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ON DOUBLE HURWITZ NUMBERS WITH

COMPLETED CYCLES

S. SHADRIN, L. SPITZ, AND D. ZVONKINE

Abstract. In this paper, we collect a number of facts about dou-
ble Hurwitz numbers, where the simple branch points are replaced
by their more general analogues — completed (r + 1)-cycles. In
particular, we give a geometric interpretation of these generalised
Hurwitz numbers and derive a cut-and-join operator for completed
(r+1)-cycles. We also prove a strong piecewise polynomiality prop-
erty in the sense of Goulden-Jackson-Vakil. In addition, we pro-
pose a conjectural ELSV/GJV-type formula, that is, an expression
in terms of some intrinsic combinatorial constants that might be
related to the intersection theory of some analogues of the moduli
space of curves. The structure of these conjectural “intersection
numbers” is discussed in detail.
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1. Introduction

The theory of usual double Hurwitz numbers has been considered
from several different points of view, usually in a purely combinatorial
way. First, Okounkov [13] observed a relation to integrable systems of
KP-type that is also nicely explained and heavily used in the recent pa-
per of Johnson [9]. Second, double Hurwitz numbers were studied from
different points of view in purely combinatorial way in a foundational
paper of Goulden, Jackson, and Vakil [7], where most of the typical
contemporary questions were first posed. Third, there is a tropical ap-
proach to double Hurwitz numbers developed by Cavalieri, Johnson,
and Markwig [2, 3]. Fourth, double Hurwitz numbers were studied in
genus 0 through the intersection theory on double ramification cycles in
the moduli space of curves by Shapiro, Vainshtein, and the first named
author, see [16, 17].

The theory of Hurwitz numbers with completed cycles has emerged
through several relations with geometry of the moduli space of curves.
First, it has emerged in [14] as a way to encode higher degrees of ψ-
classes in the Gromov-Witten theory of CP1. Second, it is related to
the intersection theory of the moduli spaces of r-spin structures via an
analogue of the ELSV formula [20], conjectured by the third named
author, that involves the classes discussed in [4].

This motivates us to look attentively into the combinatorial structure
of double Hurwitz numbers with completed cycles, since we expect that
some kind of intrinsic combinatorial niceness of these numbers might
be an explanation of the existing connections of completed cycles to
geometry of moduli spaces and predict some further relations. So, we
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investigate double Hurwitz numbers with completed cycles in a purely
combinatorial way generalizing various results in [7, 9, 15, 18].

1.1. Organization of the paper. The paper starts with an introduc-
tion of the necessary theory. We define completed cycles as elements
of the class algebra of the symmetric group using an isomorphism with
the algebra of shifted symmetric functions in section 2. In section 3,
the infinite wedge space is explained and the necessary operators are
introduced.

The main part of the paper consists of four sections. In section 4,
we introduce an algorithm to calculate Hurwitz numbers in a practical
way, which allows us to prove the theorems in section 6.

In section 5, we use the infinite wedge formalism together with calcu-
lations on the representation theory of the symmetric group to prove so
called cut-and-join equations for completed Hurwitz numbers. These
equations are direct generalizations of the the cut-and-join equation for
ordinary Hurwitz numbers.

In section 6, we use the algorithm defined in section 4 to prove a
strong piecewise polynomiality property in the sense of [7] for com-
pleted Hurwitz numbers. The proof is analogous to the proof in [9] for
strong piecewise polynomiality of ordinary Hurwitz numbers. We also
derive the corresponding wall crossing formula’s.

Finally, in the last section we give a formula for completed one-part
double Hurwitz numbers in terms of the intersection theory of some
conjectural moduli spaces. We give an explicit formula for the gen-
erating series for these conjectural intersection numbers and we prove
that it obeys the Hirota equations. The same was done for ordinary
one-part double Hurwitz numbers in for instance [15].

1.2. Notation. By [n], n = 1, 2, . . . , we denote the set {1, . . . , n}.
By l(µ) we denote the length of the partition µ = (µ1, . . . , µl), and

by |µ| we denote the sum
∑l(µ)

i=1 µi.
Let U(z) be a formal power series in z. By [za]U(z) we denote the

coefficient of za in U , that is, U(z) =
∑∞

a=1 z
a · [za]U(z).

1.3. Acknowledgements. S. S. and L. S. were supported by a Vidi
grant of the Netherlands Organization for Scientific Research.

2. Hurwitz numbers with completed cycles

Following [14] and [20], we give a purely combinatorial definition of
Hurwitz numbers with completed cycles. Intuitively, completed Hur-
witz numbers count covers of CP1 with given ramification over 0 and∞,
like ordinary Hurwitz numbers, but instead of allowing ramification
given by ordinary branch points elsewhere, we allow ramification by
completed cycles.
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2.1. Shifted symmetric functions. Let Q[x1, . . . , xn] be the algebra
of polynomials in n variables over Q. We define the shifted action of
Sn on this algebra by

(1) σ(f(x1 − 1, . . . , xn − n)) = f(xσ(1) − σ(1), . . . , xσ(n) − σ(n))

for any element σ ∈ Sn and any polynomial f written in terms of the
variables xi − i. Denote by Q[x1, . . . , xn]

∗Sd the algebra of polynomi-
als which are invariant with respect to this action. It has a natural
filtration by degree.

Definition 2.1. The algebra of shifted symmetric functions is the al-
gebra Λ∗ = lim

←−
Q[x1, . . . , xn]

∗Sd , where the projective limit is taken in
the category of filtered algebras with respect to the homomorphism
which sends the last variable xn to 0.

In other words, the elements of the algebra Λ∗ are given as se-
ries f = {f (n)}, f (n) ∈ Q[x1, . . . , xn]

∗S(n), such that the polynomials
f (n) are of uniformely bounded degree and stable under the restriction
f (n+1)|xn+1=0 = f (n).

2.2. Basis of the algebra of shifted symmetric functions. The
shifted analogues of the power sums form a basis of the algebra of
shifted symmetric functions.

Definition 2.2. For any positive integer k, the corresponding shifted
symmetric power sum pk is defined as

(2) pk(λ) =

∞
∑

i=1

(

(λi − i+
1

2
)k − (−i+

1

2
)k
)

.

For any partition µ, define pµ =
∏l(µ)

i=1 pµi
.

The functions pµ form a basis for the algebra of shifted symmetric
funtions. Another basis is obtained in the following way.

Irreducible representations of the symmetric group Sd are in one to
one correspondence with partitions of d. On the other hand, partitions
of d are also in one to one correspondence with conjugacy classes in Sd.
For partitions µ and λ, let dim(λ) be the dimension of the representa-
tion given by λ, let χλ

µ be the character of this representation evaluated
on the conjugacy class Cµ given by µ, and let |Cµ| be the size of this
conjugacy class.

Definition 2.3. We define for any partition µ a function fµ on the set
of partitions of |µ| by

(3) fµ(λ) = |Cµ|
χλ
µ

dim(λ)
.

When the partition µ is of the form (r+1, 1, . . . , 1), we denote fµ by fr,
r = 0, 1, 2, . . . .
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Kerov and Olshanski proved that the functions fµ are shifted sym-
metric [11]. They also form a basis for the space of shifted symmetric
funtions.

2.3. Completed cycles. Let ZCSd be the class algebra of the sym-
metric group Sd. We can define a linear isomorphism φ :

⊕∞
d=0 ZCSd →

Λ∗, φ : Cµ 7→ fµ.

Definition 2.4. For any partition µ, the completed µ-conjugacy class
Cµ in the class algebra of the symmetric group is defined as Cµ :=

φ−1(pµ)/
∏l(µ)

i=1 µi!. A special role is played by the completed cycles

(r) := C(r), r = 1, 2, . . . .

Note that this definition of the completed (r + 1)-cycle differs by a
factor r! from the definition in [20].

The first few completed cycles are

0! · (1) = (1)

1! · (2) = (2)

2! · (3) = (3) + (1, 1) +
1

12
· (1)

3! · (4) = (4) + 2 · (2, 1) +
5

4
· (2)

4! · (5) = (5) + 3 · (3, 1) + 4 · (2, 2) +
11

2
· (3)

+ 4 · (1, 1, 1) +
3

2
· (1, 1) +

1

80
· (1).

2.4. Hurwitz numbers with completed cycles. We fix two non-
empty partitions µ and ν such that |µ| = |ν| and non-negative integers
r and s such that 2g − 2 + l(µ) + l(ν) = rs.

Definition 2.5. We define disconnected double Hurwitz numbers with
completed (r + 1)-cycles via the character formula:

(4) h(r)g,µ,ν :=
1

∏l(µ)
i=1 µi

∏l(ν)
j=1 νj

∑

|λ|=d

χλ
µ

(

pr+1(λ)

(r + 1)!

)s

χλ
ν

We also denote the same Hurwitz number by h
(r),s
µ,ν , and we often

omit the superscript (r) when r is fixed in advance.

