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Abstract. This paper studies partitions in the space of antimonotonic
boolean functions on sets of n elements. The antimonotonic functions
are the antichains of the partially ordered set of subsets. We analyse and
characterise a natural partial ordering on this set. We study the inter-
vals according to this ordering. We show how intervals of antimonotonic
functions, and a fortiori the whole space of antimonotonic functions can
be partitioned as disjoint unions of certain classes of intervals. These in-
tervals are uniquely determined by antimonotonic functions on smaller
sets. This leads to recursive enumeration algorithms and new recursion
relations. Using various decompositions, we derive new recursion formu-
lae for the number of antimonotonic functions and hence for the number
of monotonic functions (i.e. the Dedekind number).

1 Introduction

The nth Dedekind number counts the number of antichains of subsets of an
n-element set or the number of elements in a free distributive lattice on n gener-
ators. Equivalently, it counts the number of monotonic functions on the subsets
of a finite set of n elements [1,6]. In 1969, Kleitman [4] obtained an upper bound
on the logarithm of the nth Dedekind number which was later improved by
Kleitman and Markowsky [5] in 1975, namely

(1 +O((logn)/n))

(

n

⌊n/2⌋

)

.

In 1981, Korshunov [3] used a more complicated approach to give asymptotics
for the nth Dedekind number itself. All these proofs were simplified by Kahn [2]
in 2002 using an “Entropy” approach. Finding a closed-form expression for the
nth Dedekind number is a very hard problem, also known as Dedekind’s problem
and its exact values have been found only for n ≤ 8 [7] :

2, 3, 6, 20, 168, 7581, 7828354,

2414682040998, 56130437228687557907788.

This is sequence A000372 in Sloane’s Online Encyclopedia of Integer Sequences
[6].

Monotonic boolean functions on sets of numbers are boolean-valued functions
that preserve inclusion (A ⊂ B ∧ f(B) ⇒ f(A)). A monotonic boolean function
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f is uniquely determined by the largest subset S for which f(S) = true. These
largest subsets define another category of functions which we will call antimono-
tonic. These correspond to the antichains in the lattice defined by set inclusion
[8].

The main contribution of this paper is an algebra of intervals for the set of
antimonotonic functions. The algebra is based on the natural partial ordering
on this set. Given two comparable antimonotonic functions α ≤ β according to
this ordering, the interval [α, β] is the set of antimonotonic functions γ satisfying
α ≤ γ ≤ β. We demonstrate how the space of antimonotonic functions on a finite
set, and in fact any of its intervals, can be decomposed as a discrete union of
intervals with border elements from lower dimensional subspaces. This result is
based on two decomposition theorems, the second being a consequence of the
first. The first theorem starts from a general antimonootonic function and uses
the sets inside this function to generate the lower dimensional subspaces. The
second theorem uses a partition of the basic set of n elements to genereate the
antimonotonic function. The latter theorem allows decompostion with somewhat
different properties. As applications of the decomposition, we derive a number
of recursion formulas for Dedekind numbers. These formulae are new to the best
of our knowledge. Another application is a class of algorithms for enumeration
based on recursive sectioning of the intervals We prove finiteness of these algo-
rithms and argue that some of these algorithms are of output-polynomial time
complexity.

In section 2 we give a definition of the concept of monotonic functions, define
partial order on monotonic function and characterise immediate succession. In
section 3 we define antimonotonic functions, give the well known isomorphism
with the monotonic functions and derive the characterisation of the immediate
succession for antimonotonic functions. In section 4 we define the well known join
and meet operators as well as a convenient projection operator. A fourth operator
is introduced which plays an important role in the decomposition theorems that
follow. Apart from the introduction of the latter operator, the first three sections
mainly serve to set the notations. In section 5, we introduce our intervals of
antimonotonic functions. In section 6, the decomposition of an important c lass of
intervals - intervals of uniform span - is discussed. In section 7, the decomposition
of general intervals is studied and an interval based enumeration algorithm is
given. We summarise our results in section 8 and anticipate on further work.

