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Abstract

We study structural properties of the q-color Potts field theory which, for real values of q,

describes the scaling limit of the random cluster model. We show that the number of in-

dependent n-point Potts spin correlators coincides with that of independent n-point cluster

connectivities and is given by generalized Bell numbers. Only a subset of these spin correla-

tors enters the determination of the Potts magnetic properties for q integer. The structure

of the operator product expansion of the spin fields for generic q is also identified. For the

two-dimensional case, we analyze the duality relation between spin and kink field correlators,

both for the bulk and boundary cases, obtaining in particular a sum rule for the kink-kink

elastic scattering amplitudes.
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1 Introduction

There are cases in which the notion of spontaneous symmetry breaking which is commonly used

to describe ferromagnetic phase transitions admits an extension which allows the description of

phase transitions of a different nature. The case of interest in this paper is that of the q-state

Potts model [1, 2], whose Hamiltonian

H = −J
∑

〈x,y〉

δs(x),s(y) , s(x) = 1, . . . , q , (1)

is invariant under the group Sq of permutations of the values of the variables s(x) located at

each site of a lattice L. The q values of s(x) can conveniently be thought as q different colors

and, clearly, the Potts ferromagnet is well defined for an integer number of colors. It has been

known for a long time, however, that the partition function
∑

{s(x)} e
−H can be rewritten, up to

an inessential constant, as [3]

Z =
∑

G⊆L

pnb(1− p)n̄bqNc , (2)

where G is a graph obtained putting nb bonds on the lattice L, each one with weight p = 1−e−J ∈
[0, 1] (n̄b is the number of absent bonds in L). The connected components of G, including isolated
sites, are called Fortuin-Kasteleyn (FK) clusters. In the formulation (2), which defines the so

called random cluster model, the probability measure for the graph G depends on q through the

factor qNc , Nc being the number of clusters in G, and is well defined for any real positive q. In

the thermodynamic limit the random cluster model undergoes, for q continuous, a percolative

phase transition associated to the appearance, for p larger than a q-dependent critical value pc,

of a non-zero probability of finding an infinite cluster. The transition is first order for q larger

than a dimensionality-dependent value qc, and second order otherwise; in particular, the limit

q → 1, which eliminates the factor qNc in (2), describes ordinary percolation. When q is an

integer larger than 1, the percolative transition of the random cluster model contains, in a sense

to be clarified below, the ferromagnetic transition of the Potts model.

For q ≤ qc, when a scaling limit exists, the problem admits a field theoretical formulation.

There must be a field theory, which we call Potts field theory, that describes the scaling limit of

the random cluster model for q real, as well as that of the Potts ferromagnet for q integer. This

theory has the Potts spin fields as fundamental fields (the FK mapping relates Potts spin corre-

lators and connectivities for the FK clusters) and is characterized by Sq-invariance. The obvious

question of the meaning of Sq symmetry for q non-integer arose at least since the ǫ expansion

treatment of [4], and appears to admit a general answer: although one starts from expressions

which are formally defined only for q integer, formal use of the symmetry unambiguously leads

to final expressions containing q as a parameter which can be taken continuous.

The two-dimensional case allows for the most advanced, non-perturbative results. The Potts

field theory is integrable and the underlying scattering theory was exactly solved in [5] for

continuous q ≤ qc = 4. The scattering solution was then used in [6, 7] to determine two-point

correlators and universal combinations of critical amplitudes for the Potts model and percolation.

1



In spite of these results, even in two dimensions the nature of Potts field theory for real values of

q needs to be better understood. Indeed, already in the critical case, although exact formulae for

the scaling dimensions and the central charge as functions of q have been known for a long time

[8, 9], and results for boundary correlators have been obtained since the work of [10], a complete

conformal field theory description is only available for the magnetic properties at q = 2, 3, 4. The

essential problem is readily stated: since the Potts spin field has q− 1 independent components,

no ordinary characterization of the space of fields appears possible for q non-integer. Recently

[11], we showed how the problem of non-integer field multiplicities can be dealt with for three-

point functions, and arrived in this way to exact predictions for operator product expansion

(OPE) coefficients which have already been confirmed by high-precision Monte Carlo simulations

for the case of ordinary percolation [12, 13].

In this paper we investigate, for q continuous, some structural properties of the Potts field

theory as a theory characterized by Sq invariance under color permutations and able to describe

the scaling limit of the random cluster model. We first of all observe that the issue of the content

of the theory is better addressed, in any dimension, focusing on linearly independent correlation

functions rather than on field multiplicities. For this purpose one needs to have in mind the

relation of spin correlators with cluster connectivities for q real, rather than with magnetic

properties for q integer. Just to make an example already considered in [11], the correlator of

three spin fields with the same color is proportional to the probability that three points are in

the same FK cluster. This probability is well defined and non-vanishing for continuous values

of q in the random cluster model, in particular for the case q = 2 in which the spin correlator

has a zero enforcing Ising spin reversal symmetry; stripped of a trivial factor q − 2, this spin

correlator enters the description of cluster connectivity at q = 2 as for generic real values of

q. Similarly, a number nc ≤ n of different colors enters the generic n-point spin correlator: a

correlator with nc > q has no role in the description of the Potts ferromagnet, but enters the

determination of cluster connectivities in the random cluster model. One then realizes that the

dimensionality Fn of the space of linearly independent n-point spin correlators for real values

of q is actually q-independent and must coincide with that of the space of linearly independent

n-point connectivities. We show that this is indeed the case and that Fn coincides with the

number1 of partitions of a set of n elements into subsets each containing more than one element;

the relation between spin correlators and cluster connectivities is also given and written down

explicitly up to n = 4. Only a numberMn(q), smaller than Fn for n large enough, of independent

spin correlators enters the determination of the magnetic properties at q integer, making clear

that the magnetic theory is embedded into the larger percolative theory2.

Once the relevant correlation functions have been identified, an essential tool for their study

is the OPE of the spin fields. Again, the existence of such an object for real values of q is made

a priori not obvious by the badly defined multiplicity of the fields. We show, however, that its

structure can be very naturally identified (equations (48) and (49) below).

1We consider the symmetric phase, i.e. the case p ≤ pc.
2See [14, 15] for detailed studies of this fact in the Ising model.
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The additional property we study in this paper, duality, is specific of the two-dimensional

case. It is well known [1, 2] that spin correlators computed in the symmetric phase of the square

lattice Potts model coincide with disorder correlators computed in the spontaneously broken

phase. Here we study duality directly in the continuum, for real values of q, and with the main

purpose of clarifying the role of kink fields. These are the fields that in any two-dimensional

field theory with a discrete internal symmetry create the kink excitations interpolating between

two degenerate vacua of the spontaneously broken phase; in general, they are linearly related to

the usual disorder fields, which are mirror images of the spin fields, in the sense that they carry

the same representation of the symmetry. In the Potts field theory, however, it appears that in

many respects the use of kink fields provides a simpler way of dealing with the symmetry for real

values of q. The duality between spin and kink field n-point correlators is a non-trivial problem

that we study in detail up to n = 4, both for bulk and boundary correlations. The problem

of correlation functions for points located on the boundary of a simply connected domain is

simplified by topological constraints which, in the limit in which the boundary is moved to

infinity, also account for non-trivial relations among kink scattering amplitudes.

The paper is organized as follows. In the next section we investigate cluster connectivities

and Potts spin correlators, their multiplicity and the relation between them. In section 3 we

analyze OPE’s and obtain in particular that for the Potts spin fields for real values of q. Duality

between spin and kink field correlators in two dimensions is studied in general in section 4 and

specialized to boundary correlations in section 5. Few final remarks are given in section 6 and

three appendices complete the paper.

2 Counting correlation functions

2.1 Cluster connectivities

Correlations within the random cluster model (2) are expressed by the connectivity functions

giving the probability that n points x1, . . . , xn fall into a given FK cluster configuration. In

order to define the connectivities we associate to a point xi a label ai, with the convention that

two points xi and xj belong to the same cluster if ai = aj, and to different clusters otherwise.

