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Abstract

Breakpoint graphs are ubiquitous structures in the field of genome rearrange-

ments. Their cycle decomposition has proved useful in computing and bounding

many measures of (dis)similarity between genomes, and studying the distribu-

tion of those cycles is therefore critical to gaining insight on the distributions

of the genomic distances that rely on it. We extend here the work initiated

by Doignon and Labarre [1], who enumerated unsigned permutations whose

breakpoint graph contains k cycles, to signed permutations, and prove explicit

formulas for computing the expected value and the variance of the correspond-

ing distributions, both in the unsigned case and in the signed case. We also

show how our results can be used to derive simpler proofs of other previously

known results. Finally, we compare the distribution of the number of cycles in

breakpoint graphs of unsigned and signed permutations to the distributions of

several well-studied genomic distances, emphasising the cases where approxima-

tions obtained in this way stand out.
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1. Introduction

The field of comparative genomics is concerned with quantifying similarity

or divergence between organisms. Several measures have been proposed to that
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end, including pattern matching based approaches or edit distances relying on

a given set of biologically relevant operations. A standard example of such a

method, and a de facto standard in phylogenetics, is the approach based on

sequence alignment, which is motivated by the observation that genomes evolve

by point mutations and aims at explaining evolution by replacements, insertions

or deletions of single nucleotides (see e.g. Li and Homer [2] for a recent account

of sequence alignment techniques and their uses).

However, genomes also evolve by large-scale mutations that act on whole

segments of the genome, as opposed to point mutations. Examples of such mu-

tations include reversals, which reverse the order of elements along a segment,

transpositions, which move segments to another location, and translocations,

which exchange segments that belong to different chromosomes. Many models

have been proposed for studying those genome rearrangements, which vary ac-

cording to the kinds of mutations one wants to take into account, how these

should be weighted, or which objects are best suited for representing genomes

(see e.g. Fertin et al. [3] for an extensive survey). Nonetheless, a striking similar-

ity between all these models is how heavily they rely on variants of a graph first

introduced by Bafna and Pevzner [4], known as the breakpoint graph, and its de-

composition into edge- or vertex-disjoint cycles, which has proved most useful in

obtaining extremely tight bounds on many genome rearrangement distances, as

well as formulas for computing the exact distance in several cases. The link be-

tween several genomic distances and the number of cycles in breakpoint graphs

will be discussed in more detail in Section 9.

Many mathematical questions arise when studying genome rearrangement

distances, particularly concerning their distributions, as well as related statisti-

cal parameters. Since quite a few such distances can be computed or approxi-

mated using the cycle decomposition of the breakpoint graph, investigating the

distribution of such cycles appears as a natural, general and effective starting

point to answering those questions. We will restrict our attention in this paper to

the permutation model, which can be used when all genomes under comparison

consist of exactly the same genes (but in a different order) without duplications.
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Breakpoint graphs can be associated to permutations, and the distribution of

cycles in this case was first characterised by Doignon and Labarre [1], which

later led Bóna and Flynn [5] to prove a very simple expression for the expected

value of the block-interchange distance originally introduced by Christie [6].

However, it has often been argued that signed permutations provide a more

realistic model of evolution, since signs can be used to represent on which strand

a given DNA segment is located. Using this model, Székely and Yang [7] ob-

tained bounds for the expectation and the variance of the number of cycles in

the breakpoint graph of a random signed permutation. Using the finite Markov

chain embedding technique, Grusea [8] obtained the distribution of the number

of cycles in the breakpoint graph of a random signed permutation in the form

of a product of transition probability matrices of a certain finite Markov chain.

Her method allows to derive recurrence formulas and to compute this distribu-

tion numerically, but the computational complexity is quite high and limits the

practical applications.

In this work, we obtain a new expression for computing the number of un-

signed permutations whose breakpoint graph contains a given number of cycles,

as well as what is to the best of our knowledge the first analytic expression for

computing the number of signed permutations whose breakpoint graph contains

a given number of cycles. The formula obtained in the signed case is compli-

cated, but we obtain simpler formulas for a couple of restricted cases. We also

use our results to derive elementary proofs of previously known results, including

a binomial identity and the distribution of the number of cycles in the break-

point graph of an unsigned permutation. We prove formulas for computing the

expected value and the variance of the distribution of those cycles, both in the

unsigned case and in the signed case. Finally, we also discuss how the results we

obtain relate to a number of widely-studied genome rearrangement distances,

and in particular, how the distribution of cycles in breakpoint graphs can be

used to approximate (and in some cases, to recover exactly) the distribution of

those distances.
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2. Notations and definitions

We recall here a few notions that will be used throughout the paper. We

assume the reader is familiar with graph theory (if not, see e.g. Diestel [9]), but

nevertheless review a few useful definitions, if only to agree on notation. We

will work with non-simple graphs, i.e. graphs that may contain loops (edges

connecting a vertex to itself) as well as parallel edges. We will also work with

both undirected and directed graphs, using {u, v} to denote edges in the former

case and (u, v) to denote arcs in the latter.

Definition 2.1. A matching M in a graph G = (V,E) is a subset of pairwise
vertex-disjoint edges of E. It is a perfect matching of U ⊆ V if every vertex in
U is incident to an edge in M .

Definition 2.2. A graph is k-regular if each of its vertices has degree k.

In particular, if G is a 2-regular graph, then it decomposes in a unique way

into a collection of edge- and vertex-disjoint cycles, up to the ordering of cycles

and to rotations of elements within each cycle (i.e., (a, b, c, d) = (b, c, d, a)),

as well as directions in which cycles are traversed if G is undirected (i.e.,

(a, b, c, d) = (d, c, b, a)). This allows us to denote unambiguously c(G) the num-

ber of cycles in G. The length of a cycle is the number of vertices it contains,

and a k-cycle in G is a cycle of length k.

Definition 2.3. A graph is hamiltonian if it contains a cycle visiting every
vertex exactly once.

We now recall a few basic notions about permutations (for more details, see

e.g. Björner and Brenti [10] and Wielandt [11]).

Definition 2.4. A permutation of {1, 2, . . . , n} is a bijective application of {1, 2,
. . ., n} onto itself.

The symmetric group Sn is the set of all permutations of {1, 2, . . . , n}, to-

gether with the usual function composition ◦, applied from right to left. We use

lower case Greek letters to denote permutations, typically π = 〈π1 π2 · · · πn〉,

with πi = π(i), and in particular write the identity permutation as ι = 〈1 2 · · · n〉.

Definition 2.5. The graph Γ(π) of a permutation π ∈ Sn has vertex set
{1, 2, . . ., n}, and contains an arc (i, j) whenever πi = j.
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Definition 2.4 implies that Γ(π) is 2-regular and as such decomposes in a

unique way into disjoint cycles (up to the ordering of cycles and to rotations of

elements within each cycle), which we refer to as the disjoint cycle decomposition

of π. It is also common to refer to a permutation as a k-cycle, if the only cycle

of length greater than 1 that its graph contains has length k. Figure 1 shows an

example of such a decomposition. To lighten the presentation, we will shorten

the notation c(Γ(π)) into c(π), for a given permutation π.

1
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8

Figure 1: The graph of the permutation π = 〈2 4 1 3 5 8 7 9 6〉.

Definition 2.6. The conjugate of a permutation π by a permutation σ, both
in Sn, is the permutation σ ◦ π ◦ σ−1, and can be obtained by replacing every
element i in the disjoint cycle decomposition of π with σi.

Definition 2.7. A signed permutation is a permutation of {1, 2, . . . , n} where
each element has an additional “+” or “−” sign.

The hyperoctahedral group S±
n is the set of all signed permutations of n

elements, together with the usual function composition ◦, applied from right to

left. It is not mandatory for a signed permutation to have negative elements, so

Sn ⊂ S±
n since each permutation in Sn can be viewed as a signed permutation

without negative elements. To lighten the presentation, we will conform to the

tradition of omitting “+” signs for positive elements.

Finally, we recall the definition of the following graph introduced by Bafna

and Pevzner [4], which turned out to be an extremely useful tool for studying

and solving genome rearrangement problems and which will be central to our

discussions.