2 Partial ordering on monotonic functions

Given a positive integer n, we denote by Pn the set of the positive integers less
than or equal to n. We are interested in boolean functions defined on all subsets
of Pn, which we denote as 2Pn . Any such boolean function f is uniquely defined
by the set f−1(true). We will not distinguish and consider f as a function or as
a set whichever is the clearest. In other words, for a boolean function f and a
set X ⊆ Pn, we have

X ∈ f is equivalent to f(X). (1)



The following property defines monotonicity.

Definition 1. Monotonic boolean functions
A monotonic boolean function on 2Pn is a boolean-valued function f such that

∀S ⊆ S′ ⊆ Pn : f(S′) ⇒ f(S). (2)

We denote by MT (n) the set of monotonic boolean functions on Pn.

The set MT (n) may be partially ordered by the following natural order relation.

Definition 2. Partial ordering of MT (n)
Given two monotonic boolean functions f1, f2 ∈ MT (n), we define the partial
order relation ≤ as

f1 ≤ f2 ⇔ ∀S ⊆ Pn : f1(S) ⇒ f2(S) (3)

We define strict inequality in the usual way by

f1 < f2 ⇔ f1 6= f2 ∧ f1 ≤ f2 (4)

We will also use ≥ (>):
f ≥ (>)g ⇔ g ≤ (<)f (5)

The immediate successors of a function in MT (n) are defined by

Definition 3. Immediate succession in MT (n)
Given functions f, g ∈ MT (n), we say that g is an immediate successor of f iff

f < g ∧ ∄h ∈ MT (n) : f < h < g (6)

We denote the set of immediate successors of f ∈ MT (n) by Next(f) and if
g ∈ Next(f) we say f <im g or equivalently g >im f .

The following lemma allows to construct immediate successors in MT (n).

Lemma 1. Given f, g ∈ MT (n), we have

f <im g ⇔ ∃S ∈ 2Pn : g\f = {S} ∧ ∀X ( S : X ∈ f (7)

Proof. Clearly |g\f | > 1 ⇒ g /∈ Next(f) and if g\f = {S} with S′ /∈ f for
some S′ ( S ⊂ Pn, then f < f ∪ 2S

′

< g and g /∈ Next(f). This proves the
“⇒” part of the lemma. Given f ∈ MT (n), S /∈ f such that ∀X ( S : X ∈ f .
f ∪ {S} is monotonic and thus in MT (n). We prove that (f ∪ {S}) >im f .
Suppose there is a h ∈ MT (n) with f < h < (f ∪ {S}). h < (f ∪ {S}) implies
that ∀X ∈ h : X ∈ f ∨ X = S. Since f < h, X ∈ f implies X ∈ h so that
(h 6= f ∪ {S} ⇒ S /∈ h). But this would imply that f = h, a contradiction.

Since the smallest monotonic function is ∅ and the largest is 2Pn , we have

Corollary 1. The length of the longest chains of immediate successors is 2n+1.



3 Antimonotonic functions

Definition 4. Antimonotonic boolean functions
An antimonotonic boolean function on 2Pn is a boolean-valued function α such
that

∀S ( S′ ⊆ Pn : α(S′) ⇒ ¬α(S). (8)

We denote by AMT (n) the set of antimonotonic boolean functions on 2Pn .

Theorem 1. ∀n > 0 : |AMT (n)| = |MT (n)|

Proof. Consider the boolean function mtn : AMT (n) → MT (n) defined by

∀α ∈ AMT (n) : mtn(α) = {S ⊆ Pn|∃S
′ ∈ α : S ⊆ S′}

The function mtn(α) is monotonic by definition. Given f ∈ MT (n), mt−1
n (f) is

given by the set of maximal elements of f .

mt−1
n (f) = {S ∈ f |¬∃S′ ∈ f : S ⊂ S′}

which is in AMT (n) and is the inverse of mtn as can be verified.

We will denote by mtn the mapping from AMT (n) to MT (n) and by amtn its
inverse.

