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A NOTE ON A PERFECT EULER CUBOID.

Ruslan Sharipov

Abstract. The problem of constructing a perfect Euler cuboid is reduced to a single
Diophantine equation of the degree 12.

1. Introduction.

An Euler cuboid , named after Leonhard Euler, is a rectangular parallelepiped
whose edges and face diagonals all have integer lengths. A perfect cuboid is an
Euler cuboid whose space diagonal is also of an integer length.

In 2005 Lasha Margishvili from the Georgian-American High School in Tbilisi
won the Mu Alpha Theta Prize for the project entitled ”Diophantine Rectangular
Parallelepiped” (see http://www.mualphatheta.org/Science Fair/...). He suggested
a proof that a perfect Euler cuboid does not exist. However, by now his proof is
not accepted by mathematical community. The problem of finding a perfect Euler
cuboid is still considered as an unsolved problem. The history of this problem can
be found in [1]. Here are some appropriate references: [2–35].

2. Passing to rational numbers.

Let A1B1C1D1A2B2C2D2 be a perfect Euler cuboid. Its edges are presented by
positive integer numbers. We write this fact as

|A1B1| = a,

|A1D1| = b, (2.1)

|A1A2| = c.

Its face diagonals are also presented by
positive integers (see Fig. 2.1):

|A1D2| = α,

|A2B1| = β, (2.2)

|B2D2| = γ.

And finally, the spacial diagonal of this
cuboid is presented by a positive integer:

|A1C2| = d. (2.3)
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From (2.1), (2.2), (2.3) one easily derives a series of Diophantine equations for the
integer numbers a, b, c, α, β, γ, and d:

a2 + b2 = γ2, b2 + c2 = α2,
(2.4)

c2 + a2 = β2, a2 + b2 + c2 = d2.

The main goal of this paper is to reduce the equations (2.4) to a single Diophantine
equation for some other integer numbers.

Relying on the last equation (2.4), we introduce the following rational numbers:

x1 =
a

d
, x2 =

b

d
, x3 =

c

d
. (2.5)

The numbers (2.5) are the components of a three-dimensional unit vector:

(x1)
2 + (x2)

2 + (x3)
2 = 1. (2.6)

From the first three equations (2.4) one easily derives the equations

(x1)
2 + (x2)

2 = (d3)
2,

(x2)
2 + (x3)

2 = (d1)
2, (2.7)

(x3)
2 + (x1)

2 = (d2)
2,

where the rational numbers d1, d2 d3 are given by the following fractions:

d1 =
α

d
, d2 =

β

d
, d3 =

γ

d
. (2.8)

The equations (2.6), (2.7), and (2.8) lead to the following theorem.

Theorem 2.1. A perfect Euler cuboid does exist if and only if the equations (2.6)
and (2.7) are solvable in positive rational numbers x1, x2, x3 and d1, d2, d3.

Proof. The direct proposition of the theorem 2.1 is immediate from the formulas
(2.4), (2.5), and (2.8). Conversely, assume that x1, x2, x3 and d1, d2, d3 are positive
rational numbers obeying the equations (2.6) and (2.7). They a presented by some
unique irreducible fractions with positive integer numerators and denominators:

x1 =
ν1
δ1

, x2 =
ν2
δ2

, x3 =
ν3
δ3

, d1 =
ν4
δ4

, d2 =
ν5
δ5

, d3 =
ν6
δ6

.

Let’s denote through d the least common multiple of their denominators, i. e.

d = LCM(δ1, δ2, δ3, δ4, δ5, δ6).

Then the following products are positive integer numbers:

a = x1 d, b = x2 d, c = x3 d,
(2.9)

α = d1 d, β = d2 d, γ = d3 d.
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Applying (2.6) and (2.7) to (2.9), we derive the equations (2.4) for the integer
numbers a, b, c, α, β, γ, and d. �

3. A rational parametrization.

Combining (2.7) and (2.6), we derive the following equation for x1 and d1:

(x1)
2 + (d1)

2 = 1. (3.1)

Rational solutions of the equation (3.1) are parametrized by a rational number u:

x1 =
2 u

1 + u2
, d1 =

1− u2

1 + u2
. (3.2)

Since both x1 and d1 in (3.1) are positive, the parameter u satisfies the inequalities:

0 < u < 1. (3.3)

The second equation in (2.7) is (x2)
2 + (x3)

2 = (d1)
2. This equation can be

written in a form quite similar to the equation (3.1):

(x2

d1

)2

+
(x3

d1

)2

= 1. (3.4)

Rational solutions of the equation (3.4) are parametrized by a rational number z:

x2

d1
=

2 z

1 + z2
,

x3

d1
=

1− z2

1 + z2
. (3.5)

Combining (3.2) and (3.5), we derive the formulas

x2 =
2 z (1− u2)

(1 + u2) (1 + z2)
,

x3 =
(1− u2) (1− z2)

(1 + u2) (1 + z2)
.

