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Abstract. A positive unit point charge approaching from infinity a perfectly spherical isolated

conductor carrying a total charge of +1 will eventually cause a negatively charged spherical
cap to appear. The determination of the smallest distance ρ(d) (d is the dimension of the unit

sphere) from the point charge to the sphere where still all of the sphere is positively charged is

known as Gonchar’s problem. Using classical potential theory for the harmonic case, we show
that 1 + ρ(d) is equal to the largest positive zero of a certain sequence of monic polynomials of

degree 2d− 1 with integer coefficients which we call Gonchar polynomials. Rather surprisingly,

ρ(2) is the Golden ratio and ρ(4) the lesser known Plastic number. But Gonchar polynomials
have other interesting properties. We discuss their factorizations, investigate their zeros and

present some challenging conjectures.

1. Introduction

Let Sd denote the unit sphere in the Euclidean space Rd+1. Suppose that it is insulated and
has a total positive charge of +1. In the absence of an external field the charge will distribute
uniformly with respect to the normalized surface area measure (unit Lebesgue measure) σd. Now
we introduce a positive unit point charge exterior to the sphere that repels the charge on the
sphere in accordance with the Newton potential 1/rd−1, where r represents the distance between
point charges. If this point charge is very close to the sphere, then one would expect it to cause
a negatively charged spherical cap to appear, while if the point charge is very far from the sphere
its influence is negligible and the charge on the sphere will be everywhere positive and nearly
uniformly distributed over the entire sphere. We consider the following question: what is the
smallest distance from the unit point charge to Sd such that the distribution of the positive charge
on the sphere covers all of the sphere? We will denote this critical distance by ρ(d). As we shall
show, 1+ρ(d) equals the largest positive root of the following polynomial equation of degree 2d−1:

(1) G(d; z):=
[
(z − 1)

d − z − 1
]
zd−1 + (z − 1)

d
= 0, d = 1, 2, 3, . . . .

As the question above was communicated to the authors by A. A. Gonchar, we shall refer to
G(d; z) as Gonchar polynomials.

Rather surprisingly, ρ(2) turns out to be the Golden ratio, which is the limit of the ratio of
successive terms in the Fibonacci sequence Fn = Fn−1 + Fn−2, F0 = F1 = 1 and ρ(4) is the
so-called Plastic number [10], which is the limit of ratios of successive terms for the less known
Padovan sequence Pn = Pn−2 +Pn−3, P0 = P1 = P2 = 1 (sequence A000931 in Sloane’s OEIS [9]).
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That is,

ρ(2) = lim
n→∞

Fn+1

Fn
=

1 +
√

5

2
= 1.618033988 . . . ,

ρ(4) = lim
n→∞

Pn+1

Pn
=

(9−
√

69)1/3 + (9 +
√

69)1/3

21/332/3
= 1.3247179572 . . . .

In addition to this curious coincidence, the polynomials G(d; z) exhibit rather fascinating prop-
erties with regard to their irreducibility over the ring of polynomials with integer coefficients, as
well as the asymptotic behavior of their zeros. Our goal in the next section is to show how the
Gonchar polynomials are derived and then, in Section 3, to explore some of their properties and
draw the reader’s attention to some related conjectures.

2. Signed Equilibrium

A general charge distribution on Sd = {x ∈ Rd+1 : |x| = 1} will be modeled by a signed
measure η supported on Sd with η(Sd) = 1. The corresponding Newtonian potential and energy
are given by

V η(x) =

∫
1

|x− y|d−1
dη(y), I(η) =

∫
V η(x) dη(x).

For example, V η(x) is the familiar Coulomb potential when d = 2. For η = σd we expect from the
rotational invariance that the potential V σd is constant on Sd and on concentric spheres. This is
a well-known fact in potential theory, but for completeness we provide a proof below.

Lemma 1. The potential V σd(x) satisfies the following relations

(2) V σd(x) =

{
1 for |x| ≤ 1,

1/|x|d−1 for |x| > 1.

Proof. Indeed, for any fixed x the Newtonian kernel f(y) = |x − y|1−d is a harmonic function

in Rd+1 \ {x}, that is ∆f(y) =
∑d+1
i=1 fyiyi(y) ≡ 0. Therefore, by the mean value property for

harmonic functions we have

(3) V σd(x) =

∫
Sd
f(y) dσd(y) = f(0) =

1

|x|d−1
for |x| > 1.