The ordering on MT (n) induces an ordering on AMT (n):

Definition 5. Partial ordering of AMT (n)
Given two antimonotonic boolean functions α, β ∈ AMT (n), α ≤ β iff mtn(α) ≤
mtn(β) and α < β iff mtn(α) < mtn(β).

Lemma 2. Partial ordering of AMT (n)
The induced ordering on AMT (n) is given by

∀α, β ∈ AMT (n) : α ≤ β ⇔ ∀S ∈ α : ∃S′ ⊇ S : S′ ∈ β (9)

The strict ordering is given by

∀α, β ∈ AMT (n) : α < β ⇔ α ≤ β ∧ ∃S ∈ β : S /∈ α (10)

The definition of immediate successors in AMT (n) follows the corresponding
definition for MT (n). As in MT (n), next(α) is the set of immediate successors of
α ∈ AMT (n). An immediate successor is constructed according to the following
lemma.

Lemma 3. Given α, β ∈ AMT (n), we have

β >im α ⇔ α < β ∧ ∃S ∈ 2Pn : β\α = {S}∧∀X ( S : ∃X ′ ⊇ X : X ′ ∈ α (11)



Proof. Let β satisfy the condition of the lemma with S the only set contained
in β and not in α. We prove that mtn(β) >im mtn(α). It is easily seen that
α contains all elements of β except S and real subsets of S with cardinality
|S| − 1. So it follows that mtn(β)\mtn(α) = {S}. Let X ∈ mtn(β) such that
X 6⊆ S. X clearly is in mtn(α). Let X 6= S be a subset of S. Again it follows that
X ∈ mtn(α). So mtn(β) satisfies the conditions of lemma 1 and is an immediate
successor of mtn(α). It follows that β >im α. This proves the leftward side of
the equivalence. The proof of the other side is similar.

Definition 6. Extension of the notation
Let n1, n2 ∈ N, n1 ≤ n2. We will use the notation AMT (n1, n2) for the space of
antimonotonic functions on subsets of {n1, ..., n2}. Clearly, we have AMT (n) =
AMT (1, n). More generally, for any finite set M of natural numbers, AMT (M)
will denote the the space of antimonotonic functions on subsets of M .

4 Projection and other operators

4.1 Projection

Given two finite sets N ′ ⊆ N the projection from the space AMT (N) to
AMT (N ′) is defined by

πN ′ : AMT (N) → AMT (N ′) : α → sup({A ∩N ′|A ∈ α}) (12)

Property 1 (Order conservation by projection). For sets of integers N ′ ⊆ N ,
α, β ∈ AMT (N) we have

α ≤ β ⇒ πN ′(α) ≤ πN ′(β) (13)

Three further operators are useful to explore the space of antimonotonic func-
tions further. The first two immediately follow from the meet and join operators
in the lattice of anti-chains of which the anti-monotonic functions are a repre-
sentation. The definition of the third operator given here is tied to the specifics
of anti-monotonic functions, but as we demonstrate in appendix 9, this opera-
tor and its applications in the intervals we subsequently derive can be readily
generalised to complete distributive lattices.

4.2 Meet

We define the idempotent meet operator (∧) as follows

∀α, β ∈ AMT (N) : α ∧ β = sup({A ∩B|A ∈ α,B ∈ β})) (14)

Where de operation sup is defined as follows

∀S ⊂ 2N : sup(S) = {A ∈ S|∄A′ ∈ S : A ( A′} (15)

Obviously we have that ∀α, β ∈ AMT (N) : α ∧ β ∈ AMT (N). The following
property makes the connection with the more general operator for anti-chains.



Property 2 (Largest common lower bound). For antimonotonic functions α, β, κ
we have

κ ≤ α and κ ≤ β ⇔ κ ≤ α ∧ β (16)

Proof. (⇒) For any K ∈ κ we have sets A ∈ α,B ∈ β, such that K ⊆ A ∩B.
(⇐) For any K ∈ κ, pick A ∩B ∈ α ∧ β such that K ⊆ A ∩ B. Clearly K ⊆ A
and K ⊆ B.