(3.6)

The parameter z in (3.5) and (3.6) obeys the inequalities similar to (3.3):

0 < z < 1. (3.7)

Theorem 3.1. The formulas (3.2) and (3.6) constitute a rational parametrization

of the variables x1, x2, x3 and d1 by means of two parameters u and z obeying the

inequalities (3.3) and (3.7). The equations

(x1)
2 + (x2)

2 + (x3)
2 = 1, (x2)

2 + (x3)
2 = (d1)

2 (3.8)

are fulfilled identically due to this parametrization.

The proof of the theorem 3.1 is pure calculations.
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4. An extended parametrization.

Note that the equations (3.8) are two of the four equations (2.6) and (2.7) pro-
viding a perfect Euler cuboid. The other two equations are

(x1)
2 + (x2)

2 = (d3)
2, (x3)

2 + (x1)
2 = (d2)

2. (4.1)

Let’s substitute (3.2) and (3.6) into the first equation (4.1). As a result we get

(d3)
2 =

4 (u2 z2 + 1) (u2 + z2)

(1 + u2)2 (1 + z2)2
. (4.2)

Similarly, substituting (3.2) and (3.6) into the second equation (4.1), we get

(d2)
2 =

((1 + u2) (1 + z2) + 2 z(1− u2)) ((1 + u2) (1 + z2)− 2 z(1− u2))

(1 + u2)2 (1 + z2)2
. (4.3)

Relying on (4.2), we define the following two quantities ξ and a:

ξ = u2 z2 + 1, a =
d3 (1 + u2) (1 + z2)

2 (u2 z2 + 1)
. (4.4)

Similarly, relying on (4.2), we define other two quantities ζ and b:

ζ = (1 + u2) (1 + z2) + 2 z(1− u2),

b =
d2 (1 + u2) (1 + z2)

(1 + u2) (1 + z2) + 2 z(1− u2)
.

(4.5)

The formulas (4.4) and (4.5) are consistent since the denominators of the fractions
in them are positive. For a and b from (4.2), (4.3), (4.4), and (4.5), we derive.

a2 =
u2 + z2

u2 z2 + 1
, (4.6)

b2 =
(1 + u2) (1 + z2)− 2 z(1− u2)

(1 + u2) (1 + z2) + 2 z(1− u2)
. (4.7)

Since d2 > 0 and d3 > 0 (see (2.8), (2.2) and (2.3)), the quantities a and b are
positive. Therefore, the formulas (4.6) and (4.7) define two positive functions

a = a(u, z), b = b(u, z). (4.8)

The domain of the functions (4.8) is outlined by the inequalities (3.3) and (3.7):

Duz = {(u, z) ∈ R
2 : 0 < u < 1 and 0 < z < 1}. (4.9)

The functions (4.8) defined in the domain (4.9) constitute a mapping

f : Duz → R
2. (4.10)
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Let’s denote through Dab the image of the domain Duz under the mapping (4.10):

Dab = Im f = f(Duz). (4.11)

The domain (4.11) is shown in Fig. 4.1. It is an open triangle with one curvilinear
side. The curvilinear side of the triangle Dab is the graph of the function

b(a) = −1 +
2

a+ 1
.

Using the formulas (4.6) and (4.7), one
can prove that the mapping (4.10) sets up
a bijective correspondence of the points of
Duz with the points of Dab:

f : Duz → Dab.

The inverse mapping

f−1 : Dab → Duz

establishing the backward correspondence
of the points of Dab with those of Duz is given by two algebraic functions

u = u(a, b), z = z(a, b). (4.12)

Let’s consider the second formula (4.4) and the second formula (4.5). We can
write these two formulas in the following way:

d2 =
(1 + u2) (1 + z2) + 2 z(1− u2)

(1 + u2) (1 + z2)
b,

d3 =
2 (u2 z2 + 1)

(1 + u2) (1 + z2)
a.

(4.13)

Substituting (4.12) into the formulas (3.2), (3.6), and (4.13), we can represent
x1, x2, x3 and d1, d2, d3 as functions of two variables a and b:

x1 = x1(a, b), x2 = x2(a, b), x3 = x3(a, b),
(4.14)

d1 = d1(a, b), d2 = d2(a, b), d3 = d3(a, b).

Definition 4.1. The functions (4.14) sharing the common domain Dab constitute
a parametrization for the problem of a perfect Euler cuboid. They extend the
rational parametrization given by the functions (3.2) and (3.6).

Theorem 4.1. The equations (2.6) and (2.7) providing a perfect Euler cuboid are

fulfilled identically by the functions (4.14).

The theorem 4.1 is analogous to the theorem 3.1. One can see that it is already
proved by the above considerations.
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5. The characteristic equation.