Considering the sequence of functions fn(y) = |(n+ 1)x/n− y|1−d and applying the monotone
convergence theorem allows us to extend this to the unit sphere giving V σd(x) ≡ 1 for |x| = 1.
By the maximum principle for harmonic functions, the potential V σd is constant everywhere in
the closed unit ball (“Faraday cage effect”), since it assumes its extreme values on the boundary
Sd, where it is constant. (One can also verify this directly by applying the identity |x − y|2 =
|x|2| x

|x|2 − y|2 and (3).) �

In the classical Coulomb case (d = 2), a standard electrostatics problem (see [3, Ch. 2]) is
to find the charge distribution on a charged, insulated, conducting sphere in the presence of an
external field (such as generated by a positive point charge q off the sphere). This motivates the
following definition.

Definition 2. Given a continuous function Q(x) on Sd, we call a signed measure ηQ supported on
Sd and of total charge ηQ(Sd) = 1 a signed equilibrium associated with Q if its weighted Newtonian
potential is constant on Sd; that is, for some constant FQ,

V ηQ(x) +Q(x) = FQ everywhere on Sd.

In the above definition, the function Q is referred to as an external field. Thus Lemma 1
establishes that σd is the (signed) equilibrium measure on Sd in the absence of an external field. The
uniqueness of the signed equilibrium is settled by the following known proposition [1, Lemma 23],
whose proof is presented in the Appendix.

Proposition 3. If a signed equilibrium ηQ associated with an external field Q on Sd exists, then
it is unique.
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Here, we are concerned with the external field generated by a positive point charge of amount
q located at a = Rp, R > 1, where p is the North Pole of Sd; that is, p = (0, 0, . . . , 0, 1). Such a
field is given by

(4) Qa,q(x):=
q

|x− a|d−1
, x ∈ Rd+1,

and the associated signed equilibrium is described in the next result. (For the general result, see
[1].)

Lemma 4. The signed equilibrium ηQ associated with the external field Q = Qa,q of (4) is abso-
lutely continuous with respect to the (normalized) surface area measure on Sd; that is, dηQ(x) =
η′R,q(x)dσd(x), and its density is given by

(5) η′R,q(x) = 1 +
q

Rd−1
−
q
(
R2 − 1

)
|x− a|d+1

, x ∈ Sd.

For the classical Coulomb case this relation is well-known from elementary physics (cf. [3,
p. 61]).

Proof. We note first that if |x| > 1, then the function u(z):=|z−x|1−d is harmonic in |z| ≤ 1, and
since the Poisson integral formula [2] preserves harmonic functions, we have

(6)
1

|z− x|d−1
=

∫
Sd

1

|y − x|d−1
1− |z|2

|z− y|d+1
dσd(y), |z| < 1.

Using a monotone convergence theorem argument as in Lemma 1 we extend (6) to |x| = 1. We
shall make use of the identity |Ry−x| = |y−Rx| for any |x| = |y| = 1. Then from (6) we obtain
with z = p/R and |x| = 1,
(7)

Q(x) =
q

|Rp− x|d−1
=

q

|p−Rx|d−1
=

q

Rd−1|z− x|d−1
=

∫
Sd

q

Rd−1|y − x|d−1
1− |z|2

|z− y|d+1
dσd(y)

=

∫
Sd

q

|y − x|d−1
R2 − 1

|p−Ry|d+1
dσd(y) =

∫
Sd

1

|y − x|d−1
q(R2 − 1)

|a− y|d+1
dσd(y).

The Poisson integral formula applied to the constant function u(z) ≡ q/Rd−1 and z = p/R yields

q

Rd−1
=

∫
Sd

q(R2 − 1)

|a− y|d+1
dσd(y).

This together with (7) implies that for dν:=η′R,qdσd we have∫
Sd
dν = 1 and V ν(x) +Q(x) = 1 +

q

Rd−1
, x ∈ Sd,

which proves the lemma. �

Remark. A surprising aspect of the equilibrium support, which varies with R, is illustrated in
Figure 1 for S2 and q = 1. Writing ηQa,1 = ηQ = η+Q − η

−
Q in terms of its Jordan decomposition, it

is clear on geometrical and physical grounds that the support of η+Q is a spherical cap centered at

the South Pole, while its complement (a spherical cap centered at the North Pole) is the support
of η−Q, see Figure 1(a). Although somewhat counter-intuitive, we see from Figure 1(b) that, as

the unit charge approaches the sphere (R → 1), from a certain distance on, the support of η+Q
occupies increasingly more of the sphere. This phenomenon can be explained by the geometry of
the sphere, where an increasingly ’needle-like’ negative sink forming at the North Pole is balanced
by an increasingly uniform positive part so that the total charge is always one.

