On a variant of Giuga numbers

José María Grau
Departamento de Matemáticas
Universidad de Oviedo
Avda. Calvo Sotelo, s/n, 33007 Oviedo, Spain
grau@uniovi.es
Florian Luca
Instituto de Matemáticas
Universidad Nacional Autonoma de México
C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx
and
The John Knopfmacher Centre
for Applicable Analysis and Number Theory
University of the Witwatersrand, P.O. Wits 2050, South Africa

Antonio M. Oller-Marcén
Departamento de Matemáticas
Universidad de Zaragoza
C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
oller@unizar.es

January 15, 2013

Abstract

In this paper, we characterize the odd positive integers n satisfying the congruence $\sum_{j=1}^{n-1} j^{\frac{n-1}{2}} \equiv 0(\bmod n)$. We show that the set of such positive integers has an asymptotic density which turns out to be slightly larger than $3 / 8$.

1 Introduction

Given any property \mathbf{P} satisfied by the primes, it is natural to consider the set $\mathcal{C}_{\mathbf{P}}:=\{n$ composite : n satisfies $\mathbf{P}\}$. Elements of $\mathcal{C}_{\mathbf{P}}$ can be thought of as pseudoprimes with respect to the property \mathbf{P}. Such sets of pseudoprimes have been of interest to number theorists.

Putting aside practical primality tests such as Fermat, Euler, Euler-Jacobi, Miller-Rabin, Solovay-Strassen, and others, let us have a look at some interesting, although not very efficient, primality tests as summarized in the table below.

	Test	Pseudoprimes	Infinitely many
1	$(n-1)!\equiv-1(\bmod n)$	None	No
2	$a^{n} \equiv a(\bmod n)$ for all a	Carmichael numbers	Yes
3	$\sum_{j=1}^{n-1} j^{\phi(n)} \equiv-1(\bmod n)$	Giuga numbers	Unknown
4	$\phi(n) \mid(n-1)$	Lehmer numbers	No example known
5	$\sum_{j=1}^{n-1} j^{n-1} \equiv-1(\bmod n)$		No example known

In the above table, $\phi(n)$ is the Euler function of n.
The first test in the table, due to Wilson and published by Waring in [19], is an interesting and impractical characterization of a prime number. As a consequence, no pseudoprimes for this test exist.

The pseudoprimes for the second test in the table are called Carmichael numbers. They were characterized by Korselt in [10]. In [1], it is proved that there are infinitely many of them. The counting function for the Carmichael numbers was studied by Erdős in [6] and by Harman in (9].

The pseudoprimes for the third test are called Giuga numbers. The sequence of such numbers is sequence A007850 in OEIS. These numbers were introduced and characterized in [4]. For example, a Giuga number is a squarefree composite integer n such that p divides $n / p-1$ for all prime factors p of n. All known Giuga numbers are even. If an odd Giuga number exists, it must be the product of at least 14 primes. The Giuga numbers also satisfy the congruence $n B_{\phi(n)} \equiv-1(\bmod n)$, where for a positive integer m the notation B_{m} stands for the m th Bernoulli number.

The fourth test in the table is due to Lehmer (see [11]) and it dates back to 1932. Although it has recently drawn much attention, it is still not known whether any pseudoprimes at all exist for this test or not. In a series of papers (see [14], [15], and [16]), Pomerance has obtained upper bounds for the counting function of the Lehmer numbers, which are the pseudoprimes for this test. In his third paper [16], he succeded in showing that the counting function of the Lehmer numbers $n \leq x$ is $O\left(x^{1 / 2}(\log x)^{3 / 4}\right)$. Refinements of the underlying method of [16] led to subsequent improvements in the exponent of the logarithm in the above bound by Shan [17], Banks and Luca [2], Banks, Güloğlu and Nevans [3], and Luca and Pomerance [12], respectively. The best exponent to date is due to Luca and Pomerance [12] and it is $-1 / 2+\varepsilon$ for any $\varepsilon>0$.

The last test in the table is based on a conjecture formulated in 1959 by Giuga [8], which states that the set of pseudoprimes for this test is empty. In [4], it is shown that every counterexample to Giuga's conjecture is both a Carmichael number and a Giuga number. Luca, Pomerance and Shparlinski [13] have showed that the counting function for these numbers $n \leq x$ is $O\left(x^{1 / 2} /(\log x)^{2}\right)$ improving slightly on a previous result by Tipu [18].