We then use the notation Pa1...an(x1, ..., xn) for the generic n-point connectivity function, within

the phase in which there is no infinite cluster, i.e. for p ≤ pc. The total number of functions

Pa1...an(x1, . . . , xn) is the number Bn of possible partitions (clusterizations) of the n points3;

these Bn functions sum to one and form a set that we call C(n).
It is not difficult to realize that the elements of C(n) can be rewritten as linear combinations

of “basic” k-point connectivities, with k = 2, . . . , n; we call Fk the number of basic k-point

connectivities, and P(k) ⊂ C(k) the set they form. There is a simple procedure to build P(n)

given the P(k)’s for k = 2, . . . , n − 1. Let us start with n = 2: C(2) = {Paa, Pab}, but Paa +

Pab = 1 implies F2 = 1 and we can choose P(2) = {Paa}. Consider now n = 3: C(3) =

3The Bn’s are known as Bell numbers and are discussed in Appendix A.
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{Paaa, Paab, Paba, Pbaa, Pabc}, however starting from Paaa and summing over the inequivalent

configurations of the last point we have Paaa + Paab = Paa0, where Paa0 ≡ Paa(x1, x2) belongs,

we chose it on purpose, to P(2). We observe that only one linear combination of connectivities

in C(3) reproduces, taking into account the coordinate dependence, the two-point connectivity

in P(2); we obtain then the sum rules

Paaa + Paab = Paa0 ≡ Paa(x1, x2), (3)

Paaa + Paba = Pa0a ≡ Paa(x1, x3), (4)

Paaa + Pbaa = P0aa ≡ Paa(x2, x3), (5)

Paaa + Paab + Paba + Pbaa + Pabc = 1. (6)

This system of equations exhausts all the possible linear relations among the elements of C(3);
a reduction to a non-basic two-point connectivity (i.e. not belonging to P(2), for example Pab0)

will indeed produce an equation which is a linear combination of those above. It follows, in

particular, that the five elements of C(3) can be written in terms of Paaa, Paa0, P0aa, Pa0a, so that

F3 = 1 and we can choose P(3) = {Paaa}.
In general, suppose we have chosen the Fk basic connectivities in P(k) for k = 2, . . . , n − 1.

Given Pa1...an ∈ C(n), we can fix k of its n indices according to an element of P(k); summing over

the inequivalent configurations of the remaining n− k indices we obtain a linear relation for the

connectivities of C(n). We can do this for each of the Fk elements in P(k) and for
(n
k

)

choices

of k indices among n indices. The number of independent sum rules for the elements of C(n) is
then

En =

(

n

n− 1

)

Fn−1 +

(

n

n− 2

)

Fn−2 + ...+

(

n

2

)

F2 + 1 , (7)

with the last term accounting for the fact that the n-point connectivities sum to one. The

number Fn of elements of P(n) is the minimum number of connectivities in C(n) needed to solve

the linear system of En equations in Bn unknowns, i.e.

Fn = Bn −
(

n

n− 1

)

Fn−1 −
(

n

n− 2

)

Fn−2 − ...−
(

n

2

)

F2 − 1 . (8)

Defining F0 ≡ 1 and knowing that F1 = 0, we rewrite (8) as

Bn =

n
∑

k=0

(

n

k

)

Fk , ∀n ≥ 0. (9)

We show in Appendix A that (9) implies that Fn is the number of partitions of a set of n

points into subsets containing at least two points. We list in Table 1 the first few Bn and Fn.

The combinatorial interpretation of the Fn’s suggests that a natural choice for the set P(n) of

linearly independent n-point connectivities is to consider clusterizations with no isolated points,

i.e. P(2) = {Paa}, P(3) = {Paaa}, P(4) = {Paaaa, Paabb, Pabab, Pabba}, and so on.
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n 1 2 3 4 5 6 7 8 9 10

Bn 1 2 5 15 52 203 877 4140 21147 115975

Fn 0 1 1 4 11 41 162 715 3425 17722

Mn(2) 0 1 0 1 0 1 0 1 0 1

Mn(3) 0 1 1 3 5 11 21 43 85 171

Mn(4) 0 1 1 4 10 31 91 274 820 2461

Table 1: The Bell numbers Bn give the number of partitions of n points. The number Fn

of linearly independent n-point spin correlators (12) coincides with the number of partitions

on n points into subsets containing at least two points. A number Mn(q) of these correlators

determines the n-point magnetic correlations in the q-state Potts ferromagnet.

2.2 Spin correlators

As we will see in a moment, it follows from the FK mapping that the Potts spin correlators can

be expressed as linear combinations of the cluster connectivities. Consistency of this statement

requires that the number of linearly independent spin correlators coincides with the number of

linearly independent cluster connectivities. The spin variables of the Potts model are defined

as4

σα(x) = qδs(x),α − 1 , α = 1, . . . , q , (10)

where s(x) is the color variable appearing in (1), and satisfy

q
∑

α=1

σα(x) = 0 . (11)

The expectation value 〈σα〉 is the order parameter of the Potts transition, since it differs from

zero only in the spontaneously broken phase. More generally we denote by

Gα1...αn(x1, . . . , xn) = 〈σα1(x1) . . . σαn(xn)〉J≤Jc (12)

the n-point spin correlators in the symmetric phase. We now show that, for q real parameter,

the number of linearly independent functions (12) coincides with Fn.

Let the string (α1 . . . αn) identify the correlator (12), and suppose that αk is isolated within

this string, i.e. it is not fixed to coincide with any other index within the string. We can then

use (11) to sum over αk and obtain, exploiting permutational symmetry, a linear relation among

correlators involving a string similar to the original one together with strings without isolated

indices. The simplest example,

0 =
∑

β

Gαβ = Gαα + (q − 1)Gαγ , γ 6= α , (13)

is sufficient to understand that (11) produces meaningful equations also if q is non-integer,

the only consequence being that some multiplicity factors in front of the correlators become

4Our present normalization of σα(x) differs by a factor q from that used in [11].
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non-integer; also, the requirement γ 6= α should imply q ≥ 2, but in the sense of analytic

continuation to real values of q (13) is equally valid for q < 2. Similarly, starting with a string

with m isolated indices αk1 , . . . , αkm , summing over αk1 and using permutational symmetry we

generate a linear relation involving the original string with the m isolated indices αk1 , . . . , αkm

together with strings in which αk1 is no more isolated, i.e. with at most5 m− 1 isolated indices.

Iterating this procedure, any correlation function (12) with isolated indices can be written as

linear combination of correlation functions without isolated indices. Recalling the meaning of

Fn in terms of set partitions, we then see that there are at most Fn Sq-inequivalent, linearly

independent correlation functions (12), i.e. those without isolated indices. On the other hand,

the constraint (11) does not generate any new linear relation if we start with a string which

does not contain any isolated index. The number of linearly independent functions (12) is then

exactly Fn.