From formula (5) we observe that the minimum value of the density η′R,q(x) is attained at the
North Pole p, and its value there is

(8) η′R,q(p) = 1 +
q

Rd−1
−
q
(
R2 − 1

)
|a− p|d+1

= 1 +
q

Rd−1
−
q
(
R2 − 1

)
(R− 1)

d+1
.
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(a)

0.5 1.0 1.5 2.0 2.5 3.0
R

-1.0

-0.5

0.0

0.5

1.0
u

1+ΡH2L

(b)

Figure 1. Signed equilibrium ηQ on S2 (left) and projection onto the polar axis
of the positive part η+Q.

This leads to the following theorem.

Theorem 5. For the external field Qa,q(x) of (4) with a = Rp, the signed equilibrium is a positive
measure on all of Sd if and only if R ≥ Rq, where Rq is the unique (real) zero in (1,+∞) of the
polynomial

(9) G(d, q; z):=
[
(z − 1)

d
/q − z − 1

]
zd−1 + (z − 1)

d
.

In particular, the solution to Gonchar’s problem is given by ρ(d) = R1 − 1.

Proof. We use the fact that the support of ηQa,q is all of Sd if and only if η′R,q(p) ≥ 0 in (8) or

equivalently that G(d, q;R) ≥ 0. Hence we seek the number R > 1 such that G(d, q;R) = 0.
Observing that G(d, q; 1) < 0 and G(d, q;x) > 0 for x > 1 sufficiently large, there exists at least
one value Rq such that G(d, q;Rq) = 0. Moreover, this root in (1,∞) is unique as can be seen by
applying Descartes’ Rule of Signs to

G(d, q; 1 + w) =
1

q

d−1∑
m=0

(
d− 1

m

)
wm+d −

d−1∑
m=0

[(
d

m

)
+

(
d− 1

m

)]
wm.

�

Curiously, for d = 2 and d = 4 we obtain the Golden ratio and the Plastic number as answers
to Gonchar’s problem as mentioned in the Introduction. Furthermore, for large values of d the
asymptotic analysis (provided in the Appendix) shows that

(10) Rq = 2 + [log(3q)] /d+O(1/d2) as d→∞.

The appearance of 2 as the limit as d → ∞ of the critical distances Rq (q > 0 fixed) can be
explained by studying the asymptotic behavior of G(d, q;R) as d → ∞. Indeed, for R ≥ 2 + ε
(ε > 0 fixed) it goes to +∞ as d → ∞, while for 1 < R ≤ 2 − ε (ε > 0 fixed) it goes to −∞,
leaving the number 2 as the only candidate.

3. The polynomials G(d; z)

In the following we investigate the family of Gonchar polynomials G(d, z) = G(d, 1; z) given in
(1). Aside from the solution to Gonchar’s problem, these polynomials are interesting in themselves
and their distinctive properties merit further study.
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A polynomial P with real coefficients is called (self-)reciprocal if its reciprocal polynomial
P ∗(z):=zdegPP (1/z) coincides with P (z). In other words, the coefficients of zk and of zdegP−k

in P (z) are the same. Notice that G(d; z) is self-reciprocal for even d since

z2d−1G(d; 1/z) =
[
(1− z)d − z − 1

]
zd−1 + (1− z)d .

Consequently, if ζ is a zero of G(d; z), then so is 1/ζ for even d. For odd d we infer from

G(d; z) +G∗(d; z) =
[
1 + (−1)d

]
(z − 1)

d (
zd−1 + 1

)
− 2

(
zd + zd−1

)
= −2

(
zd + zd−1

)
that the coefficients of zk and z2d−1−k in G(d; z) sum to zero except for the ’innermost’ pair.

3.1. Factorizations and Irreducibility. With the aid of symbolic computation programs one
can find factorizations and check irreducibility of explicitly given polynomials. For d = 1, 2, . . . , 7,
we thereby obtain the following factorizations over the integers of G(d; z).

G(1; z) = z − 3,

G(2; z) = (z + 1)
(
z2 − 3z + 1

)
,

G(3; z) = z5 − 3z4 + 3z3 − 5z2 + 3z − 1,

G(4; z) = (z + 1)
(
z3 − 3z2 + 2z − 1

) (
z3 − 2z2 + 3z − 1

)
,

G(5; z) = z9 − 5z8 + 10z7 − 10z6 + 5z5 − 7z4 + 10z3 − 10z2 + 5z − 1,

G(6; z) = (z + 1)
(
z2 − z + 1

) (
z8 − 6z7 + 15z6 − 21z5 + 21z4 − 21z3 + 15z2 − 6z + 1

)
,

G(7; z) = z13 − 7z12 + 21z11 − 35z10 + 35z9 − 21z8 + 7z7 − 9z6 + 21z5 − 35z4 + 35z3 − 21z2 + 7z − 1.