In this paper, inspired by Giuga's conjecture, we study the odd positive integers n satisfying the congruence

$$
\begin{equation*}
\sum_{j=1}^{n-1} j^{(n-1) / 2} \equiv 0 \quad(\bmod n) \tag{1}
\end{equation*}
$$

It is easy to see that if n is an odd prime, then n satisfies the above congruence. We characterize such positive integers n and show that they have an asymptotic density which turns out to be slightly larger than $3 / 8$.

For simplicity we put

$$
G(n)=\sum_{j=1}^{n-1} j^{\lfloor(n-1) / 2\rfloor}
$$

although we study this function only for odd values of n.

2 On the congruence $G(n) \equiv 0(\bmod n)$ for odd

 nWe put

$$
\mathfrak{P}:=\{n \text { odd }: G(n) \equiv 0 \quad(\bmod n)\} .
$$

It is easy to observe that every odd prime lies in \mathfrak{P}. In fact, by Euler's criterion, if p is an odd prime, then $j^{(p-1) / 2} \equiv\left(\frac{j}{p}\right)(\bmod p)$, where $\left(\frac{j}{p}\right)$ denotes the Legendre symbol of j with respect to p. Thus,

$$
G(p) \equiv \sum_{j=1}^{p-1}\left(\frac{j}{p}\right) \equiv 0 \quad(\bmod p)
$$

so that $p \in \mathfrak{P}$.
We start by showing that numbers which are congruent to $3(\bmod 4)$ are in \mathfrak{P}.

Proposition 1. If $n \equiv 3(\bmod 4)$, then $n \in \mathfrak{P}$.
Proof. Writing $n=4 m+3$, we have that $(n-1) / 2=2 m+1$ is odd. Now,

$$
\begin{aligned}
2 G(n) & =\sum_{j=1}^{n-1}\left(j^{2 m+1}+(n-j)^{2 m+1}\right) \\
& =n \sum_{j=1}^{n-1}\left(j^{2 m}+j^{2 m-1}(n-j)+\cdots+(n-j)^{2 m}\right)
\end{aligned}
$$

so $n \mid 2 G(n)$. Since n is odd, we get that $G(n) \equiv 0(\bmod n)$, which is what we wanted.

The next lemma is immediate.
Lemma 2. Let p be an odd prime and let $k \geq 1$ be an integer. Then

$$
\operatorname{gcd}\left(\frac{p^{k}-1}{2}, \varphi\left(p^{k}\right)\right)=\operatorname{gcd}\left(\frac{p^{k}-1}{2}, p-1\right)= \begin{cases}p-1 & \text { if } k \text { is even }, \\ (p-1) / 2 & \text { if } k \text { is odd. }\end{cases}
$$

With this lemma in mind we can prove the following result.
Proposition 3. Let p be an odd prime and let $k \geq 1$ be any integer. Then, $p^{k} \in \mathfrak{P}$ if and only if k is odd.

Proof. Let $\alpha \in \mathbb{Z}$ be an integer whose class modulo p^{k} is a generator of the unit group of $\mathbb{Z} / p^{k} \mathbb{Z}$. We put $\beta:=\alpha^{\left(p^{k}-1\right) / 2}$. Suppose first that k is odd. We then claim that $\beta-1$ is not zero modulo p. In fact, if $\alpha^{\left(p^{k}-1\right) / 2} \equiv 1(\bmod p)$, then since also $\alpha^{p-1} \equiv 1(\bmod p)$, we get, by Lemma 2, that $\alpha^{(p-1) / 2} \equiv 1$ $(\bmod p)$, which is impossible.

Now, since $\beta-1$ is coprime to p, it is invertible modulo p^{k}. Moreover, since also $k \leq\left(p^{k}-1\right) / 2$, we have that

$$
\begin{aligned}
G(n) & =\sum_{j=1}^{n-1} j^{\left(p^{k}-1\right) / 2} \equiv \sum_{\substack{\operatorname{gcd}(j, p)=1 \\
1 \leq j \leq n-1}} j^{\left(p^{k}-1\right) / 2} \quad\left(\bmod p^{k}\right) \\
& \equiv \sum_{j=1}^{\varphi\left(p^{k}\right)}\left(\alpha^{\left(p^{k}-1\right) / 2}\right)^{i} \quad\left(\bmod p^{k}\right) \equiv \sum_{i=1}^{\phi\left(p^{k}\right)} \beta^{i}\left(\bmod p^{k}\right) \\
& =\frac{\beta^{\varphi\left(p^{k}\right)+1}-\beta}{\beta-1} \equiv 0 \quad\left(\bmod p^{k}\right)
\end{aligned}
$$