Definition 2.8. Given a signed permutation π in S±
n , transform it into an

unsigned permutation π′ in S2n by mapping πi onto the sequence (2πi − 1, 2πi)
if πi > 0, or (2|πi|, 2|πi| − 1) if πi < 0, for 1 ≤ i ≤ n. The breakpoint graph
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of π is the undirected bicoloured graph BG(π) with ordered vertex set (π′
0 =

0, π′
1, π

′
2, . . . , π

′
2n, π

′
2n+1 = 2n+1) and whose edge set is the union of the following

two perfect matchings of V (BG(π)):

• black edges δB(π) = {{π′
2i, π

′
2i+1} | 0 ≤ i ≤ n};

• grey edges δG = {{π′
2i, π

′
2i + 1} | 0 ≤ i ≤ n} = {{2i, 2i+ 1} | 0 ≤ i ≤ n}.

We will often use the notation BG(π) = δB(π)∪δG to denote breakpoint graphs.

Genome rearrangement problems usually involve computing edit distances,

i.e. the smallest number of moves needed to transform a genome into another

one using only operations specified by a given set S. In the case of permuta-

tions, those distances are usually left-invariant, which intuitively means that

genes can be relabelled so that either genome becomes ι without affecting the

value of the distance to compute. Under this assumption, the pairwise genome

rearrangement problem in S±
n can be viewed as a constrained sorting problem,

and the intuition behind the breakpoint graph construction is that black edges

are meant to represent the current situation (i.e. the ordering provided by π),

while grey edges are meant to represent the target situation (i.e. the ordering

provided by ι). Figure 2 shows an example of a breakpoint graph. By definition,

such a graph is a collection of even-length cycles that alternate black and grey

edges. It can be easily seen that the example shown in Figure 2 decomposes

into two such cycles.

The length of a cycle in a breakpoint graph differs from the traditional

graph-theoretical definition that we mentioned on page 4: it is half the number

of edges the cycle contains. Nevertheless, we will keep the terminology k-cycle

to designate a cycle of length k, keeping in mind that its length is measured

differently in the context of breakpoint graphs.

3. Cycle statistics

As is well-known (see e.g. Graham et al. [12]), the unsigned Stirling number

of the first kind
[
n
k

]
counts the number of permutations in Sn which decompose

into k disjoint cycles:
[
n

k

]

= |{π ∈ Sn | c(π) = k}|.
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Figure 2: The breakpoint graph of 〈−5 1 2 4 − 7 − 3 6〉.

Recall also that those numbers arise as coefficients in the series expansion of the

rising factorial

xn = x(x + 1) · · · (x + n− 1) =

n∑

k=0

[
n

k

]

xk (1)

and of the falling factorial

xn = x(x− 1) · · · (x− n+ 1) =

n∑

k=0

(−1)n−k

[
n

k

]

xk. (2)

Signing the elements of a permutation does not change its disjoint cycle decom-

position, so the number of signed permutations that decompose into k disjoint

cycles is 2n
[
n
k

]
. We are interested in the following analogues of the Stirling

number of the first kind, based on the cycle decomposition of the breakpoint

graph.

Definition 3.1. The Hultman number SH(n, k) counts the number of permu-
tations in Sn whose breakpoint graph decomposes into k cycles:

SH(n, k) = |{π ∈ Sn | c(BG(π)) = k}|.

The signed Hultman number S±
H(n, k) counts the number of permutations in S±

n

whose breakpoint graph decomposes into k cycles:

S±
H(n, k) = |{π ∈ S±

n | c(BG(π)) = k}|.
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It is clear from Definition 2.8 that the number of cycles in any breakpoint

graph is at least one and at most n + 1. Hultman numbers were so named

by Doignon and Labarre [1] after Axel Hultman, who first raised the question

of computing those numbers [13]. The authors obtained an explicit but com-

plicated formula for computing SH(n, k), as well as formulas for enumerating

permutations with a given “Hultman class” (the analogue of conjugacy classes

of Sn based on the breakpoint graph). Bóna and Flynn [5] later observed that

they can be computed using the following much simpler expression:

SH(n, k) =







[
n+2
k

]
/
(
n+2
2

)
if n− k is odd,

0 otherwise,
(3)

based on a formula first obtained by Kwak and Lee [14].

In the next section, we present another way of obtaining an explicit formula

for the unsigned Hultman numbers, which we will use in Section 7 to derive

a new and simple proof of Equation (3). In Section 5, we will prove the first

explicit formula for computing the signed Hultman numbers.

4. A new formula for SH(n, k)

We will need the following results obtained by Hanlon et al. [15], whose

notation we follow. For any fixed n in N0, let

QC

n(h, ℓ) = E(Re(tr((V V t)n))),

where V is a random h× ℓ matrix with independent standard complex normal

entries, E denotes expectation, Re denotes real part, tr denotes trace and t de-

notes matrix transposition. For the definition and the properties of the complex

normal distribution, see for example Goodman [16].

Hanlon et al. [15] give two formulas for computing QC
n(h, ℓ), both of which

we will need. The first formula1 is:

QC

n(h, ℓ) =
∑

ω∈Sn

hc(ω)ℓc(ω◦ω(n)), (4)

1See Corollary 2.4 p. 158 of Hanlon et al. [15].
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where ω(n) is a fixed n-cycle in Sn. The second formula2 is:

QC

n(h, ℓ) =
1

n

n∑

i=1

(−1)i−1 (h+ n− i)n(ℓ+ n− i)n

(n− i)!(i− 1)!
. (5)

The link between the Hultman numbers and the previous results of Hanlon

et al. [15] is obtained using the following result of Doignon and Labarre [1].

Corollary 4.1. [1] SH(n, k) counts the number of factorisations of a fixed (n+
1)-cycle β into the product ρ◦ω, where ρ is an (n+1)-cycle and ω a permutation
in Sn+1 with c(ω) = k.

For a polynomial P (x), let [xk]P (x) denote the coefficient of the monomial

xk in P (x). We derive the following new expression for computing SH(n, k).

Theorem 4.1. For all n in N0, for all k in {1, 2, . . . , n+ 1}:

SH(n, k) =
1

n+ 1

n+1∑

i=1

[hk](h+ n− i+ 1)
n+1

. (6)

Proof. By Corollary 4.1, SH(n, k) counts the number of factorisations of a fixed
(n + 1)-cycle β into the product ρ ◦ ω, with c(ρ) = 1 and c(ω) = k. This is
clearly equivalent to enumerating factorisations of ρ−1 into the product ω ◦β−1

under the same conditions; therefore, setting ω(n+1) to β−1 in Equation (4), we

observe that SH(n, k) is the coefficient of the monomial hkℓ in the polynomial
QC

n+1(h, ℓ), hence by Equation (5) equals:

SH(n, k) =
1

n+ 1

n+1∑

i=1

(−1)i−1 [h
k](h+ n− i+ 1)

n+1
× [ℓ](ℓ+ n− i+ 1)

n+1

(n− i+ 1)!(i− 1)!
.

Since for every i in {1, 2, . . . , k + 1} we have

[ℓ](ℓ+ n− i+ 1)
n+1

= [ℓ](ℓ+ n− i+ 1)(ℓ+ n− i) · · · (ℓ+ 1)ℓ(ℓ− 1)(ℓ− 2) · · · (ℓ − (i− 1))

= (−1)i−1(n− i+ 1)!(i− 1)!,

the above summation simplifies to the wanted expression, which completes the
proof.

Besides providing a new relation involving Hultman numbers, our new for-

mula will prove useful in obtaining simple proofs of known results, as we will

see in Sections 7 and 8. Moreover, we think that the interest of our formula also

lies in the fact that the method used to prove it extends to the signed case.

2See Theorem 2.5 p. 158 of Hanlon et al. [15].
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5. An explicit formula for S
±

H
(n, k)

We now turn our attention to the problem of computing signed Hultman

numbers, which we solve using ideas similar to those presented in the previous

section. The result is obtained by characterising the 2-regular graphs that cor-

respond to actual breakpoint graphs (Lemma 5.1 page 12), and then relating

that characterisation to an enumeration result by Hanlon et al. [15].

5.1. Preliminaries

Following Hanlon et al. [15], for some fixed n in N0, let

QR

n(h, ℓ) = E(tr((V V t)n)),

where V is again a random h×ℓmatrix, but this time with independent standard

real normal entries. Hanlon et al. [15] obtain two formulas for QR
n(h, ℓ).

Let Fn denote the set of perfect matchings of {0, 1, 2, . . . , 2n − 1}. In par-

ticular, let ε ∈ Fn be the identity perfect matching {{i, n+ i} | 0 ≤ i ≤ n− 1}.

The first formula3 for QR
n(h, ℓ) is:

QR

n(h, ℓ) =
∑

δ∈Fn

hc(ε∪δ)ℓc(δ∪δ(n)), (7)

where δ(n) is a fixed perfect matching such that ε ∪ δ(n) is hamiltonian.