Unlike (3.2) and (3.6), the functions (4.14) are not explicit. Below we derive an
algorithm for evaluating them. For this purpose let’s return back to the formulas
(4.4), (4.5), (4.6), and (4.7). From (4.4) and (4.6) we derive the equations

ξ = u2 z2 + 1, ξ a2 = u2 + z2. (5.1)

Similarly, from (4.5) and (4.7) we derive the equations

ζ = (1 + u2) (1 + z2) + 2 z(1− u2),

ζ b2 = (1 + u2) (1 + z2)− 2 z(1− u2).
(5.2)

Subtracting both equations (5.1) from each of the equations (5.2), we get

{

ζ − ξ (1 + a2) = 2 z (1− u2),

ζ b2 − ξ (1 + a2) = −2 z (1 − u2).
(5.3)

The equations (5.3) constitute a system of two linear algebraic equations with
respect to the variables ξ and ζ. Solving them, we derive

ξ =
2 z (1− u2) (1 + b2)

(1− b2) (1 + a2)
, ζ =

4 z (1− u2)

1− b2
. (5.4)

Now let’s substitute θ for z2 into (5.1). Then the equations (5.1) turn to a system
of two linear algebraic equations with respect to the variables ξ and θ:

{

ξ − u2 θ = 1,

ξ a2 − θ = u2.
(5.5)

Solving the system of linear equations (5.5), we obtain

ξ =
(1− u2) (1 + u2)

1− a2 u2
, θ =

a2 − u2

1− a2 u2
. (5.6)

In (5.4) and (5.6) we have two expressions for ξ. Equating them we derive the
following expression for z expressing it through a, b and u:

z =
(1 + u2) (1 − b2) (1 + a2)

2 (1 + b2) (1− a2 u2)
. (5.7)

Substituting (5.7) into the second equation (5.4), we derive:

ζ =
2 (1 + u2) (1− u2) (1 + a2)

(1 + b2) (1 − a2 u2)
. (5.8)

Note that the formulas (5.6), (5.7), and (5.8) are similar to each other. They
express z, ξ, ζ, and θ through a, b, and u. But only two of the three variables
a, b, and u are independent. Due to (4.12) the variable u is uniquely expressed
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through a and b within the domain Dab shown in Fig. 4.1. In order to evaluate this
expression let’s recall that we have the following equation:

θ = z2. (5.9)

Applying (5.6) and (5.8) to (5.9), we write (5.9) as

(1 + u2)2 (1− b2)2 (1 + a2)2

4 (1 + b2)2 (1− a2 u2)2
=

a2 − u2

1− a2 u2
. (5.10)

The denominators of the fractions in the equation (5.10) are nonzero within the
domain Dab. For this reason it can be brought to a polynomial equation:

u4 a4 b4 + (6 a4 u2 b4 − 2 u4 a4 b2 − 2 u4 a2 b4) + (4 u2 b4 a2+

+4 a4 u2 b2 − 12 u4 a2 b2 + u4 a4 + u4 b4 + a4 b4) + (6 a4 u2 + 6 u2 b4−

− 8 a2 b2 u2 − 2 u4 a2 − 2 u4 b2 − 2 a4 b2 − 2 b4 a2) + (u4 + b4+

+ a4 + 4 a2 u2 + 4 b2 u2 − 12 b2 a2) + (6 u2 − 2 a2 − 2 b2) + 1 = 0.

(5.11)

Theorem 5.1. The equation (5.11) defines the function u = u(a, b) from (4.12) in
an implicit form. It is called the characteristic equation.

Theorem 5.2. A perfect Euler cuboid does exist if and only if the characteristic

equation (5.11) has a rational solution such that 0 < u < 1, while a and b are the

coordinates of some point within the open domain Dab shown in Fig. 4.1.

The inhomogeneous polynomial equation (5.11) can be transformed to a homo-
geneous equation by adding one more variable c:

u4 a4 b4 + 6 a4 u2 b4 c2 − 2 u4 a4 b2 c2 − 2 u4 a2 b4 c2 + 4 u2 b4 a2 c4+

+4 a4 u2 b2 c4 − 12 u4 a2 b2 c4 + u4 a4 c4 + u4 b4 c4 + a4 b4 c4+

+6 a4 u2 c6 + 6 u2 b4 c6 − 8 a2 b2 u2 c6 − 2 u4 a2 c6 − 2 u4 b2 c6−

− 2 a4 b2 c6 − 2 b4 a2 c6 + u4 c8 + b4 c8 + a4 c8 + 4 a2 u2 c8+

+4 b2 u2 c8 − 12 b2 a2 c8 + 6 u2 c10 − 2 a2 c10 − 2 b2 c10 + c12 = 0.

(5.12)

Theorem 5.3. A perfect Euler cuboid does exist if and only if the Diophantine

equation (5.12) has a solution such that c > 0 and 0 < u/c < 1, while a/c and b/c
are the coordinates of some point within the open domain Dab shown in Fig. 4.1.

The theorems 5.2 and 5.3 constitute the main result of this paper. They can be
used in numeric search for a perfect Euler cuboid.
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