, ...,kar—1 1S agp—24, and we again get relation (43). QED
The sum-over-partitions form follows in a straightforward fashion:

_ K
By = (-1)P7'(2p—1)! E (kl X >5zp1,z(2m1)km
vk

0<k1,....kp <2p—1

k k k
—1\" /1\™ —1)P v
1! 3! (2p —1)!
The sign of each term in this sum is (—1)P~ 2 ™km while the sign in the sum-over-compositions form is (—=1). To

check that the signs agree, note that 2p — 1 = Z(Qm — Dk, = 2> mk,, — K. But K is the number of factorials

in the denominator of each term, which in the sum-over-compositions form is 2N — 1. So > mk,, = N +p — 1 and
(e — (1),

As an example of the even and the odd expansions for F,, we have:

el 2.2 3 3 4 1
o = 10Tt o T ael T 2rel  2uE Tapal o
13 6 1 5 0 7 1
=9 ( TR T TR T T T T T LA T TR F) = 50,521 (49)

In a similar fashion, Theorem 1 can be applied to the Euler and Bernoulli polynomials, using their generating
functions:

X By q 2e** = 1 — )% + (—z)F o

> g ez+1:2{kz_ozk( s >} , (502)
— B,(z) 1 (T —z)ktt o+

; q(!)z - {Z ' k+1)(! : } ' (50b)

The results are straightforward and we omit writing out the explicit expressions.
Bell polynomials [7] are defined as

Bpr(®y,.. s Tn_py1) = E Ok kot thn 10,3, mknm

nl T ko To ki1 kn—k
(=) s . 1
ol k! (1!) ((n—k+1)! (51)
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Stirling numbers of the 2nd kind are equal to the values of these polynomials at x1 = zo = --- =2 = 1:

S(n,n—p) = Bpnp_p(x1,22,... ,xp+1)|m:,,,:mp+1:1

= Z 51))27”]9771
(n_p)!ogkl,...,kpgp ( K ki,....kp

() (3) () ©

where we’ve set k = n —p and in the last line we’ve summed over kg. A similar expression for Stirling numbers of the
1st kind can be found using their relation to the n-th order Bernoulli numbers [3],

s(n,n —p) = (n;1>B£”), (53)

which have the generating function

b Bék) q P
R P (54)

q=0

Using Theorem 1, we get for s(n,n — p):

_ (n=1) n+ K -1 K
s(n,n—p) = 7(71_1)_1)! Z ( K )(kh'”’kp)&p,zmkm

0<ki s kp<p

(&) &) () ©

Laplace’s formula (3) for the Bernoulli numbers corresponds to expression (36a) and follows from equation (2a) and
Part (II) of Theorem 1. Other matrix representations we can derive from this theorem are:

1 0 0 e 1
& 1 0
2p)! .
By = —2§p_)2 a5 3 1 s (56a)
! 1 1 .. 0
Ep+D)! @p-1)1 [2p—3)! 30
1 0 0 e 1
5 1 0
By = (20)! | 71 = 1 ; (56b)
1 1 19
2p)! (2p—2)! (2p—4)! 2!
n-
1 P 1
! 5 1 O
S(n,n—p) = (nﬁp)! I+ 2 . X O : ; (56¢)
1 1 —
(+D! P! 1 !
) n
1
n—1)! & 1 O 0
s(n,n—p) = (n(T—)l)' 4 . + O (56d)
1 1 —
G L !

Note that the size of the determinant for By, in (56a) is (p+ 1) X (p + 1), (as is the one for Ey, in (56b)), compared
with (2p + 1) x (2p + 1) using Laplace’s formula.
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IV. CONCLUSION

We have derived compact, closed-form expressions for partition functions and for Bernoulli, Euler and Stirling
numbers that contain only “simple” numbers and that require either finite summations or finding the determinants
or inverses of matrices. In particular, the partition function p(n) is given directly by a sum of integers, the number of
terms in the sum being the value at n of the pentagonal partition function.
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Appendix A: p(5k+4), p(7k+5), and p(25k + 24) determinants

