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THE SKEW DIAGRAM POSET AND COMPONENTS OF SKEW

CHARACTERS

CHRISTIAN GUTSCHWAGER

Abstract. We investigate the poset of skew diagrams ordered by adding or
forming the union of skew diagrams. We will show that a skew diagram which
has at least n convex corners to the upper left and also to the lower right
is larger than the skew diagram consisting of n disconnected single boxes.
Using this property, we obtain lower bounds for the number of components,
constituents and pairs of components which differ by one box in a given skew
character.

1. Introduction and Notation

Characters of the symmetric group are being investigated since the beginning of
the 20th century. Skew characters of the symmetric group decompose in the same
way as skew Schur functions and their decomposition corresponds to the decom-
position of products of Schubert classes (see [Gut1]) as well as the decomposition
of the restriction of irreducible affine Hecke algebras to the Iwahori-Hecke algebras
(see [Ram]).

We introduce a new poset on the set of skew diagrams (Section 2) which allows
us to obtain results about skew characters (Section 3).

We mostly follow the standard notation in [Sag] or [Sta]. A partition λ =
(λ1, λ2, . . . , λl) is a weakly decreasing sequence of non-negative integers where only
finitely many of the λi are positive. We regard two partitions as the same if they
differ only by the number of trailing zeros and call the positive λi the parts of λ.
The length is the number of positive parts and we write l(λ) = l for the length and
|λ| =

∑
i λi for the sum of the parts. With a partition λ we associate a diagram,

which we also denote by λ, containing λi left-justified boxes in the i-th row and we
use matrix style coordinates to refer to the boxes.

We write dp(λ) = n if the partition λ has n different parts. Furthermore we set

δn = (n, n− 1, n− 2, . . . , 2, 1).

The conjugate λc of λ is the diagram which has λi boxes in the i-th column.
For µ ⊆ λ we define the skew diagram λ/µ as the difference of the diagrams λ

and µ defined as the difference of the set of the boxes. Rotation of λ/µ by 180◦

yields a skew diagram (λ/µ)◦ which is well defined up to translation.
A skew tableau T is a skew diagram in which positive integers are written into

the boxes. A semistandard tableau of shape λ/µ is a filling of λ/µ with positive
integers such that the entries weakly increase amongst the rows from left to right
and strictly increase amongst the columns from top to bottom. The content of a
semistandard tableau T is ν = (ν1, . . .) if the number of occurrences of the entry i
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2 C. GUTSCHWAGER

in T is νi. The reverse row word of a tableau T is the sequence obtained by reading
the entries of T from right to left and top to bottom starting at the first row. Such
a sequence is said to be a lattice word if for all i, n ≥ 1 the number of occurrences of
i among the first n terms is at least the number of occurrences of i+1 among these
terms. The Littlewood-Richardson (LR) coefficient c(λ;µ, ν) equals the number of
semistandard tableaux of shape λ/µ with content ν such that the reverse row word
is a lattice word. We will call those tableaux LR tableaux. The LR coefficients play
an important role in different contexts (see [Sag] or [Sta] for further details).

A standard Young tableaux of shape λ is a filling of λ with the numbers 1, . . . , |λ|
such that the entries increase in each row from left to right and in each column from
top to bottom. The number of standard Young tableaux of shape λ is denoted by
fλ which is given by the well known hook length formula

fλ =
|λ|!∏

(hook length)
.

Obviously the number of standard Young tableaux with n boxes fn is given by
fn =

∑
λ⊢n f

λ. Notice furthermore that fn is also the number of involutions in the
symmetric group Sn plus 1.

The irreducible characters [λ] of the symmetric group Sn are naturally labeled
by partitions λ ⊢ n. The skew character [λ/µ] corresponding to a skew diagram
λ/µ is defined by the LR coefficients

[λ/µ] =
∑

ν

c(λ;µ, ν)[ν].

The translation symmetry gives [λ/µ] = [α/β] if the skew diagrams of λ/µ
and α/β are the same up to translation while rotation symmetry gives [(λ/µ)◦] =
[λ/µ]. The conjugation symmetry c(λc;µc, νc) = c(λ;µ, ν) is also well known and
furthermore we have c(λ;µ, ν) = c(λ; ν, µ).