Assume now that k is even. Observe that

$$
\left(p^{k}-1\right) / 2=(p-1)\left(\left(1+p+\cdots+p^{k-1}\right) / 2\right):=(p-1) m
$$

and m is an integer which is coprime to p. Thus, $\beta=\alpha^{\left(p^{k}-1\right) / 2}=\left(\alpha^{(p-1)}\right)^{m}$ has order p^{k-1} modulo p^{k}, and so does α^{p-1}. Moreover, again since $k \leq$
$\left(p^{k}-1\right) / 2$, we may eliminate the multiples of p from the sum defining $G(n)$ modulo n and get

$$
\begin{align*}
G(n) & =\sum_{j=1}^{n-1} j^{\left(p^{k}-1\right) / 2} \equiv \sum_{\substack{\operatorname{gcd}(j, p)=1 \\
1 \leq j \leq n-1}} j^{\left(p^{k}-1\right) / 2} \quad\left(\bmod p^{k}\right) \\
& \equiv \sum_{i=1}^{\varphi\left(p^{k}\right)}\left(\alpha^{\left(p^{k}-1\right) / 2}\right)^{i} \equiv \sum_{i=1}^{p^{k-1}(p-1)}\left(\alpha^{(p-1)}\right)^{i m} \quad\left(\bmod p^{k}\right) \\
& \equiv(p-1) \sum_{i=1}^{p^{k-1}}\left(\alpha^{p-1}\right)^{i}\left(\bmod p^{k}\right) \tag{2}
\end{align*}
$$

Since α^{p-1} has order p^{k-1} modulo p^{k}, it follows that $\alpha^{p-1}=1+p u$ for some integer u which is coprime to p. Then

$$
\begin{equation*}
\sum_{i=1}^{p^{k-1}}\left(\alpha^{p-1}\right)^{i}=\alpha\left(\frac{\alpha^{p^{k-1}}-1}{\alpha-1}\right) \tag{3}
\end{equation*}
$$

Since $\alpha^{p^{k-1}} \equiv 1+p^{k} u\left(\bmod p^{k+1}\right)$, it follows that $\left(\alpha^{p^{k-1}}-1\right) /(\alpha-1) \equiv p^{k-1}$ $\left(\bmod p^{k}\right)$, so that

$$
\begin{equation*}
\alpha\left(\frac{\alpha^{p^{k-1}}-1}{\alpha-1}\right) \equiv \alpha p^{k-1} \quad\left(\bmod p^{k}\right) \equiv p^{k-1} \quad\left(\bmod p^{k}\right) \tag{4}
\end{equation*}
$$

Calculations (3) and (4) together with congruences (2) give that $G(n) \equiv$ $(p-1) p^{k-1}\left(\bmod p^{k}\right)$. Thus, p^{k} is not in \mathfrak{P} when k is even.

Note that Proposition 3 does not extend to powers of positive integers having at least two distinct prime factors. For example, $n=2021=43 \times 47$ has the property that both n and n^{2} belong \mathfrak{P}.

3 A characterization of \mathfrak{P} and applications

Here, we take a look into the arithmetic structure of the elements lying in \mathfrak{P}. We start with an easy but useful lemma.

Lemma 4. Let $n=\prod_{p^{r_{p}} \|_{n}} p^{r_{p}}$ be an odd integer, and let A be any positive integer. If $\operatorname{gcd}(A, p-1)<p-1$ for all $p \mid n$, then

$$
\sum_{\substack{\operatorname{gcd}(j, n)=1 \\ 1 \leq j \leq n-1}} j^{A} \equiv 0 \quad(\bmod n)
$$