The second formula is based on partitions rather than on perfect matchings.

Definition 5.1. [17] A (integer) partition λ = (λ1, λ2, . . . , λl) is a finite se-
quence of integers called parts such that λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0. Its length
is the number of non-zero parts it contains, and if

∑l
i=1 λi = n, we call λ a

partition of n, which we write as λ ⊢ n.

We consider any two partitions to be equivalent if we obtain the same se-

quence when removing all parts that equal 0. The notation λ = (1m12m2 . . .

rmr ) is also frequently used, and expresses the fact that exactly mi parts of λ

equal i. The reader must therefore bear in mind that when working with parti-

tions, the notation ab is more often to be understood in the previous meaning,

and not as “a to the power b”.

3See Corollary 3.6 of Hanlon et al. [15].
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The second formula4 for QR
n(h, ℓ) is:

QR

n(h, ℓ) =
∑

λ

cλ(2)Fλ(h)Fλ(ℓ), (8)

where:

• λ ranges over all partitions of n of the form (a, b, 1n−a−b), with either

a ≥ b ≥ 1 or a = n and b = 0,

• the function Fλ : R → R is defined as:

Fλ(x) = 2a−b(x/2 + a− 1)a−b(x+ 2b− 2)n−a+b, (9)

• and the coefficients cλ(2) are given as follows:

cλ(2) =
(−1)n+a−b+12a−b+1n(2a− 2b+ 1)(a− 1)!

(n+ a− b+ 1)2(n− a+ b)2(n− a− b)!(2a− 1)!(b− 1)!
, (10)

if λ = (a, b, 1n−a−b), with a ≥ b ≥ 1, and

cλ(2) =
2nn!

(2n)!
, if λ = (n). (11)

The numbers cλ(2) appear as coefficients in the expansion of the nth power-

sum function in terms of zonal polynomials. For definitions and details, see for

example Macdonald [17].

5.2. Characterising valid breakpoint graphs

Recall that a breakpoint graph is a 2-regular graph that is the union of two

perfect matchings of {0, 1, . . . , 2n+ 1}. We now make the connection between

signed Hultman numbers and the previously mentioned results explicit.

Definition 5.2. A configuration is the union of two perfect matchings δB and
δG of {0, 1, . . ., 2n+ 1}, where δG = {{2i, 2i+ 1} | 0 ≤ i ≤ n}.

Note that the above definition only slightly generalises Definition 2.8, by

allowing any choice of a perfect matching for δB, whereas there are implicit

4See Theorem 5.4 of Hanlon et al. [15].
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constraints on the choice of δB in the definition of the breakpoint graph. By

definition, every breakpoint graph is a configuration, but not every configuration

is a breakpoint graph, as we will see below shortly. The following notion will

help us characterise configurations that are breakpoint graphs.

Definition 5.3. The complement of a configuration C = δB ∪ δG, denoted by
C = δB ∪ δG, is obtained by replacing δG with δG = {{2i − 1, 2i} | 1 ≤ i ≤
n} ∪ {{0, 2n+ 1}}.

Before stating our characterisation of breakpoint graphs, we wish to stress

that Elias and Hartman [18] previously used a similar but different notion of

complementation (they replace δB with δB – whose definition we will omit here

– whereas we replace δG with δG) to characterise valid breakpoint graphs of

unsigned permutations. This is not enough for our purpose, which is why we

generalise their result below to encompass signed permutations as well.

Lemma 5.1. A configuration δB ∪ δG is the breakpoint graph of some signed
permutation π if and only if the complement configuration δB∪δG is hamiltonian.

Proof. We can easily see that the complement BG(π) of a breakpoint graph is
hamiltonian, since its edges are {{π′

i, π
′
i+1} | 0 ≤ i ≤ 2n} ∪ {{0, 2n+ 1}}.

Reciprocally, if the complement δB ∪ δG of a configuration is hamiltonian,
then we can recover the elements of an unsigned permutation π′ = 〈0 π′

1 π′
2 · · ·

π′
2n 2n+1〉 by visiting the vertices along the hamiltonian cycle as follows: take

0 = π′
0 as starting point, and follow the edge in δB that is incident to 0, setting

the value of π′
1 to the other endpoint of that edge. We then keep following the

cycle, assigning the label of the ith encountered vertex to π′
i as we go, ending with

2n+ 1 = π′
2n+1. Note that for every 0 ≤ i ≤ n, the edge {π′

2i+1, π
′
2i+2} belongs

to δG, and therefore we have |π′
2i+1−π′

2i+2| = 1. From the unsigned permutation
π′, we can therefore easily recover the corresponding signed permutation π in
S±
n , whose breakpoint graph is δB ∪ δG.

Figure 3(a) shows the complement of the breakpoint graph of Figure 2

(page 7), which is hamiltonian. On the other hand, the complement of the

configuration shown in Figure 3(b) is not hamiltonian. We now show that Equa-

tion (7) remains valid when replacing the identity perfect matching ε with the

perfect matching δG and choosing δG as the fixed perfect matching δ(n+1), which

clearly satisfies the condition that δG∪δG is hamiltonian as required. The proof

can be easily generalised to any choice of a perfect matching τ(n+1) such that

12
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Figure 3: (a) The complement of the breakpoint graph from Figure 2 is hamiltonian; (b) a
configuration whose complement is not hamiltonian.
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δG ∪ τ(n+1) is hamiltonian, but the following statement will be sufficient for our

purposes.

Lemma 5.2. For any n in N0:

QR

n+1(h, ℓ) =
∑

τ∈Fn+1

hc(δG∪τ)ℓc(τ∪δG). (12)

Proof. First, let us note that every perfect matching φ in Fn+1 can be seen
as a fixed-point-free involution, i.e. a permutation of {0, 1, 2, . . . , 2n + 1} that
decomposes into a collection of 2-cycles only, by viewing each edge of φ as a
2-cycle. Therefore, conjugating φ by any permutation of the same number of
elements is a well-defined operation that simply renames the endpoints of the
given edges. Let µ be the permutation defined by

µ : {0, 1, . . . , 2n+ 1} → {0, 1, . . . , 2n+ 1} : i 7→ µ(i) =

{
i/2 if i is even,
i+2n+1

2 otherwise.

As the example in Figure 4 shows, δG can be mapped onto ε = µ ◦ δG ◦ µ−1,
and we fix δ(n+1) = µ ◦ δG ◦ µ−1. Finally, observe that given any two perfect
matchings φ1 and φ2 in Fn+1, the graphs µ ◦φ1 ◦µ

−1 ∪µ ◦φ2 ◦µ
−1 and φ1 ∪φ2

are isomorphic, and hence c(µ ◦ φ1 ◦ µ
−1 ∪ µ ◦ φ2 ◦ µ

−1) = c(φ1 ∪ φ2). Taking
δ = µ ◦ τ ◦ µ−1, the following relations hold:

• c(ε ∪ δ) = c(µ ◦ δG ◦ µ−1 ∪ µ ◦ τ ◦ µ−1) = c(δG ∪ τ),

• c(δ ∪ δ(n+1)) = c(µ ◦ τ ◦ µ−1 ∪ µ ◦ δG ◦ µ−1) = c(τ ∪ δG),

• c(ε ∪ δ(n+1)) = c(µ ◦ δG ◦ µ−1 ∪ µ ◦ δG ◦ µ−1) = c(δG ∪ δG) = 1,

and the formula in the statement follows from the above relations, the bijectivity
of conjugation, and Equation (7).
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ε
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δ(n+1)

Figure 4: Mapping δG (resp. δG) onto ε (resp. δ(n+1)) by conjugating them by µ =
〈0 5 1 6 2 7 3 8 4 9〉.
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5.3. Enumerating breakpoint graphs with k cycles

Lemma 5.1 implies that enumerating signed permutations of n elements

whose breakpoint graph decomposes into k alternating cycles is equivalent to

enumerating perfect matchings τ in Fn+1 verifying c(δG∪τ) = k and c(τ∪δG) =

1, where δG is defined in Definition 2.8 page 5 and δG is defined in Definition 5.3

page 12. Using Lemma 5.2, we thus obtain the following.

Remark 5.1. For every k in {1, 2, . . . , n+1}, S±
H(n, k) is the coefficient of the

monomial hkℓ in QR
n+1(h, ℓ).

The second expression for QR
n+1(h, ℓ) given in Equation (8) allows us to

obtain the following explicit formula for S±
H(n, k).

Theorem 5.1. For all n in N0, for all k in {1, 2, . . . , n+ 1}:

S±
H(n, k) =

∑

λ

cλ(2)× [hk]Fλ(h)

×
(−1)n−a−b2a−b−1(2b)!(a− 1)!(n− a− b+ 2)!