A basic skew diagram λ/µ is a skew diagramwhich satisfies µi < λi and µi ≤ λi+1

for each 1 ≤ i ≤ l(λ). This means that λ/µ doesn’t contain empty rows or column
in λ/µ. Empty rows or columns of a skew diagram don’t influence the filling and so
deleting empty rows or columns doesn’t change the skew character or LR fillings.

Let A and B be non-empty sub-diagrams of a skew diagram D such that the
union of A and B is D. Then we say that the skew diagram D is disconnected or
decays into the skew diagrams A and B if no box of A (viewed as boxes in D) is
in the same row or column as a box of B. Notice, that this also covers the case,
when B again decays into two subdiagrams and A is between those two. We write
D = A ⊗ B if up to translation D decays into A and B and normally write A and
B as basic skew diagrams. A skew diagram is connected if it does not decay. If
D = A⊗B = C then by translation symmetry [D] = [C], so reordering A,B doesn’t
change the skew character.

A skew character whose skew diagram D decays into the skew diagrams A,B is
equivalent to the product of the characters of the disconnected diagrams induced
to a larger symmetric group. We have

[D] = ([A]× [B]) ↑
Sn+m

Sn×Sm

=: [A]⊗ [B]

with |A| = n, |B| = m. If D = λ/µ and A,B are proper partitions α, β then we
have

[λ/µ] =
∑

ν

c(λ;µ, ν)[ν] =
∑

ν

c(ν;α, β)[ν] = [α]⊗ [β].
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2. The poset of skew diagrams

For a partition λ we can define a path starting to the right at the lower left
corner of λ and following the shape of λ to the upper right corner, ending with an
upward going segment. We write this path as a sequence of v’s and h’s denoting
either a vertical or horizontal step.

For example the path corresponding to the partition λ = (5, 3, 1, 1, 1) =

is given by the sequence

s = (hvvvhhvhhv).

For a skew diagram λ/µ we define two paths, the outer and inner path. The
outer path, whose sequence we denote by o(λ/µ) or simply o, is the path of λ. The
inner path, whose sequence we denote by i(λ/µ) or i, starts in the lower left corner
of λ/µ upwards to the lower left corner of µ (there is no upward step if l(λ) = l(µ))
follows the path of µ and ends with steps to the right at the upper right, provided
µ1 < λ1.

So for λ/µ = (5, 3, 1, 1, 1)/(5, 2, 1) (see Figure 1)

b b

b

b b

b b

b b

b

b

b b

b

Figure 1. λ/µ = (5, 3, 1, 1, 1)/(5, 2, 1)

we have the paths o = s as above and i = (vvhvhvhhhv).
Let λ/µ be a skew diagram. Then both the o and i sequence have λ1 + l(λ)

entries. Furthermore, both sequences have λ1 entries h and l(λ) entries v. For all
j ≤ λ1 + l(λ) the number of entries h among the first j entries of i is at most
the number of entries h among the first j entries of o. Otherwise the partition µ
wouldn’t be contained in λ. Furthermore, if those numbers are equal then the o
and i path touch each other after j steps. From this follows, that for a basic skew
diagram there is no j < λ1+ l(λ) such that the number of entries h among the first
j entries of i and o are the same and both sequences continue with the same entry
in the j + 1’st position.

The sum µ+ν = λ of two partitions µ, ν is defined by λi = µi+νi. The partition
µ∪ν contains the parts of both µ and ν. These operations are conjugate to another

(µ+ ν)c = µc ∪ νc

and do not commute

(λ ∪ µ) + ν 6= (λ+ ν) ∪ µ.



4 C. GUTSCHWAGER

For example, we have

+

X X X
X X
X
X

=

X X X
X X
X
X

, ∪
X X X X
X X
X

=

X X X X

X X
X

.

Note that µ ∪ ν = µ ∪ ν1 ∪ ν2 ∪ · · · ∪ νl(ν). Because of this we sometimes say
that for µ + ν we insert the columns of ν into µ and for µ ∪ ν that we insert the
rows of ν into µ. Note that this + and ∪ introduce a partial order on the set of
partitions and we say that a partition λ is larger than λ′ if λ can be obtained from
λ′ by repeatedly using the operations +,∪ with arbitrary partitions in any order.
This should not be confused with the lexicographic order. Note that the sequences
of µ and µ+ (1n) differ by one h if n ≤ l(µ). By symmetry the sequences of µ and
µ ∪ (n) differ by one v if n ≤ µ1. To be more precise, the sequence of µ + (1n)
(n ≤ l(µ)) is obtained from µ by inserting an h such that there are exactly n entries
v to the right of the new h which also means that there are exactly l(µ)−n entries
v to the left.