Let us now detail the linear relation between cluster connectivities and spin correlators. The

latter admit the FK clusters expansion,

Gα1...αn(x1, . . . , xn) =
1

Z

∑′

s(x1),...,s(xn)

∑

G⊆L

pnb(1− p)n̄b

n
∏

i=1

(

qδs(xi),αi
− 1
)

, (14)

where the prime on the first sum means that sites belonging to the same FK cluster are forced

to have the same color s. Notice that, if one of the points xi is isolated from the others in a

cluster of a given graph G, then the sum over its colors gives zero due to (11); hence, consistently

with our previous analysis, (14) receives a contribution only from partitions of the sites xi’s into

clusters containing at least two of these sites. If Pa1...an(x1, . . . , xn) is the probability of such a

partition, then the number of distinct clusters will be m < n, and to any pair (xi, αi) we can

associate one of the distinct letters c1, . . . , cm chosen among the ai’s. The coefficient of Pa1...an

in the expansion (14) is then6

1

qm

q
∑

s1=1

∏

xi⊂c1

(

qδs1,αi
− 1
)

· · ·
q
∑

sm=1

∏

xi⊂cm

(

qδsm,αi
− 1
)

; (15)

the notation xi ⊂ c means that to the point xi is associated the letter c (x belongs to the cluster

c). For n = 2, 3 the dimensionality of correlation spaces is F2 = F3 = 1 and (15) gives

Gαα = q1 Paa , (16)

Gααα = q1q2 Paaa , (17)

where we introduced the notation

qk ≡ q − k . (18)

The first relation with a matrix form appears at the four-point level (F4 = 4), for which (15)

5We can have strings with m− 1 or m− 2 isolated indices.
6The prefactor 1/qm ensures the correct probability measure for the graph G.
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leads to

Gαααα = q1(q
2 − 3q + 3)Paaaa + q21(Paabb + Pabba + Pabab), (19)

Gααββ = (2q − 3)Paaaa + q21Paabb + Pabba + Pabab, (20)

Gαββα = (2q − 3)Paaaa + Paabb + q21Pabba + Pabab, (21)

Gαβαβ = (2q − 3)Paaaa + Paabb + Pabba + q21Pabab. (22)

The last set of equations, as well as those one obtains for n > 4, can be inverted to express

the connectivities in terms of the spin correlators, making clear that all the Fn inequivalent

and independent spin correlators are necessary to determine the connectivities of the random

cluster model. On the other hand, a number Mn(q) ≤ Fn of these spin correlators determine

the magnetic correlations in the Potts model at q integer. This is due to the fact that the

spin correlators are themselves the magnetic observables, and that for q integer some of them

vanish (e.g. Gαα...α(x1, . . . , xn) at q = 2, n odd, see (17)), those involving more than q colors

are meaningless in the magnetic context, and additional linear relations may hold at specific

values7 of q. The numerical sequences Mn(q) are determined in Appendix B for q = 2, 3, 4 (the

case q = 2 is of course trivial); the first few values are given in Table 1 and plots are shown in

Fig. 1. It is interesting, in particular, to compare the large n behavior of the dimensionalities of

the magnetic and percolative correlation spaces. Defining

Mn(q)
n≫1∼ ensq(n), (24)

(100) and (105) give sq(n) = log(q− 1), a result which can be consistently interpreted as a kind

of entropy for the Potts spin σα and is expected to hold for any integer q > 1. Fn exhibits

instead the super-exponential growth [16]

Fn
n≫1∼ ens(n) , (25)

s(n) = log n− log log n− 1 +
log log n

log n
+O

(

1

log n

)

. (26)

2.3 Scaling limit and correlators of kink fields

For q ≤ qc, i.e. when the phase transition is continuous, the Potts field theory describes the

scaling limit J → Jc of the Potts model, with the spin variables σα(x) playing the role of funda-

mental fields (x is now a point in Euclidean space). In particular, the q degenerate ferromagnetic

7For example the relation 3Gαααα = 2(Gαββα +Gαβαβ +Gααββ) holds specifically at q = 3 and the system of

equations (19)–(22) is no longer invertible. More generally, we expect that the Fn × Fn matrix Tn(q) giving the

spin correlators in terms of the “basic” connectivities (given explicitly by (16), (17) and (19)–(22) for n = 2, 3, 4)

has determinant

det(Tn) = qan(q − 1)

n−1∏

k=2

(q − k)dn(k) , (23)

with dn(k) =
∑k

j=1 S̃(n, j)−Mn(k), S̃(n, j) being the generalized Stirling numbers discussed in Appendix A, and

an determined by the requirement that the total degree of the polynomial (23) is Dn =
∑n

k=1(n − k)S̃(n, k), as

follows examining (15). It follows from (93) and (106) that dn(k) = 0 for k ≥ n. We checked (23) up to n = 5.
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Figure 1: Plots of the first 20 values of the sequences Fn (number of independent n-point spin

correlators for q real) andMn(q) (number of independent n-point spin correlators in the magnetic

sector) for q = 3, 4.

ground states which the Potts model possesses above Jc correspond in the scaling limit to de-

generate vacua of the Potts field theory. In the two-dimensional case the kinks interpolating

between a vacuum with color α and one with color β are topologically stable and provide the

elementary excitations of the spontaneously broken phase8; they are created by the kink fields

µαβ(x), which are non-local with respect to the spin fields σα. The products of kink fields are

subject to the adjacency condition µαβ(x)µβγ(y). Duality relates, in a way to be investigated

in the next sections, the kink field correlators in the broken phase

G̃β1...βn
(x1, . . . , xn) = 〈µβ1β2(x1)µβ2β3(x2) . . . µβnβ1(xn)〉J≥Jc (27)

to the spin correlators in the symmetric phase (12). Consistency of the duality relation requires

that the number of Sq-inequivalent correlators (27) coincides again with Fn. We now show that

this is indeed the case.

Consider to start with the string of kink fields µβ1β2µβ2β3 . . . µβnβn+1 and associate to it n+1

points Pi, i = 1, . . . , n+1, on a line. Each point Pi has a color βi which must differ from those of

the adjacent points. Let us show first of all that the number Cn+1 of Sq-inequivalent colorations

of the points Pi coincides with the Bell number Bn. If the adjacency condition is relaxed, the

number of inequivalent colorations of the n+ 1 points is Bn+1. The string will consist of k + 1

substrings, each with a definite color different from those of the adjacent substrings, that we

can think to separate by placing k domain walls between them; this can be done in
(

n
k

)

ways.

The k + 1 substrings can be colored in Ck+1 Sq-inequivalent ways and we have

Bn+1 =

n
∑

k=0

(

n

k

)

Ck+1 ∀n ≥ 0. (28)

8See [17] for a lattice study of Potts kinks.
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Since C1 = 1, the result Cn+1 = Bn then follows from (86) by induction.

The case we just discussed includes Ln+1 inequivalent colorations in which β1 = βn+1 (the

case (27) we are actually interested in) and On+1 inequivalent colorations in which β1 6= βn+1,

i.e. Ln+1 + On+1 = Cn+1. On the other hand, if we start with n points having β1 6= βn

and we add Pn+1 with βn+1 = β1, the number of inequivalent colorations does not change, i.e.

Ln+1 = On. We then see that

Ln+1 + Ln+2 = Cn+1 = Bn , ∀n ≥ 0 . (29)

This relation, together with the initial condition L1 = 1, can be used to generate the Ln’s from

the Bn’s. Of course Ln+1 is the number of inequivalent correlators (27) we were looking for.

Comparison of (29) with (91) then leads to the final identification Ln+1 = Fn.

3 Operator product expansions

Generically the OPE of scalar fields Ai(x) with scaling dimension Xi takes the form

lim
x1→x2

Ai(x1)Aj(x2) =
∑

m

Cm
ij

Am(x2)

x
Xi+Xj−Xm

12

, (30)

where we include for simplicity only scalar fields in the r.h.s. and use the notation xij ≡ |xi−xj|;
in the following we will replace (30) by the symbolic notation

Ai · Aj =
∑

m

Cm
ij Am . (31)

The nature of the fields µαβ(x) naturally leads to the two-channel OPE [11]

µαβ · µβγ = δαγ Ĩ + (1− δαγ)(Cµµαγ + . . .) , (32)

where the neutral channel α = γ contains the expansion Ĩ = I + Cεε + . . . over Sq-invariant

fields (identity I, energy ε, and so on), and the charged channel α 6= γ the expansion over µαγ

and less relevant kink fields; Cε and Cµ are simplified notations for the OPE coefficients, for

which exact expressions for continuous q have been given in [11].

The fields µαβ(x) are expected to be related to the disorder fields µα(x) by the linear trans-

formation

µα(x) =
∑

σ

Cρσ
α µρσ(x) , (33)

where C
ρσ
α ∈ C are coefficients9 to be investigated below, and ρ-independence is a consequence

of permutational symmetry. The field µα carries the same representation of permutational

symmetry as σα (in particular,
∑q

α=1 µα = 0) but, as µαβ , it is non-local with respect to σα.