(2b− 1)b!
, (13)

where λ ranges over all partitions of n + 1 of the form (a, b, 1n−a−b+1), with
a ≥ b ≥ 1 or a = n + 1, b = 0, and where the function Fλ(·) as well as the
coefficients cλ(2) follow the definitions previously given in Section 5.15.

Proof. Remark 5.1 and Equation (8) yield

S±
H(n, k) =

∑

λ

cλ(2)× [hk]Fλ(h)× [ℓ]Fλ(ℓ), (14)

where the sum over λ, the coefficients cλ(2) and the function Fλ(·) are as in the
statement of the present result. For a partition λ of the form (a, b, 1n−a−b+1),
with a ≥ b ≥ 1 or a = n+ 1, b = 0, it is easy to see that

[ℓ]Fλ(ℓ) =
(−1)n−a−b2a−b−1(2b)!(a− 1)!(n− a− b+ 2)!

(2b− 1)b!
. (15)

Indeed:

1. if λ = (a, b, 1n−a−b+1), with a ≥ b ≥ 1, we have

Fλ(ℓ) = 2a−b(ℓ/2 + a− 1)(ℓ/2 + a− 2) · · · (ℓ/2 + b)

× (ℓ + 2b− 2)(ℓ+ 2b− 3) · · · (ℓ + 1)

× ℓ(ℓ− 1) · · · (ℓ − (n− a− b+ 2)).

5With the slight modification that n needs to be replaced with n+ 1.

15



The coefficient of ℓ in the above expression equals

[ℓ]Fλ(ℓ) = 2a−b (a− 1)!

(b− 1)!
× (2b− 2)!(−1)n−a−b+2(n− a− b + 2)!

=
(−1)n−a−b2a−b−1(2b)!(a− 1)!(n− a− b+ 2)!

(2b− 1)b!
.

2. if λ = (n+ 1), i.e. a = n+ 1 and b = 0, we have

F(n+1)(ℓ) = 2n+1(ℓ/2 + n)
n+1

(ℓ− 2)
0

= 2n+1(ℓ/2 + n)(ℓ/2 + n− 1) · · · (ℓ/2 + 1)ℓ/2,

so [ℓ]F(n+1)(ℓ) = 2nn!, which verifies Equation (15).

The proof then follows from Equations (14) and (15).

We conclude this section with Table 1, which shows a few experimental

values of the signed Hultman numbers. These values were previously obtained

by the first author using the method described in a previous paper of hers [8].

Note that for k = 1, the sequence defined by S±
H(n, 1) for n = 1, 2, . . .

corresponds to sequence A001171 in the On-Line Encyclopedia of Integer Se-

quences [19]. As we will see in the next section, other known sequences also

appear in that table.

6. Special cases

The expression obtained in Theorem 5.1 allows us to compute S±
H(n, k) for all

valid values of n and k, but we must acknowledge that even though the formula

is suited for practical use, it is unfortunately quite complicated and difficult to

manipulate. Simpler expressions do however exist for some particular cases, as

we will show below. We will rely a lot on Lemma 5.1 in this section, and decide

to use a slightly different layout for the breakpoint graph: labels are omitted

for clarity, and grey edges rather than black edges are now laid out on a circle,

so that computing the complement of a given configuration simply amounts to

shifting grey edges sideways by one position. In order to make verifications

easier for the reader, we also draw edges in the complement as dotted edges.

The following particular cases are easy to verify:
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X
X
X
X
X

n

k
1 2 3 4 5 6 7 8 9 10 11 12

1 1 1
2 4 3 1
3 20 21 6 1
4 148 160 65 10 1
5 1 348 1 620 701 155 15 1
6 15 104 19 068 9 324 2 247 315 21 1
7 198 144 264 420 138 016 38 029 5 908 574 28 1
8 2 998 656 4 166 880 2 325 740 692 088 124 029 13 524 966 36 1
9 51 290 496 74 011 488 43 448 940 13 945 700 2 723 469 344 961 27 930 1 530 45 1
10 979 732 224 1 459 381 440 897 020 784 305 142 068 64 711 856 8 996 295 850 905 53 262 2 310 55 1
11 20 661 458 688 31 674 232 128 20 241 273 264 7 255 047 116 1 640 552 028 249 029 717 26 004 330 1 910 403 95 304 3 355 66 1
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1. S±
H(n, k) = 0 for all k < 1 and all k > n+ 1 (trivial);

2. S±
H(n, n + 1) = 1, since the only permutation whose breakpoint graph

decomposes into n+ 1 cycles is ι;

3. S±
H(n, n) =

(
n+1
2

)
, since enumerating such permutations comes down to

counting breakpoint graphs whose cycles all have length 1, except for one

that has length 2. This in turn is equivalent to enumerating the ways in

which one can connect any two of the n+ 1 grey edges by black edges so

as to obtain a valid configuration (with respect to Lemma 5.1); as can be

verified on Figure 5, only one of the two possible choices of black edges

(namely, configuration (b)) is valid, and the equality follows from the fact

that there are
(
n+1
2

)
possible ways to select two grey edges out of n+ 1.

(a) (b)

Figure 5: The two forms of 2-cycles that may arise in a breakpoint graph. Only four 1-cycles
are shown in each graph, but there can be any number of them.

We now show how one can obtain a simple and explicit formula for S±
H(n, n−

1). Although the formula is quite simple, we hope that the proof will convince

the reader of the shortcomings of a case analysis in this setting.

Proposition 6.1. For all n ≥ 1, we have S±
H(n, n− 1) = 5

(
n+1
4

)
+ 4
(
n+1
3

)
.

Proof. Note that S±
H(n, n− 1) is the number of permutations whose breakpoint

graph contains either one 3-cycle or two 2-cycles, all other cycles having length
1 in both cases:

1. the number of permutations satisfying the first condition is the number of
ways to connect three grey edges in the breakpoint graph in such a way
that the complement configuration is hamiltonian (see Lemma 5.1). As
Figure 6 shows, there are eight possible ways to create such a configuration,
only four of which are valid (namely, configurations (a), (b), (c) and (d)).
The reader can easily verify that the other configurations are invalid by
replacing grey edges with dotted edges.
We obtain the rightmost term in the wanted expression by noting that
only four of the eight possible 3-cycles are valid, and there are

(
n+1
3

)
ways

to select three grey edges out of n+ 1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: All possible forms of 3-cycles that may arise in a breakpoint graph. Only three
1-cycles are shown in each graph, but there can be any number of them.

2. the number of permutations satisfying the second condition can be con-
structed by choosing four grey edges, then connecting them by pairs while
ensuring that the resulting configuration is valid. Figure 7 shows all pos-
sible configurations with two cycles of length two.
The reader can again easily verify the validity of all configurations by
replacing grey edges with dotted edges. Only five possible configurations
with two 2-cycles are valid (namely, configurations (b), (f), (i), (k) and
(l)) out of the twelve shown in Figure 7, and there are

(
n+1
4

)
ways to select

two pairs of grey edges out of n+1, which yields the leftmost term in the
wanted expression and completes the proof.

7. Simpler proofs of previous results

Theorem 4.1 allows us to obtain a new proof of Bóna and Flynn’s formula

(Equation (3) page 8).

Corollary 7.1. [5] For all n in N0:

SH(n, k) =

{ [
n+2
k

]
/
(
n+2
2

)
if n− k is odd,

0 otherwise.

Proof. The key idea of the proof is the fact that, for every i = 1, 2, . . . , n + 1,
we have

(h+ n− i+ 1)
n+1

=
1

n+ 2

(

(h− i+ 1)
n+2

− (h− i)
n+2
)

, (16)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: All possible pairs of 2-cycles that may arise in a breakpoint graph. Only four
1-cycles are shown in each graph, but there can be any number of them.

since

1

n+ 2

(

(h− i+ 1)n+2 − (h− i)n+2
)

=
1

n+ 2
((h− i+ 1) · · · (h+ n− i+ 2)− (h− i) · · · (h+ n− i+ 1))

=
1

n+ 2
(h− i+ 1) · · · (h+ n− i+ 1) ((h+ n− i+ 2)− (h− i))

= (h+ n− i+ 1)
n+1

.

Summing over i in Equation (16), we obtain:

1

n+ 1

n+1∑

i=1

(h+ n− i+ 1)
n+1

=
1

(n+ 1)(n+ 2)

n+1∑

i=1

(

(h− i+ 1)
n+2

− (h− i)
n+2
)

=
1

(n+ 1)(n+ 2)

(

hn+2 − (h− n− 1)
n+2
)

=
1

(n+ 1)(n+ 2)

(

hn+2 − hn+2
)

.