For two skew diagramsA = λ/µ,B = λ′/µ′ we define the operationsA+B = α/β
and A∪B = α′/β′ by α = λ+λ′, β = µ+µ′ and α′ = λ∪λ′, β′ = µ∪µ′, respectively.
Clearly A + B and A ∪ B are then again skew diagrams. Usually we regard two
skew diagrams as the same if they contain boxes in the same position but for this
definition the underlying partitions λ, λ′, µ and µ′ are important because different
choices for λ and µ would lead to different α/β. For example, we have (2, 1)/(12) =

(2)/(1) = . But if we add in both cases (12) we would get (3, 2)/(12) = 6=

= (3, 1)/(1). However, this will never cause any problem because in general

we assume that the skew diagrams are basic.
On the set of basic skew diagrams we define a partial order as follows. Let A,B

be skew diagrams, then we say that A is greater or equal to B if there exists n ∈ N

and for 1 ≤ i ≤ n it is ◦i ∈ {+,∪} and Ci a skew diagram so that we have

A =
(
· · ·

(
(B ◦1 C1) ◦2 C2

)
· · ·

)
◦n Cn.

Notice that it is not enough that λ or µ are larger than α or β, respectively,
for λ/µ to be larger than α/β. For example, (2) is clearly larger than (1) but

(3, 2)/(2) = is not larger than (3, 2)/(1) = .

What are the covering relations? Let α/β and λ/µ be basic skew diagrams, then
λ/µ covers α/β, α/β < ·λ/µ, if either

• λ/µ = α/β + (1x)/(1y) with 0 ≤ y ≤ x ≤ l(α) or
• λ/µ = α/β ∪ (x)/(y) with 0 ≤ y ≤ x ≤ α1.

Note that we assumed that both λ/µ and α/β are basic. If λ/µ = α/β+(1x)/(1y)
with 0 ≤ y ≤ x ≤ l(α) but λ/µ is not basic, then λ/µ does not cover α/β.

Note that λ/µ has exactly one non-empty row or column more than α/β if λ/µ
covers α/β. So the above partial order is a graded partial order with ranking
function ρ(λ/µ) = λ1 + l(λ) the number of non-empty rows and columns of the
basic skew diagram λ/µ.
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Definition 2.1. Let λ/µ be a basic skew diagram, and let n be minimal with
dp(µ) + 1, dp(λ) ≥ n. We then say, that λ/µ has δ value n and write δ(λ/µ) = n.

For example λ/µ = has δ value 4. Note, that the δ value of a

given skew diagram is the minimal number of convex corners of either the inner or
outer path. Furthermore, the skew diagram consisting of n disconnected boxes
has δ value n, so δ(δn/δn−1) = n. We would like to show that λ/µ with δ(λ/µ) = n
is larger than δn/δn−1, but this is false.

Take for example the skew diagram λ/µ = with δ(λ/µ) = 4. It is

easy to see, that λ/µ can not be obtained from δ4/δ3 by repeatedly applying + and ∪

to δ4/δ3 and so λ/µ is not larger than δ4/δ3. On the other hand α/β =

is obtained by reordering the disconnected components of λ/µ and we have


 + (14)/(11)


∪(2)/(2) = ∪(2)/(2) = = α/β.

To fix this, we will now introduce an equivalence relation on the set of basic

skew diagrams, so that λ/µ = α/β if λ/µ and α/β are the same up to translation
of the skew diagrams into which λ/µ and α/β may decompose. For example λ/µ =

and α/β = both decompose into ⊗ and so λ/µ = α/β.

We may now define a partial order on the set of these equivalence classes by giving
the cover relations and assume transitivity. Let λ/µ cover α/β if there is a skew

diagram A ∈ λ/µ which covers a skew diagram B ∈ α/β. All skew diagrams in
the same equivalence class have the same number of non-empty rows and columns.
From this follows that also the poset of equivalence classes is graded with grading
function ρ(λ/µ) = λ1 + l(λ). Notice that λ/µ > α/β does not require the existence

of skew diagrams A ∈ λ/µ,B ∈ α/β with A > B. Setting δ(λ/µ) = δ(λ/µ) is well
defined.

Lemma 2.2. Let λ/µ = (1) ⊗ α/β with δ(α/β) = n and assume that α/β ≥

δn/δn−1.