In other words, σα and µα are identical (dual) fields living in mutually non-local sectors of the

9No confusion should arise with the OPE coefficients Cm
ij of (30).
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Figure 2: The vacua of the Potts field theory for q = 2, 3, 4 are labeled by α = 1, . . . , q and

denoted by dots (for q = 4 we use the Ashkin-Teller notation α ≡ (α1, α2)). Fixing a specific

vacuum (1 in this case) amounts to choose a representative kink field within each class µ̃i (see

the text).

theory; in particular they share the same scaling dimension and the same OPE. Mutual non-

locality reflects in the fact that, while 〈σα〉 6= 0 for J > Jc, 〈µα〉 6= 0 for J < Jc. More precisely,

in view of the coinciding scaling dimension, it is sufficient to adopt the same normalization of

the fields to ensure that 〈σα〉J = 〈µα〉J∗ , where J∗ is the dual10 of J . The duality extends to

multi-point functions, in such a way that the spin correlators (12) can also be written as

Gα1...αn(x1, . . . , xn) = 〈µα1(x1) . . . µαn(xn)〉J∗≥Jc . (34)

The rest of this section is devoted to investigate the relation (33) and to determine the structure

of the OPE µα · µβ (or, equivalently, σα · σβ).
The q degenerate vacua of the Potts model above Jc can be associated to the vertices of

an hypertetrahedron in q − 1 dimensions whose q(q − 1) oriented sides are associated to the

kink fields µαβ. Permutational symmetry of the vacua allows to group these fields into classes

µ̃i, i = 1, . . . , q − 1, each containing q kink fields starting from different vacua, in such a way

that choosing a vacuum amounts to select q − 1 kink fields, one from each class, starting from

that vacuum and arriving at the other vacua (Fig. 2). Ignoring structure constants, the OPE

(31) has the form of a multiplication between elements of a finite group. Independence from

the choice of the starting vacuum of the kinks ensures that the elements of this finite group

are the classes µ̃i, i = 1, . . . , q − 1, together with the topologically neutral class Ĩ. We denote

then by Kq their fusion table as prescribed by (31), as well as the finite group of order q it

defines. The symmetry also ensures that all the rows of the matrix Cα can be obtained from

the first by regular permutations11. The relation (33) (which we could equivalently write as

µα =
∑

ρC
ρσ
α µρσ) is effectively a sum over the q − 1 classes µ̃i, as we now illustrate separately

discussing the cases q = 2, 3, 4.

10In the scaling limit we consider, J and J∗ are the points where the elementary excitations of the symmetric

phase and those of the spontaneously broken phase have the same mass m; m = 0 at the self-dual point Jc.
11Permutations which do not leave any element invariant. It is not difficult to realize that such permutations

are elements of Kq.
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· Ĩ µ̃1

Ĩ Ĩ µ̃1

µ̃1 µ̃1 Ĩ

· Ĩ µ̃1 µ̃2

Ĩ Ĩ µ̃1 µ̃2

µ̃1 µ̃1 µ̃2 Ĩ

µ̃2 µ̃2 Ĩ µ̃1

· Ĩ µ̃1 µ̃2 µ̃3

Ĩ Ĩ µ̃1 µ̃2 µ̃3

µ̃1 µ̃1 Ĩ µ̃3 µ̃2

µ̃2 µ̃2 µ̃3 Ĩ µ̃1

µ̃3 µ̃3 µ̃2 µ̃1 Ĩ

Figure 3: Fusion tables Kq at q = 2, 3, 4. They correspond to the groups Z2, Z3 and D2,

respectively.

q=2. Permutational symmetry S2 = Z2 implies the equivalence of the two kink fields µ12 and

µ21, which we collect in the class µ̃1; from (32) we derive K2 = Z2 (see Fig. 3). We can choose

µα = ωα
2 µ̃1, Cα =

(

0 ωα
2

ωα
2 0

)

, α = 1, 2 , (35)

with ωq = e2πi/q, in order to fulfill
∑

α µα = 0 and consistently derive

µα · µα = Ĩ , (36)

µα · µβ = −Ĩ , α 6= β . (37)

q=3. The OPE of the kink fields µαβ is equivalent to the fusion table of the classes µ̃1, µ̃2 and Ĩ.

Being Z3 the only discrete group of order three, full consistency requires K3 = Z3, together with

the identifications µ̃1 = {µ12, µ23, µ31}, µ̃2 = {µ13, µ21, µ32}. Notice that Aut(Z3) = Z2, and the

non-trivial automorphism12 corresponds to the charge conjugation operator C, with Cµ̃1 = µ̃2.

Using µα(x) = 3δs̃(x),α − 1, the charge conjugated operators realizing the Z3 OPE are identified

with13 µ̃1 = e2πis̃(x)/3 and µ̃2 = e−2πis̃(x)/3, where s̃(x) is the dual color variable; using also

δs̃,α = 1
3

∑3
β=1 e

2πi
3

(s̃−α)β one obtains

µα = ω−α
3 µ̃1 + ωα

3 µ̃2, Cα =







0 ω−α
3 ωα

3

ωα
3 0 ω−α

3

ω−α
3 ωα

3 0






, α = 1, 2, 3 , (38)

and then

µα · µα = 2Ĩ + Cµ µα + . . . , (39)

µα · µβ = −Ĩ − Cµ(µα + µβ) + . . . , α 6= β ; (40)

the relation ωα
3 + ω

β
3 + ω

−(α+β)
3 = 0, α 6= β, is used.

q=4. The four-state Potts model can be seen as the case J = J4 of the Ashkin-Teller model

defined by the Hamiltonian

HAT = −
∑

〈x,y〉

{J [τ1(x)τ1(y) + τ2(x)τ2(y)] + J4 τ1(x)τ1(y)τ2(x)τ2(y)}, (41)

12Given a group G, φ : G → G is an automorphism if φ(ab) = φ(a)φ(b),∀a, b ∈ G. The set of all the

automorphisms with natural composition as a product form a group called Aut(G).
13The basis µ̃1, µ̃2 is that used in [18].
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where τi = ±1, i = 1, 2, are Ising variables. Defining s = (τ1, τ2), α = (α1, α2), with αi = ±1,
and δs,α = δτ1,α1δτ2,α2 , the Potts spin (10) can be written as

σα = 4δs,α − 1 = α1τ1 + α2τ2 + α1α2τ1τ2. (42)

The kink fields µαβ interpolate between the four degenerate vacua of the two coupled Ising

models (see e.g. [19]); the classes µ̃1 = {µ12, µ21, µ34, µ43} and µ̃2 = {µ14, µ41, µ23, µ32} are

constructed in analogy to the case q = 2, the fields in µ̃3 = {µ13, µ31, µ24, µ42} are instead

obtained taking the OPE according to (31) (see also Fig. 2). We derive K4 = D2 = Z2 × Z2,

see Fig. 3; notice that Aut(D2) = S3. We can also take

µα = α1µ̃1 + α2µ̃2 + α1α2µ̃3 , Cα =













0 α1 α1α2 α2

α1 0 α2 α1α2

α1α2 α2 0 α1

α2 α1α2 α1 0













, (43)

from which we obtain

µα · µα = 3Ĩ + 2Cµ µα + . . . , (44)

µα · µβ = −Ĩ − Cµ(µα + µβ) + . . . , α 6= β . (45)

It is interesting to remark some formal properties emerging from this analysis. We see that,

by construction, Kq at q = 2, 3, 4 is a finite abelian group of order q, i.e. by Cayley theorem a

regular abelian subgroup14 of Sq. Kq must also be invariant under permutations of the q − 1

classes µ̃i, an operation which corresponds to fix one vacuum and permute the remaining q− 1.

Formally this amounts to write Aut(Kq) = Sq−1, and we expect the full symmetry group of the

theory to be realized as15

Sq = Kq ⋊ Sq−1 . (46)

This in turn implies the possibility of writing Sq as a semidirect product of abelian subgroups

of the form

Sq = Kq ⋊Kq−1 ⋊ · · ·⋊K2, K2 = Z2, (47)

a property which is equivalent to the solvability of the permutational group. More precisely16,

the solvability of Sq would imply the existence of the factorization (47), as indeed remarkably

happens at q = 2, 3, 4, with K2 = Z2, K3 = Z3, K4 = D2 and Aut(Z3) = Z2, Aut(D2) = S3.