One can easily verify that (z + 1) divides G(d; z) if and only if d is even. Furthermore, the
factor z2 − z + 1 arises in the following cases.

Proposition 6. The cyclotomic polynomial z2 − z + 1 divides G(d; z) if and only if 6 divides d.

Proof. Note that if ζ is a zero of z2 − z + 1, then ζ2 = ζ − 1 and ζ3 = −1. Using formula (1), it
readily follows that G(d; ζ) = 0 whenever d ≡ 0 (mod 6) and G(d; ζ) 6= 0 otherwise. �

A general irreducibility result has so far eluded the authors. The Eisenstein criterion and,
in general, reduction to finite fields, seem not to be effective tools for studying the polynomials
G(d; z). However, using Mathematica, we verified the following conjecture for d up to 500.

Conjecture 1. Set `(d; z) ≡ 1 for d odd, `(d; z):=z + 1 for d even but not divisible by 6, and
`(d; z):=(z + 1)(z2 − z + 1) if 6 divides d. Then G(d; z)/`(d; z) is irreducible over the rationals
except for d = 4, 8 and 12.

Regarding the exceptional cases we record that, in addition to G(4; z) as given above,

G(8; z) = (z + 1)
(
z4 − 3z3 + 3z2 − 3z + 1

)
×
(
z10 − 6z9 + 16z8 − 24z7 + 24z6 − 21z5 + 24z4 − 24z3 + 16z2 − 6z + 1

)
,

G(12; z) = (z + 1)
(
z2 − z + 1

) (
z6 − 4z5 + 5z4 − 3z3 + 5z2 − 4z + 1

)
×
(
z14 − 8z13 + 29z12 − 62z11 + 85z10 − 77z9 + 48z8

− 33z7 + 48z6 − 77z5 + 85z4 − 62z3 + 29z2 − 8z + 1
)
.

3.2. Zeros of Gonchar polynomials. Figure 2 illustrates some features of G(d; z) on the real
line and suggests some of its general properties. Note the qualitatively different behavior for even
and odd d.

Depending on the parity of d, the polynomial equation G(d; z) = 0 has either one (d odd) or
three (d even) real simple roots. More precisely, the following holds.

Proposition 7. If d is odd, then G(d; z) has precisely one real zero, which is simple and lies in
the interval (2, 3]. If d is even, then G(d; z) has exactly three real zeros: one at −1, one in the
interval (1/3, 1/2) and one in the interval (2, 3); all these zeros are simple.
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Figure 2. The polynomial G(d; z) on the real line for d = 1, 2, . . . , 7.

Proof. Note that for d ≥ 2 there holds:

G(d;−1) = (−2)d
[
1− (−1)d

]
, G(d; 0) = (−1)d, G(d; 1) = −2, G(d; 2) = 1− 2d.

The assertion of the proposition is trivial for G(1; z) = z − 3. So let d ≥ 2. Since G(d; 2) < 0
and G(d; 3) > 0, the polynomial G(d; z) has at least one real zero in the interval (2, 3) and, as we
observed in the proof of Theorem 5, this is its only zero on [1,∞) and must be simple. For odd d,
each of the terms [(x− 1)d−x− 1]xd−1 and (x− 1)d is negative for x < 1 and hence so is G(d;x);
thus G(d;x) has no zeros outside (2, 3). For even d, the self-reciprocity of G(d;x) implies that to
each zero ξ(d) of G(d;x) in [1,∞) there is a zero ξ∗(d) = 1/ξ(d) in (0, 1]. Consequently, by the
first part of the proof, G(d;x) has one and only one zero in (0, 1) and this zero is simple and lies
in the interval (1/3, 1/2). It remains only to consider the interval (−∞, 0]. Clearly G(d;−1) = 0,
and by computing G′(d;x) and analyzing its sign (in particular, G′(d;−1) > 0), one can show that
G(d;x) is strictly increasing on (−∞,−1). Thus G(d;x) < 0 on (−∞,−1) and, by self-reprocity,
G(d;x) > 0 on (−1, 0). �

Regarding the behavior as d increases of the zeros in (2, 3), M. Lamprecht [4] proved the
following.

Proposition 8. The zeros ξ(d) of G(d; z) in the interval (2, 3] form a strictly monotonically
decreasing sequence with limit point 2 (compare with (10)).