Proof. It suffices to prove that the above congruence holds for all prime powers $p^{r_{p}} \| n$. So, let p^{r} be such a prime power and let α be an integer which is a generator of the unit group of $\mathbb{Z} / p^{r} \mathbb{Z}$. Put $\beta:=\alpha^{A}$. An argument similar to the one used in the proof of Proposition 3 (the case when k is odd) shows that the condition $\operatorname{gcd}(A, p-1)<p-1$ entails that $\beta-1$ is not a multiple of p. Thus, $\beta-1$ is invertible modulo p. We now have

$$
\begin{aligned}
\sum_{\substack{\operatorname{gcd}(j, n)=1 \\
1 \leq j \leq n-1}} j^{A} & \equiv\left(\frac{\phi(n)}{\phi\left(p^{r}\right)}\right) \sum_{\substack{\operatorname{gcd}(j, p)=1 \\
1 \leq j \leq p}} j^{A} \quad\left(\bmod p^{r}\right) \equiv \phi\left(n / p^{r}\right) \sum_{i=1}^{\phi\left(p^{r}\right)} \alpha^{A i}\left(\bmod p^{r}\right) \\
& \equiv \phi\left(n / p^{r}\right) \sum_{i=1}^{\phi\left(p^{r}\right)} \beta^{i}\left(\bmod p^{r}\right) \equiv \phi\left(n / p^{r}\right) \frac{\beta^{\phi\left(p^{r}\right)+1}-\beta}{\beta-1} \quad\left(\bmod p^{r}\right) \\
& \equiv 0\left(\bmod p^{r}\right)
\end{aligned}
$$

which is what we wanted to prove.
Theorem 5. A positive integer n is in \mathfrak{P} if and only if $\operatorname{gcd}((n-1) / 2, p-1)<$ $p-1$ for all $p \mid n$.

Proof. Assume that n is odd and $\operatorname{gcd}((n-1) / 2, p-1)<p-1$. By Lemma (4.)

$$
\sum_{\substack{(j, n)=1 \\ 1 \leq j \leq n-1}} j^{(n-1) / 2} \equiv 0 \quad(\bmod n)
$$

Now, let d be any divisor of n. Observe that

$$
\begin{equation*}
\sum_{\substack{(j, n)=d \\ 1 \leq j \leq n-1}} j^{\frac{n-1}{2}}=d^{\frac{n-1}{2}} \sum_{\substack{(i, n / d)=1 \\ 1 \leq i \leq n / d-1}} i^{\frac{n-1}{2}} \tag{5}
\end{equation*}
$$

The last sum in the right-hand side of (5) above is, by Lemma 4, a multiple of n / d, so that the sum in the left-hand side of (5) above is a multiple of n.

Summing up these congruences over all possible divisors d of n and noting that

$$
G(n)=\sum_{d \mid n} \sum_{\substack{\operatorname{gcd}(j, n)=d \\ 1 \leq j \leq n-1}} j^{(n-1) / 2}
$$

we get that $G(n) \equiv 0(\bmod n)$, so $n \in \mathfrak{P}$.
Conversely, say $n \in \mathfrak{P}$ is some odd number and assume that there exists a prime factor p of n such that $p-1 \mid(n-1) / 2$. Write $(n-1) / 2=(p-1) m$. Observe that m is coprime to p. Assume that $p^{r} \| n$. Then, modulo p^{r}, we have

$$
G(n)=\sum_{j=1}^{n-1} j^{(n-1) / 2} \equiv\left(n / p^{r}\right) \sum_{\substack{\operatorname{gcd}(j, p)=1 \\ 1 \leq j \leq p^{r}-1}} j^{(n-1) / 2} \quad\left(\bmod p^{r}\right) \equiv\left(n / p^{r}\right) \sum_{\substack{\operatorname{gcd}(j, p)=1 \\ 1 \leq j \leq p^{r}-1}} j^{(p-1)} .
$$

The argument used in Proposition 3 (the case when k is even), shows that the second sum is not zero modulo p^{r}, and since n / p^{r} is also coprime to p, we get that p^{r} does not divide $G(n)$, a contradiction.

This completes the proof of the theorem.

Here are a few immediate corollaries of Theorem 5. 5.
Corollary 6. Let n be any integer. Assume that one of the following conditions hold:
i) $\operatorname{gcd}((n-1) / 2, \varphi(n))$ is odd;
ii) $\operatorname{gcd}((n-1) / 2, \lambda(n))$ is odd, where $\lambda(n)$ the Carmichael function.

Then $n \in \mathfrak{P}$.
Corollary 7. If $n^{k} \in \mathfrak{P}$ for some $k \geq 1$, then $n \in \mathfrak{P}$.