It is well known [21], however, that for q > 4 Sq possesses no abelian normal subgroup, making

impossible in particular to realize the condition (46). Then Sq is not solvable for any q > 4, a

circumstance which is interesting to compare with the fact that qc = 4 is also the upper bound

14The classes µ̃i are associated to the regular permutations πi, i = 1, . . . , q−1, of Sq as µ̃i = {µ1πi(1), ..., µqπi(q)}.

Without loss of generality one can assume πi(1) = i+ 1.
15The presence of the semidirect product ⋊ is due to the fact that Sq−1 is not a normal subgroup of Sq.
16We thank C. Casolo for this observation. Interesting remarks about solvable groups and lattice duality can

be found in [20].
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for the existence of the Potts field theory in the two-dimensional case, i.e. the only case for

which kink fields exist and the above construction is possible.

A remarkable feature appearing from (37), (40) and (45) is that µα · µβ 6=α is identical at

q = 2, 3, 4 (recall that µ1 + µ2 = 0 at q = 2). It is then absolutely natural to assume that this

form actually holds unchanged for continuous values of q, and to write

σα · σβ = −I −Cµ(σα + σβ) + . . . , α 6= β, (48)

where the dots correspond to less relevant fields and we switched to the equivalent expression

in terms of the spin fields for a reason to be made immediately clear. On the other hand, the

complementary relation

σα · σα = q1 I + q2Cµ σα + · · · (49)

follows observing that (11) and (48) give

0 = σα ·
∑

β

σβ = σα · σα +
∑

β 6=α

σα · σβ

= σα · σα +
∑

β 6=α

[−I − Cµ(σα + σβ) + . . .] ;

(49) is of course consistent with (36), (39) and (44). While the disorder fields µα(x) are specific

of the two-dimensional case, the spin fields σα(x) are well defined in any dimension. It is then

quite obvious to expect that (48) and (49) hold for real values of q ≤ qc in any dimension.

The linear relation (11) among the spin fields induces a relation less direct than usual between

the OPE coefficients and the structure constants appearing in the three-point functions. In

general, the structure constants Cijk are defined by the critical correlators

〈Ai(x1)Aj(x2)Ak(x3)〉 =
Cijk

x
Xi+Xj−Xk

12 x
Xi+Xk−Xj

13 x
Xj+Xk−Xi

23

; (50)

taking the limits x12 → 0 and x23 → 0 and using (30), Cijk is expressed in term of the OPE

coefficients as

Cijk =
∑

Xm=Xk

Cm
ij C

I
mk . (51)

We then find

Cσασασα = q2q1Cµ, (52)

Cσασασβ
= Cσασβσα = Cσβσασα = −q2Cµ, (53)

Cσασβσγ = 2Cµ , (54)

with different indices denoting different colors.
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4 Duality relations

Equations (33) and (34) imply a linear relation between the spin correlators (12) in the symmetric

phase and the correlators (27) of kink fields in the broken phase. This duality takes the form

Gα1...αn(x1, . . . , xn) =
∑

β1,...,βn

D̃β1...βn
α1...αn

G̃β1...βn
(x1, . . . , xn)

=
∑′

β1,...,βn

(

nc(β)−1
∏

i=1

qi

)

Dβ1...βn
α1...αn

G̃β1...βn
(x1, . . . , xn) , (55)

where the primed sum runs over all choices of β = {β1, . . . , βn} which are inequivalent under

permutations, nc(β) is the number of different colors in β, and the factors qi have been extracted

for later convenience. The task is that of determining the coefficients D
β1...βn
α1...αn , for continuous

values of q; of course it is sufficient to consider a set of Fn linearly independent spin correlators.

We will discuss explicitly this problem up to the first case with Fn > 1, i.e. n = 4.

n=1. The trivial identity 〈σα〉 = 〈µαβ〉 = 0 simply reflects the fact that we consider spin

correlators in the symmetric phase17, and that µαβ is a kink field.

n=2. F2 = 1 and we consider

〈σα(x1)σα(x2)〉 = q1D
αβ
αα 〈µαβ(x1)µβα(x2)〉 . (56)

We can take the limit x12 → 0 on both sides and equate the coefficients of the leading singularity

x−2Xσ

12 , which are obtained using (49) and (32). This immediately yields Dαβ
αα = 1.

n=3. F3 = 1 and we consider

〈σα(x1)σα(x2)σα(x3)〉 = q1q2D
αβγ
ααα 〈µαβ(x1)µβγ(x2)µγα(x3)〉 . (57)

We can again use the OPE’s to take the limit x12 → 0 on both sides and reduce18 to (56); this

leads to D
αβγ
ααα = 1.

n=4. We will consider the F4 = 4 linearly independent spin correlators (19–22), which expand

as

〈σα1(x1)σα2(x2)σα3(x3)σα4(x4)〉 = q1q2q3D
αβγδ
α1α2α3α4

〈µαβ(x1)µβγ(x2)µγδ(x3)µδα(x4)〉
+q1q2D

αβγβ
α1α2α3α4

〈µαβ(x1)µβγ(x2)µγβ(x3)µβα(x4)〉
+q1q2D

αβαγ
α1α2α3α4

〈µαβ(x1)µβα(x2)µαγ(x3)µγα(x4)〉
+q1D

αβαβ
α1α2α3α4

〈µαβ(x1)µβα(x2)µαβ(x3)µβα(x4)〉 .
(58)

We start again equating the coefficients of the short distance singularities on the two sides.

However, an important difference with the cases n < 4 now appears. Indeed, while the OPE

17Since this is understood, here and in the following we omit the subscripts J ≤ Jc for spin correlators and

J ≥ Jc for kink field correlators.
18Notice that the OPE on the l.h.s. apparently produces singularities from the Sq-invariant operators Ok in Ĩ

which do not arise in the r.h.s., where α 6= γ. Everything is consistent, however, since 〈Okσα〉 = 0 by symmetry.
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Figure 4: Pictorial representation of the four-point correlation functions of kink fields

G̃β1β2β3β4(x1, . . . , x4). The two pinchings x1 → x2 and x2 → x3 used for the study of the

duality relation (58) are indicated.

in the l.h.s. can be taken for any pair of points xi and xj, the kink nature of the fields on the

r.h.s. allows us to use (32) only for adjacent fields. In other words, we can compare only the

singularities arising for x12 → 0 and x23 → 0 (see Fig. 4; x34 → 0 and x14 → 0 add nothing

new). Equating the coefficients of the singularities in the “neutral” and “charged” channels, and

using the duality relations already obtained for n = 2, 3, leads to the following sets of equations















Dαβαγ
αααα = Dαβγβ

αααα

q2 = q3D
αβγδ
αααα +Dαβγβ

αααα

q1 = q2D
αβγβ
αααα +Dαβαβ

αααα















D
αβαγ
αβαβ = D

αβγβ
αβαβ

2 = q1q3D
αβγδ
αβαβ + q1D

αβγβ
αβαβ

1 = q1q2D
αβγβ
αβαβ + q1D

αβαβ
αβαβ

(59)















1 = q1q2D
αβγβ
ααββ + q1D

αβαβ
ααββ

2 = q1q3D
αβγδ
ααββ + q1D

αβαγ
ααββ

q1 = q2D
αβαγ
ααββ +D

αβαβ
ααββ















1 = q1q2D
αβαγ
αββα + q1D

αβαβ
αββα

2 = q1q3D
αβγδ
αββα + q1D

αβγβ
αββα

q1 = q2D
αβγβ
αββα +D

αβαβ
αββα

(60)

where different indices denote different colors. Notice that the method produces four equations

for each correlation function (two per pinching and per channel), but only three turn out to be

independent. Since each duality relation (58) involves four coefficients, the above equations are

not sufficient to fix everything. We now show how the duality for the correlators Gαααα, Gααββ ,

Gαββα can be completely determined exploiting also the relations (33), (34).