Remark 2.6. Since the completed 2-cycle is equal to the ordinary 2-

cycle, the double Hurwitz numbers h
(1),s
µ,ν are just the ordinary Hurwitz

numbers for not necessary connected surfaces.
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2.5. Geometric interpretation. Hurwitz numbers with completed
cycles possess a geometric interpretation.

Suppose we are given a partition λ and a nonnegative interger γ.
To this data we can assign a singularity of stable maps to CP1 by the
following rule.

• If 2−2γ− l(λ) < 0 then the singularity consists of a contracted
curve of genus γ (that is, a curve on which the stable map has
degree 0) intersecting the remaining components of the source
curve at l = l(λ) branches on which the stable map has ramifi-
cation points with indices λ1, . . . , λl. Note that in this case the
contracted curve is required to be connected, but not necessarily
irreducible.
• If γ = 0 and l(λ) = 2, then the singularity consists of a simple
self-intersection of the source curve such that the stable maps
presents ramification points with indices λ1, λ2.
• Finally, if γ = 0 and l(λ) = 1, then the singularity is just a
ramification point with index λ1.

This list covers all possible connected singular loci of a stable map
to CP1. In all three cases it is natural to consider the image of the
singular locus under the stable map as a branch point of multiplicity
2γ + |λ| − l(λ), see [5]. For this reason we will say that the singular
locus described by the data (λ, γ) has multiplicity 2γ + |λ| − l(λ).

Now, a completed (r+ 1)-cycle is a linear combination of conjugacy
classes λ. To each conjugacy class it is easy to assign a nonnegative
integer γ such that 2γ+|λ|−l(λ) = r. Thus every term of the completed
cycle corresponds to a singular locus of multiplicity r. Moreover, the
terms of the completed cycle cover all types of singular loci like that.
The numerical coefficient of a partition (λ) in the completed (r + 1)-
cycle is some kind of intersection number on the moduli spaceMγ,l(λ)

of contracted components; its nature is still not entirely clear.
We can now give the geometric meaning of Hurwitz numbers with

completed cycles. Call a stable map f : C → CP1 an r-covering if (i) it
has a finite number of preimages of 0 and∞ and (ii) all its singular loci
have multiplicity r except possibly the preimages of 0 and ∞. Call the
weight of a singular locus described by (λ, γ) the coefficient of (λ) in
the completed (r+1)-cycle, where r = 2γ + |λ| − l(λ). Call the weight
of an r-covering the product of weights of its singular loci divided by
the number of automorphisms of the covering.

Proposition 2.7. The Hurwitz number h
(r)
g,µ,ν is equal to the sum of

weights of not necessarily connected r-coverings f : C → CP1 with s
fixed branch points, where the Euler characteristic of C equals 2 − 2g
and the number of branch points equals s = (2g − 2 + l(µ) + l(ν))/r.

This proposition leads to a natural definition of connected Hurwitz
numbers: just replace “not necessarily connected” by “connected” in
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the above formulation. Connected Hurwitz numbers can be computed
from the disconnected ones by the exclusion-inclusion formula, see
also [14, 20].

3. Semi-infinite wedge formalism

In this section we sketch the theory of semi-infinite wedge space
following [14] and [9].

3.1. Infinite wedge. Let V be an infinite dimensional vector space
with basis labelled by the half integers. Denote the basis vector labelled
by m/2 by m/2, so V =

⊕

i∈Z+ 1

2

i.

Definition 3.1. The semi-infinite wedge space is the span of all wedge
products of the form

(5) i1 ∧ i2 ∧ · · ·

for any decreasing sequence of half integers (ik) such that there is an
integer c (called the charge) with ik + k− 1

2
= c for k sufficiently large.

In this paper, we are mostly concerned with the zero charge sub-
space of the semi-infinite wedge space, which is the space of all wedge
products of the form 5 such that

(6) ik + k =
1

2
for k sufficiently large. For brevity, we will call this space the infinite
wedge space from now on.

Remark 3.2. An element of the infinite wedge space is of the form
λ1 −

1
2
∧ λ2 −

3
2
∧ · · · for some partition λ. This follows immediately

from condition (6). Thus, we canonically have a basis for the infinite
wedge space labelled by all partitions. The inner product associated
with this basis will be denoted (·, ·).

Notation 3.3. We denote by vλ the vector labelled by a partition λ.
The vector labelled by the empty partition is called the vacuum vector
and denoted by |0〉 = v∅ = −

1
2
∧ −3

2
∧ · · · .

Notation 3.4. If P is an operator on the infinite wedge space, then we
define the vacuum expectation value of P by 〈P〉 = 〈0|P|0〉, where 〈0|
is the dual of the vacuum vector with resprect to the inner product (·, ·),
and called the covacuum vector.

3.2. Operators. We now define some operators on the infinite wedge
space.

Definition 3.5. Let k be any half integer. Then the operator ψk is
defined by ψk : (i1 ∧ i2 ∧ · · · ) 7→ (k ∧ i1 ∧ i2 ∧ · · · ). This operator
acts on the whole semi-infinite wedge space (the sum of spaces with all
charges). It increases the charge by 1.
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The operator ψ∗
k is defined to be the adjoint of the operator ψk with

respect to the inner product (·, ·).

Definition 3.6. The normally ordered products of ψ-operators are
defined in the following way

(7) :ψiψ
∗
j : :=

{

ψiψ
∗
j , if j > 0

−ψ∗
jψi if j < 0 .

This operator does not change the charge and can be restricted to the
infinite wedge space. Its action on the basis vectors vλ can be described
as follows: :ψiψ

∗
j : checks if vλ contains j as a wedge factor and if so

replaces it by i. Otherwise it yields 0. In the case i = j > 0, we
have :ψiψ

∗
j :(vλ) = vλ if vλ contains j and 0 if it does not; in the case

i = j < 0, we have :ψiψ
∗
j :(vλ) = −vλ if vλ does not contain j and 0

if it does. These are the only two cases where the normal ordering is
important.

Remark 3.7. Let Eij for i, j ∈ Z+ 1
2
denote the standard basis of matrix

units of gl(∞) = gl(V ). Then the assignment Eij 7→ :ψiψ
∗
j : defines a

projective representation of the Lie algebra gl(V ) on Λ
∞

2 (V ).

Notation 3.8. We denote by ζ(z) the function ez/2 − e−z/2.

Definition 3.9. Let n ∈ Z be any integer. We define two operators
En(z) and Ẽn(z) depending on a formal variable z by

En(z) =
∑

k∈Z+ 1

2

ez(k−
n
2
)Ek−n,k +

δn,0
ζ(z)

Ẽn(z) =
∑

k∈Z+ 1

2

ez(k−
n
2
)Ek−n,k .

The operator En(z) is called the deregularized E-operator, while Ẽn(z)
is the regularized E-operator.

3.3. Hurwitz numbers with completed cycles.

Notation 3.10. We denote by αn, n 6= 0, the operator En(0). We

denote by Fr+1, r ≥ 1, the operator [zr+1]Ẽ0(z).

Proposition 3.11. A double Hurwitz number with completed cycles
can be expressed as a vacuum expectation value in the infinite wedge
space in the following way:

(8) h(r),sµ,ν =
〈
∏l(µ)

i=1 αµi
F s

r+1

∏l(ν)
i=1 α−νi〉

∏l(µ)
i=1 µi

∏l(ν)
j=1 νj

.

Proof. This is just a way to rewrite Equation (4).
Indeed, the standard facts in the infinite wedge formalism are that

∏l(µ)
i=1 α−µi

|0〉 =
∑

|λ|=|µ| χ
λ
µvλ, for any partition µ, and 〈0|

∏l(µ)
i=1 αµi

vλ =
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χλ
µ, for any partitions λ and µ such that |λ| = |µ|. It is proved, e. g.,

in [10] or [9].
Meanwhile, vµ is an eigenvector of Fr+1 with eigenvalue pr+1(µ)/(r+

1)!, where pr+1 is the shifted symmetric power sum defined in Defini-
tion 2.2, and µ is an arbitrary partition.

After these two observations, Equations (8) and (4) are clearly equiv-
alent. �

4. Computation of Hurwitz numbers

In this section we generalize the algorithm for computation of double
Hurwitz numbers in [9] to the case of double Hurwitz numbers with
completed (r + 1)-cycles. This algorithm presents several advantages
with respect to direct copmputations with characters. In particular, it
will allow us to prove the piecewise polynomiality of Hurwitz numbers.
In Sections 4.5 and 4.6 we also show that in certain cases it leads to
quite explicit expressions for Huwritz numbers, that cannot be directly
deduced from the character formulas.

Throughout the section we fix r ≥ 1 (and therefore omit it in all
notations). We also fix two partitions, µ and ν, such that |µ| = |ν|, and
an integer s ≥ 0. They are the ramification profiles over two special
points and the number of completed cycles of a particular Hurwitz
number that we consider here.