Proof. Observe that $\operatorname{gcd}((n-1) / 2, p-1)$ divides $\operatorname{gcd}\left(\left(n^{k}-1\right) / 2, p-1\right)$ for every k and every prime number p. Now the corollary follows from Theorem 5.

We add another sufficient condition which is somewhat reminiscent of the characterization of the Giuga numbers.

Proposition 8. Let $n=\prod_{p^{r_{p}} \| n} p^{r_{p}}$ be an odd integer. If $p-1$ does not divide $n / p^{r_{p}}-1$ for every prime factor p of n, then $n \in \mathfrak{P}$.

Proof. By Theorem 5, if $n \notin \mathfrak{P}$, then there exists a prime factor p of n such that $p-1$ divides $(n-1) / 2$. In particular, $p-1 \mid n-1$. Since $p-1$ also divides $p^{r_{p}}-1$, it follows that $p-1$ divides $n-p^{r_{p}}=p^{r_{p}}\left(n / p^{r_{p}}-1\right)$. Since $p-1$ is obviously coprime to $p^{r_{p}}$, we get that $p-1$ divides $n / p^{r_{p}}-1$, which is a contradiction.

It is also easy to determine whether numbers of the form $2^{m}+1$ are in \mathfrak{P}. Indeed, assume that $2^{m}+1 \notin \mathfrak{P}$ for some positive integer m. Then, by Theorem [5, there is some prime $p \mid 2^{m}+1$ such that $p-1 \mid\left(\left(2^{m}+1\right)-1\right) / 2=$ 2^{m-1}. Thus, $p=2^{a}+1$ for some $a \leq m-1$, and so p is a Fermat prime. In particular, $a=2^{\alpha}$ for some $\alpha \geq 0$. Since $p=2^{2^{\alpha}}+1$ is a proper divisor of $2^{m}+1$, it follows that $2^{\alpha} \mid m$ and $m / 2^{\alpha}$ is odd. This is possible only when 2^{α} is the exact power of 2 in m and m is not a power of 2 . So, we have the following result.

Proposition 9. Let $n=2^{m}+1$ and $m=2^{\alpha} m_{1}$ with $\alpha \geq 0$ and odd $m_{1}>1$. Then $n \in \mathfrak{P}$ unless $2^{2^{\alpha}}+1$ is a Fermat prime.

4 Asymptotic density of \mathfrak{P}

Let \mathbb{I} be the set of odd positive integers. In order to compute the asymptotic density of \mathfrak{P}, or to even prove that it exists, it suffices to understand the elements in its complement $\mathbb{I} \backslash \mathfrak{P}$. It turns out that this is easy. For an odd prime p let

$$
\mathcal{F}_{p}:=\left\{p^{2} \quad(\bmod 2 p(p-1))\right\} .
$$

Observe that $\mathcal{F}_{p} \subseteq \mathbb{I}$.
Theorem 10. We have

$$
\begin{equation*}
\mathbb{I} \backslash \mathfrak{P}=\bigcup_{p \geq 3} \mathcal{F}_{p} \tag{6}
\end{equation*}
$$

Proof. By Theorem 5, we have that $n \notin \mathfrak{P}$ if and only if $p-1$ divides $(n-1) / 2$ for some prime factor p of n. This condition is equivalent to $n \equiv 1$ $(\bmod 2(p-1))$. Write $n=p m$ for some positive integer m. Since p is invertible modulo $2(p-1)$, it follows that m is uniquely determined modulo $2(p-1)$. It suffices to notice that the class of m modulo $2(p-1)$ is in fact p since then $p m \equiv p^{2} \equiv 1(\bmod 2(p-1))$ with the last congruence following because $p^{2}-1=(p-1)(p+1)$ is a multiple of $2(p-1)$. This completes the proof.

Observe that \mathcal{F}_{p} is an arithmetic progression of difference $1 /(2 p(p-1))$. Since the series

$$
\sum_{p \geq 3} \frac{1}{2 p(p-1)}
$$

is convergent, it follows immediately that $\mathbb{I} \backslash \mathfrak{P}$; hence, also \mathfrak{P}, has a density. This also suggests a way to compute the density of \mathfrak{P} with arbitrary precision. Namely, say $\varepsilon>0$ is given. Let $3=p_{1}<p_{2}<\cdots$ be the increasing sequence of all the odd primes. Let $k:=k(\varepsilon)$ be minimal such that