The matrices Cα defined in (33) are hermitian, due to the presence of the antilinear charge

conjugation operator C, with C2 = I, CµρσC = µσρ, CµαC = µα and CCρσ
α C = (Cρσ

α )
∗
. They also

satisfy C
ρρ
α = 0, ρ = 1, . . . , q, and

∑

α Cα = 0. Other properties follow requiring the consistency
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of the OPE’s for the kink fields and for the dual spin µα. For example,

µα · µα =
∑

σ,ω

Cρσ
α Cσω

α µρσ · µσω (61)

=

(

∑

σ 6=ρ

Cρσ
α Cσρ

α

)

Ĩ +
∑

ω 6=ρ

(

∑

σ 6=ρ,ω

Cρσ
α Cσω

α

)

[

Cµµρω + . . .
]

; (62)

comparing with (49) we obtain the matrix relation

C2
α = q1I + q2Cα . (63)

Analogously, from (48) we derive

CαCβ = −I − (Cα + Cβ) , α 6= β , (64)

which implies in particular [Cα, Cβ ] = 0. Hence, the set of q hermitian matrices Cα can be

simultaneously diagonalized by a unitary transformation U and put in the form

Cρσ
α |diag = (qδαρ − 1)δρσ , (65)

which follows from the observation that the Cα’s are traceless, sum to zero and, due to (63),

have −1 and q1 as only eigenvalues. It is also simple to check that

〈µαµα〉 =
1

q
TrC2

α 〈µαβµβα〉 = q1〈µαβµβα〉 , (66)

〈µαµαµα〉 =
1

q
TrC3

α 〈µαβµβγµγα〉 = q2q1〈µαβµβγµγα〉 , (67)

in agreement with (56), (57). Starting from the diagonal form (65) and the existence of the

unitary matrix U it is possible to show (see Appendix C) that

Cρσ
α = ei(ϕασ−ϕαρ) − δρσ, (68)

where the phases ϕαρ must satisfy the equation19

1

q

q
∑

ρ=1

ei(ϕαρ−ϕβρ) = δαβ . (69)

We can now notice that (33), (34) and (55) imply

q1D
αβαβ
α1α2α3α4

=
1

q

∑

ρ,σ

Cρσ
α1
Cσρ
α2
Cρσ
α3
Cσρ
α4

; (70)

using |Cρσ
α | = 1 − δρσ and hermiticity C

σρ
α = (Cρσ

α )
∗
we obtain D

αβαβ
αααα = D

αβαβ
ααββ = D

αβαβ
αββα = 1,

independently of the phases ϕαβ . With this information, (59) and (60) determine the remaining

19The properties of matrices Cα we obtain in this section do not refer to any specific value of q. Of course they

are satisfied by the matrices that we already determined in the previous section for q = 2, 3, 4.
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Figure 5: Four-point boundary correlations on a simply connected domain L. Left: Clusters

connecting x1 to x3 and x2 to x4 necessarily cross and cannot be distinct. Right: Dashed

lines represent allowed clusters in the FK representation on the dual lattice L∗; continuous lines
correspond to clusters on L connecting all the four points. In the continuum limit L, L∗ and L

coincide.

coefficients, giving

Gαααα = q1q2q3 G̃αβγδ + q1q2

(

Gαβγβ + G̃αβαγ

)

+ q1 G̃αβαβ , (71)

Gααββ = −q2q3 G̃αβγδ − q2 G̃αβγβ + q1q2 G̃αβαγ + q1 G̃αβαβ , (72)

Gαββα = −q2q3 G̃αβγδ + q1q2 G̃αβγβ − q2 G̃αβαγ + q1 G̃αβαβ , (73)

with different indices denoting different colors.

The problem with the remaining correlator Gαβαβ is that (70) does not help, because the

phases do not cancel, and we are left with the three equations coming from the OPE for four

unknowns.

5 The boundary case

Since the OPE’s for the kink and spin fields reflect local properties of the field theory, the

duality relations obtained in the previous section hold true also in the case in which the points

x1, . . . , xn in (55), instead of being located on the infinite plane, lie inside a simply connected

domain L ⊂ R
2. Actually, the duality relations continue to hold also in the case the points

x1, . . . , xn are located on the boundary of L, simply because the OPE’s (32), (48) and (49),

whose structure is completely determined by the symmetry, can be used also for points on the

boundary, provided bulk OPE coefficients and scaling dimensions are replaced by boundary OPE

coefficients and scaling dimensions. It is not difficult to see, however, that having the points on

the boundary rather than in the bulk may reduce the number of linearly independent correlation

functions. The first interesting case, that we now discuss, arises for n = 4.

Let us order the points x1, . . . , x4 on the boundary as shown in Fig. 5. Since in this boundary
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case a cluster containing x1 and x3 must necessarily cross a cluster containing x2 and x4, the

probability Pabab(x1, x2, x3, x4) that these two pairs of points belong to two different clusters

necessarily vanishes. This topological constraint reduces to three the number of linearly inde-

pendent boundary spin correlators (we denote them with a superscript B); indeed, inverting

(19)–(22) and setting Pabab = 0 gives20

q1(q
2 − 3q + 1)GB

αβαβ − (2q − 3)GB
αααα + q1(G

B
ααββ +GB

αββα) = 0 . (74)

Using the duality relations (71), (72), (73) and the OPE equations (59) for Gαβαβ , (74) can be

rewritten as

[

1 + q1(q
2 − 3q + 1)Dαβαβ

αβαβ

](

G̃B
αβαβ + G̃B

αβγδ − G̃B
αβαγ − G̃B

αβγβ

)

= 0 , (75)

or, in view of the reduction in the number of independent correlators , as the linear relation21

G̃B
αβαβ + G̃B

αβγδ = G̃B
αβαγ + G̃B

αβγβ . (76)

Using this equation to eliminate G̃B
αβαβ in (71), (72) and (73), the duality for boundary corre-

lators is fully determined as

GB
αααα = q1(q2q3 − 1)G̃B

αβγδ + q21(G̃
B
αβγβ + G̃B

αβαγ), (77)

GB
ααββ = (2q2 − q21)G̃

B
αβγδ + G̃B

αβγβ + q21G̃
B
αβαγ , (78)

GB
αββα = (2q2 − q21)G̃

B
αβγδ + q21G̃

B
αβγβ + G̃B

αβαγ . (79)

Substituting in (19)–(22) with Pabab = 0 one also obtains for the boundary connectivities the

simple relations

PB
aaaa = G̃B

αβγδ , (80)

PB
aabb = G̃B

αβαγ − G̃B
αβγδ , (81)

PB
abba = G̃B

αβγβ − G̃B
αβγδ . (82)

Equation (80) can be interpreted as follows in the language of lattice duality. If we interpret

the insertion of a kink field on the boundary as creating a domain wall along the boundary of

the dual lattice L∗, the correlator G̃B
αβγδ corresponds to a partition of the boundary into four

regions with different colors and will receive contributions only from graphs on L∗ without FK

clusters connecting different regions. Equation (80) then means that these graphs are in one-to-

one correspondence with the graphs on L in which the four boundary points all belong to the

same FK cluster (see Fig. 5)). Similar reasonings can be used for (81) and (82).

20Different greek indices in eqs. (74–82) denote different colors.
21Duality for boundary correlators of the q-state Potts model on the lattice was studied in [22, 23, 24], where

dual partition functions with domain wall boundary conditions correspond to our kink field boundary correlators

G̃B
α1α2,...

; with this identification, the relation (76) is contained in [24]. Potts partition functions on a non-simply

connected domain have been studied in [25]. An early investigation of Potts correlation functions is in [26].
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Figure 6: The elastic kink-kink scattering amplitudes S
βδ
αγ(s) (left) are related by the LSZ

formalism to the four-point correlation functions G̃B
αβγδ of the asymptotic fields µB

αβ(x) (right).