4.1. Notations and properties of operators. For any subsets I ⊂
[l(µ)], J ⊂ [l(ν)], and K ⊂ [s] we introduce the following notation.
We denote by µI , νJ , and zK the sums µI :=

∑

i∈I µi, µJ :=
∑

j∈J νj ,

and zK :=
∑

k∈K zk. We denote by E(I, J,K) the operator EµI−νJ (zK).

The same piece of notation we use also in the case of Ẽ . LetM ⊂ [l(µ)],
N ⊂ [l(ν)], and L ⊂ [s]. The last piece of notation we need is

(9) ζ ( I J K
M N L ) := ζ

(

det
(

µI−νJ zK
µM−νN zL

))

,

where ζ(z) = ez/2 − e−z/2 is as defined in Notation 3.8.
Using this notation, we can rewrite a Hurwitz number with com-

pleted cycles as

hsµ,ν =
1

∏l(µ)
i=1 µi

∏l(ν)
j=1 νj

· [zr+1
1 · · · zr+1

s ](10)

〈

l(µ)
∏

i=1

E({i}, ∅, ∅)
s
∏

k=1

Ẽ(∅, ∅, {k})

l(ν)
∏

j=1

E(∅, {j}, ∅)

〉

.

By the symbol [zr+1
1 · · · zr+1

s ] we denote the coefficient of the monomial
zr+1
1 · · · zr+1

s in the formal power series which follows it.
We will use a special case of the commutation relation (2.17) in [14]

that in our notation is given by the following lemma.
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Lemma 4.1. For any subsets I,M ⊂ [l(µ)], J,N ⊂ [l(ν)] and K,L ⊂
[s] such that I ∩M = J ∩N = K ∩ L = ∅, we have

[E(I, J,K), E(M,N,L)] = ζ ( I J K
M N L ) E (I ∪M,J ∪N,K ∪ L) .(11)

Remark 4.2. Lemma 4.1 is also true if one of the E-operators on the
left hand side of the Equation (11) is replaced by Ẽ .

4.2. An algorithm for computation. We say that the operator
En(z) has positive (resp., negative, zero) energy if the integer n is pos-
itive (resp., negative, zero). We see immediately that E(I, J,K)|0〉
(resp., 〈0|E(I, J,K)) is zero when E(I, J,K) has positive (resp., neg-
ative) energy. The vacuum expectation value in Equation (10) has
operators of negative energy on the right and operators of positive en-
ergy on the left; by commuting them, we will be able to make use of
that observation.

Remark 4.3. Below we present an algorithm that computes the vacuum
expectation value on the right hand side of Equation (10). It will
consist in commuting operators of negative energy to the left. Since
Ẽ(∅, ∅, k)|0〉 = 0, each of Ẽ-operators must be involved in a commutator
in our computations. Then Remark 4.2 implies that we might as well
have started with the vacuum expectation value

(12)

〈

l(µ)
∏

i=1

E({i}, ∅, ∅)
s
∏

k=1

E(∅, ∅, {k})

l(ν)
∏

j=1

E(∅, {j}, ∅)

〉

.

if we additionally demand that each of the zero energy operators will
be involved in a commutator at a certain step of the algorithm.

Now we describe the algorithm. Note that the vacuum expectation
value (12) is of the form

(13)
∏

q∈Q

ζ
(

Fq Gq Hq

Mq Nq Lq

)

〈

∏

t∈T

E(It, Jt, Kt)

〉

for some finite index sets T and Q and subsets It, Fq,Mq ⊂ [l(µ)],
Jt, Gq, Nq ⊂ [l(ν)], Kt, Hq, Lq ⊂ [s].

At the beginning of any step in the algorithm we have vacuum ex-
pectation value of this form. Suppose that the operators in the vacuum
expectation value of some step do not all have zero energy. Then the
step will consist in the following actions.

Let t0 be the index of the leftmost operator of negative energy. If it
is the leftmost operator, then this vacuum expectation value is zero by
the remarks above and the algorithm terminates. If it is not, commute
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it to the left, that is, apply the equality

E(It0−1, Jt0−1, Kt0−1)E(It0 , Jt0 , Kt0)(14)

= E(It0 , Jt0 , Kt0)E(It0−1, Jt0−1, Kt0−1)

+ [E(It0−1, Jt0−1, Kt0−1), E(It0 , Jt0, Kt0)].

The vacuum expectation resulting from the first (resp., second) term
on the right hand side is called the passing (resp., commutator) term.
By Lemma 4.1, the commutator in the commutator term is equal to

(15) ζ
(

It0−1 Jt0−1 Kt0−1

It0 Jt0 Kt0

)

E(It0 ∪ It0−1, Jt0 ∪ Jt0−1, Kt0 ∪Kt0−1).

We now choose either the passing term or the commutator term and
continue the algorithm with it.

In the end we will sum over the contributions from all possible
choices. Because both the passing term and the commutator term are
again of the form (13), we can iterate this procedure. The algorithm
terminates when the result is zero because an operator of negative en-
ergy is on the far left, or one of the E(∅, ∅, {k}) wasn’t commuted with
any negative energy operators and moved to the far right, or an oper-
ator of positive energy is on the far right. It also terminates when all
operators in the vacuum expectation have zero energy.

Since taking the passing term results in having an operator of nega-
tive energy further to the left and taking the commutator term results
in having one less operator in the vacuum expectation value, the algo-
rithm will terminate for any values of the partitions µ and ν and any
non-negative integer s.

Remark 4.4. Since we demand |µ| = |ν| (otherwise the Hurwitz num-
ber hsµ,ν makes no sense), a vacuum expectation value with only one
operator can only appear in the algorithm if this operator has zero
energy.

4.3. Commutation pattern. Using the algorithm in the previous
section, we can give an expression for a Hurwitz number in terms of
ζ-functions.

Definition 4.5. A commutation pattern P is a set of six-tuples of
sets {(P l

I , P
l
J , P

l
K , P

l
M , P

l
N , P

l
R)}l∈L(P ) (where L(P ) := [|L|] is some in-

dex set) such that we get a non-vanishing contribution to the vacuum
expection value (10) when we go through the algorithm in such a way
that the l-th commutator computed is [E(P l

I , P
l
J , P

l
K) , E(P

l
M , P

l
N , P

l
R)].

The set of all commutation patterns for given values of µ, ν, and s
is denoted by CP s

µ,ν .
Note that the final vacuum expectation value in any commutation

pattern P ∈ CP s
µ,ν will always be the vacuum expectation of a prod-

uct of zero energy operators, that is, it will always be of the form
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〈
∏

t∈T (P ) E0(zSt)〉 for some index set T (P ) and some non-intersecting

subsets St ⊂ [s], t ∈ T (P ) whose union is equal to [s].

Theorem 4.6. The Hurwitz number hsµ,ν is given by the following for-
mula:

hsµ,ν =
1

∏l(µ)
i=1 µi

∏l(ν)
j=1 νj

[zr+1
1 · · · zr+1

s ](16)

∑

P∈CP s
µ,ν

∏

t∈T (P )

1

ζ(zSt)

∏

l∈L(P )

ζ
(

P l
I P l

J P l
K

P l
M P l

N P l
R

)

Proof. This follows immediately from Equation (10) and the descrip-
tion of the algorithm in Section 4.2. We use that 〈

∏

t∈T (P ) E0(zSt)〉 =

1/
∏

t∈T (P ) ζ(zSt) which follows directly from the definition of the op-

erators E0(z). �

Remark 4.7. In Theorem 4.6, a factor ζ(0)E0(0) coming from the com-
mutator [En(0), E−n(0)] in the contribution of a commutation pattern
to the Hurwitz number should be interpreted in the following way.
When the factor is produced, replace the zero in the argument of the
ζ-function by n times a formal variable t, and replace the zero in the
argument of the E-operator by t. Then when the whole commutation
pattern is completed, let t go to zero. We see immediately that this
is the same as replacing the commutator [En(0), E−n(0)] by the scalar
operator n instead of by ζ(0)E0(0). This also agrees with the analysis
in [14] (Equation 2.19).

4.4. Connected Hurwitz numbers. The algorithm also allows for
the computation of the connected Hurwitz number. For this, we need
one more definition.

Definition 4.8. A commutation pattern P ∈ CP s
µ,ν is called connected

if the set T (P ) consists of exactly one element. The set of all connected
commutation patterns is denoted by CP s,◦

µ,ν .

Theorem 4.9. The connected Hurwitz number hs,◦µ,ν is equal to

hs,◦µ,ν =
1

∏l(µ)
i=1 µi

∏l(ν)
j=1 νj

[zr+1
1 · · · zr+1

s ](17)

1

ζ(z[s])

∑

P∈CP s,◦
µ,ν

∏

l∈L(P )

ζ
(

P l
I P l

J P l
K

P l
M P l

N P l
R

)

.