$$
\sum_{j \geq k} \frac{1}{2 p_{j}\left(p_{j}-1\right)}<\varepsilon
$$

It then follows that numbers $n \notin \mathfrak{P}$ which are divisible by a prime p_{j} with $j \geq k$ belong to $\bigcup_{j \geq k} \mathcal{F}_{p_{j}}$, which is a set of density $<\varepsilon$. Thus, with an error of at most ε, the density of the set $\mathbb{I} \backslash \mathfrak{P}$ is the same as the density of

$$
\bigcup_{j<k} \mathcal{F}_{p_{j}}
$$

which is, by the Principle of Inclusion and Exclusion,

$$
\begin{equation*}
\sum_{s \geq 1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq k-1} \frac{\varepsilon_{i_{1}, i_{2}, \ldots, i_{s}}}{\operatorname{lcm}\left[2 p_{i_{1}}\left(p_{i_{1}}-1\right), \ldots, 2 p_{i_{s}}\left(p_{i_{s}}-1\right)\right]}, \tag{7}
\end{equation*}
$$

with the coefficient $\varepsilon_{i_{1}, i_{2}, \ldots, i_{s}}$ being zero if $\bigcap_{t=1}^{s} \mathcal{F}_{p_{i_{t}}}=\emptyset$, and being $(-1)^{s-1}$ otherwise. Taking $\varepsilon:=0.00082$, we get that $k=29$,

$$
\rho\left(\bigcup_{j<29} \mathcal{F}_{p_{j}}\right)=\frac{274510632303283394907222287246970994037}{2284268907516688397400621108446881752020} \approx 0.120174
$$

and consequently $\rho(\mathfrak{P})$ belongs to $[0.379005,0.379826]$. So, we can say that

$$
\rho(\mathfrak{P})=0.379 \ldots
$$

Here and in what follows, for a subset \mathcal{A} of the set of positive integers we used $\rho(\mathcal{A})$ for its density when it exists.

These computations were carried out with Mathematica, for which it was necessary to have a good criterion to determine when the intersection of \mathcal{F}_{p} for various odd primes p is empty. We devote a few words on this issue. Let us observe first that the condition $n \in \mathcal{F}_{p}$, which is equivalent to the fact that $p \mid n$ and $p-1$ divides $(n-1) / 2$, can be formulated as the pair congruences

$$
\begin{align*}
n & \equiv 1 \quad(\bmod 2(p-1)) \\
n & \equiv 0 \quad(\bmod p) \tag{8}
\end{align*}
$$

Assume now that \mathcal{P} is some finite set of primes. Let us look at $\bigcap_{p \in \mathcal{P}} \mathcal{F}_{p}$. Put $m:=\prod_{p \in \mathcal{P}} p$. The first set of congruences (8) for all $p \in \mathcal{P}$ is equivalent to

$$
\begin{equation*}
n \equiv 1 \quad(\bmod 2 \lambda(m)), \tag{9}
\end{equation*}
$$

where $\lambda(m)=\operatorname{lcm}[p-1: p \in \mathcal{P}]$ is the Carmichael λ-function of m. The second set of congruences for $p \in \mathcal{P}$ is equivalent to

$$
\begin{equation*}
n \equiv 0 \quad(\bmod m) \tag{10}
\end{equation*}
$$

Since 1 is not congruent to 0 modulo any prime q, it follows that a necessary condition for (9) and (10) to hold simultaneously is that m and $2 \lambda(m)$ are coprime. This is also sufficient by the Chinese Remainder Lemma in order for the pair of congruences (9) and (10) to have a solution n. Since m is also squarefree, the condition that $m>1$ is odd and m and $2 \lambda(m)$ are coprime is equivalent to $m>2$ and m and $\phi(m)$ are coprime. Put

$$
\begin{equation*}
\mathcal{M}:=\{m>2: \operatorname{gcd}(m, \phi(m))=1\} \tag{11}
\end{equation*}
$$

Thus, we proved the following result.
Proposition 11. Let \mathcal{P} be a finite set of primes and put $m:=\prod_{p \in \mathcal{P}} p$. Then $\bigcap_{p \in \mathcal{P}} \mathcal{F}_{p}$ is nonempty if and only if $m \in \mathcal{M}$, where this set is defined at (11) above. If this is the case, then the set $\bigcap_{p \in \mathcal{P}} \mathcal{F}_{p}$ is an arithmetic progression of difference $1 /(2 m \lambda(m))$.