We now turn to the study of the complex zeros of G(d; z). Observe that by Proposition 7,
G(d; z) has either d − 1 (if d is odd) or d − 2 (if d is even) pairs of complex conjugated zeros
(counting multiplicity). In Figure 3 we have plotted the zeros of G(d; z) for d = 9, 10, 11, and 12
along with the two unit circles C0, C1 centered respectively at 0 and 1. Notice that these circles
intersect at the points (1± i

√
3)/2 and, by Proposition 6, these points are zeros of G(d; z) if and

only if d is a multiple of 6. The zeros of G(d; z) seem to occur roughly into three categories: zeros
close to C0 (indicated by ×), zeros close to C1 (indicated by +) and zeros close to the vertical line
x = 1/2 (indicated by �). The numbers N1, N2, N3 of zeros in each of the categories are listed in
Table 1 for d = 1, . . . , 12, 42, from which it appears that these numbers are nearly the same. We
will discuss this further in Section 3.3 (see Conjecture 2).

Figure 3 suggests that for even d the polynomial G(d; z) may have zeros lying precisely on C0.
This, in fact, is the case as we now prove.

For this purpose it is convenient to define δ6|d:=1 if 6 divides d and δ6|d:=0 otherwise.

Proposition 9. If d is even, G(d; z) has exactly 4(b(d− 1)/6c+ δ6|d) + 1 zeros on the unit circle
C0; all are simple and satisfy Re z ≤ 1/2. Their positions are determined by the solutions of the
equation g(θ) = f(θ) given in (11) below.

If d is odd, there are no zeros of G(d; z) on the unit circle C0.
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d=9, q=1

-1 0 1 2

-1

0

1

-1 0 1 2

-1

0

1

d=10, q=1

-1 0 1 2

-1

0

1

-1 0 1 2

-1

0

1

d=11, q=1

-1 0 1 2

-1

0

1

-1 0 1 2

-1

0

1

d=12, q=1

-1 0 1 2

-1

0

1

-1 0 1 2

-1

0

1

d n N1 N2 N3

(×) (�) (+)

1 1 0 0 1
2 3 1 1 1
3 5 2 2 1
4 7 1 3 3
5 9 2 4 3
6 11 3 3 3
7 13 4 4 5
8 15 5 5 5
9 17 6 6 5

10 19 5 7 7
11 21 6 8 7
12 23 7 7 7
...

...
...

...
...

42 83 27 27 27

Figure 3 and Table 1. Counting the zeros of G(d; z), n = 2d − 1. Two
additional zeros appear when 6 divides d, see shaded entries in table.

Proof. Since z = 1 is not a zero of G(d; z), the equation G(d; z) = 0 is equivalent to

zd−1 + 1 =
z + 1

z − 1

zd−1

(z − 1)d−1
.

Substituting z = eiθ and changing to trigonometric functions we arrive at

(11) g(θ):=(−1)d/2 cos

(
d− 1

2
θ

)
= (−1)d/2

cos(θ/2)

[2i sin(θ/2)]
d

=:f(θ).

Suppose d is even. Then f(θ) = cos(θ/2)/[2 sin(θ/2)]d is real-valued. Since the complex zeros
of G(d; z) occur in complex conjugate pairs, we may assume 0 ≤ θ ≤ π. Using elementary
calculus one shows that the function f(θ) is monotone decreasing and convex on (0, π). Hence,
f(θ) ≥ f(π/3)+f ′(π/3)(θ−π/3) on (0, π/3). This implies that f(θ) > 1 for θ ∈ (0, π/3−α), where

α = (4 − 2
√

3)/(3d + 1). On the other hand, on [π/3 − α, π/3) one can show that |g(θ)| < f(θ).

Hence, in (11) we have only to consider the range [π/3, π] whereupon f(θ) ≤ f(π/3) =
√

3/2 < 1.
The function g is a cosine function with period 4π/(d− 1), where the sign factor ensures that

g has a positive derivative at θ = π (which is also an intersection point of f and g). The other
intersection points of f and g occur in the half-periods where g ≥ 0. On such a half-period I the
convex function f and the concave function g (when restricted to I) can intersect in at most two
points counting multiplicity, as can be seen by applying Rolle’s theorem to the strictly convex
function f − g. That there are at least two such points on I can be seen from the intermediate
value theorem applied to the same function (f − g > 0 at the endpoints of I and f − g < 0 at the
midpoint of I) as illustrated in Figure 4 for the three canonical cases.

Since there are b(d−1)/6c full periods of g in [π/3, π] plus one more period (partially contained
in [π/3, π]) whenever 6 divides d, we have 2(b(d− 1)/6c+ δ6|d) zeros in the upper half-plane and
that many conjugate zeros of G(d; z) in the lower half-plane.

For odd d, equation (11) has no real solution in (0, π]. Since 1 is not a zero of G(d; z), there
are no zeros of G(d; z) on C0. �

Theorem 10. All zeros of G(d; z) are simple for each d ≥ 1.
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1

Figure 4. Graphs of f(θ) and g(θ); typical cases when solving equation (11).