Proof. Since E0(z) is a scalar operator, for any commutation pattern
P ∈ CP s

µ,ν we have 〈
∏

t∈T (P ) E0(zSt)〉 =
∏

t∈T (P )〈E0(zSt)〉. Furthermore,

when |T (P )| ≥ 2, the operators from the start of the algorithm con-
tributing to E0(zSt) for different t ∈ T (P ) do not interact with each
other at all. That is, a commutator term involving operators eventu-
ally contributing to E0(zSt) for different t is never taken. Therefore,
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for any integer n ≥ 1, the contribution to hsµ,ν by covers with at least
n connected components is given exactly by the contribution to Equa-
tion (16) of commutation patterns P for which |T (P )| ≥ n.

That means that the exclusion-inclusion formula for the connected
Hurwitz number in terms of ordinary Hurwitz numbers coincides pre-
cisely with the exclusion-inclusion formula for the contribution to Equa-
tion (16) by commutation patterns P with |T (P )| = 1 in terms of
contributions by arbitrary commutation paterns. This completes the
proof. �

4.5. Example: one-part double Hurwitz numbers. In the case of
one-part double Hurwitz numbers, that is, l(ν) = 1, we have just one
commutation pattern. Therefore, applying Equation (16) (or, equiva-
lently, Equation (17)), we obtain

(18) hsµ,|µ| =
1

|µ|
∏l(µ)

i=1 µi

[zr+1
1 · · · zr+1

s ]

∏s
k=1 ζ(|µ|zk)

∏l(µ)
i=1 ζ(µiz[s])

ζ(z[s])

4.6. Example: coefficients of the completed cycles. The coeffi-
cients of the completed cycles are obtained from Theorem 4.9 in the
case s = 1, ν = (1, . . . , 1). In that case there is only one connected
commutation pattern, and we get

(19) |Cµ|h
1,◦
µ,(1,...,1) =

1

|µ|!
[zr+1]ζ(z)|µ|−1

l(µ)
∏

i=1

ζ(µiz),

(recall that |Cµ| is the size of the conjugacy class Cµ). This formula
agrees with the one given in [14, Equation (0.22)] modulo the diffences
in conventions and notation.

5. The cut-and-join operators

5.1. Three vector spaces. Let p1, p2, . . . be an infinite sequence of
formal variables. Given a permutation σ ∈ Sn with cycle lengths
k1, . . . , ks denote by p(σ) the product pk1 · · ·pks. If we assign the weight
k to the variable pk, then the monomial p(σ) is of total weight n. The
map p is extended by linearity to an isomorphism

(20) p : ZCSn 7→ Cn[p1, . . . , pn],

where ZCSn is the center of the group algebra of the symmetric group
Sn and Cn[p1, . . . , pn] is the space of quasi-homogeneous polynomials of
weight n. This is an isomorphism of vector spaces, but not of algebras,
since the target space of p does not have a natural algebra structure.
However the action of elements of ZCSn by multiplication gives rise
to interesting operators in the space of homogeneous polynomials. In
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particular, the map p transforms the operator of multiplication by the
sum of all transpositions into the well-known cut-and-join operator:

(21)
1

2

∑

i,j≥1

(

ijpi+j
∂2

∂pi∂pj
+ (i+ j)pipj

∂

∂pi+j

)

.

The first term corresponds to the case where two cycles of lenghts
i and j are merged together by the transposition; the second term
corresponds to the case where a cycle of length i + j is cut into two
cycles of lengths i and j.

The operator corresponding to the mutiplication by the sum of all
(r + 1)-cycles was determined for every r by Goulden and Jackson
in [6]. Their expressions seem to be more complicated than those for
the completed cycles.

The space C[[p1, p2, . . . ]] of formal power series in variables p1, p2, . . .
is a completion of the direct sum of the spaces of quasi-homogeneous
polynomials. It is natually isomorphic to a completion of the direct sum
of spaces ZCSn. Moreover, both vector spaces are naturally identified
with the infinite wedge space via the isomorphism vλ ↔ sλ(p), where
sλ is the Schur polynomial:

(22) sλ(p) =
1

n!

∑

σ∈Sn

χλ(σ)p(σ).

Under this identification, the multiplication by the completed (r + 1)-
cycle corresponds to the operator

(23) Fr+1 =
1

(r + 1)!

∑

m∈Z+1/2

mr+1Em,m

in the infinite wegde space. Our goal is to construct the corresponding
cut-and-join operator in the space C[[p1, p2 . . . , ]].

5.2. The construction of operators. For k ≥ 1, let a−k = pk be
the operator of multiplication by pk and ak = k ∂/∂pk. We let a0 = 0.

In the infinite wedge space the operator ak becomes αk = Ẽk(0) =
∑

m∈Z+1/2 Em−k,m (see Notation 3.10). For k < 0 it transforms vλ into
∑

ǫ(µ)vµ, where the Young diagrams µ are all diagrams that can be
obtained from λ by adding a ribbon of length k and the sign ǫ(µ) is
the number of horizontal steps in the ribbon, as in the Murnaghan-
Nakayama rule [8]. Similarly, for k > 0 it transforms vλ into

∑

ǫ(µ)vµ,
where the Young removing a ribbon of length k and the sign ǫ(µ) is
the number of horizontal steps in the ribbon.

The normal ordering :ak1 · · · akn : of a monomial ak1 · · · akn is the
non-decreasing order of indices; in other words the derivations go to the
right and the multiplication operators to the left. Recall (Notation 3.8)
that ζ(z) = ez/2 − e−z/2.
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Definition 5.1. The coefficients Q1, Q2, . . . of the series
(24)

Q1z +Q2z
2 + · · · =

1

ζ(z)

∑

n≥1

1

n!

∑

k1+···+kn=0

ζ(k1z) · · · ζ(knz)
:ak1 · · · akn:

k1 · · · kn

are called the completed cut-and-join operators.

Theorem 5.2. The map p : ZCSn → Cn[p1, . . . , pn] transforms the
operator of multiplication by the completed (r+1)-cycle into the (r+1)st
completed cut-and-join operator.

For instance, we have

Q1 =
∑

i≥1

ipi
∂

∂pi
,

Q2 =
1

2

∑

i,j≥1

(

ijpi+j
∂2

∂pi∂pj
+ (i+ j)pipj

∂

∂pi+j

)

,

Q3 =
1

6

∑

i,j,k≥1

(

ijkpi+j+k
∂3

∂pi∂pj∂pk
+ (i+ j + k)pipjpk

∂

∂pi+j+k

)

+
1

4

∑

i+j=k+l

ijpkpl
∂2

∂pi∂pj
+

1

24

∑

i≥1

(2i3 − i)pi
∂

∂pi
.

The multiplication of σ ∈ Sn by the completed cycle (1) = (1) corre-
sponds to picking an element of σ, which just mutiplies the permutation
by n. Hence the operator Q1 multiplies a homogeneous polynomial by
its total weight.

The operator Q2 is the standard cut-and-join operator.
The operatorQ3 is the more complicated cut-and-join operator whose

action corresponds to multiplying a permutation by the completed 3-
cycle. Let us briefly explain how its terms are related to the expression
of the completed 3-cycle 1

2
(3) + 1

2
(1, 1) + 1

24
(1).

The last term (1) is the operator of picking a sheet of the ramified
covering or an element of the permutation. So 1

24
(1) corresponds to

(25)
1

24

∑

ipi
∂

∂pi
.

Here i is the length of the cycle of the permutation that contains the
picked element.

The second term (1, 1) is the operator of picking two sheets of the
covering or two elements of the permutation. So 1

2
(1, 1) corresponds to

(26)
1

4

∑

i,j≥1

ijpipj
∂2

∂pi∂pj
+

1

4

∑

i≥1

i(i− 1)pi
∂

∂pi
.
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The first sum describes the case when the chosen elements belong to
two different cycles of lengths i and j, while the second sum describes
the case where they lie in the same cycle of length i.

Finally, the term (3) is the operator of multiplication by a 3-cycle.
It’s action is more complicated. If the elements of the 3-cycle belong to
three different cycles of the permutations of lenghts i, j, k, these cycles
are merged into one. This gives us the term

(27)
1

6

∑

i,j,k≥1

ijkpi+j+k
∂3

∂pi∂pj∂pk
.

If one element lies in one cycle and two other elements lie in another
cycle, then a piece of the second cycle is cut off and attached to the
first one. But there is a subtlety: there are two ways to go from cycles
of lengths, say, 2 and 19 to cycles of lengths 9 and 12: one can either
take a 7-elements piece of the 19-cycle and attach it to the 2-cycle, or
one can take a 10-elements piece. On the other hand, to go from cycles
of lengths 2 and 19 to cycles of lengths 2 and 19 again there is only one
way: one should take a 17-element piece from the 19-cycle and attach
it to the 2-cycle. As a result, we get the following sum:

(28)
1

4

∑

i+j=k+l
{i,j}6={k,l}

ijpkpl
∂2

∂pi∂pj
+

1

4
ijpipj

∂2

∂pi∂pj
.