α∧ β is the largest anti-monotonic function that is smaller than both α and
β.

4.3 Join

We define the idempotent join operator ∨ as follows

∀α, β ∈ AMT (1, n) : α ∨ β = sup(α ∪ β) (17)

α ∨ β is antimonotonic. One finds for α 6= ∅:

α ∨ ∅ = α

α ∨ {∅} = α (18)

Property 3 (Least common upper bound). For antimonotonic functions α, β, κ
we have

κ ≥ α and κ ≥ β ⇔ κ ≥ α ∨ β (19)

α ∨ β is the smallest anti-monotonic function dominating both α and β.

4.4 External product

We define the span of an anti-monotonic function α as

Definition 7. sp(α) = ∪A∈α(A)

The external product with respect to subsets of N is defined as follows

Definition 8. Let N be a set of integers, α, β ∈ AMT (N) The external product
of α and β is given by

α×β = max{κ ∈ AMT (N) : sp(κ) = sp(α)∪sp(β), πsp(α)(κ) ≤ α, πsp(β)(κ) ≤ β}
(20)

The maximum in definition (20) is unique as is shown by the construction

α× β = sup{(A\sp(β)) ∪ (B\sp(α)) ∪ (A ∩B)|A ∈ α,B ∈ β} (21)

The operation × has the associative and commutative properties. It is idempo-
tent. Its neutral element is {∅} and ∅ is the annihilating element. The following
important property is an immediate consequence of the definition.

Property 4. For α, β, γ ∈ AMT (N) we have

γ ≤ α× β ⇒ πsp(α)(γ) ≤ α (22)



5 Intervals of antimonotonic functions

For α ≤ β ∈ AMT (N) we define the intervals

[α, β] = {κ ∈ AMT (N)|α ≤ κ ≤ β}. (23)

Property 5 (Intersection of intervals). For α, β, α′, β′ ∈ AMT (n) the intersec-
tion of the intervals [α, β] and [α′, β′] is given by

[α, β] ∩ [α′, β′] = [α ∨ α′, β ∧ β′] (24)

For α, β ∈ AMT (n) we consider intervals of the form

[α ∨ β, α× β] (25)

Because ∅ is the annihilating element and {∅} the unit element for the external
product we have

[α ∨ ∅, α× ∅] = ∅, [α ∨ {∅}, α× {∅}] = {α} (26)

Since sp(α ∨ β) = sp(α× β), we have

Property 6 (Uniform span). For α, β ∈ AMT (n), each element κ ∈ [α∨β, α×β]
has the same span:

∀κ ∈ [α ∨ β, α× β] : sp(κ) = sp(α ∨ β) (27)

Since α = πsp(α)(α) ≤ πsp(α)(α∨β) and due to the inequality (22) for all elements
in the interval [α ∨ β, α× β] the following invariant holds.

Property 7. For each κ ∈ [α∨ β, α× β] we have πsp(α)(κ) = α, πsp(β)(κ) = β.

These definitions and properties are readily generalised for an arbitrary number
of antimonotonic functions α1, . . . , αk considering intervals of the type [α1∨· · ·∨
αk, α1 × · · · × αk]. To simplify the notation we will use

α1 ∨ · · · ∨ αk = ∨{α1, . . . , αk}

α1 × · · · ∨ αk = ×{α1, . . . , αk} (28)

For a finite set N of integers, we define

αN ≡ ∨{{x}|x ∈ N} = {{x}|x ∈ N} (29)

ωN ≡ ×{{x}|x ∈ N} = {N} (30)

ΥN ≡ [αN , ωN ] (31)

We find sp(αN ) = sp(ωN) = N . The interval ΥN = [αN , ωN ] is the set of anti-
monotonic functions with span N . We investigate the structure of this interval
in the next paragraph.