Then λ/µ ≥ δn+1/δn.

Proof. We may assume, that λ/µ has in the lower left corner the single box (1) and
atop to the right the skew diagram α/β.
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Since α/β ≥ δn/δn−1 there is a sequence of covering skew diagrams from δn/δn−1

to α/β. So we can choose ◦i ∈ {+,∪} and Ai ∈ {(1a+b)/(1b), (a+ b)/(b)} such that

with B0 = δn/δn−1,Bm = α/β and Ci = Bi−1◦iAi with Ci = Bi we have Bi < ·Bi+1.

Now, set Ã = (a+ b+ 1)/(b+ 1) if A = (a+ b)/(b) and Ã = A otherwise.

Let B̃0 = δn+1/δn, C̃m = λ/µ and let B̃i = (1)⊗ Bi and C̃i = (1)⊗ Ci such that

both B̃i, C̃i contain a single disconnected box in the lower left corner. We then have

C̃i = B̃i−1 ◦i Ãi with C̃i = B̃i and so B̃i < ·B̃i+1. �

Theorem 2.3. Let λ/µ be a basic skew diagram with δ(λ/µ) = n.

Then λ/µ ≥ δn/δn−1.

Proof. We will give a procedure to reduce λ/µ by one rank without changing the
δ value. Repeatedly applying this procedure will result in a minimal skew diagram
with fixed δ value and we will see, that we can always reduce the rank by one
without changing the δ value, unless λ/µ = δn/δn−1. This shows, that δn/δn−1 is

the unique minimal element with δ(λ/µ) = n and that all λ/µ with δ(λ/µ) = n are

larger than δn/δn−1.
To give this procedure we will call a pair (Xi, Xo) where Xi denotes the ith step

of the inner sequence and Xo denotes the oth step of the outer sequence a removable
pairing if both are either h’s or v’s and if either the inner h is weakly atop the outer
h or the inner v is weakly to the left of the outer v. If Xi = Xo = h we will call
this an h pairing and if both are v’s we will call it an v pairing.

If α/β is obtained from λ/µ by removing a removable pairing then λ/µ = α/β+
(1a+b)/(1a) in case of h pairings and λ/µ = α/β ∪ (a+ b)/(a) in case of v pairings.
In both cases λ/µ ≥ α/β.

Because of Lemma 2.2 we may assume, that λ/µ does not decay into (1)⊗A with
A some arbitrary skew diagram. If λ/µ would decay in this way, then δ(A) = n− 1

and if we prove that A ≥ δn−1/δn−2 then by Lemma 2.2 λ/µ ≥ δn/δn−1.
We have the following possibilities for the skew diagram. We may assume that

in each case none of the previous case applied.

(1) λ/µ = δn/δn−1 (or to be precise λ/µ = ∅, because we assumed λ/µ 6=
(1)⊗A). Then there is nothing to prove.

(2) Suppose there is a removable h pairing (hi, ho) such that both hi and ho
are next to another h in the inner and outer sequence, respectively, and
removing it reduces the rank by one. Then the inner and outer ways are as
follows

i : . . . . . . hhi . . .

o : . . . hho . . . . . . .

Then we can remove this pair and reduce the rank by one without changing
the δ value. The same applies to v pairings instead of h pairings.

(3) Suppose there is a removable h pairing (hi, ho) such that both hi and ho
are next to another h in the inner and outer sequence, respectively, but
removing this pairing gives an α/β which has rank more than one less than
λ/µ. So the inner and outer way are as follows

i : . . . . . . hhi . . .

o : . . . hho . . . . . . .
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Let (hi, ho) be the pairing in λ/µ such that i− o is minimal of all pairings
we could choose. Because λ/µ is basic and the h pairing can be removed it
is i > o. Since λ/µ doesn’t cover α/β it follows that α/β can’t be basic. So
there has to be a k such that in α/β the inner sequence i1 . . . ikX . . . has in
the first k positions the same number of h’s (and v’s) as the outer sequence

o1 . . . ĥo . . . ok+1X . . . has in the first k positions and both continue with

the same step X ∈ {h, v}, where ĥo means, that ho was removed.
So for λ/µ we have

λ/µ : i : . . . . . . . . .ik . . . hi . . .

o : . . . ho . . .ok . . . . . .

while for α/β we have

α/β : i : . . . . . . . . .ikX . . .

o : . . . ĥo . . .ok+1X . . . .