For n =5k +4,7k+ 5, or 25k + 24, the dimension of the matrix in eq.(12) can be reduced to k + 1 by using one of
the identities below by Ramanujan |2, [10]:

= k (q5)5
> p(bk+4)¢" = 5 22 (Ala)
= (@)%
= (¢")3 (4")Z
p(Tk+5)g" = 7 112 4 49q ~1o=2 Alb
2 p(Tk+9) 0 0% (ALD)
oo 5\6 5\12 5\18
25k + 24" = 52631 0)% | 55 5oy (W 4 g7 a2 (o
2 p(25h+ 24)g %, T8 T pn
5)24 (q5)30
_’_510.63(‘1 o 4 gl2, 4 oo Alc
Tz TP g (Ale)

where (¢)oo = []7_; (1 — ¢™). The first identity, combined with eq.(26), gives us

p(bk +4)

—— = > (=1)™(2m 4 1)t/

m>0

1
5 0
+ <I+ Z (—1)’”J5m<3m1>/2> X O :
m==+1,£2,... 0
-1 (k41) x (k+1)
1 1
-6 1 0
9 -6 1 0
10 9 -6 1 0
- |-30 10 9 -6 1 0 , (A2a)
0 -30 10 9 -6 1 -5
1 0 =30 10 9 -6 1
42 11 0 =30 10 9 -6 0
(k+1)x (k+1)
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while the second one gives

SR >

8
(_1)me(3m1)/2>
m==+1,£2,...

4
+ Z (_1)m(2m+ 1)J7m(m+1)/2 (_1)me(3m1)/2>

(I+ >

m=+1,£2,...

7 0

+7J <I+ Z (—1)mJ7m<3m1>/2> X O :

m==+1,£2,... 0

—1 (k41) x (k+1)
1 1
-8 1 3
20 -8 1 2
0 20 -8 1 8
- |=-70 0 20 -8 1 -5 (A2b)
64 =70 0 20 -8 1 —4
56 64 —70 0 20 -8 1 —10
0O 56 64 —70 0 20 -8 5
(k+1)x (k+1)

(where we’ve used the Jacobi identity (1 —2z—22+25+2"7—--)3 =1-32+523—725+92104...). The matrices above
thus consist of an LTT “base” part and a “tower” part. The coefficients of the base matrix for p(5k + 4) correspond
to sequence A000729, the coefficients in the expansion of (Hk(l — :ck))ﬁ, while the coefficients of powers of J° in the
tower part is sequence A000728. Likewise, sequence A000731 gives the base matrix for p(7k + 5), while the tower part
involves a combination of sequences A000727, A000730, and A010816.

From the 3rd identity, the coefficients for the base matrix for p(25k 4 24) are given by the expansion

()2} = 1—31q +434¢* — 3565¢° + 18445¢"* — 575054¢° + 70091¢° + 227447¢" + - - - | (A3)
(sequence A010836); the tower part is from the expansion
63 (9)5(4°)% +5° - 52q (9)55(¢%)s2 +5° - 63¢° (9)52(¢°) o0
+5%6¢° ()% (672 +5" - ¢* (¢°) (A4)
= 63 + 4988¢ + 95751¢> + 766014¢> + 3323665¢* + 8359848¢°
+10896075¢° — 6659766¢" + - - -
and so we have, to this order,
1 63
-31 1 4988
434 =31 1 95751
—3565 434  —31 1 766014
P20 | ygu45 —3565 434 —31 1 3323665 (A5)
25 —57505 18445 —3565 434 —31 1 8359848
70091 —57505 18445 —3565 434 —31 1 10896075
227447 70091 —57505 18445 —3565 434 —31 —6659766
(k+1)x (k+1)
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We list below some sample calculations of partition functions using these determinants:

1 1
-6 1 0
p(24) =51 9 —6 1 0| =1575;
100 9 =6 1 0
-30 10 9 —6 0
1 1
-8 1 3
p(40) = 7 20 =8 1 2 = 37338;
0 20 —8 1 8
-70 0 20 -8 1 -5
64 —70 0 20 —8 —4
1 63
—-31 1 4988
434 =31 1 95751
p(199) — 25 —3565 434  —31 1 766014
18445 —3565 434  —31 1 3323665
—57505 18445 —3565 434 —31 1 8359848
70091 —57505 18445 —3565 434 —31 1 10896075
227447 70091 —57505 18445 —3565 434 —31 —6659766
= 3646072432125.