6 Decomposition of the interval ΥN

The special intervals [α ∨ β, α × β] for α, β ∈ AMT (N) from section 5 allow
decomposing the interval ΥN , effectively reducing its dimensionality. That is why
we refer to the following theorem as the “General coordinate system” theorem.

Theorem 2 (General coordinate system). Given a finite set of positive in-
tegers N and an antimonotonic function σ with sp(σ) = N , the set of nonempty
intervals of the type

[∨{κS |S ∈ σ},×{κS|S ∈ σ}]

where {κS |S ∈ σ} is any family of antimonotonic functions satisfying ∀S ∈ σ :
κS ∈ ΥS , form a partition of ΥN .

Proof. In order to prove that the intervals from this set are disjoint, consider two
families {κS|S ∈ σ} and {κ′

S |S ∈ σ}. Let S1 ∈ σ be any set in the antimonotonic
function σ and let γ ∈ [∨{κS |S ∈ σ},×{κS|S ∈ σ}]∩[∨{κ′

S |S ∈ σ},×{κ′
S|S ∈ σ}]

be any element in the intersection of the two intervals. We find

κS1
≤ πS1

(γ) ≤ κ′
S1

κ′
S1

≤ πS1
(γ) ≤ κS1

(32)

and conclude that κS1
= κ′

S1
if the intervals have at least one element in com-

mon. Two intervals are thus either equal or disjoint.

The union of all intervals is ΥN since each γ ∈ ΥN satisfies

γ ∈ [∨{πS(γ)|S ∈ σ},×{πS(γ)|S ∈ σ}]

Since for any γ ∈ ΥN , sp(γ) = N , we find that for any S ∈ σ, sp(πS(γ)) = S
and hence πS(γ) ∈ ΥS . This completes the proof.

Remark 1. The restriction to antimonotonic functions σ in Theorem 2 is not
necessary for the theorem to hold. If however, in the notation of Theorem 2,
S1 ( S2, we have for κS1

∈ ΥS1
, κS2

∈ ΥS2
:

κS1
∨ κS2

∈ ΥS2

κS1
× κS2

= κS1
∧ κS2

≤ κS1
∨ κS2

with equality only if κS1
= πS1

(κS2
). Consequently, any interval in the decom-

position can be nonempty only if the latter condition is satisfied, leaving no
freedom for the choice of κS1

.

Remark 2. The restriction does not remove all empty intervals from the decom-
position. If, still in the notation of Theorem 2, two sets S1, S2 ∈ σ are not disjoint
and

πS1∩S2
(κS1

) 6= πS1∩S2
(κS2

) (33)

we find that
πS1∩S2

(κS1
∨ κS2

) 6≤ πS1∩S2
(κS1

× κS2
)



and consequently
κS1

∨ κS2
6≤ κS1

× κS2

making an empty interval.

Although the general form of Theorem 2 allows for studying symmetries in the
decomposition, the next theorem removes the empty intervals from Remark 2
by requiring σ to contain only disjoint sets, i.e. to be a partition of N . This
restriction avoids the interaction expressed by condition (33) between the lower
dimensional subspaces, hence its name “orthogonal coordinate system theorem”.

Theorem 3 (Orthogonal coordinate System). For a finite set of positive
integers N and a partition σ of this set, the set of intervals of the type

[∨{κS |S ∈ σ},×{κS|S ∈ σ}]

where {κS |S ∈ σ} is any family of antimonotonic functions satisfying ∀S ∈ σ :
κS ∈ ΥS , form a partition of ΥN .

Proof. This theorem is a special case of Theorem 2.

Given two finite sets N1 6= N2, the corresponding intervals of uniform span ΥN1

and ΥN2
are disjoint. The family (ΥS |S ⊆ N) forms a partition of AMT (N)\{∅}

and we have the disjoint union

AMT (N) = {∅} ∪ (
⋃

S⊆N

ΥS) (34)

Corollary 2. The following expansion is an immediate consequence

|AMT (n)| = 1 +

(

n

0

)

|Υ∅|+

(

n

1

)

|Υ{1}|+

(

n

2

)

|Υ{1,2}|+ · · ·+ |Υ{1,...,n}| (35)

Equation (34) leads to the following decomposition of AMT (N).