By Equations (1) and (2), the coefficient of hk in hn+2 is
[
n+2
k

]
and the
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coefficient of hk in hn+2 is (−1)n−k
[
n+2
k

]
. Using Equation (6), we conclude that

SH(n, k) =

{
2

(n+1)(n+2)

[
n+2
k

]
if n− k is odd,

0 otherwise,

which completes the proof.

Theorem 4.1 also allows us to obtain a simple proof of a binomial identity

previously obtained by Sury et al. [20].

Corollary 7.2. [20] For all n in N0:

n∑

i=0

(−1)i
(
n
i

) = (1 + (−1)n)
n+ 1

n+ 2
.

Proof. Setting k to 1 in Equation (6) (page 9) yields

SH(n, 1) =
1

n+ 1

n+1∑

i=1

(−1)i−1(n− i+ 1)!(i − 1)! =
n!

n+ 1

n∑

i=0

(−1)i
(
n
i

) .

On the other hand, as previously observed6 by Doignon and Labarre [1], we
have:

SH(n, 1) =

{
2n!
n+2 if n is even,

0 otherwise,

which completes the proof.

8. Expected value and variance of the Hultman numbers

In order to gain more insight into the distribution of the Hultman numbers,

we will now investigate the question of computing the expected value and vari-

ance of the number of cycles in breakpoint graphs, both for unsigned and for

signed permutations.

It will also be interesting to see how these values compare to the expected

value and variance of the number of cycles in the usual disjoint cycle decompo-

sition of a uniform random unsigned permutation π in Sn. We recall here (see

e.g. Wilf [21]) the exact values of these quantities:

E(c(π)) = Hn,

Var(c(π)) = Hn −

n∑

k=1

1

k2
,

6The result can also be easily derived from Equation (3).
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as well as their asymptotic behaviour when n → ∞:

E(c(π)) = log(n) + γ + o(1), (17)

Var(c(π)) = log(n) + γ −
π2

6
+ o(1), (18)

where Hn denotes the nth harmonic number Hn =
∑n

i=1
1
i and γ denotes the

Euler-Mascheroni constant. As usual, o(1) denotes a quantity that converges to

0 as n → ∞.

8.1. The unsigned case

Bóna and Flynn [5] already proved a formula for computing the expected

number of cycles in the breakpoint graph of a uniform random unsigned per-

mutation. In this section we provide a new proof of their result and also give

an explicit formula for the variance of this distribution. We start by computing

the generating function of the Hultman numbers.

Lemma 8.1. For all n ∈ N0, we have:

F (x) =

n+1∑

k=0

SH(n, k)xk =
xn+2 − xn+2

2
(
n+2
2

) .

Proof. The derivation is straightforward:

n+1∑

k=0

SH(n, k)xk =
1

(
n+2
2

)

n+1∑

k=0

[
n+2
k

]
− (−1)n+2−k

[
n+2
k

]

2
xk (by Equation (3))

=
1

2
(
n+2
2

)

(
n+2∑

k=0

[
n+ 2

k

]

xk −

n+2∑

k=0

(−1)n+2−k

[
n+ 2

k

]

xk

)

=
xn+2 − xn+2

2
(
n+2
2

) . (by Equations (1) and (2))

Knowing the generating function allows us to easily derive the expected value

and the variance of the number of cycles in the breakpoint graph of a uniform

random unsigned permutation. For this purpose, we first need to compute some

derivatives of the generating function.
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Lemma 8.2. For all n ∈ N0, we have:

F (1) = n!,

F ′(1) =
1

2
(
n+2
2

)
{
(n+ 2)!Hn+2 + (−1)n−1n!

}
,

F ′′(1) =
1

2
(
n+2
2

)

{

(n+ 2)!

(

H2
n+2 −

n+2∑

k=1

1

k2

)

+ 2(−1)nn!(Hn − 1)

}

.

Proof. We obtain the three expressions separately.

1. For the first expression, note that, by definition, F (1) =
∑n+1

k=1 SH(n, k),
which is simply the total number of permutations of n elements and there-
fore equals n!.

2. We simplify the computation of F ′(x) by writing xn+2 = (x−1)g(x), with

g(x) = x

n+1∏

i=2

(x− i).

With this notation we have

F (x) =
xn+2 − (x− 1)g(x)

2
(
n+2
2

) .

We thus obtain

F ′(x) =
1

2
(
n+2
2

)

(

xn+2
n+1∑

i=0

1

x+ i
− g(x)− (x− 1)g′(x)

)

.

At x = 1 we have 1n+2 = (n + 2)! and g(1) = (−1)nn!, and hence the
stated formula for F ′(1) follows.

3. Finally, the second derivative of F is given by

F ′′(x) =
1

2
(
n+2
2

)



xn+2
∑

0≤i6=j≤n+1

1

(x + i)(x+ j)
− 2g′(x)− (x− 1)g′′(x)



 .

The above sum evaluated at x = 1 equals

∑

0≤i6=j≤n+1

1

(1 + i)(1 + j)
=

n+1∑

i,j=0

1

(1 + i)(1 + j)
−

n+1∑

i=0

1

(1 + i)2

=

(
n+1∑

i=0

1

1 + i

)2

−

n+1∑

i=0

1

(1 + i)2

= H2
n+2 −

n+2∑

k=1

1

k2
.
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We also have

g′(x) = g(x)

(

1

x
+

n+1∑

i=2

1

x− i

)

,

and thus

g′(1) = g(1)

(

1−

n+1∑

i=2

1

i− 1

)

= (−1)nn!(1−Hn).

Using these expressions in the formula for F ′′(x) above, evaluated at x = 1,
gives the formula in the statement.

The recovery of the expected value of the Hultman numbers, previously

obtained by Bóna and Flynn [5], is now an easy task.

Theorem 8.1. [5] For all n ∈ N0, the expected number of cycles in the break-
point graph of a uniform random unsigned permutation π of n elements is

E(c(BG(π))) = Hn +
1

⌊(n+ 2)/2⌋
.

Proof. As is well-known (see e.g. Wilf [21]), the expected value can be obtained
from the generating function F (x) by the formula F ′(1)/F (1). Using the for-
mulas for F (1) and F ′(1) obtained in Lemma 8.2, we obtain that the expected
value of the Hultman numbers equals

F ′(1)

F (1)
= Hn+2 +

(−1)n−1

(n+ 1)(n+ 2)
,

which is easily seen to be equivalent to the expression in the statement.

Furthermore, knowing the generating function also allows us to compute the

variance of the Hultman numbers. We prove the following result.

Theorem 8.2. For all n ∈ N0, the variance of the number of cycles in the
breakpoint graph of a uniform random unsigned permutation π of n elements is

Var(c(BG(π))) = Hn+2−

n+2∑

k=1

1

k2
+
(−1)n(2Hn+2 + 2Hn − 3)

(n+ 1)(n+ 2)
−

1

((n+ 1)(n+ 2))2
.

Proof. The variance can be obtained from the generating function F (x) by the
following formula (see e.g. Wilf [21]):

(logF )′(1) + (logF )′′(1) =
F ′(1)

F (1)
+

F ′′(1)

F (1)
−

(
F ′(1)

F (1)

)2

.
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Using the formulas for F (1), F ′(1) and F ′′(1) obtained in Lemma 8.2, we
obtain that the variance of the Hultman numbers equals

F ′(1)

F (1)
+

F ′′(1)

F (1)
−

(
F ′(1)

F (1)

)2

= Hn+2 +
(−1)n−1

(n+ 1)(n+ 2)
+H2

n+2 −

n+2∑

k=1

1

k2
+

2(−1)n(Hn − 1)

(n+ 1)(n+ 2)

−

(

Hn+2 +
(−1)n−1

(n+ 1)(n+ 2)

)2

= Hn+2 −

n+2∑

k=1

1

k2
+

(−1)n(2Hn+2 + 2Hn − 3)

(n+ 1)(n+ 2)
−

1

((n+ 1)(n+ 2))2
.

It is interesting to see how the mean and variance behave for large n.

Remark 8.1. The expected value and variance of the number of cycles in the
breakpoint graph of a uniform random unsigned permutation π in Sn have the
following asymptotical behaviour when n → ∞:

E(c(BG(π))) = log(n) + γ + o(1),

Var(c(BG(π))) = log(n) + γ −
π2

6
+ o(1).