Finally, all three elements of the 3-cycle can lie in the same cycle of
the permutation. If the cycles “turn” in two opposite ways, the cycle
of the permutation is split into three parts and we get the term

(29)
1

6

∑

i,j,k≥1

(i+ j + k)pipjpk
∂

∂pi+j+k
.

If both cycles “turn” in the same direction, then the cycle of the per-
mutation remains in one piece, though the order of elements changes.
This corresponds to the operator

(30)
1

12

∑

i≥1

i(i− 1)(i− 2)pi
∂

∂pi
.

The reader can check that if we add all these terms we recover the
operator Q3.

5.3. The generating series for Hurwitz numbers. Introduce the
following generating series for the disconnected Hurwitz numbers with
completed cycles:

Hr+1(β, p1, p2, . . . , q1, q2, . . . ) =(31)
∑

n,m,s

∑

µ1,...,µm
ν1,...,νn

h(r+1)
g,µ,ν

βs

s!

pµ1
· · · pµm

m!

qν1 · · · qνn
n!

.
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Here, as before, s = (2g − 2 +m+ n)/r and, by convention, the sum-
mands with

∑

µi 6=
∑

νi are set to 0.

Theorem 5.3. The series Hr+1 satisfies the partial differential equa-
tion

(32)
∂Hr+1

∂β
= Qr+1Hr+1.

This theorem is actually an equivalent formulation of Theorem 5.2.

5.4. Proofs. Now we are going to prove Theorem 5.3 and hence the
equivalent Theorem 5.2.

According to Proposition 3.11, we have

(33) Hr+1 =

〈

exp

(

∑

k≥1

pkαk/k

)

exp(βFr+1) exp

(

∑

k≥1

qkα−k/k

)〉

.

Hence,
(34)

∂Hr+1

∂β
=

〈

exp

(

∑

k≥1

pkαk/k

)

Fr+1 exp(βFr+1) exp

(

∑

k≥1

qkα−kk/k

)〉

.

We will prove several lemmas that will allow us to simplify the above
expression and to relate it to the cut-and-join operator Qr+1. First of
all recall (Lemma 4.1) that

(35) [Ẽa(z), Ẽb(w)] = ζ(aw − bz)Ẽa+b(z + w)

and (Notation 3.10) that

(36) αk = Ẽk(0), Ẽ0(z) =
∑

Fr+1z
r+1.

Lemma 5.4. We have

exp

(

∑

k≥1

pkαk/k

)

Ẽ0(z) exp

(

−
∑

k≥1

pkαk/k

)

(37)

= Ẽ0(z) +
1

1!

∞
∑

i=1

ζ(iz)
pi
i
Ẽi(z) +

1

2!

∞
∑

i,j=1

ζ(iz)ζ(jz)
pi
i

pj
j
Ẽi+j(z)

+
1

3!

∞
∑

i,j,k=1

ζ(iz)ζ(jz)ζ(kz)
pi
i

pj
j

pk
k
Ẽi+j+k(z) + . . .

Proof. The map u 7→ exue−x is the exponent of the map u 7→ [x, u].

Substituing u = Ẽ0(z), x =
∑

k≥1 pkαk/k and using the commutation

relations for the operators Ẽ we obtain the above formula. �

Lemma 5.5. Let

(38) OK(z) =
∞
∑

n=1

1

n!

∑

k1+···+kn=K

ζ(k1z) · · · ζ(knz)

ζ(z)

∂

∂pk1
· · ·

∂

∂pkn
.
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Then we have
(39)
∑

r≥0

Qr+1z
r+1 =

∞
∑

n=1

1

n!

∑

k1,...,kn>0

ζ(k1z) · · · ζ(knz)
pk1
k1
· · ·

pkn
kn
Ok1+···+kn(z).

Proof. This is obtained by a simple computation. �

Lemma 5.6. Let X be any operator in the infinite wedge space inde-
pendent of p1, p2, . . . . Then
(40)
〈

ẼK(z) exp

(

∑

k≥1

pkαk/k

)

X

〉

= OK(z)

〈

exp

(

∑

k≥1

pkαk/k

)

X

〉

.

Proof. It is enough to prove the lemma under the assumption that
X(v∅) = vλ. The general case is obtained by taking a linear combina-
tion of operators X like that. Let |λ| = N .

We are going to evaluate the right-hand side of the equality and
simplify it finally obtaining the left-hand side. Note that the vacuum
expectation value 〈exp

(
∑

k≥1 pkαk/k
)

vλ〉 is equal to the Schur poly-
nomial sλ which is conveniently written as

(41)
1

N !
p

(

∑

σ∈SN

χλ(σ)σ

)

.

The action of the operator OK(z) has a natural interpretation in terms
of permutations: the operator picks (in all possible ways) a set of cycles
of σ with total length K. These cycles will be called distinguished. A
distinguished cycle of length k is assigned a factor of ζ(kz). A non-
distinguished cycle of length k is assigned a factor pk as before. To σ
is assigned the product of these factors. And the result of the action
of OK(z) is the sum of the contributions of all permutations σ ∈ SN

divided by N ! and by ζ(z).
The summation over all permutations σ ∈ SN with a set of distin-

guished cycles of total length K can be replaced by a summation over
the permutations whose distinguished cycles cover the elements from
1 to K. A permutation like that actually lies in SK × SN−K . The
contribution of permutations like that is N !/K!(N −K)! times smaller
than the contribution of all permutations, so the new sum should be
divided by K!(N −K)! instead of N !.

We can decompose the representation λ of SN into a direct sum of
representations of SK × SN−K as follows:

(42)
⊕

µ⊂λ

µ⊗ (λ \ µ).

Here µ denotes an irreducible representation of SK corresponding to
a Young diagram included in λ and λ \ µ is the (possibly reducible)
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representation HomSK
(µ, λ) of SN−K . Using this decomposition we

obtain:

(43) RHS =
1

ζ(z)

∑

µ⊂λ

sµ(ζ(z), ζ(2z), . . . ) · sλ\µ(p1, p2, . . . ).

This expression can be further simplified using the following lemma.
A partition is called a hook if it has the form µa,b = (a 1b) for a, b ≥ 0.

This name is due to the shape of the corresponding Young diagram.

Lemma 5.7. We have

(44)
1

ζ(z)
sµ(ζ(z), ζ(2z), . . . ) = (−1)be(a−b−1)z/2

if µ = µa,b and sµ(ζ(z), ζ(2z), . . . ) = 0 otherwise.

We will prove this lemma later; at present we continue to simplify
the right-hand side of the equality of Lemma 5.6. Using Lemma 5.7 we
get

(45) RHS =
∑

a+b=K

(−1)be(a−b−1)z/2sλ\µ(p1, p2, . . . ).

Now let us explain why this coincides with the left-hand part. The
vector ẼK(z)(µ) has a nonzero v∅ component only when µ is a hook

partition. We have ẼK(z)(µa,b) = (−1)be(a−b−1)z/2v∅. We also need to
recall (see, for instance, [19]) that the Schur polynomial of the repre-
sentation λ\µ of SN−K is obtained by the Murnaghan-Nakayama rule,
that is, it is equal to

(46) sλ\µ(p1, p2, . . . ) =

〈

vµ exp

(

∑

k≥1

αkpk/k

)

vλ

〉

.

Therefore we have

LHS =
∑

µ

〈v∅ẼK(z)vµ〉

〈

vµ exp

(

∑

k≥1

αkpk/k

)

vλ

〉

(47)

=
∑

a+b=K

(−1)be(a−b−1)z/2sλ\µa,b
(p1, p2, . . . ).

�

Now we prove Lemma 5.7.

Proof. We use the well-known identity for Schur polynomials

(48) pksµ =
∑

±sλ,

where the sum is taken over the Young diagrams λ obtained by adding
a ribbon of length k to µ and the sign ± is the parity of the number of
downward steps in the ribbon. (This is a reformulation of the action
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of the operator α−k.) First let us check that this formula is compatible
with the claim of the theorem.

If µ is not a hook, then neither of the λ’s will be a hook. So after
the substitution pk = ζ(kz) we get the correct equality

(49) ζ(kz) · 0 =
∑

±0.

If µ = µa,b then there are exactly two ways to add a k-ribbon to µ in
such a way that it remains a hook: we can increase either a or b by k.
In the first case the sign of the ribbon is +1, in the second case it is
(−1)k−1. Thus we get the correct equality
(50)
ζ(kz)·(−1)be(a−b−1)z/2 = (−1)be(a+k−b−1)z/2+(−1)k−1(−1)b+ke(a−b−k−1)z/2.

Now, every Schur polynomial can be obtained as a linear combination
of the form

(51)
∑

i

cipkisλi
.