Proof. The cases d = 1 and d = 2 are obvious, so assume d ≥ 3. Let ζ be a zero of G(d; z). Then
ζ is simple if G′(d; ζ) 6= 0. By means of some helpful substitutions for the expressions in braces∗,
we find that

ζ (ζ − 1)G′(d; ζ) = dζ
{

(ζ − 1)
d (
ζd−1 + 1

)}
− ζd (ζ − 1) + (d− 1)

{[
(ζ − 1)

d − ζ − 1
]
ζd−1

}
(ζ − 1)

= (d− 1)
[
ζd+1 − (ζ − 1)

d+1
]

+ (d+ 1) ζd

= (d− 1) ζ
{
ζd − (ζ − 1)

d
}

+ (d− 1) (ζ − 1)
d

+ (d+ 1) ζd

= (d− 1) (ζ − 1)
d (
ζd + 1

)
+ 2ζd=:P (d; ζ).

Suppose to the contrary that P (d; ζ) = 0. Then on replacing (ζ − 1)d by −2ζd/[(d − 1)(ζd + 1)]
in the formula (1) for G(d; ζ) we get

(12) −
(
ζd + 1

)
G(d; ζ) = ζd−1

(
ζd+1 +

d+ 1

d− 1
ζd +

d+ 1

d− 1
ζ + 1

)
.

The polynomial Q(d; z) of degree d + 1 obtained by replacing ζ by z in the second parenthetical
expression in (12) has three real zeros (at −1) and d−2 complex zeros for even d and two negative
zeros (’near’ −1) and d− 1 complex zeros for odd d.† This can be seen from the facts that

Q(d;−1) = −
2
[
1− (−1)d

]
d− 1

, Q′(d;−1) =
[
1− (−1)d

] d+ 1

d− 1
, Q′′(d;−1) = 0

and Descartes’ Rule of Signs. Substituting w = eiφ and using trigonometric functions, we arrive
at

Q(d; eiφ) =
4ei[(d+1)/2]φ

d− 1
cos

φ

2
cos

dφ

2

(
d+ tan

φ

2
tan

dφ

2

)
.

By symmetry, the number of solutions in the open set (0, 2π) \ {π} of the equation

(13) tan
φ

2
tan

dφ

2
= −d

equals the number of zeros of tan(dφ/2) in (0, 2π) (cf. Figure 5), which is d − 2 for even d and
d− 1 for odd d. Thus, all zeros of Q(d; z) are accounted for. They are either negative or complex
conjugate pairs of zeros located on the unit circle.

For odd d, no zero ζ of G(d; z) is on the unit circle (Proposition 9) or negative (Proposition 7),
so Q(d; ζ) 6= 0, which contradicts (12). Suppose d is even. If ζ is on the unit circle C0, then it is
simple (Proposition 9). If ζ is not on C0, then Q(d; ζ) 6= 0, which again contradicts (12). �

∗The replacements are (ζ− 1)d(ζd−1 + 1) 7→ ζd + ζd−1 , [(ζ− 1)d− ζ− 1]ζd−1 7→ −(ζ− 1)d and ζd− (ζ− 1)d 7→
ζd−1[(ζ − 1)d − 1].
†Interestingly, if d+1

d−1
is changed to d−3

d−1
in Q(d; z), then the new polynomial has all its zeros on the unit circle.
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-d

Π 2Π
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Figure 5. Typical cases when solving equation (13).

3.3. Asymptotics of Gonchar polynomials. Numerically computing the zeros for G(d; z) for
small values of d, we observe (cf. Figures 3 and 6 and Table 1) that they essentially form three
groups separated by the sets

A1:= {z ∈ C : Re z < 1/2, |z − 1| > 1} ,(14a)

A2:= {z ∈ C : |z| < 1, |z − 1| < 1} ,(14b)

A3:= {z ∈ C : Re z > 1/2, |z| > 1} .(14c)

For the purpose of asymptotic analysis (large d) we rewrite the equation G(d; z) = 0 in three
different ways to emphasize an exponentially decaying right-hand side when considering zeros of
G(d; z) from the indicated part of the complex plane:

zd−1 + 1 =
z + 1

z − 1

(
z

z − 1

)d−1
, (Re z < 1/2)(15a)

(z − 1)
d − (z + 1) zd−1 = − (z − 1) [(z − 1) z]

d−1
, (|z − 1| |z| < 1)(15b)

(z − 1)
d − z − 1 = − (z − 1)

(
z − 1

z

)d−1
. (Re z > 1/2)(15c)

The following theorem concerning the limit behavior of the zeros of G(d; z) as d → ∞ is
illustrated in Figure 6.