Let k be minimal with this property.
Since k is minimal, we have ik 6= ok+1. But ik = h and ok+1 = v is not

possible, because λ/µ is basic and a skew diagram.
So we have ik = h and ok+1 = v.
If X = h (so ik+1 = h) then the pairing (ik+1, ho) would be a removable

pairing and by choice k + 1 − o < i − o which contradicts the minimality
of i− o. The pairing (ik+1, ho) would also be removable using (2) because
the minimality of k assures there cannot appear non-basic configurations
between the positions o and k + 1.

So we have X = v (see Figure 2).

b

k
k + 1

k + 1
k + 2

Figure 2. after X = v determined

If ik+2 = v we could remove (ik+1, ok+2). This would remove one row
and in this situation reduce the rank by only 1 without changing the δ
value.

So we have ik+2 = h (see Figure 3).

b

k
k + 1
k + 2

k + 1
k + 2

Figure 3. ik+2 = h
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Since λ/µ is basic and the inner and outer path meet after the k + 2nd
step, it follows that ik+3 6= ok+3 and therefore we have ik+3 = v and
ok+3 = h (see Figure 4).

b

k
k + 1
k + 2
k + 3

k + 1
k + 2
k + 3

Figure 4. ik+3 = v and ok+3 = h

If we would have ok+4 = h, we could remove (hi, ok+4) which contradicts
the minimality of i− o.

So we have ok+4 = v (see Figure 5).

b

k
k + 1
k + 2
k + 3

k + 1
k + 2
k + 3
k + 4

Figure 5. ok+4 = v

But if now ik+4 = h this would contradict λ/µ 6= (1) ⊗ A so ik+4 = v
and we have the situation as in Figure 6.

b

b

k
k + 1
k + 2
k + 3
k + 4

k + 1
k + 2
k + 3
k + 4

Figure 6. ik+4 = v

But now (ik+3, ok+2) is a removable v pairing and removing it changes
the rank by one without altering the δ value.

The same applies to v pairings instead of h pairings. This means, that it
is not possible to have only removable h or v pairing whose removal would,
without altering the δ value, reduce the rank by more than one.
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(4) Suppose now that there are only non removable pairings (Xi, Xo) with
X = Xi = Xo ∈ {h, v} such that Xi is next to another X in the inner
sequence and Xo is next to another X in the outer sequence. Suppose this
is an h pairing. For the skew diagram this means, that the outer h is in a
higher position than the inner h (see Figure 7).

b

b

Xi

Xo

Figure 7. λ/µ has only non removable h pairings

Since λ/µ is basic, the outer sequence starts with an h and because there
are no removable pairings it continues with an v. Because λ/µ doesn’t decay
into a single box and another skew diagram the inner sequence has to start
with vv. If now the outer sequence would contain a subsequence vv this
would give a removable pairing, so the outer sequence does not contain a
subsequence vv. Because λ/µ is basic, the outer sequence ends with an v
and because it doesn’t contain the subsequence vv it ends with hv. Since
λ/µ doesn’t decay into a single box and another skew diagram the inner
sequence has to end with hh. This h in the inner sequence together with
Xo from the outer sequence form a removable pairing (see Figure 8).

b

b

b

b

h

Xo

Figure 8. The removable pairing

(5) So we may now assume that there are no pairings (Xi, Xo) with X = Xi =
Xo ∈ {h, v} such that Xi is next to another X in the inner sequence and Xo

is next to another X in the outer sequence. By rotation symmetry we may
assume that λ has strictly more different parts than µ (otherwise exchange
the inner and outer sequence). Since there exists none of the above pairings
and dp(λ) > dp(µ) it follows that λ = δm for somem and, furthermore, that
we have for the inner sequence either i : . . . hhi . . . or i : . . . vvi . . ..
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Suppose we are in the first case that we have i : . . . hhi . . . (see
Figure 9).

b hi

Figure 9. hi next to another h

Then we can remove the column containing hi and by doing so reduce
the rank by one without changing the δ value (see Figure 10).

b hi

Figure 10. The removable pairing

This finishes the proof. �

3. Application to skew characters:

Lower bounds for the number of components, constituents and pairs

of components which differ by one box

In this section we are interested in skew characters and so do not strictly distin-
guish between the skew diagrams and equivalence classes of skew diagrams up to
translation.
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Definition 3.1. We say that a skew diagram A or skew character [A] = [λ/µ] =∑
ν c(λ;µ, ν) is of cc-type (a, b) if [A] has a =

∑
c(λ;µ,ν) 6=0 1 components and b =∑

ν c(λ;µ, ν) constituents. We then also write cc(A) = (a, b) or cc([A]) = (a, b).
Note that always a ≤ b so there is no way of confusing the order. Furthermore we
say that A with cc(A) = (a, b) has cc-type at least (c, d) if a ≥ c and b ≥ d.