Proof. For the expected value, the result simply follows from the fact that
E(c(BG(π))) = Hn + o(1) and Hn = log(n) + γ + o(1).

For the variance, first note that Var(c(BG(π))) = Hn+2 −
∑n+2

k=1
1
k2 + o(1).

By further using the fact that log(n + 2) = log(n) + o(1) and the well-known

result
∑∞

k=1
1
k2 = π2

6 , the stated asymptotic formula follows.

Interestingly, we recover exactly the same asymptotical behaviour as for the

number of cycles in the usual disjoint cycle decomposition (recall Equations (17)

and (18)).

8.2. The signed case

We now turn to the problem of computing the expected value and the vari-

ance of the signed Hultman numbers. As in the unsigned case, we start with

the computation of the generating function for the signed Hultman numbers.

Lemma 8.3. We have

G(x) =

n+1∑

k=1

S±
H(n, k)xk =

∑

λ

cλ(2)Fλ(x)F
′
λ(0),
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where λ is subject to the same restrictions as in Theorem 5.1 page 15 and Fλ is
defined as in Equation (9) page 11.

Proof. Recall (Remark 5.1 page 15) that S±
H(n, k) is the coefficient of the mono-

mial hkℓ in the polynomial QR
n+1(h, ℓ). If we take now h = x and consider

QR
n+1(x, ℓ) as a polynomial only in the variable ℓ, we note that the coefficient

of the monomial ℓ is obtained by summing up all the terms S±
H(n, k)xk, for

k = 1, . . . , n + 1. Therefore, G(x) equals the coefficient of ℓ in QR
n+1(x, ℓ), and

hence

G(x) =
∂

∂ℓ
QR

n+1(x, ℓ)

∣
∣
∣
∣
ℓ=0

.

The formula in the statement easily follows from Equation (8) page 11.

In order to compute the expected value and the variance of the signed Hult-

man numbers, we will need the following preliminary lemma.

Lemma 8.4. Let n ≥ 1 and λ a partition of n+1 of the form (a, b, 1n−a−b+1).

1. In the case where a ≥ b ≥ 1, we have:

F ′
λ(0) =

(−1)n−a−b2a−b(a− 1)!(2b− 2)!(n− a− b+ 2)!

(b− 1)!
,

F ′
λ(1) =

(−1)n−a−b+1(2a− 1)!(b− 1)!(n− a− b+ 1)!

2a−b(a− 1)!
,

F ′′
λ (1) = F ′

λ(1) {2H2a−1 − 2Hn−a−b+1 −Ha−1 +Hb−1} .

2. In the case where λ = (n+ 1), we have:

F ′
(n+1)(0) = 2nn!,

F ′
(n+1)(1) =

(2n+ 1)!

2nn!
(H2n+1 −Hn/2),

F ′′
(n+1)(1) =

(2n+ 1)!

2nn!

{(

H2n+1 −
Hn

2

)2

−

n∑

k=0

1

(2k + 1)2

}

.

Proof. We handle both cases separately.

1. Let us first examine the case where λ = (a, b, 1n+1−a−b) and a ≥ b ≥ 1. In
order to simplify the proof, we write Fλ(x) = x(x− 1)hλ(x), where hλ(x)
is obtained and defined as follows:

Fλ(x) = 2a−b(x/2 + a− 1)a−b(x+ 2b− 2)n+1−a+b (see definition7 page 11)

= 2a−b(x/2 + a− 1)a−b(x+ 2b− 2)(x+ 2b− 1) · · · (x+ 1)x(x − 1)

×(x− 2)(x− 3) · · · (x− 2 + b− n+ a)

= x(x− 1) 2a−b(x/2 + a− 1)
a−b

(x+ 2b− 2)
2b−2

(x− 2)
n−a−b+1

︸ ︷︷ ︸

=hλ(x)

.
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(a) Using the above notation, we have

F ′
λ(0) = −hλ(0) = (−1)2a−b(a− 1)a−b(2b− 2)!(−2)n−a−b+1,

from which we easily obtain the wanted expression.
(b) We also have

F ′
λ(1) = hλ(1) = 2a−b (a− 1/2)

a−b
(2b− 1)2b−2(−1)n−a−b+1

= 2a−b (a− 1/2)
a−b

(2b)!(−1)n−a−b+1,

and obtaining the formula for F ′
λ(1) given in the statement is a simple

matter, using the fact that

(a− 1/2)
a−b

=
(2a− 1)(2a− 3) · · · (2b+ 1)

2a−b

=
1

2a−b

(2a− 1)!

(a− 1)!2a−1

(b− 1)!2b−1

(2b− 1)!

=
(2a− 1)!b!

2a−b−1(a− 1)!2a−b(2b)!
.

(c) In order to simplify the computation of the second derivative, we will
write Fλ(x) = (x− 1)gλ(x), where

gλ(x) = 2a−b (x/2 + a− 1)
a−b

︸ ︷︷ ︸

=αλ(x)

(x+ 2b− 2)2b−1

︸ ︷︷ ︸

=βλ(x)

(x− 2)n−a−b+1

︸ ︷︷ ︸

=γλ(x)

.

With this notations, it is easy to see that F ′′
λ (1) = 2g′λ(1), with

g′λ(1) = α′
λ(1)βλ(1)γλ(1) + αλ(1)β

′
λ(1)γλ(1) + αλ(1)βλ(1)γ

′
λ(1).

Note that

α′
λ(1) = αλ(1)

(
1

2a− 1
+

1

2a− 3
+ · · ·+

1

2b+ 1

)

= αλ(1){H2a−1 −H2b − (Ha−1 −Hb)/2},

β′
λ(1) = βλ(1)

2b−1∑

k=1

1

k
= βλ(1)H2b−1,

γ′
λ(1) = −γλ(1)

n−a−b+1∑

k=1

1

k
= −γλ(1)Hn−a−b+1,

7Recall, as explained in the statement of Theorem 5.1 page 15, that we must replace n

with n+ 1.
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and

αλ(1) =
(2a− 1)!b!

(2b)!2a−b−1(a− 1)!
,

βλ(1) = (2b− 1)!,

γλ(1) = (−1)n−a−b+1(n− a− b+ 1)!.

Combining all of the above, we obtain:

g′λ(1) = αλ(1)βλ(1)γλ(1)

×{H2a−1 −H2b − (Ha−1 −Hb)/2 +H2b−1 −Hn−a−b+1}

=
(−1)n−a−b+1(2a− 1)!(b− 1)!(n− a− b+ 1)!

2a−b(a− 1)!

×{H2a−1 −Hn−a−b+1 − (Ha−1 −Hb−1)/2}

and we finally deduce the formula in the statement.

2. We now turn to the case where λ = (n+ 1), i.e. a = n+ 1 and b = 0.

(a) Following the definition8 of Fλ(x) given on page 11, we have

F(n+1)(x) = 2n+1 (x/2 + n)
n+1

= x

n∏

k=1

(x+ 2k).

We thus obtain

F ′
(n+1)(x) =

n∏

k=1

(x+ 2k) + F(n+1)(x)

n∑

k=1

1

x+ 2k
,

which easily gives the wanted expressions when evaluated at x = 0
and x = 1.

(b) For the second derivative, we obtain

F ′′
(n+1)(x) = F(n+1)(x)

∑

0≤i6=j≤n

1

(x+ 2i)(x+ 2j)
,

hence

F ′′
(n+1)(1) =

(2n+ 1)!

2nn!







(
n∑

k=0

1

2k + 1

)2

−

n∑

k=0

1

(2k + 1)2






,

and the formula in the statement follows.

8Again, we replace n with n+ 1 in the definition.
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Knowing the generating function G, we can easily obtain the expected value

of the number of cycles in the breakpoint graph of a random signed permutation

of n elements.

Theorem 8.3. The expected value of the number of cycles in the breakpoint
graph of a uniform random signed permutation π± of n elements is

E(c(BG(π±))) = H2n+1 −
Hn

2
−

∑

(a,b)∈An

rn(a, b),

where An = {(a, b) ∈ N
2 : a ≥ b ≥ 1, a+ b ≤ n+ 1} and

rn(a, b) =
(−1)n+a−b(n+ 1)(2a− 2b+ 1)(a− 1)!(2b− 2)!(n− a− b+ 2)!

2n−a+b−1n!(b− 1)!(n+ a− b+ 2)2(n− a+ b+ 1)2
.