Theorem 11. Let Γ be the set consisting of the boundary of the union of the two unit disks
centered at 0 and 1 and the line-segment connecting the intersection points as indicated in Figure 6.
Then, as d → ∞, all the zeros of G(d; z) tend to Γ, and every point on Γ attracts zeros of these
polynomials.

Proof. First, we observe that a closed set K in C \Γ is free of zeros of G(d; z) for sufficiently large
d as can be seen from the following relations obtained from (15a):

lim
d→∞

∣∣∣∣∣1 +
1

zd−1
− z + 1

z − 1

(
1

z − 1

)d−1∣∣∣∣∣
1/d

=

{
1 if |z| > 1, |z − 1| > 1,

1/ |z − 1| if |z| > 1, |z − 1| < 1,

lim
d→∞

∣∣∣∣∣z + 1

z − 1
−
(
z − 1

z

)d−1 (
zd−1 + 1

)∣∣∣∣∣
1/d

=

{
1 if |z| < 1 , | z−1z | < 1 (Re z > 1/2),∣∣ z−1
z

∣∣ if |z| < 1 , | z−1z | > 1 (Re z < 1/2),

lim
d→∞

∣∣∣∣∣zd−1 + 1− z + 1

z − 1

(
z

z − 1

)d−1∣∣∣∣∣
1/d

=

{
|z| if |z| > 1, | zz−1 | < 1 (Re z < 1/2),

1 if |z| < 1, | zz−1 | < 1 (Re z < 1/2).

The second part of the assertion, that every point of Γ attracts zeros, is proved by contradiction.
Given a supposedly non-attracting point w on Γ, there is a sufficiently small‡ open diskDw centered

‡The disk is small enough that its intersection with Γ is contained either in C0, C1 or the open line-segment
connecting the intersection points of C0 and C1.
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Figure 6. Zeros of G(d; z) for d = 1, 2, . . . , 40.

at w containing no zeros of G(d; z) for all sufficiently large d. It is possible to then define a single-
valued analytic branch of the d-th root of any of the rational functions whose moduli appear
on the left-hand sides above. Thereby, we obtain sequences of functions which are analytic and
uniformly bounded in Dw. Such sequences form normal families in Dw. According to the right-
hand sides above, at least one limit function of these families (which is necessarily analytic in Dw)
will have the property that its modulus is 1 in one part and is non-constant in the other part
of Dw which is separated by Γ. This gives the desired contradiction, since an analytic function
in a domain that has constant modulus on a subdomain must be constant throughout the whole
domain. Consequently, each point of Γ attracts zeros of G(d; z) as d→∞. �

It is inviting to compare the zeros of G(d; z) with the ones of the polynomials given at the
left-hand sides of (15a), (15b) and (15c). Such comparisons will likely lead to a finer analysis of
the properties of the zeros of G(d; z).

We conclude this note with some challenging conjectures.

Conjecture 2. For every positive integer d, the zeros of G(d; z) form three groups separated by

the sets A1, A2 and A3 except when 6 divides d in which case one also has the zeros (1± i
√

3)/2.

When counting the zeros in the sets A1, A2 and A3 a very regular pattern emerges, which can be
seen from Table 1. In fact, inspection of this table shows that the values of column N1 (increased by
2 when 6 divides d) agree with the number of zeros on C0 obtained in Proposition 9. Assuming that
this is true for all d ≥ 1, by self-reprocity of G(d; z), it would follow that N1 = N2 = N3 = 4k−1 if
d = 6k. We expect that the zero counting scheme indicated in the Table 1 generalizes to all d ≥ 1.

Numerically, the zeros in A1 and A3 can be found near the respective unit circle C0 and C1.

Conjecture 3. If d is even, all the zeros of G(d; z) in A1 are the zeros on the unit circle C0
given in Proposition 9. If d is odd, the zeros of G(d; z) in A1 alternately lie inside and outside C0.
Furthermore, the zeros of G(d; z) in A3 are always outside of C1.

Conjecture 4. The zeros of G(d; z) in A2 are located on a curve which is convex from the left.

Acknowledgment. The first author is grateful to Don Zagier and Wadim Zudilin for inspir-
ing this work when attending the workshop “Geometry and Arithmetic around Hypergeometric
Functions” from September 28th — October 4th, 2008, which was made possible by the Mathema-
tisches Forschungsinstitut Oberwolfach (MFO) and the Oberwolfach-Leibniz-Fellow Programme
(OWFL).

Appendix A

In the proof of Proposition 3 we utilize the following.
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Lemma 12. Let d ≥ 2 and z1 6= z2 be two fixed points in Rd+1. Then

(16)
Cd

|z1 − z2|d−1
=

∫
Rd+1

1

|t− z1|d|t− z2|d
dt =: J(z1, z2), Cd =

π(d+3)/2 Γ((d− 1)/2)

[Γ(d/2)]2
.