For example, the skew character corresponding to (2, 1)⊗ (2, 1) = is

[(2, 1)]⊗ [(2, 1)] = [4, 2] + [4, 12] + [32] + 2[3, 2, 1] + [3, 13] + [23] + [22, 12]

and so cc((2, 1)⊗ (2, 1)) = cc([(4, 3, 2, 1)/(22)]) = (7, 8).
For the following proofs we use the following lemma which we proved in [Gut2]

and is a generalization of a lemma in [Gut1].

Lemma 3.2 (Lemma 3.1, [Gut2]). Let λ, µ, ν, λ′, µ′, ν′ be partitions with c(λ′;µ′, ν′) 6=
0.

Then
c(λ;µ, ν) ≤ c(λ+ λ′;µ+ µ′, ν + ν′)

and by conjugation
c(λ;µ, ν) ≤ c(λ ∪ λ′;µ ∪ µ′, ν ∪ ν′).

Remark 3.3. Note that λ1 + ν 6= λ2 + ν for λ1 6= λ2 so this lemma tells us that
adding a skew diagram B to a skew diagram A weakly increases the number of
components and constituents of [A+ B] compared to [A] (or [B]). By conjugation
the same applies to the row wise addition of two skew diagrams A ∪ B. This
allows us to consider small examples of [A] to give a lower bound on the number
of components and constituents of larger [A′] if A′ can be obtained from A by
successively adding, column or row wise, Bi for some skew diagrams Bi.

We will now introduce a partial order on the set of skew characters by giving
the cover relations. Let χ and ψ be skew characters, then we say that χ covers
ψ if there exists skew diagrams λ/µ and α/β with χ = [λ/µ] and ψ = [α/β] such
that λ/µ covers α/β. Since the number of non empty rows and columns of a skew
diagram is fixed for a given skew character this partial order of skew characters
is also graded with ranking function ρ([λ/µ]) = λ1 + l(λ) for basic skew diagrams
λ/µ. Note that this partial order is compatible with the partial order on the set of
equivalence classes of skew diagrams of Section 2.

Theorem 3.4. Let λ/µ be a basic skew diagram with δ(λ/µ) = n. Then cc(λ/µ)
is at least (pn, fn) where pn is the number of partitions of n and fn the number of
standard Young tableaux with n boxes.

Proof. Let δn = (n, n − 1, n − 2, . . . , 2, 1) then as an easy consequence of the LR
rule we have

[δn/δn−1] = [(1)⊗ (1)⊗ · · · ⊗ (1)︸ ︷︷ ︸
n-times

] = [1]n =
∑

λ⊢n

fλ[λ]

where fλ is the number of standard Young tableaux of shape λ. So we have
cc(δn/δn−1) = (pn, fn). Since δ(λ/µ) = n λ/µ is larger than δn/δn−1 by Theo-
rem 2.3 and so cc(λ/µ) is at least (pn, fn). �
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We will use the following notation in the remaining part of this chapter.

Definition 3.5. We let p̄n denote the number of partitions of n with two different
kinds of 1’s and 2’s. For the partitions of 2 with two different kinds of 1’s and 2’s
see Example 3.7.

Let gn denote the number of unordered pairs (ν1, ν2) of partitions of n with∣∣ν1 ∩ ν2
∣∣ = n− 1. So gn counts the pairs of partitions of n which differ only by one

box.

Lemma 3.6. Then p̄n = gn+2 for all n.

Proof. We give a bijection of partitions of n with two different kinds of 1’s and 2’s
to pairs (ν1, ν2) of partitions of n+2 which differ only by one box. We may assume
that ν1 is lexicographically larger than ν2.

Suppose the two kinds of 1’s are the usual 1 and the other be 1′ and the two
kinds of 2’s are 2 and 2′. Let λ̄ be such a partition of n and let λ denote the
partition formed by the usual parts of λ̄. Furthermore, let n1 denote the number
of 1′ in λ̄ and n2 denote the number of 2′ in λ̄. So λ̄ = λ ∪ (2′

n2 , 1′
n1).