Corollary 3.

AMT (N) = {∅} ∪ (
⋃

(κS∈AMT (S)\{∅}|S∈σ)

[∨{κS |S ∈ σ},×{κS|S ∈ σ}]) (36)

where the union is taken over all families of antimonotonic functions from
AMT (S), one for each S ∈ σ.

Corollary 4. A consequence of the decomposition in equation (34) is

|AMT (N)| = 1 +
∑

S⊆N

|ΥS | (37)



The two theorems allow to derive a number of recursion relations for Dedekind-
like numbers. The first one is an immediate consequence.

Corollary 5. For positive integers n1 and n such that 1 ≤ n1 < n we have

|Υ{1,...,n}| =
∑

α∈Υ{1,...,n1},β∈Υ{n1+1,...,n}

|[α ∨ β, α× β]| (38)

Slight rearrangement in the sums allows to derive the following recursion relation.

Corollary 6. For positive integers n1 and n such that 1 ≤ n1 < n we have

|AMT (1, n)| = 1 +
∑

α∈AMT (1,n1)\{∅},β∈AMT (n1+1,n)\{∅}

|[α ∨ β, α× β]| (39)

An interesting special case of Corollary 6 is n1 = n− 1:

Corollary 7. For any positive integer n > 1

|AMT (1, n)| =
∑

α∈AMT (1,n−1)

|[∅, α]| (40)

Proof. Let n1 = n− 1. We have:

AMT (n1 + 1, n)\{∅} = AMT (n, n)\{∅} = {{∅}, {n}} (41)

and Corollary 6 implies

|AMT (1, n)| = 1 +
∑

α∈AMT (1,n−1)\{∅},β∈{{∅},{{n}}}

|[α ∨ β, α× β]| (42)

Since {∅} is neutral for ∨ and ×, this is equivalent to

|AMT (1, n)| = |AMT (1, n− 1)|+
∑

α∈AMT (1,n−1)\{∅}

|[α ∨ {{n}}, α× {{n}}]|

(43)
Each element κ of [α ∨ {{n}}, α× {{n}}] can be written as α ∨ (κ′ × {{n}}) for
some κ′ ∈ [{∅}, α].1 Hence

|[α ∨ {{n}}, α× {{n}}]| = |[{∅}, α]| (44)

and we find

|AMT (1, n)| = |AMT (1, n− 1)|+
∑

α∈AMT (1,n−1)\{∅}

|[{∅}, α]|

= 1 +
∑

α∈AMT (1,n−1)\{∅}

|[∅, α]|

=
∑

α∈AMT (1,n−1)

|[∅, α]| (45)

1 sp(κ) = sp(α) ∪ {n}, κ′ = πsp(α)(κ\α).



7 Structure of general intervals

For a finite set N and α, α′, β, β′ ∈ AMT (N), the intersection of intervals
[α(′), β(′)] is given by

[α, β] ∩ [α′, β′] = [α ∨ α′, β ∧ β′] (46)

The following theorem is an immediate consequence of Corollary 4.

Theorem 4 (Decomposition of intervals). Given an interval [α, ω] of an-
timonotone functions with α 6= ∅ and an antimonotonic funtion σ ≤ ω with
sp(σ) = sp(ω) then the interval [α, ω] is the disjoint union of intervals

[∨{κS|S ∈ σ} ∨ α,×{κS|S ∈ σ} ∧ ω]

where each κS ∈ [πS(α), πS(ω)].

7.1 Ranks and distances

One of the main results in this article is a recursive procedure to split an interval
in ever smaller subintervals to arrive at an enumeration of its elements. We need
one more device before we can present the procedure. The device is a measure
for the distance between two antimonotonic functions. We will use this measure
for a heuristic estimate of the size of an interval, and to ensure that after the
split, the fragments are smaller than the whole. We first introduce the rank of
an antimonotonic function. It is defined as the number of different subsets of
sets in the function:

Definition 9.