We conclude this section observing that (76) leads to a linear relation among the elastic kink-

kink scattering amplitudes in the (1+1)-dimensional field theory associated by Wick rotation to

the Euclidean theory on the plane. In this case, indeed, the boundary fields µB
αβ(x) entering (76)

can be interpreted as the asymptotic fields which create a kink excitation Kαβ at time t→ ±∞
(Fig. 6). The kink-kink elastic amplitudes

Sβδ
αγ(s) = out〈Kαδ(p4)Kδγ(p3)|Kαβ(p1)Kβγ(p2)〉in , (83)

where the square of the center of mass energy s = (p1+ p2)
2
µ is the only relativistic invariant for

this (1 + 1)-dimensional process, can be written within the LSZ formalism (see e.g. [27]) as

Sβδ
αγ(s) = lim

t1,t2→−∞
lim

t3,t4→+∞

∫

dx1 . . .

∫

dx4 eip4·x4eip3·x3e−ip1·x1e−ip2·x2

←→
∂t4
←→
∂t3
←→
∂t2
←→
∂t1 〈µB

αβ(x1, t1)µ
B
βγ(x2, t2)µ

B
γδ(x3, t3)µ

B
δα(x4, t4)〉 ,

(84)

where the integrals are taken along the one-dimensional space coordinate and
←→
∂t is defined by

A
←→
∂t B = A(∂tB)− (∂tA)B. Equation (76) then leads to

Sβδ
αγ(s) + Sββ

αα(s) = Sββ
αγ (s) + Sβγ

αα(s) , (85)

where different indices denote different colors. This relation was already found in [5] as a

byproduct of the Yang-Baxter equations, i.e. of the integrability of the scaling limit of the q-

state Potts model. Here integrability does not appear to play a role, and then (85) should hold

also for non-minimal, non-integrable realizations of the symmetry, if they exist. Ultimately, the

vanishing of the probability that the trajectories of two particles do not cross in the (1 + 1)-

dimensional space-time relates amplitudes which would be independent on the basis of color

symmetry alone.
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6 Conclusion

In this paper we considered the q-color Potts field theory characterized by invariance under

color permutations and having the spin fields σα(x) as fundamental fields. We discussed how

the theory can be given a meaning for real positive values of q ≤ qc for the purpose of describing

the scaling limit associated to the second order phase transition of the random cluster model,

consistently with the expectations coming from the Fortuin-Kasteleyn correspondence. In par-

ticular we showed that, although the number of spin fields is badly defined for q non-integer, the

number of linearly independent n-point spin correlation functions is a q-independent integer Fn

coinciding with the number of partitions of n elements into subsets each containing more than

one element. These n-point spin correlators, which in turn determine the connectivities in the

random cluster model, contain nc ≤ n different color indices. Hence, they enjoy an ordinary

definition for integer values of q ≥ nc, but formal use of the symmetry unambiguously prescribes

their analytic continuation to real values of q. The mechanism allowing the analytic continuation

is exemplified by the form of OPE that we obtained for the spin fields (equations (48), (49)):

given two colors, the symmetry only discriminates whether they are equal or different, and q

enters as a parameter which can take real values.

We also discussed how the purely magnetic properties of the Potts model, which are well

defined for integer values of q, are described by the sector of the theory in which the only

spin variables σα playing a role are those with α = 1, . . . , q. The number Mn(q) of linearly

independent n-point correlators of such variables, which is smaller than Fn for n large enough,

has been determined for q = 3, 4.

For the two-dimensional case, we studied the duality relations between the spin correlators

in the symmetric phase and the kink field correlators in the spontaneously broken phase, both

for bulk and boundary correlators, exploiting the OPE as only input. For the case of four-point

correlators, the first with Fn > 1, our method gives the duality relations for three of the four

independent bulk correlators, while it completely fixes the duality for independent boundary

correlators, whose number is reduced to three for topological reasons. The ultimate reason for

our inability to fix completely the bulk duality is that the OPE (32) for kink fields determines

the fusion of adjacent fields only: while this is the only possibility on the boundary, in the bulk

also the fusion of non-adjacent fields (i.e. x1 → x3 in Fig. 4) is allowed. Clearly this point

requires further investigation.

Finally, we showed how the constraints that topology imposes on boundary correlators leads,

through the LSZ formalism, to relations among kink scattering amplitudes in (1+1)-dimensional

space-time. These relations, already observed within a framework based on integrability, appear

in our derivation as a generic feature of two-dimensional field theories with spontaneously broken

Sq symmetry.

Acknowledgments. J.V. thanks A. De Luca and F. Mancarella for discussions. Work sup-
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Appendix A

Given a set S of n elements the number of partitions of the elements of S is the Bell number

Bn (see Table 1 for n ≤ 10). The most straightforward way to compute the Bell numbers is

through the recursive relation

Bn =
n−1
∑

k=0

(

n− 1

k

)

Bk, B0 ≡ 1, (86)

which is easily proved observing that we can fix one element of the set S and consider the

partitions in which this element appears with k other elements, k = 0, . . . , n − 1. The number

of such partitions will be
(

n− 1

k

)

Bn−1−k ; (87)

then summing over k and using
(

n−1
k

)

=
(

n−1
n−1−k

)

we obtain (86).

We similarly define the numbers Fn as

Bn =

n
∑

k=0

(

n

k

)

Fk, F0 ≡ 1. (88)

Fn is the number of partitions of S whose blocks contain at least two elements. The proof is

again elementary (see e.g. [28]). We divide all the Bn partitions of S into those containing

exactly k = 0, 1, . . . , n isolated points, and then we take partitions of the remaining n−k points

in such way that no point is isolated. It is clear that we end up with (88).

Recalling the combinatorial identity
(n+1

k

)

=
(n
k

)

+
( n
k−1

)

, expression (88) implies

Bn+1 −Bn =
n
∑

k=0

(

n

k

)

Fk+1 . (89)

On the other hand, (86) gives Bn+1 =
∑n

k=0

(n
k

)

Bk, and using (88) we derive

n
∑

k=0

(

n

k

)

(Fk+1 + Fk −Bk) = 0 ∀n ≥ 0 . (90)

By induction we finally obtain22

Bn = Fn + Fn+1 . (91)

The number of k-partitions (partitions into k non-empty subsets) of a set of n elements is

the Stirling number S(n, k). It satisfies Bn =
∑n

k=1 S(n, k) from its definition, as well as the

recursive equation

S(n, k) = k S(n− 1, k) + S(n− 1, k − 1), n ≥ k, k ≥ 1 , (92)

22Alternatively, one can recover (91) introducing the exponential generating functions B(x) =
∑

n
Bn

n!
xn = ee

x−1

and F(x) =
∑

n
Fn

n!
xn = ee

x
−1−x; the result then follows from B(x) = F(x) + F ′(x). We thank the referee for

this observation.
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n 1 2 3 4 5 6 7 8 9 10

Fn 0 1 1 4 11 41 162 715 3425 17722

S̃(n, 1) 0 1 1 1 1 1 1 1 1 1

S̃(n, 2) 0 0 0 3 10 25 56 119 246 501

S̃(n, 3) 0 0 0 0 0 15 105 490 1918 6825

S̃(n, 4) 0 0 0 0 0 0 0 105 1260 9450

S̃(n, 5) 0 0 0 0 0 0 0 0 0 945

Table 2: The Fn independent n-point spin correlators without isolated indices decompose into

subsets containing S̃(n, k) correlators with indices of k different colors.

from the fact that we can obtain a k-partition of the set {x1, . . . , xn} adding xn to one of the k

blocks of a k-partition of the elements {x1, . . . , xn−1}, or joining xn as a single block to a (k−1)-

partition of {x1, . . . , xn−1} . The exponential generating function Sk(x) =
∑

n≥k S(n, k)
xn

n!

satisfies S ′k(x) = kSk(x) + Sk−1(x), and is given by Sk(x) = 1
k!(e

x − 1)k. We also introduce the

generalized Stirling number S̃(n, k) as the number of k-partitions of a set of n elements whose

blocks contain at least two elements (non-singleton k-partition); the relation

Fn =

n−1
∑

k=1

S̃(n, k) (93)

then expresses the decomposition of the total number of independent n-point spin correlation

functions (which we take without isolated indices) into subsets with indices of k different colors.