Appendix B: p(5k +a) and p(25k + a) determinants

One can ask if it’s possible to fill in some of the gaps in equations (A2a), (A2b) and (A5) and to get expressions
for p(5k + a), etc., for other values of a. In the following we will consider the problem of generalizing eqs. (A2a) and
(A5). Ramanujan [10] derived the relation

(@) _ (i +3¢]2) + ¢ P(JF +2¢J3) + ¢*/°(2JF + 4J3) + ¢*°(3J1 + ¢J3) + 5¢*° (B1)
(¢Y/%)0 JP—11q+ )2

(his eq.(20.5)), where he defined the functions Ji(q) and J2(g) by the equation

(q1/5)oo 7
(@)oo

J1 and J, are series expansions in ¢ with integer coefficients and exponents. Ramanujan then proved the identities

Ty — ¢\ + 25, (B2)

6
L —11g+¢*J; = ((q‘ff)))ﬁ ; Jia= -1 (B3)

(J1(q) and Jz(q) are given by sequences A003823 and A007325, respectively.) From the first identity and from (B1)
we have

> pn)g? = |(Jf +3¢12) + ¢ P (TP +2¢03) + ¢*P (27 + ¢J3)
n=0

3/5 4 4/5 (q5)io
+¢°"° (31 + qJ3) +5¢77 | =5, (B4)



and so

oo 515

S pkE = (T +3q0) Ll

= (@)%
- kE _ (73 2y (@°)3%
ZP(5k+1)q = (J{ +2¢J3) ~=5
= (@)%
- E _ 2 5y (@)%
= (@)%
c- E _ 4 (€°)3%
D p(Bk+3)¢" = BT +qJy) ~<=,
= (@)%

in addition to (Ala). Let

G
(@)oo = G1 = ¢"°(¢°) o0 + ¢*/°Ga; Jio = (q51)72 '
Then, for a = 0,1, 2, 3,4,
- 1 —a —a a
Y pBk+a)d* = v [ Fan (@) G0 + Ficaa(d®)50 *G5H ]
P (@)%
where F}, is the n-th Fibonacci number, with Fy = 0. We then have, making the replacement ¢ — J,
1
0
PGk +a) = | (D) + [ Fun (PG 0) + P d (05 a5 () ] < | () ;
0
-1
(k+1)x (k+1)
1 Xo
-6 1 X1
9 -6 1 Xs
0 9 -6 1 X3
=|-30 10 9 -6 1 Xy ,
0 =30 10 9 -6 1 X5
1 0 —-30 10 9 -6 1 X6
42 11 0 -30 10 9 -6 X7
(k+1)x (k+1)

where the elements X, (= Xfla)) in the tower matrix are determined for each value of a by the expansion
Forr1 (SO GY () 4 Faeo J(J°)25GET () = Xol + X1 J 4+ XoJ% + - -

The G’s can be expressed in terms of the Ramanujan theta function:

f(=¢* —¢*)? f(=¢,—q")? - 1)/2 -1)/2
Gi(q) = —""1"; Ga(q) =" f(a,b)= gn(nt1)/2pn(n—-1)/2
f(_Qa _q2) f(_Qa _q2) n:z—oo
However, it is more convenient to write them as the series expansions
o0
Gi(g) = -1+ qu(gokq) [1 G g?F g 2R 20k3 L B0kT _ 32K48 _ (42k+1d g q50k+20}
k=0

_ 1+q_q3_q7_q8_q14+q20+q29+q31+q42_q52+“.7

oo
GQ (q) — qu(30k+7) [_1 + q6k+1 _ q10k+2 + q16k+4 + q30k+11 _ q36k+15 + q40k+18 _ q46k+23]
k=0

4P g g BB T M O T

15
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which follow directly from (B5). (G1(q) corresponds to sequence A113681, and —Ga(q) to sequence A116915.) In
column-vector form, the first terms in the expansions from eq. (B8) are:

1 1 2 3
1 ) 3 4
9 -1 5 -4
-3 4 —10 7
XxO_ | —u |, xo-| -], xo=| 3| x®_| -16 |,
—10 -7 -9 3
10 -5 —11 —17
—10 2 —8 —13

with the coefficients for X(*) being given in (A2a).
We can generalize eq.(A5) to an expression for p(25k + a) for a = 4,9, 14 and 19 following Ramanujan’s derivation
of the identity (Alc)[10]. We make the replacement ¢ — ¢'/® in eq. (Ala) and get

ip(Sk +4)¢"° =5 (@)% _ 5 (a)2 ! (B10)
k=0 (@'/?)% (@)% (J1 —q/5 +¢*/51)5

To simplify the notation, we define z = ¢/J? = —qJ3. Then
Ji— P+ PP T = (1 — 25— 2?%) = (1 + 2% /) (1 — ¢ 2/P) (B11)

where ¢ = (/5 + 1)/2, the golden ratio. We have that

o 1/5 2,.2/5 _ .3.3/5 4,.4/5
1 :1 axr’'° 4+ a“x a’x + a*x . (B12)
1+ axl/5 14+ a’z
Then
1 B 1
1—gl/5 — g2/5 (1+21/5/9)(1 — pxt/>)
1— :1:1/5/¢)+ :1:2/5/¢)2 _ :1:3/5/¢)3 LBt 1 4 a5 4 2225 ¢ $3a3/5 4 plat/
B 1+ x/¢° 1 — ¢z
1 =32+ (14 22)2Y° + (2 — 2)2?/5 + (3 + x)2%/® + 5a?/>
_ (B13)
1—11x — 22
The denominator in (B13) is
J>—11 275 1 6

J? ~ T (@)

The numerator in (B13) is to be raised to the sixth power in eq.(B10). We define the functions H,(z) to be series
expansions in z with integer coefficients and exponents such that

6
[1 — 3z + (1+22)2'° + (2 — 2)2¥° + (34 2)2%/5 + 52Y/°| = Hy(x) + Hy(x)z'/® + Hy(zx)x?/®

+ Hy(x)23/® + Hs(x)x*/® (B15)
Expanding the left side of this equation and collecting terms, we get
Hi(z) = —982° 499392 — 10771227 + 16703125 — 279182° + 1270112* 4 1605522> + 327842 + 858z + 1
Hy(x) = 272% — 48062° + 7875827 — 17198425 4+ 986672 + 789862 + 1765922 + 5264422 + 2138z 4 6

—62° + 21382% — 5264427 + 17659225 — 789862° 4 986672 + 17198423 + 787582 + 4806x + 27
z° — 858z% + 3278427 — 16055225 4+ 1270112° + 27918z* + 1670312> + 10771222 + 9939z + 98
31528 — 1864027 + 1393052°% — 1270202° + 1064252 + 1270202> + 13930522 + 18640z + 315

€T

4

(z)
3()
(x)
(z)

T T

5T



Then, changing back to the variable ¢, eq.(B10) is

> p(k+4)¢"° = 5

k=0

and we have

> p(25k+4)¢" =5

k=0

> p(25k+9)¢" = 5

k=0

> p(25k+14)¢" = 5

k=0

> p(25k+19)¢" = 5

k=0

> p(25k+24)¢" = 5

k=0

(¢°)3
(9)38

(¢°)32
(q)3!

+ 27918 ¢°Jo + 167031 ¢°J3 + 107712 ¢"J3" + 9939 ¢°J3° + 98 ¢° J3']

(¢°)3
(9)38

+ 98667 ¢°J5 + 171984 ¢°J] + 78758 " J5* + 4806 ¢*J3" + 27 ¢° J3?]

(¢°)32
(¢)3}

+ 78986 ¢°J3 + 176592 ¢°J5 + 52644 ¢" J,* + 2138 ¢*J3® + 6 ¢° J3?]