For instance, we can use the formula

(52) sµ =
1

|µ|

∑

pk
k ∂sµ
∂pk

and decompose every k ∂sµ/∂pk into a linear combination of Schur
polynomials. These expressions allow us to find the Schur polynomials
before or after the substitution pk = ζ(kz) by induction on the degree.
The equality

(53)
1

ζ(z)
s1(ζ(z), ζ(2z), . . . ) =

ζ(z)

ζ(z)
= 1 = (−1)0e1−0−1

provides the base of induction. Since we know these inductive relations
are compatible with the formula given in the lemma, we conclude that
the lemma is true. �

Finally, Theorem 5.3 follows immediately from Lemmas 5.4, 5.5, 5.6.
Indeed, in the expression 34 for ∂Hr+1/∂β, the operator Fr+1 is the
coefficient of zr+1 in Ẽ0(z). Using Lemma 5.4 we obtain that ∂Hr+1/∂β
is the coefficient of zr+1 in

∑

n≥0

1

n!

∑

k1,...,kn

n
∏

i=1

ζ(kiz)pki
ki

(54)

×

〈

Ẽ∑ki(z) exp

(

∑

k≥1

pkαk/k

)

exp(βFr+1) exp

(

∑

k≥1

qkα−k/k

)〉

.
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According to Lemma 5.6 this is equal to

∑

n≥0

1

n!

∑

k1,...,kn

n
∏

i=1

ζ(kiz)pki
ki

O∑
ki(z)(55)

×

〈

exp

(

∑

k≥1

pkαk/k

)

exp(βFr+1) exp

(

∑

k≥1

qkα−k/k

)〉

=
∑

Qr+1z
r+1Hr+1,

where in the last equality we have used Lemma 5.5 for the expression
of Qr+1 and Equation (33) for Hr+1. Extracting the coefficient of zr+1,
we get

(56)
∂Hr+1

∂β
= Qr+1Hr+1

as claimed.

6. Strong piecewise polynomiality

In this section, we prove an analogue of strong piecewise polynomi-
ality for Hurwitz numbers with completed (r+1)-cycles and derive the
wall crossing formulas for this piecewise polynomial. It is a generaliza-
tion of Johnson’s results in [9].

6.1. Notation. Throughout this section we fix two positive integers
m and n. Let V be the subset of (Z≥0)

m ⊕ (Z≥0)
n defined by

(57) V :=

{

(x1, . . . , xn, y1, . . . , ym)

∣

∣

∣

∣

∣

n
∑

i=1

xi =

m
∑

j=1

yj

}

We consider double Hurwitz number with s completed (r + 1)-cycles
as a function hs : V → Q such that hs(µ, ν) = hsµ,ν

Definition 6.1. Let I ⊂ [m] and J ⊂ [n] be any non-empty proper
subsets. Then the hyperplane

(58) {(x, y) ∈ V | xI − yJ = 0} ⊂ V

is called the hyperplane given by I and J and denoted WI,J .

Remark 6.2. Consider (µ, ν) ∈ V such that it doen’t lie on any of the
hyperplanes WI,J . Then hsµ,ν = hs,◦µ,ν , since there are no covers of CP1

with ramification over 0 and ∞ given by µ and ν with more than one
connected component. Thus, if we interpret the WI,J as the walls of a
hyperplane arrangement, then at the internal points of the chambers
of this arrangement the disconnected and connected Hurwitz numbers
are equal.
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6.2. Polynomiality in a chamber.

Theorem 6.3. The function hs : V → Q is a piecewise polynomial
function with the walls given by the hyperplanes WI,J .

Proof. The proof is analogous to the one in [9] of piecewise polynomi-
ality for ordinary double Hurwitz numbers. Let c be some chamber
of the hyperplane arrangement mentioned in Remark 6.2. We have to
prove that hs|c is polynomial.

The crucial point is that the set of commutation patterns CP (µ, ν)
does not depend on (µ, ν) ∈ c, but only on the chamber c itself. Note
that for any subsets I ⊂ [m] and J ⊂ [n] the sign of the number µI−νJ
is determined by the chamber c containing (µ, ν), and it is these signs
which determine the set of commutation patterns for (µ, ν). Thus,
CP (µ, ν) depends only on the chamber c containing (µ, ν). From now
on, we will denote it by CP (c).

Furthermore, since we are in a chamber of the hyperplane arrange-
ment, by Remark 6.2, the connected and disconnected Hurwitz num-
bers are equal, so |T (P )| = 1 for any commutation pattern in CP (c).
Thus, the Hurwitz number is determined by Theorem 4.9 instead of
Theorem 4.6. Let us prove that the factor

(59)
1

ζ(z[s])

∑

P∈CP (c)

∏

l∈L(P )

ζ
(

P l
I P l

J P l
K

P l
M P l

N P l
R

)

in Equation (17) restricted to c is a power series in z1, . . . zs with coef-
ficients depending polynomially on (µ, ν). Indeed, the only problem is
the factor 1/ζ(z[s]). Meanwhile, in any commutation pattern in CP (c)
the last commutator taken will produce a factor ζ(nz[s]) for some inte-
ger n. Since ζ(nz)/ζ(z) is holomorphic at z = 0, the whole expression
is indeed a power series in z1, . . . , zs. Clearly, the coefficients depend
polynomially on (µ, ν).

Therefore, the coefficient of zr+1
1 · · · zr+1

s will depend polynomially
on µ and ν and it only remains to show that it contains a factor
∏l(µ)

i=1 µi

∏l(ν)
j=1 νj . Indeed, in the vacuum expectation value at the start

of the algorithm (equation 10) we have the operator E({i}, ∅, ∅) for all
i = 1, . . . , l(µ). In any commutation pattern P ∈ CP (c) it will even-
tually be commuted with some operator, which will provide a factor
ζ(µizL) for a certain subset L ⊂ [s] that is divisible by µi. The same
argument also works for νj , for all j = 1, . . . , l(ν), and we see from this

argument that the product
∏l(µ)

i=1 µi

∏l(ν)
j=1 νj also devides the product of

ζ-functions on the right side of Equation (17). Thus, hg is polynomial
on any chamber c, which proves the theorem. �

6.3. The structure of the polynomial.
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Theorem 6.4. Let c be a chamber of the hyperplane arrangement of
Remark 6.2. Then hs|c has the following form:

(60) hs|c(µ, ν) =

g
∑

k=0

(−1)kP s
c,k(µ, ν),

where P s
c,k : V → Q is a homogeneous polynomial of degree (r + 1)s +

1 − l(µ) − l(ν) − 2k with P s
c,k(µ, ν) > 0 for all (µ, ν) ∈ c, and g =

(rs− l(µ)− l(ν) + 2)/2 is the genus of the covering.

Proof. Since we know that hs|c is a polynomial, we only need to prove
that it is either even or odd, that it is of degree (r+1)s+1−l(µ)−l(ν),
that the lowest occuring term is of degree 2g less than the highest, and
the alternating nature of the homogeneous terms. It is clear that hs|c
is either even or odd from Theorem 4.9 and the fact that ζ(z) is an
odd function.

Let P ∈ CP (c) be a commutation pattern. Then for any l ∈ L(P )
we will always have that either P l

K or P l
R is non-empty (it is easy to

see the vacuum expectation will be zero otherwise, contradicting that

P is a commutation pattern). Therefore ζ
(

P l
I P l

J P l
K

P l
M P l

N P l
R

)

has equal total

order in (µ, ν) and (z1, . . . zs). So the highest total order in (µ, ν) in hs|c
occurs when we take the lowest possible total order in (z1, . . . , zs) in the
factor 1/ζ(z1 + · · ·+ zs) in Equation (17) which is equal to −1. Thus,
the highest occuring order in (µ, ν) is the total degree in (z1, . . . , zs)

(which is s(r+1)), plus 1, minus the degree in (µ, ν) of
∏l(µ)

i=1 µi

∏l(ν)
j=1 νj ,

for a total degree of (r + 1)s+ 1− l(µ)− l(ν).
The lowest degree term in (µ, ν) of hs|c occurs when we take the

lowest possible degree in z in ζ
(

P l
I P l

J P l
K

P l
M P l

N P l
R

)

for all l ∈ L(P ) which is

equal to 1. Therefore, the lowest occuring degree in (µ, ν) is equal to the
number of commutator terms taken in P . Taking a commutator term
reduces the number of E-operators by one. We start with l(µ)+ l(ν)+s
of these operators and we end up with one. Therefore, the number of
commutator terms taken is equal to l(µ)+ l(ν)+s−1. Thus, the lowest
degree in (µ, ν) occuring is l(µ) + l(ν) + s− 1− l(µ)− l(ν) = s− 1.

By the Riemann-Hurwitz formula, the difference between the highest
and the lowest degree in (µ, ν) is then equal to (r + 1)s + 1 − l(µ) −
l(ν)− s+ 1 = 2g.