The condition that $m \in \mathcal{M}$ can also be formulated by saying that m is odd, squarefree and $p \nmid q-1$ for all primes p and q dividing m. We recall that the set \mathcal{M} has been studied intensively in the literature. For example, putting $\mathcal{M}(x)=\mathcal{M} \cap[1, x]$, Erdős [5] proved that

$$
\# \mathcal{M}(x)=e^{-\gamma}(1+o(1)) \frac{x}{\log \log \log x} \quad \text { as } \quad x \rightarrow \infty
$$

In particular, it follows that if \mathcal{P} is a finite set of primes, then $\bigcap_{p \in \mathcal{P}} \mathcal{F}_{p} \neq \emptyset$ if and only if $\mathcal{F}_{p} \bigcap \mathcal{F}_{q} \neq \emptyset$ for any two elements p and q of \mathcal{P}.

Finally, let us observe that with this formalism and the Principle of Inclusion and Exclusion, as in (7) for example, we can write that

$$
\rho(\mathfrak{P})=\sum_{m \in \mathcal{M} \cup\{1\}} \frac{(-1)^{\omega(m)}}{2 m \lambda(m)} .
$$

Here, $\omega(m)$ is the number of distinct prime factors of m. The fact that the above series converges absolutely follows easily from the inequality $\lambda(m)>$ $(\log m)^{c \log \log \log m}$ which holds with some positive constant c for all sufficiently large m (see [7]), as well the fact that the series

$$
\sum_{m \geq 2} \frac{1}{m(\log m)^{2}}
$$

converges. We give no further details.

References

[1] W.R. Alford, A. Granville and C. Pomerance, "There are infinitely many Carmichael numbers", Ann. Math. (2) 139 (1994), 703-722.
[2] W. D. Banks and F. Luca, "Composite integers n for which $\phi(n) \mid$ $n-1 "$, Acta Math. Sinica 23 (2007), 1915-1918.
[3] W. D. Banks, A. M. Güloğlu, C. W. Nevans, "On the congruence $N \equiv A(\bmod \phi(N)) "$, INTEGERS 8 (2008), A59.
[4] D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn, "Giuga's conjecture on primality", Amer. Math. Monthly 103 (1996), 40-50.
[5] P. Erdős, "Some Asymptotic Formulas in Number Theory", J. Indian Math. Soc. (N. S.) 12 (1948), 75-78.
[6] P. Erdős, "On pseudoprimes and Carmichael numbers", Publ. Math. Debrecen 4 (1956), 201-206.
[7] P. Erdős, C. Pomerance and E. Schmutz, "Carmichael's λ function", Acta Arith. 58 (1991), 363-385.
[8] G. Giuga, "Su una presumibile proprietá caratteristica dei numeri primi", Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat. (3) 14(83) (1950), 511-528.
[9] G. Harman, "On the number of Carmichael numbers up to x ", Bull. London Math. Soc. 37 (2005), 641-650.
[10] A. Korselt, "Problème chinois", L'intermédiaire des mathematiciens 6 (1899), 142-143.
[11] D. H. Lehmer, "On Euler's totient function", Bull. Amer. Math. Soc. 38 (1932), 745-751.
[12] F. Luca and C. Pomerance, "On composite n for which $\phi(n) \mid n-1$ ", Bol. Soc. Mat. Mexicana, to appear.
[13] F. Luca, C. Pomerance and I. E. Shparlinski, "On Giuga numbers", Int. J. Modern Math. 4 (2009), 13-18.
[14] C. Pomerance, "On the congruences $\sigma(n) \equiv a(\bmod n)$ and $n \equiv a$ $(\bmod \phi(n)) "$, Acta Arith. 26 (1974/1975), 265-272.
[15] C, Pomerance, "On composite n for which $\phi(n) \mid n-1$ ", Acta Arith. 28 (1975/1976), 387-389.
[16] C. Pomerance, "On composite n for which $\phi(n) \mid n-1$. II", Pacific J. Math. 69 (1977), 177-186.
[17] Z. Shan, "On composite n for which $\phi(n) \mid n-1$ ", J. China Univ. Sci. Tech. 15 (1985), 109-112.
[18] V. Tipu, "A note on Giuga's conjecture", Canadian Math. Bull. 50 (2007), 158-160.
[19] E. Waring, Meditationes algebraicœ, Amer. Math. Soc. 1991.