(¢°)32
(¢)3}

+ 127011 ¢°J3 + 160552 ¢°J3 + 32784 ¢" Jy* + 858 ¢*J3° + ¢° J3*]

2 (QS)ig
(9%

(I3 Hala) + T Ha(@)a"/® + T2 Ha(q)g*® + TP Ha()g*/® + T2 He(a)a* )

[ J7* 4858 ¢J1? + 32784 ¢*J{* + 160552 ¢°J{ + 127011 ¢*J;

[ 6J7 + 2138 qJ1® + 52644 ¢*J}* + 176592 ¢* J} + 78986 ¢* J;

[ 27J7% + 4806 qJ{ " + 78758 ¢*J{* + 171984 ¢* J{ + 98667 ¢*J7

[ 987" 49939 qJ{® + 107712 ¢ J{' + 167031 ¢*J7 + 27918 ¢*.J;

[ 6370 + 3728 qJ1° + 27861 ¢ J1° + 25404 ¢*J} + 21285 ¢*

+25404 ¢°J3 + 27861 ¢°J3° + 3728 " J,° + 63 ¢ J5°]

17

(B16)

The expression on the right in the last equation above reduces to Ramanujan’s result in (Alc) upon the substitutions

JP 4 ¢T3
O g0
H 4y
T+ I3

where

X +11 gq,

X2 422 ¢X +123 ¢,
X3 433 gX? +366 ¢°X + 1364 ¢°,
X4 444 gX3 +730 ¢ X? + 5412 ¢3X + 15127 ¢*,

As before, the Z,, coefficients in the p(25k + a) determinant

p(25k +a)=5-

1
-31 1
434 -31
—3565 434
18445 —3565
—57505 18445

70091 —57505
227447 70091

1

=31 1

434 -31 1
—-3565 434 =31 1
18445 —3565 434 -31 1
—57505 18445 —3565 434 —31

Z
Zo
Z3
Zy

Zg
Z7

(k+1)x (k+1)

(B17)
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are obtained by an expansion in powers of ¢ of the numerators on the RHS ’s of these generating-function equations.
We have, for a = 4,9,14, 19,

1 6 27 98

882 2276 5400 11997

49362 92646 166697 287316

768246 1198566 1811682 2672825
z@ — | 5380497 |, z® = | 7354172 |, z(H = | 9871992 |, z(9) — | 12906450
20802996 25710039 30828786 36553062
47413915 51224670 55015749 54917174
46923084 39450895 20079168 2443563

Appendix C: Y p(n)z" determinants

Expression (11) for p(n) can be used to express finite sums of the form > p(n)z™ as determinants. We have

1 1
11 1z
2
. . -1 -1 1 1/x
Yopmat =aF Yo Fpm)y =ak| 0 -1 -1 - 1/a® (c1)
n=0 n=0 . . :
di—1 dr—2 1 1/akt
dk dk—l -1 1/$k

(k+1)x (k+1)

The tower part of the matrix can be expressed as

1

a-s2 ()

(k+1)x (k+1)
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We now multiply the determinant in eq. (C1) by the determinant of (I — J/z), (which is equal to 1), and get

1 1
-1-1/z 1 0
. —1+1/z -1-1/z 1 0
> pn)a" = 2* 1/x “141/z —1-1/z 0
n=0 .
dp—1 —dp—2/x dp—g —dy_3/x 1 0
dk—dk_l/x dk_l—dk_g/.%' —1—1/$ 0 (k+1)x (k+1)
z+1 —x
rz—1 z+1 —x
-1 rz—1 r+1
= 0 -1 r—1 ’ (C2)
dip_o —xdp_1 dip_3 — xdp_o cee r+1 —=x
dip—1 —xdy,  dip_o — xdp_1 r—1 z+1 Exk

where in the last line we’ve expanded the (k + 1)-dimensional determinant by minors along the final column and then
taken the factor (—1)*z* inside the resulting k-dimensional determinant, multiplying each of the columns by —z. The
final result can be written in a more compact notation as

k gm <k+1
Zp(n)xn —det |—2JT 4T+ Z (—1)™ [Jm(?;m—l)/2 4 gmBmAD/2 _ o g(m=1)(3m+2)/2 _ xJ(m+1)(3m—2)/2H (C3)
n=0 m>0 kxk
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