∀α ∈ AMT (N) : rank(α) =
∑

A∈α

2|A| −
∑

A 6=B∈α

2|A∩B| +
∑

A 6=B 6=C∈α

2|A∩B∩C| − ...

(47)

The distance between two antimonotonic functions is defined as

Definition 10.

∀α, β ∈ AMT (N) : d(α, β) = rank(α) + rank(β)− 2× rank(α ∧ β) (48)

7.2 Recusively partitioning intervals

The decomposition in Theorem 4 can be repeated recusively to enumerate anti-
monotonic functions over a complete space or within an interval. It is not hard
to see that for ∅ < α < ω, there is always a set N ⊆ sp(ω) allowing to produce
smaller intervals.

Property 8. For antimonotonic functions ∅ < α < ω, there is always a nonempty
set N ⊆ sp(ω) such that πN (α) < πN (ω). If |ω| > 1 or α is not an immediate
predecessor of ω, there is such a set satisfying N ( sp(ω)



Proof. N = sp(ω) satisfies the first condition. Another example is found as
follows. Let A ∈ ω be a non-empty set such that A /∈ α. It can be seen that
πA(α) < πA(ω). (Should PA(α) = PA(ω), then there would be a set B ∈ α with
A ( B contradicting α < ω.) If |ω| > 1 then |sp(ω)| > |A| and sp(ω)\A 6= ∅.
If |ω| = 1 and α is not an immediate predecessor of ω then there must be a set
X /∈ α of the form sp(ω)\{a} with a an element of the only set in ω. We find
that PX(α) < PX(ω) and sp(ω)\X is non empty.

Given that α <im ω ⇔ |[α, ω]| = 2, and building on Property 8, Procedure 1 lists
the elements of an interval [α, β]. Note that the recursion is not only over the

Procedure 1 List all elements of an interval of antimonotonic functions and
return their number

Input: α 6= ∅, β 6= ∅
Output: |[α, β]|
Output: print all elements of [α, β]

function listElements(α, β ∈ AMT (n)) returns number
if α 6≤ β then

return 0
end if

if α = β then

print α

return 1
end if

if |b| = 1 and α <im b then

print α, β

return 2
end if

select disjoint subsets X,Y of sp(β) such that
d(PX(α), PX(β)) ≥ 1 and d(PY (α), PY (β)) ≥ 1
set COUNT = 0
for all κ ∈ [PX(α), PX(β)] do

for all λ ∈ [PY (α), PY (β)] do
set COUNT = COUNT + listElements((κ ∨ λ) ∨ α, (κ× λ) ∧ β)

end for

end for

return COUNT
end function

fragment [(κ∨ λ)∨α, (κ×λ)∧ β] but also in the iterations over [PX(α), PX(β)]
and [PY (α), PY (β)]. Since each couple κ, λ selected from these intervals are used
in the construction of the elements of the new interval, and since finding a
suitable split is linear in the size of span(ω), this procedure is of complexity
|span(ω)| ∗ outputsize. Given the double exponential size of the output with
respect to span(ω), we can say that the procedure is essentially linear in the size
of the output.



The conditions d(PX(α), PX(β)) ≥ 1 and d(PY (α), PY (β)) ≥ 1 can be replaced
by a condition that splits the interval in parts that are as equal as possible. This
reduces the depth of the recursion and has a beneficial effect on the construction
of the intervals (bigger κ, λ). It does bring a cost however in the computation
of the split of span(ω). It is not immediately clear what the impact on the
complexity is.