For a partition λ̄ now define the bijection by setting

ν1 = λ ∪ (n1 + n2 + 2, n2), ν2 = λ ∪ (n1 + n2 + 1, n2 + 1).

Now obviously ν1 is lexicographically larger than ν2 and both partitions differ
only by one box. Furthermore, different λ̄ correspond to different triples (λ, n1, n2)
and so give different pairs (ν1, ν2).

Finally the inverse map is obtained as follows. If ν1 and ν2 differ by only one
box (and ν1 is lexicographically larger than ν2) , then ν2 is obtained from ν1 by
removing a box in one row and placing it in a lower row. Let all the other rows
form λ then the two rows which are different are of the form (a+ 1) and (b) in ν1

and (a) and (b+1) in ν2 for a ≥ b ≥ 0. Now a+1 > b+1 since otherwise ν1 = ν2.
So to exclude this case we may instead assume that the rows are (c+ 2) and (b) in
ν1 and (c+ 1) and (b+ 1) in ν2 for c ≥ b ≥ 0. Setting n1 = c− b and n2 = b gives
the inverse map. �

Example 3.7. We have p̄2 = 5 and there is the following correspondence given by
the above bijection.
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λ̄ λ ν1 ν2

2 2

2′ 0

12 12

1, 1′ 1

1′
2

0

Remark 3.8. Lemma 3.6 is useful because one sees directly that the generating
function for p̄n is given by

∑

i≥0

p̄ix
i =

1

(1− x)(1− x2)

∏

i≥1

1

1− xi
.

In the following theorem the condition δ(λ/µ) ≥ 2 only makes sure that λ/µ is
neither a partition nor a rotated partition but constrains λ/µ not in any other way.
The case that λ/µ is a partition α or rotated partition α◦ is uninteresting for the
theorem because then [λ/µ] = [α] is irreducible.

Theorem 3.9. Let λ/µ be a basic skew diagram with δ(λ/µ) = n ≥ 2.
Then [λ/µ] =

∑
ν c(λ;µ, ν)[ν] contains at least gn pairs of characters ([ν1], [ν2])

whose corresponding diagrams differ only by one box, i.e. there are ν1, ν2 with∣∣ν1 ∩ ν2
∣∣ =

∣∣ν1
∣∣ − 1 =

∣∣ν2
∣∣ − 1 and c(λ;µ, ν1), c(λ;µ, ν2) 6= 0 (with gn as in

Lemma 3.6).
Furthermore, if λ = (λ1, . . . , λl), µ = (µ1, . . . , µm) with λl, µm ≥ 1 set A =

(λ1 − 2, λl − 1)/(µ1 − 1) and B = (λ2, λ3, . . . λl−1)/(µ2, µ3, . . . , µm) with [A] having
a components and [B] having b components. Then there are at least max(a, b) of
those pairs ν1, ν2.

Proof. We first show there are at least max(a, b) pairs ν1, ν2.
We can deduce this part of the theorem from the fact that [(2, 1)/(1)] = [2]+[12]

contains two characters whose corresponding diagrams differ only by one box.
We explicitly show how to obtain λ/µ from (2, 1)/(1).
The skew diagram (λ1, λl)/(µ1) is larger than (2, 1)/(1)

(λ1, λl) = (2, 1) + (λ1 − 2, λl − 1), (µ1) = (1) + (µ1 − 1)

and A = (λ1 − 2, λl− 1)/(µ1− 1) is a skew diagram. Let α be a partition such that
[α] appears in [A], so c((λ1 − 2, λl − 1); (µ1 − 1), α) 6= 0.

Then by Lemma 3.2 [α + (12)] and [α + (2)] both appear in [(λ1, λl)/(µ1)] and,
furthermore, α+(12)∩α+(2) = α+(1) so α+(12) and α+ (2) differ by only one
box.
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Now λ/µ is larger than (λ1, λl)/(µ1)

λ = (λ1, λl) ∪ (λ2, λ3, . . . , λl−1), µ = (µ1) ∪ (µ2, µ3, . . . , µm)

and B = (λ2, λ3, . . . λl−1)/(µ2, µ3, . . . , µm) is a skew diagram. Let β be a partition
such that [β] appears in [B].