The coefficients of the homogeneous summands of the expansion of
1/ζ(z[s]) have alternating signs. Therefore, to prove positivity of P s

c,k it
is enough to prove that all coefficients of odd-degree terms in the ex-
pansion of the ζ-functions in the product in Equation (17) are positive.
By definition of the algorithm, we can only get a factor

(61) ζ
(

P l
I P l

J P l
K

P l
M P l

N P l
R

)

= ζ

(

det

(

|µ
Pl
I
|−|ν

Pl
J
| z

Pl
K

|µ
Pl
M

|−|ν
Pl
N
| z

Pl
R

))
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when E(P l
I , P

l
J , P

l
K) has positive energy and E(P

l
M , P

l
N , P

l
R) has negative

energy. But then

(62) det

(

|µP l
I
− |νP l

J
| zP l

K

|µP l
M
− |νP l

N
| zP l

R

)

= azP l
K
+ bzP l

R
,

for some a, b > 0, and since the odd-degree coefficients in the expansion
of ζ(z) are all positive, this shows that all coefficients of odd-degree
terms in the expansion in z1, . . . , zs of the ζ-functions in the product in
Theorem 4.9 are positive. This completes the proof of the theorem. �

6.4. Wall-crossing formula. In this section we obtain the wall cross-
ing formula for double Hurwitz numbers with completed cycles with
respect to the walls WI,J described in Remark 6.2.

Fix I ⊂ [m] and J ⊂ [n]. Let c1 and c2 be the two chambers bordering
along the wall WI,J . The wall crossing formula is a formula for the
difference between the polynomials describing the Hurwitz numbers on

the different chambers: WC
(r)
I,J = h

(r)
g |c1 − h

(r)
g |c2.

In order to compute it, we define a series which captures the infor-
mation about double Hurwitz numbers with completed (r + 1)-cycles
for any value of r with given ramification over 0 and ∞:
(63)

Hs
µ,ν(z1, . . . , zs) :=

1
∏l(µ)

i=1 µi

∏l(ν)
j=1 νj

〈

l(µ)
∏

i=1

Eµi
(0)

s
∏

k=1

E0(zk)

l(µ)
∏

i=1

E−νj(0)〉.

Remark 6.5. The information of the double Hurwitz number with com-
pleted (r+1)-cycles and ramification given by (µ, ν) is encoded in Hs

µ,ν

for any value of r, that is, h
(r),s
µ,ν = [zr+1

1 · · · zr+1
s ]Hs

µ,ν . However, the co-
efficients of other monomials in z1, . . . , zs also have an interpretation as
some Hurwitz numbers. The coefficient of the monomial zr1+1

1 · · · zrs+1
s

for any non-negative integers r1, · · · rs is the number of covers of CP1

with ramification over 0 and ∞ given µ and ν, and ramification over s
more points given by (r1), . . . , (rs).

It is clear from the proof of Theorem 6.3 that all coefficients of the
power seriesHs

µ,ν are piecewise polynomial with respect to the descriped
hyperplane arrangement. Thus, if we take completed cycles of differ-
ent values for different ramification points, the corresponding Hurwitz
number will still be piecewise polynomial.

So, let WI,J be a given wall in the hyperplane arrangement of Re-
mark 6.2. Let µ, ν also be given. Let δ denote the difference δ :=
|µI | − |νJ |.
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Theorem 6.6. The wall crossing formula is given by

WC
(r)
I,J(µ, ν) = [zr+1

1 · · · zr+1
s ]

∑

K⊂[s]

δ2
ζ(zK)ζ(zKc)ζ(δz[s])

ζ(δzk)ζ(δzKc)ζ(z[s])
·(64)

·H
|K|
µI ,νJ+δ({zk}k∈K)H

|Kc|
µIc+δ,νJc

({zk}k∈Kc).

Proof. Let P be a commutation pattern in CP (c1). If P does not
produce the operator E(I, J,K) for some K ⊂ [s] at some point, it
will also be a commutation pattern in CP (c2). Thus, a commutation
pattern P only contributes to the wall crossing formula if at some point
it produces E(I, J,K) for some K ⊂ [s]. Let P be such a pattern.
Using that the operators in any of the three products in Equation (10)
commute amongst themselves, we may start the algorithm with the
vacuum expectation value

(65)

〈

∏

i/∈I

(i, ∅, ∅)
∏

i∈I

E(i, ∅, ∅)
s
∏

k=1

E(∅, ∅, k)
∏

j∈J

E(∅, j, ∅)
∏

j /∈J

(∅, j, ∅)

〉

.

If a pattern produces E(I, J,K), the first vacuum expectation value
where it occurs must be

(66) 〈
∏

i/∈I

E(i, ∅, ∅)
∏

k/∈K

E(∅, ∅, k) E(I, J,K)
∏

j /∈J

E(∅, j, ∅)〉.

Let TK
1 be the product of ζ-functions produced by the algorithm up

untill this point. Note that it does not depend on whether we run the
algorithm on c1 or c2. It is easy to see that it is given by
(67)

TK
1 ({zk}k∈K) :=

〈

∏

i∈I

E(i, ∅, ∅)
∏

k∈K

E(∅, ∅, k)
∏

j∈J

E(∅, j, ∅)E−δ(0)

〉

ζ(zK)

ζ(δzK)
.

On the other hand, by defintion of the function H we have:

HµI ,νJ+δ({zk}k∈K) =
1

δ
∏

i∈I µi

∏

j∈J νj
·(68)

·

〈

∏

i∈I

E(i, ∅, ∅)
∏

k∈K

E(∅, ∅, k)
∏

j∈J

E(∅, j, ∅)E−δ(0)

〉

.

Therefore,

(69) TK
1 ({zk}k∈K) = δ

∏

i∈I

µi

∏

j∈J

νj
ζ(zK)

ζ(δzK)
HµI ,νJ+δ({zk}k∈K).

Let TK
2 denote the difference between the polynomials computing the

vacuum expectation value (66) on c1 and c2. To compute this, it will be
better to let the algorithm run according to the rules of the chamber c1
on both sides (i.e.; we use the set of commumation patterns CP (c1)).
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This means we will move the operator E(I, J,K) to the left on both
chambers, even though on c2 it has positive energy.

If the operator E(I, J,K) is involved in a commutator term at any
point, the algorithm will run as normal afterwards on both chambers,
since the chambers differed by only one wall. Therefore, the only con-
tribution to TK

2 comes from commutation patterns where E(I, J,K) is
moved entirely from to left. The result will then be zero on c1, since
there is an operator of negative energy on the far left, but it will be
non-zero on c2. The last step in the algorithm on c2 for Equation (66)
will be

(70) 〈E(I, J,K) E(Ic, Jc, Kc)〉 =
ζ(δz[s])

ζ(z[s])
,

where Ic denotes the complement of I ⊂ [m], and the same for Jc

and Kc. Also using that

(71) 〈Eδ(0) E(I
c, Jc, Kc)〉 =

ζ(δzKc)

ζ(zKc)
,

we see that

TK
2 ({zk}k/∈K)(72)

= 〈Eδ(0)
∏

i/∈I

E(i, ∅, ∅)
∏

k/∈K

E(∅, ∅, k)
∏

j /∈J

E(∅, j, ∅)〉
ζ(zKc)ζ(δz[s])

ζ(δzKc)ζ(z[s])
.

(by
∏

k/∈K we denote
∏

k∈Kc; the same for I and J). On the other hand

HµIc+δ,νJc({zk}k∈Kc) =
1

δ
∏

i/∈I µi

∏

j /∈J νj
·(73)

· 〈Eδ(0)
∏

i/∈I

E(i, ∅, ∅)
∏

k/∈K

E(∅, ∅, k)
∏

j /∈J

E(∅, j, ∅)E−δ(0)〉,

therefore

TK
2 ({zk}k/∈K)(74)

= δ
∏

i/∈I

µi

∏

j /∈J

νjζ(zKc)ζ(δz[s])ζ(δzKc)ζ(z[s])HµIc+δ,νJc({zk}k∈Kc).

It is clear that

(75) WC
(r)
I,J(µ, ν) =

1
∏

i∈[m] µi

∏

j∈[n] νj
[zr+1

1 · · · zr+1
s ]

∑

K⊂[s]

TK
1 T

K
2 .

Substituting Equations (69) and (74) into this formula, we obtain the
wall crosing formula (64). �
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7. An analogue of GJV-formula

In this section, we discuss an analogue of the Goulden-Jackson-Vakil
formula for the one-part double Hurwitz numbers that might relate
them to the intersection theory of some moduli spaces. These conjec-
tural “intersection numbers” have very nice properties as some explicit
solutions of the KP hierarchy. The number r ≥ 1 is fixed throughout
the section, so we omit the superscript (r) in all notations.

7.1. The formula. Let µ be an arbitrary partition (µ1, . . . , µl) and
g ≥ 0 be an arbitrary non-negative integer. We consider the one-
part double Hurwitz number with completed (r+1)-cycles hg,|µ|,µ. We
propose the following formula:

(76) hg,|µ|,µ =
m!

d

∫

Xg,n

1− Λ2 + Λ4 − · · ·+ (−1)gΛ2g

(1− µ1Ψ1) · · · (1− µnΨn)
,

where Xg,n is a sequence of spaces of complex dimension 2g(r + 1) +
n− 1, and we fix the degrees of the rational cohomology classes Λ2k ∈
H4rk(Xg,n) and Ψ1, . . . ,Ψr ∈ H

2r(Xg,n). Existence of these geometric
objects is a pure speculation, so a way to understand this formula is
the following.