8 Conclusions

We developed an interval algebra for the lattice of anti-monotonic functions
on subsets of a finite set. Formulae for the intersection of intervals are given.
An essential operator in the algebra is the external product operator of section
4.Together with the join operator, it allows for the decomposition as the union
of disjoint intervals of the lattice of anti-monotonic functions on the subsets of
a given finite set. This decomposition may be based on the elements of the sub-
lattices defined on the sets accepted by any anti-monotonic function that covers
the original set. A particularly interesting case of this decomposition relates to
an anti-monotonic function in which all sets are disjoint. The external product
operator then takes a particularly simple form. Given the rules for the inter-
section of intervals, the decomposition of the whole lattice naturally leads to a
decomposition any interval. The partitions of the lattice as well as of its inter-
vals resulting from this decomposition lead to a number of recursion formulae
which can be used to count the number of elements in the lattice or interval
(Dedekind problem). As an application of the algebra, we present an algorithm
that enumerates all elements of the lattice in output-polynomial time. An im-
plementation of this algorithm is available. In appendix 9 we define the operator
and prove the partitioning theorem for complete distributive lattices. Appendix
10 describes the example of Young’s lattice.

9 Appendix

Let L be a complete distributive lattice with unit element 1. Let α, β, γ ∈ L and
define

– Next(α) = {κ|α <im κ}
– base(α) = α ∧ (∨(Next(1)))

– top(α) = ∨{κ|base(κ) = base(α)}

– α× β = ∨{κ|top(α) ∧ κ ≤ α and top(β) ∧ κ ≤ β}

It is straightforward to prove the following

Lemma 4.

γ ≤ α× β ⇒ γ ∧ top(α) ≤ α



Proof.

γ ≤ ∨{κ|top(α) ∧ κ ≤ α and top(β) ∧ κ ≤ β}

⇔

γ = γ ∧ (∨{κ|top(α) ∧ κ ≤ α and top(β) ∧ κ ≤ β})

= ∨({γ ∧ κ|top(α) ∧ κ ≤ α and top(β) ∧ κ ≤ β})

⇒

γ ∧ top(α) = ∨({γ ∧ top(α) ∧ κ|top(α) ∧ κ ≤ α and top(β) ∧ κ ≤ β})

≤ α

�

Lemma 4 allows proving the following

Theorem 5. Let α, β ∈ L, κα, κ
′
α ∈ [base(α), top(α)], κβ , κ

′
β ∈ [base(β), top(β)].

We have

[κα ∨ κβ , κα × κβ ] ∩ [κ′
α ∨ κ′

β , κ
′
α × κ′

β] 6= ∅ ⇔ κα = κ′
α, κβ = κ′

β.

Proof. Let γ ∈ [κα ∨ κβ , κα × κβ] ∩ [κ′
α ∨ κ′

β , κ
′
α × κ′

β ]. We find e.g.

κα ≤ γ ∧ top(α) ≤ κ′
α

and

κ′
α ≤ γ ∧ top(α) ≤ κα

�

Since for γ ∈ [base(α) ∨ base(β), top(α) × top(β)], γ ∈ [(γ ∧ top(α)) ∨ (γ ∧
top(β)), (γ∧top(α))×(γ∧top(β))], we have constructed a partition of the interval
[base(α) ∨ base(β), top(α) × top(β)].

10 Appendix: an example

Young’s lattice is the lattice of Young diagrams. It is infinite. To apply our
theory, let us initially use bounds for the horizontal (nh) and the vertical (nv)
dimensions of the Young diagrams.We denote by vsi vertical strip of size i and by
hsi the horizontal strip of size i. The unit Young diagram is then u = vs1 = hs1.
The immediate successors of u are vs2 and hs2. We find that vsi ∨ hsj is an
L-shaped Young diagram with vertical dimension i and horizontal dimension j.
The external product vsi × hsj is a rectangular Young diagram with the same
dimensions. According to the decomposition theorem in appendix 9, the set of
all nonempty Young diagrams with the given bounds is given by the disjoint
union

⋃

0<i<nv ,0<j<nh

[vsi ∨ hsj, vsi × hsj].



Since this partition hods for all values of nv and nh, the infinite lattice of
nonempty Young diagrams is given by the disjoint union

⋃

0<i,0<j

[vsi ∨ hsj, vsi × hsj].
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