Proof. As recalled in the proof of Theorem 8.1, we have E(c(BG(π±))) =

G′(1)/G(1). Note that, by definition, G(1) =
∑n+1

k=1 S
±
H(n, k), which equals

the number of signed permutations of n elements, i.e. 2nn!. By Lemma 8.3, the
expected number of cycles in the breakpoint graph of a random signed permu-
tation is

E(c(BG(π±))) =
1

2nn!

∑

λ

cλ(2)F
′
λ(1)F

′
λ(0).

Using the formulas for F ′
λ(1) and F ′

λ(0) derived in Lemma 8.4 and the ex-
pression for the coefficients9 cλ(2) given in Equations (10) and (11) page 11, the
formula in the statement follows.

The generating function G allows us also to compute the variance of the

signed Hultman numbers.

Theorem 8.4. The variance of the number of cycles in the breakpoint graph of
a uniform random signed permutation π± of n elements is

Var(c(BG(π±))) = H2n+1 −
Hn

2
−

n∑

k=0

1

(2k + 1)2
−




∑

(a,b)∈An

rn(a, b)





2

+
∑

(a,b)∈An

rn(a, b){2H2n+1 −Hn − 2H2a−1 + 2Hn−a−b+1 +Ha−1 −Hb−1 − 1},

where An and the coefficients rn(a, b) are as defined in Theorem 8.3.

Proof. As recalled in the proof of Theorem 8.2, the variance can be obtained
from the generating functionG by evaluating the function (logG)′(x)+(logG)′′(x)

9Again, we replace n with n+ 1 in the definitions.
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at x = 1. Therefore, the variance of the number of cycles in the breakpoint graph
of a random signed permutation equals

G′(1)

G(1)
+

G′′(1)

G(1)
−

(
G′(1)

G(1)

)2

=
G′(1) +G′′(1)

G(1)
− (E(c(BG(π±))))2

=
1

2nn!

∑

λ

cλ(2)(F
′
λ(1) + F ′′

λ (1))F
′
λ(0)− (E(c(BG(π±))))2. (using Lemma 8.3)

Using the formulas for F ′
λ(1), F

′′
λ (1) and F ′

λ(0) given in Lemma 8.4, we obtain
that the variance equals

H2n+1 −
Hn

2
−

n∑

k=0

1

(2k + 1)2
+

(

H2n+1 −
Hn

2

)2

− (E(c(BG(π±))))2

−
∑

(a,b)∈An

rn(a, b) {2H2a−1 − 2Hn−a−b+1 −Ha−1 +Hb−1 + 1} ,

which equals the wanted expression once E(c(BG(π±))) is replaced with the
value derived in Theorem 8.3.

As in the unsigned case, we will study the behaviour of the mean and variance

for large values of n. To that end, we will first prove the following lemma.

Lemma 8.5. As n → ∞, we have

∑

(a,b)∈An

|rn(a, b)| =
1

log(n)
× o(1).

Proof. If we denote k = a− b, the above sum becomes

n−1∑

k=0

2k−n+1(n+ 1)(2k + 1)

n!(n+ k + 2)2(n− k + 1)2

⌊(n−k+1)/2⌋
∑

b=1

(k + b− 1)!(2b− 2)!(n− k − 2b+ 2)!

(b − 1)!

=

n−1∑

k=0

2k−n+1(n+ 1)(2k + 1)

(n+ k + 2)2(n− k + 1)(k + 1)
(

n
k+1

)

⌊(n−k+1)/2⌋
∑

b=1

(
k+b−1

k

)

(
n−k
2b−2

)

≤

n−1∑

k=0

2k−n+1

(n+ k + 2)
(

n
k+1

)

⌊(n−k+1)/2⌋
∑

b=1

(
k + b− 1

k

)

=

n−1∑

k=0

2k−n+1
(
k+⌊(n−k+1)/2⌋

k+1

)

(n+ k + 2)
(

n
k+1

) . (using
∑n

j=k

(
j
k

)
=
(
n+1
k+1

)
)

We further observe that

∑

(a,b)∈An

|rn(a, b)| ≤

n−1∑

k=0

2k−n+1

n+ k + 2
≤ 2

(

1−
1

2n

)
1

n+ 2
,
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and the result in the statement easily follows.

Based on this lemma, we can now obtain the following.

Remark 8.2. When n → ∞, the expected value and variance of the number of
cycles in the breakpoint graph of a uniform random signed permutation π± of n
elements have the following asymptotical behaviour:

E(c(BG(π±))) =
log(n)

2
+

γ

2
+ log(2) + o(1),

Var(c(BG(π±))) =
log(n)

2
+

γ

2
+ log(2)−

π2

8
+ o(1).

Note that, in the limit when n → ∞, the mean and variance in the signed

case are of the same order (log(n)) as in the unsigned case, but they differ by a

factor of 1/2.

9. Applications: Distributions of rearrangement distances

As stated in the introduction of this paper, the breakpoint graph and its cy-

cles are used in a lot of variants of genome rearrangement problems to compute

evolutionary distances – either exactly or approximately. In this section, we are

interested in exploring to what extent we can rely on those cycles in order to

approximate the distribution of several distances that have been studied in the

field of genome rearrangements, so as to obtain a better idea of how tight a

particular bound on a distance is, or whether it is worth computing a distance

exactly in cases where this requires solving an NP-hard problem. By “distribu-

tion of a distance”, we mean the number of (possibly signed) permutations of n

elements whose distance equals k, for all possible values of k.

We will not say much about rearrangement distances or how to compute

them, except for the fact that, as already stated earlier in this paper, they are

based on a set S of operations that generate Sn (resp. S±
n ). In the following,

what we mean by expressions like “the S distance of π” is the minimum number

of operations from S needed to transform a given permutation π into the identity

permutation ι; a few examples of such operations that we will consider here

are summarised informally in Table 2. The reader should bear in mind that
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Distance Operation Description of the operation

u
n
si
g
n
ed

bid block-interchange exchanges two non-necessarily adjacent segments
td transposition exchanges two adjacent segments
ptd prefix transposition transposition involving π1, π2, . . . , πk for some k
rd reversal reverses a segment
prd prefix reversal reversal involving π1, π2, . . . , πk for some k

si
g
n
ed srd signed reversal reverses a segment and flips the signs in that segment

psrd prefix signed reversal signed reversal involving π1, π2, . . . , πk for some k

Table 2: Some abbreviations and informal definitions used throughout this section.

the discussion presented in this section focuses on experiments with relatively

small amounts of data (mainly because many interesting distances are hard to

compute, and because the number of (signed) permutations grows much too fast

to generate the full distributions for large values of n), which is why we refrain

from making any bold conjecture or actually proving any result. We will also

restrict ourselves to comparing distributions for one fixed value of n, namely,

the largest value for which we could obtain the distribution of the particular

distance we are interested in; similar-looking plots can however be obtained for

any value. We generated the distributions based on cycles of the breakpoint

graph ourselves, but the distributions of the distances we consider here were

computed by Galvão and Dias [22].

9.1. Unsigned distances

A few distances between unsigned permutations have been considered in the

field of genome rearrangements [3]. Doignon and Labarre [1] already observed

that SH(n, n + 1 − 2k) is exactly the number of permutations π in Sn whose

block-interchange distance bid(π) equals k, an immediate consequence of the

following result.

Theorem 9.1. [6] For all π in Sn, we have bid(π) = (n+ 1− c(BG(π)))/2.

Whereas sorting by block-interchanges and computing bid(π) can be achieved

in polynomial time [6], this is not the case for any of the other unsigned op-

erations listed in Table 2: sorting by transpositions and sorting by reversals,

as well as computing the related distances, are NP-hard problems (see Bulteau

et al. [23] and Caprara [24], respectively); the same problems in the context
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of prefix reversals are also NP-hard [25], while their complexity in the case of

prefix transpositions is open.

However, since transpositions are but a particular case of block-interchanges,

the expression given in Theorem 9.1 for computing bid(π) is also a lower bound

on the transposition distance td(π). Additionnally, a tighter lower bound on the

transposition distance was proved by Bafna and Pevzner [26].

Theorem 9.2. [26] For all π in Sn, we have td(π) ≥ (n+1− codd(BG(π)))/2,
where codd(BG(π)) is the number of cycles of odd length in BG(π).

Consequently, it makes sense to try to approximate the distribution of the

transposition distance using SH(n, n+1−2k) (because of Theorem 9.1) and what

could be called the odd Hultman numbers Sodd
H (n, n+ 1− 2k), i.e. the number

of permutations of n elements whose breakpoint graph contains n + 1 − 2k

cycles of odd length (because of Theorem 9.2). Figure 8(a) compares all three

distributions for n = 13. To the best of our knowledge, there is no known

formula for computing odd Hultman numbers.