Proof. Observe that J(z1, z2) is a convergent integral for any z1 6= z2. First a translation t = u+z2
and then change to spherical coordinates yields

J(z1, z2) =

∫
Rd+1

1

|u− z1 + z2|d
du

|u|d
= ωd

∫ ∞
0

{∫
Sd

dσd(ū)

(ρ2 − 2ρr ū · x̄ + r2)
d/2

}
dρ,

where we used the notation ρ := |u|, r := |z1 − z2|, ū := u/ρ, x̄ := (z1 − z2)/r and

ωd = 2π(d+1)/2
/

Γ((d+ 1)/2)

is the surface area of the unit sphere Sd. Using the Funk-Hecke formula [6, p. 20], we derive

J(z1, z2) = ωd−1

∫ ∞
0

{∫ 1

−1

(
1− v2

)d/2−1
dv

(ρ2 − 2ρr v + r2)
d/2

}
dρ = ωd−1

∫ 1

−1
H(v)

(
1− v2

)d/2−1
dv,

where the formula [7, Eq. 2.2.9.7] enables us to compute

H(v) :=

∫ ∞
0

dρ

(ρ2 − 2ρr v + r2)
d/2

= r1−d
1

d− 1
2F1

(
1/2, (d− 1)/2

(d+ 1)/2
; 1− v2

)
.

Symmetry and a change of variable u = 1− v2 leads to (recall r = |z1 − z2|)

Cd = |z1 − z2|d−1 J(z1, z2) =
ωd−1
d− 1

∫ 1

0

ud/2−1 (1− u)
1/2−1

2F1

(
1/2, (d− 1)/2

(d+ 1)/2
;u

)
du,

where the integral can be expressed as a 3F2-hypergeometric function at unity (cf. [8, Eq. 2.21.1.5])

=
ωd−1
d− 1

B(d/2, 1/2) 3F2

(
1/2, (d− 1)/2, d/2
(d+ 1)/2, (d+ 1)/2

; 1

)
=

ωd
d− 1

π

[
Γ((d+ 1)/2)

Γ(d/2)

]2
.

The last step follows from the relation B(d/2, 1/2) = ωd/ωd−1 and the generalized hypergeometric
function can be evaluated using [8, Eq. 7.4.4.19]. The result follows. �

Proof of Proposition 3. Suppose η1 and η2 are two signed equilibria on Sd associated with the
same external field Q. Then

V η1(x) +Q(x) = F1, V η2(x) +Q(x) = F2 for all x ∈ Sd.
Subtracting the two equations and integrating with respect to η := η1 − η2 we obtain

I(η) =

∫
V η(x) dη(x) =

∫ ∫
1

|x− y|d−1
dη(x) dη(y) = 0.

Applying (16) from Lemma 12 we obtain

0 =

∫ ∫
1

|x− y|d−1
dη(x) dη(y)

=
1

Cd

∫ ∫ (∫
Rd+1

1

|x− z|d
1

|z− y|d
dz

)
dη(x) dη(y)

=
1

Cd

∫
Rd+1

[∫
1

|x− z|d
dη(x)

]2
dz,(17)

where the interchange of the integration is justified because signed equilibria have a.e. finite
potentials. From (17) we conclude for the Riesz potential of η∫

1

|x− z|d
dη(x) = 0 a.e. in Rd+1.

It turns out that linear combinations of {|x − z|−d}z∈Rd+1 are a dense class in the space of con-
tinuous functions on Sd (see [5, p. 214]), we obtain that η ≡ 0 (see also [5, Theorem 1.12]). �
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Proof of Asymptotic (10). Let ζd denote the largest real zero of G(d, q; z) (that is Rq = ζd). We
may assume (see discussion regarding appearance of the number 2) that

ζd = 2 + fd with fd = f(ζd)→ 0 as d→∞.

Rewriting the equation G(d, q; ζd) = 0 in the following way using above relation and exploiting
the exponential decay of the right-hand side yields

(1 + fd)
d − q (3 + fd) = −q (1 + fd)

(
1 + fd
2 + fd

)d−1
= qO((2/3)d) as d→∞,

or equivalently,

log(1 + fd) =
1

d
log(3q) +

1

d
log(1 +

fd
3

+O((2/3)d)) as d→∞.

Now we can use the series expansion of the logarithm function to get a relation for fd:

fd +O(f2d ) =
1

d
log(3q) +

1

d
O(fd) as d→∞.

The asymptotic form (10) follows. �
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