Then by Lemma 3.2 [(α+(12))∪β] and [(α+(2))∪β] both appear in [λ/µ] and
(
(α+ (12)) ∪ β

)
∩ ((α+ (2)) ∪ β) = (α+ (1)) ∪ β

so ν1 = (α+ (12)) ∪ β and ν2 = (α+ (2)) ∪ β differ only by one box.
Furthermore, notice that a different choice for α or β yields a different pair ν1, ν2.

This proves that there are at least max(a, b) pairs ν1, ν2.
Now we will prove that there are also at least gn pairs ν1, ν2.
As mentioned above, as an easy consequence of the LR rule we have

[δn/δn−1] = [(1)⊗ (1)⊗ · · · ⊗ (1)︸ ︷︷ ︸
n-times

] = [1]n =
∑

λ⊢n

fλ[λ]

where fλ is the number of standard Young tableaux of shape λ, in particular, all
irreducible characters of Sn appear in [δn/δn−1]. So by definition of gn [δn/δn−1]
contains gn characters [α], [β] whose corresponding diagrams differ only by one box.

By Theorem 2.3 λ/µ is larger than δn/δn−1, so there exist skew diagrams Bi

such that λ/µ is obtained from δn/δn−1 by using the operations +,∪ together with
the Bi. Let ◦i be either + or ∪ then

λ/µ = ((δn/δn−1 ◦
1 B1) ◦2 B2) · · · ◦j Bj.

Choose [αi] contained in [Bi] and [ν̄1], [ν̄2] contained in [δn/δn−1] with
∣∣ν̄1 ∩ ν̄2

∣∣ =
n− 1. Set

ν1 = ((ν̄1 ◦1 α1) ◦2 α2) · · · ◦j αj , ν2 = ((ν̄2 ◦1 α1) ◦2 α2) · · · ◦j αj

then by Lemma 3.2 both [ν1], [ν2] appear in [λ/µ] and, furthermore,
∣∣ν1 ∩ ν2

∣∣ =∣∣ν1
∣∣− 1. Finally a different choice of ν̄1, ν̄2 gives different ν1, ν2 (for fixed (αi, ◦i))

and there are by definition gn choices for ν̄1, ν̄2. �

Remark 3.10. In the On-Line Encyclopedia of Integer Sequences [OEIS] gn =
p̄n−2 has the id: A000097, pn has the id: A000041 and fn has the id: A000085.
Their first terms are

n : 1 2 3 4 5 6 7 8 9 10 11 12 13
gn : 0 1 2 5 9 17 28 47 73 114 170 253 365
pn : 1 2 3 5 7 11 15 22 30 42 56 77 101
fn : 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504

Lemma 3.11. Let α, β be partitions with dp(α) ≥ dp(β) = n. Then [α] ⊗ [β] has
cc-type at least (pn+1, fn+1) and contains gn+1 pairs of components ([ν1], [ν2]) such
that their corresponding partitions differ only by one box.

Proof. This follows directly from the previous theorems by setting λ/µ = α ⊗ β◦

because then dp(λ) = dp(α) + 1, dp(µ) = dp(β). �

Lemma 3.12. Let λ/µ be a skew diagram with |λ/µ| = n.
Then [λ/µ] contains at most

• gn pairs ([ν1], [ν2]) such that
∣∣ν1 ∩ ν2

∣∣ = n− 1,
• pn components,
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• min(fn, pnf
µ, pnf

λ̄) constituents (with λ̄ = (λ1 − λl, λ1 − λl−1, . . . , λ1 −
λ3, λ1 − λ2, 0)).

Proof. The first two statements are trivial, because there are not more irreducible
characters of Sn.

For the third statement notice, that λ/µ is smaller than δn/δn−1 which gives by
Lemma 3.2 c(λ;µ, ν) ≤ c(δn; δn−1, ν) = fν . Since the LR coefficient is symmetric

in µ and ν we also have c(λ;µ, ν) ≤ fµ and by rotation symmetry c(λ;µ, ν) ≤ f λ̄.
So for the number of constituents of [λ/µ]

∑

ν

c(λ;µ, ν) ≤
∑

ν

fν = fn,

∑

ν

c(λ;µ, ν) =
∑

ν⊢n

c(λ;µ, ν) ≤
∑

ν⊢n

fµ = pnf
µ,

∑

ν

c(λ;µ, ν) =
∑

ν⊢n

c(λ;µ, ν) ≤
∑

ν⊢n

f λ̄ = pnf
λ̄.

Notice that all three bounds are reached for λ/µ = δn/δn−1. �
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