One-part double Hurwitz numbers with completed cycles hg,|µ|,µ are
expressed in terms of some new combinatorially significant numbers
that we denote by

(77) 〈Λ2k

n
∏

i=1

τdi〉g :=

∫

Xg,n

Λ2rk

n
∏

i=1

Ψdi
i

that are symmetric in d1, . . . , dn, non-zero only if 2g(r + 1) + n − 1 =
(2k +

∑n
i=1 di)r, and have interesting properties together with a hope

to be related to geometry in future.

7.2. Generating function for intersection numbers. We consider
a generating function for the numbers 〈Λ2k

∏n
i=1 τdi〉g. Let

(78) G(u) :=
∑

j,k1,k2,...

(−1)j〈Λ2jτ
k0
0 τ

k1
1 . . . 〉gu

2j T
k0
0

k0!

T k1
1

k1!
. . . .

Here we take the sum of all non-negative integer indices j, k1, . . . , kn,
n ≥ 0, such that there exists a non-negative integer g such that 2g(r+
1) + n− 1 = (2k +

∑n
i=1 di)r.

Notation 7.1. In this section, we use the isomorphism described in
section 5 between the infinite wedge space and the space of formal
power series C[[q1, q2, . . .]] to interpret the E-operators as operators on
C[[q1, q2, . . .]]. By abuse of notation, we denote these operators in the
same way. We denote by Ek,a the operator [za]Ek(z).
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We would like to consider the formal variable Tk, k = 0, 1, . . . , as
linear functions in formal variables qi, i = 1, 2, . . . . We set T0 = q1,
and Tk+1 = (uE0,1 + E−1,1)Tk. We list the first few expressions:

T0 = q1,(79)

T1 = uq1 + q2,

T2 = u2q1 + 3uq2 + 2q3,

and so on.

Theorem 7.2. For any function c(u), the series c(u)+G(u, q1, q2, . . . )
is a solution of the Hirota equations in variables qi, i = 1, 2, . . . (u is
just a parameter).

In particular, we consider the series F := G|u=0, that is, the genera-
tion function for the intersection numbers without Λ-classes:

(80) F (q0, q1, . . . ) =
∑

k0,k1,...

〈τk00 τ
k1
1 . . . 〉g

(0!q1)
k0

k0!

(1!q2)
k1

k1!
. . . .

Theorem 7.2 implies the following property of F .

Corollary 7.3. The series F (q1, q2, . . . ) is a solution of the Hirota
equations and linearized Hirota equations.

7.3. An explicit formula for G and F . In this section, we give
explicit formulas for the series G and F . For that we need to introduce
some operators Yi, i ≥ 0. We denote by Y0 the operator Ẽ0. We denote
by Yi+1, i ≥ 0, the operator

(81) Yi+1(w) := ζ(w)i+1

(

i
∏

k=0

(

∂

∂w
−
i

2
+ k

)

)

E−(i+1)(w)

Observe that Yi+1(w) = O(wi+1).

Theorem 7.4. We have:

(82) G(u, q1, q2, . . . ) = exp

(

[wr+1]
r+1
∑

k=0

uk
Yr+1−k(w)

(r + 1− k)!

)

q1.

Corollary 7.5. We have:

(83) F (q1, q2, . . . ) = exp (Yr+1(0)) q1.

Remark 7.6. The constant term of Yr+1 (used in the Equation (83))
is a linear combination of E−(r+1),i, where i = 1, 3, 5, . . . , r + 1 (i =
0, 2, 4, . . . , r+1) for even (respectively, odd) r, and the coefficients are
central factorial numbers [1].
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7.4. Rearranging the generating series. Consider the following
version of a generating series for Hurwitz numbers,

(84) H(β, p1, p2, . . . ) :=
∑

g,n

1

n!

∑

µ1,...,µn

|µ| · hg,|µ|,µpb1 · · · pbn
βm

m!
.

Here m = (2g + n − 1)/r. In fact, it is the way we rather present a
generating series for the integrals in the formula (76). Since

(85) H + c(β) = exp
(

β · [wr+1]Ẽ0(w)
)

(

c(β) +
∞
∑

i=1

pi

)

,

we conclude that H + c(β) satisfies the Hirota equations, for an arbi-
trary function c(β). Note that Equation (85) is just the cut-and-join

equation and that the operator [wr+1]Ẽ0(w) is actually explicitly given
by the operator Qr+1 discussed Section 5 (see Notation 7.1).

Now, using that (r + 1)m = dimXg,n/r + n− 1, we obtain:

H =
∞
∑

n=1

1

n!

∑

g,µ1,...,mun

∫

Xg,n

1− Λ2 + · · · ± Λ2g

(1− µ1Ψ1) · · · (1− µnΨn)
pµ1
· · · pµnβ

m

(86)

=
1

u

∞
∑

n=1

1

n!

∑

g,µ1,...,bµn

∫

Xg,n

(1− u2Λ2 + · · · ± u
2gΛ2g)

n
∏

i=1

upµi

(1− uµiΨi)

=
1

u

∑

g,n

1

n!

〈

(

1− u2Λ2 + u4Λ4 − . . .
)

n
∏

i=1

(

∑

d≥0

τdTd

)〉

g

,

where ur+1 = β and Td =
∑

b≥1 upb · (ub)
d = ud+1

∑

b≥1 b
dpb. Observe

that Td+1 = uẼ0,1Td.

7.5. Change of variables. We use the same change of variables as
in [18, 15]. We rescale the variables by setting pb = qb/u

b, and then we
replace qi with exp(−E−1,1/u)qi, i = 1, 2, . . . . An explicit formula for
this linear triangular change of variables is given by

(87) pb =

∞
∑

i=b

1

ui
(−1)i−b

(

i− 1

b− 1

)

qi.

Under this change of variable a series f(u, p1, p2, . . . ) transforms into
g(u, q1, q2, . . . ) := exp(−E−1,1/u)f(u, q1/u, q2/u

2, . . . ). This change of
variable is a symmetry of the Hirota equations.

A straightforward computation shows that T0 turns into q1 and uẼ0,1
turns into exp(−E−1,1/u)uẼ0,1 exp(E−1,1/u) = uẼ0,1+E−1,1. This means

that Td = (uẼ0,1 + E−1,1)
dq1.

In order to apply the change of variables to the operator Ẽ0(w), we
need the following lemma.
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Lemma 7.7. We have: [Yi, E−1,1] = Yi+1, i = 0, 1, 2, . . . .

Proof. Indeed,

[Yi, E−1,1] =

[

ζ(w)i

(

i−1
∏

k=0

(

∂

∂w
−
i− 1

2
+ k

)

)

E−(i)(w), [z]E−1(z)

]

.

(88)

Observe that [z]
[

E−(i)(w), [z]E−1(z)
]

= [z]
(

ζ(w − iz)E−(i+1)(z + w)
)

=
(

ζ(w) ∂
∂w
− iζ ′(w)

)

E−(i+1)(w). A straighforward computation implies
that

(

∂

∂w
+
i− 1− 2k

2

)(

ζ(w)
∂

∂w
− (i− k)ζ ′(w)−

k

2
ζ(w)

)

(89)

=

(

ζ(w)
∂

∂w
− (i− 1− k)ζ ′(w)−

k + 1

2
ζ(w)

)(

∂

∂w
+
i− 2k

2

)

,

k = 0, 1, . . . , i− 1. Therefore,
(

i−1
∏

k=0

(

∂

∂w
−
i− 1

2
+ k

)

)

(

ζ(w)
∂

∂w
− iζ ′(w)

)

(90)

= ζ(w)

i
∏

k=0

(

∂

∂w
−
i

2
+ k

)

.

Thus we see that the right hand side of Equation (88) is equal to

(91) ζ(w)i ·

(

ζ(w)

i
∏

k=0

(

∂

∂w
−
i

2
+ k

)

)

E−(i+1)(w) = Yi+1.

�

Corollary 7.8. Under the change of variable the operator Ẽ0(w) turns
into

∑∞
i=0 u

−iYi/i!

7.6. Proof of Theorems 7.2 and 7.4. The generating series given
in Equation (84), H+c(u), is a solution to Hirota equations. We apply
the change of variables (87). Using Corollary 7.8, we see that this
change of variables Equation (85) turns into

(92) c(u) + exp

(

ur+1[wr+1]

∞
∑

i=0

u−iYi/i!

)

q1
u
.

Using that Yi(w) = O(wi), we see that this formula multiplied by
u is equal to the right hand side of the Equation (82) (if we choose
c(u) = 0). On the other hand, from Equation (86) we know that H
multiplied by u is equal toG in coordinates u, q1, q2, . . . . This completes
the proof of Theorem 7.4. Theorem 7.2 is then obvious since the change
of variables (87) is a symmetry of the KP-hierarchy.
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