Dias and Meidanis [27] initiated the study of prefix transpositions, which are

transpositions that can only be applied to an initial segment of the permutation

to sort. To the best of our knowledge, the complexity of sorting by prefix

transpositions or computing the corresponding distance is still open. However,

a lower bound on the prefix transposition distance based on the breakpoint

graph is known.

Theorem 9.3. [28] For any π in Sn, we have

ptd(π) ≥
n+ 1 + c(BG(π))

2
− c1(BG(π)) −

{
0 if π1 = 1,
1 otherwise,

(19)

where c1(BG(π)) is the number of cycles of length 1 in BG(π).

Figure 8(b) shows the distribution of the prefix transposition distance, to-

gether with some function of the Hultman numbers and the distribution of

the number of permutations in Sn for which lower bound (19) equals k for

n = 13. On this particular plot and the forthcoming ones, we find the off-

set m in SH(n, n + 1 − k + m) experimentally by shifting the distribution of
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SH(n, n + 1 − k) so that it best fits the distribution of the distance we are

interested in.
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Figure 8: (a) How the distributions of the unsigned and odd Hultman numbers relate to the
distribution of the transposition distance, for n = 13; (b) how the distributions of the unsigned
Hultman numbers and the number of permutations for which lower bound (19) equals k relate
to the distribution of the prefix transposition distance, for n = 13.

Two other distances that have received a considerable amount of attention

are the reversal distance, where a reversal reverses the order of the elements

contained in the segment of the permutation on which it acts, and the prefix

reversal distance, where prefix reversals have the same effect as reversals but may

only be applied to an initial segment of the permutation. Caprara [24] showed

that computing the former is NP-hard, while Bulteau et al. [25] proved that

computing the latter is NP-hard. Again, we find it interesting to examine how

the distribution of the number of cycles in the breakpoint graph relates to those

distances, which we do in Figure 9. We warn the reader familiar with breakpoint

graphs, however, that the breakpoint graph used in our paper differs from the

structure traditionally used for the study of these two distances, which admits

more than one cycle decomposition; the graph we use can be seen as the result

of selecting one particular decomposition among all possible decompositions. In

this setting, there is a much larger difference between the distributions of both

distances and of the unsigned Hultman numbers than what we have observed

34



for transpositions in Figure 8, which confirms that using only (our version of)

the breakpoint graph in this case is not enough.
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Figure 9: How the distribution of the unsigned Hultman numbers relates to the distribution
of (a) the reversal distance and (b) the prefix reversal distance, for n = 13.

9.2. Signed distances

A number of well-studied and biologically relevant distances between signed

permutations are also based on the breakpoint graph. These include the double

cut-and-join (DCJ) distance, introduced by Yancopoulos et al. [29], who showed

that its value could be computed using the formula dcj(π) = n+1− c(BG(π)).

As a consequence, the number of signed permutations of n elements with DCJ

distance k is exactly S±
H(n, n+ 1− k).

Another distance whose distribution can be well approximated using the

signed Hultman numbers is the signed reversal distance (see Table 2 for an

informal definition of signed reversals). Hannenhalli and Pevzner [30] proved the

following formula for computing the signed reversal distance of any permutation

π, denoted by srd(π).

Theorem 9.4. [30] For any π in S±
n , the signed reversal distance of π is

srd(π) = n+ 1− c(BG(π)) + h(π) + f(π),

where h(π) is the number of “hurdles” of π and f(π) = 1 if π is a “fortress”,
and 0 otherwise.
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We will not give more details on the terms “hurdles” and “fortress” (see

Hannenhalli and Pevzner [30] for definitions), except for the fact that hurdles

are particular collections of cycles in BG(π), and that a permutation cannot be

a fortress unless h(π) > 0. Our point here is that the following lower bound,

first proved by Bafna and Pevzner [4], is extremely tight:

∀ π ∈ S±
n : srd(π) ≥ n+ 1− c(BG(π)). (20)

This claim is supported by Caprara’s proof [31] of the fact that the prob-

ability that a permutation π ∈ S±
n is not tight with respect to Equation (20)

is Θ(n−2), and by Swenson et al.’s proof [32] that the probability that π is a

fortress is Θ(n−15). Therefore, Equation (20) provides a very good approxima-

tion of the signed reversal distance, and the distribution of S±
H(n, n + 1 − k)

closely matches that of the signed reversal distance. Figure 10 illustrates the

situation for the case n = 10.
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Figure 10: The distributions of the signed reversal distance and of the signed Hultman num-
bers, for n = 10.

Other distances have not been studied with that level of detail, which is why

we find it interesting to try to relate their distribution to that of the Hultman

numbers. A particular restriction of the signed reversal distance is the prefix
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signed reversal distance, denoted by psrd(·), whose definition follows that of

the signed reversal distance except that reversals can only act on an initial seg-

ment of the permutation. No formula is known for computing that distance,

and the computational complexity of the problem has remained open since the

first works on the subject [33]. However, a lower bound based on the break-

point graph was recently obtained by Labarre and Cibulka [34], which naturally

prompts us to wonder how exactly we can rely on the breakpoint graph to

approximate that distance.

Theorem 9.5. [34] For any π in S±
n , we have

psrd(π) ≥ n+ 1 + c(BG(π)) − 2c1(BG(π)) −

{
0 if π1 = 1,
2 otherwise.

(21)

Figure 11 shows a plot with the distribution of the prefix signed reversal

distance and that of the signed Hultman numbers, as well as of the distribution

of lower bound (21) for n = 10. It can be seen on that graph that the latter is

quite far off from the distribution of the prefix signed reversal distance, hinting

that additional work seems needed to reduce the gap between the lower bound

and the actual distance.
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Figure 11: The distributions of the prefix signed reversal distance, of the signed Hultman
numbers, and of the number of permutations for which lower bound (21) equals k, for n = 10.
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10. Conclusions

In this paper, we proved the first explicit formula for enumerating signed

permutations whose breakpoint graph contains a given number of cycles, and

proved simpler expressions for particular cases. We also obtained a new expres-

sion for enumerating unsigned permutations whose breakpoint graph contains a

given number of cycles, and used both formulas to derive simpler proofs of some

other previously known results. Getting more insight into breakpoint graphs

and their cycle decomposition is particularly relevant to edit distances used in

the field of genome rearrangements, and we hope that our results can help shed

light on their distributions, expected values and variances. There are several

interesting directions in which our work could be extended, which we outline

and motivate below.

Just like one can define conjugacy classes in the symmetric and hyperoc-

tahedral groups, we could investigate conjugacy classes with respect to the

breakpoint graph. This was already initiated by Doignon and Labarre [1], who

referred to them as “Hultman classes” and provided explicit formulas for enu-

merating those classes in the case of unsigned permutations. More work remains

to be done in the unsigned case: indeed, the work done by Bóna and Flynn [5]

provides us with a very nice formula for computing the distribution of cycles,

but no simpler expression than the complicated ones obtained by Doignon and

Labarre [1] is yet known for enumerating Hultman classes or their cardinalities.

Moreover, no work so far has been done in order to enumerate Hultman classes

in the signed setting, and obtaining an expression for enumerating the so-called

“simple permutations”, which are defined in this context as permutations whose

breakpoint graph contains no cycle of length greater than 2, seems especially

interesting (for more information about the importance of those permutations

in genome rearrangements, see Hannenhalli and Pevzner [30] and Labarre and

Cibulka [34]).

The expression we obtained for the signed Hultman numbers is quite useful

in practice, since it allows us to obtain the distribution of those numbers for large
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values of n. Unfortunately, it does not seem easy to use in order to gain insights

and have an intuitive interpretation of the shape of the distribution, which would

be useful in order to know how this distribution can be approximated or how it

grows as n increases. Finding simpler generating functions, recurrence relations

or nicer formulas would be useful in that regard and in order to obtain more

information on the properties of this distribution.

The connection between the cycle structure of breakpoint graphs and fac-

torisations of even permutations (Corollary 4.1, page 9) proved useful not only

in characterising the distribution of those cycles and of the related cycle types,

but also provided the foundations of a simple and generic method for obtaining

lower bounds on any “revertible” edit distance between unsigned permutations

(see Labarre [28] for more details). Is there any way to use the results and

connections obtained in Section 5 in order to obtain similar results for signed

permutations?

Finally, recall that permutations are just one way of modelling genomes. One

natural direction would be to investigate the distribution of cycles in the break-

point graph of other structures, like set systems or “fragmented” permutations

(see again Fertin et al. [3] for an overview of existing models).
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