Non-singleton k-partitions of the set {x1, . . . , xn} are obtained adding xn to one of the k blocks of

a non-singleton k-partition of {x1, . . . , xn−1}, or by joining the block {xn, xj}, for j = 1, . . . , n−1,
to a non-singleton (k − 1)-partition of {x1, . . . , xj−1, xj+1, . . . , xn−1}. We have then

S̃(n, k) = kS̃(n− 1, k) + (n− 1)S̃(n− 2, k − 1), n ≥ k, k ≥ 1. (94)

The exponential generating function is S̃k(x) = 1
k!(e

x − 1 − x)k and solves S̃ ′k(x) = kS̃k(x) +
xS̃k−1(x). The first few S̃(n, k) are collected in Table 2.

Appendix B

In this appendix we determine the number Mn(q) of Sq-inequivalent, linearly independent n-

point spin correlators (12) which determine magnetic correlations in the Potts model at q =

2, 3, 4. We exploit the fact, discussed in Section 3, that at q = 2, 3, 4 the symmetric group

factorizes as

Sq = Kq ⋊ Sq−1 , (95)

with K4 = D2, K3 = Z3, K2 = Z2, and that the Potts model is described by q − 1 indepen-

dent spin variables t1, . . . , tq−1 charged under the abelian group Kq. Non-vanishing correlation

functions are neutral under Kq and invariant under permutations of the q − 1 operators ti.
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At q = 2, the only independent variable is t1 with charge +1 under Z2. The neutrality

condition for the n-point correlation functions is

n ≡ 0 mod 2, (96)

giving M2k(2) = 1, M2k+1(2) = 0.

At q = 3, the independent spin variables are t1 and t2 with Z3 charge +1 and −1, respectively.
Given a n-point correlation function containing n1 variables t1 and n2 variables t2 we require

n1 + n2 = n, (97)

n1 − n2 ≡ 0 mod 3, (98)

or equivalently n1+n ≡ 0 mod 3, with n1 = 0, . . . , n. Assigned the couple of integers {n1, n2} =
{n1, n − n1} satisfying the constraint (98), the total number of distinct correlation functions

we can construct is the binomial coefficient
(

n
n1

)

. The charge conjugation operation, however,

exchanges n1 with n2, and correlation functions obtained by n1 → n − n1 are equal; notice

indeed that
(

n
n1

)

=
(

n
n−n1

)

. It follows23

Mn(3) =
1

2

n
∑

n=0
n1+n≡0

mod 3

(

n

n1

)

. (99)

The elements of the sequence (99) (see the first few of them in Table 1) coincide with the

Jacobsthal numbers [29] and satisfy the recursive relation

Mn+1(3) = Mn(3) + 2Mn−1(3) , (100)

with M1(3) = 0, M2(3) = 1. We will not prove (100) directly but we will justify it through

the following observation. Consider an hypertetrahedron with q vertices labeled by the numbers

1, . . . , q. The number y(n) of closed n-step paths starting from a given vertex, say 1, of the

hypertetrahedron satisfies the recursive relation (see Appendix C)

y(n) = (q − 2)y(n−1) + (q − 1)y(n−2) , (101)

with y(1) = 0, y(2) = q − 1. The closed n-step paths γ(n) in (101) are considered distinct even

when they differ by a permutation π ∈ Sq−1 of the q − 1 vertices 2, . . . , q. At q = 3 there is

only one possible permutation π, and it exchanges the vertices 2 and 3. The application of π

to a path γ(n) generates the path reflected along the symmetry axis containing the vertex 1 of

an equilateral triangle. The number of closed paths inequivalent under permutations at q = 3

is then just half of the total number of closed paths y(n), and in particular satisfies (101) with

q = 3. Finally notice that closed n-step paths γ(n) inequivalent under permutations are in one

23If n is even and n1 = n/2 the factor 1/2 in (99) avoids the double counting of the correlation functions

obtained exchanging in block the positions of the n1 operators t1 with the n2 = n1 operators t2.
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to one correspondence with independent n-point kink fields correlation functions24 (27), whose

number is Mn(q). Consistency requires that Mn(3) satisfies the recursive equation (101) with

q = 3, which indeed coincides with (100).

For q = 4 we consider correlation functions of the three variables t1, t2 and t3 with D2 =

Z2×Z2 charges (1, 0), (0, 1) and (1, 1), respectively. A non-vanishing n-point correlation function

with n1 variables t1, n2 variables t2 and n3 variables t3 satisfies

n1 + n2 + n3 = n, (102)

(n1 + n3, n2 + n3) ≡ (0, 0) mod 2 , (103)

or, more symmetrically, ni ≡ n mod 2, i = 1, 2, 3. The number of distinct n-point correlation

functions associated to the solution {n1, n2, n3} of (102) and (103) is n!
n1!n2!n3!

. Correlation

functions obtained by permutations of the integers ni are identified and we must therefore

choose a definite order for them, for example n1 ≤ n2 ≤ n3; ni = 0, . . . , n. When two positive

integers n1 and n2 coincide, the two correlation functions obtained by exchanging in block the

positions of the n1 operators t1 with the n2 operators t2 are also equal and counted twice among

the n!
n1!n2!n3!

correlation functions. Similarly, if n1 = n2 = n3 permutational symmetry does not

distinguish among the 3! correlation functions obtained exchanging in block the positions of the

ni variables ti for i = 1, 2, 3. The final result is then

Mn(4) =
∑

n1+n2+n3=n
ni≡n mod 2

n!

n1!n2!n3!

1

ne(n1, n2, n3)!
, (104)

where the ni are ordered, ni ≤ ni+1, and ne(n1, n2, n3) is the number of non-zero equal integers

in the tern {n1, n2, n3}. The integer sequence (104) (see Table 1) is also known [30], and is

solution of the recursive equation

Mn+1(4) = 2Mn(4) + 3Mn−1(4)− 1 , (105)

with M1(4) = 0, M2(4) = 1. Again we will not prove (105) directly, but will explain why

a proper counting of closed paths γ(n) inequivalent under permutations of the vertices on a

tetrahedron is obtained subtracting 1 to the r.h.s. of (101) with q = 4. It is convenient to

represent γ(n) as the sequence γ(n) = {1, v2, . . . , vn, 1} with vi = 1, . . . , 4 and vi 6= vi+1, which

is also a particular coloration of n points on a circle. The way an (n + 1)-step closed path

γ(n+1) = {1, v2, . . . , vn, vn+1, 1} is constructed by adding a new point vn+1 and taking care of

permutational symmetry is the following25. First we identify the largest vi, i = 1, . . . , n, and then

generate all the paths γ(n+1) for which vn+1 6= vn, 1, with vn+1 = 2, . . . ,min{max{vi} + 1, 4}.
24Any path γ(n) can be represented as the sequence of n + 1 vertices {1, v2, . . . , vn, 1} with vi 6= vi+1 and

vi = 1 . . . q. The associated kink fields correlation function is 〈µ1v2(x1) . . . µvn1(xn)〉. Alternatively γ(n) can be

thought as a particular coloration of n points on a circle. See again Appendix C.
25Notice that there are two cases corresponding to vn = 1 or vn 6= 1. In the first case the new point vn+1 is

added to some closed (n− 1)-step path γ(n−1); in the second case the new point is added to an (n− 1)-step open

path. The number of (n− 1)-step open paths is however equal to the number of closed n-step paths γ(n)
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The recursion (101) fails only if max{vi} = 2 and then vn = 1, 2. In this case the closed paths

γ(n+1) with vn+1 = 3, 4 are identified by permutational symmetry and the choice vn+1 = 4 must

be discarded; this leads to (105).

We conclude noticing that n distinct vertices are sufficient (and necessary) to enumerate

all closed n-step paths inequivalent under permutations of the vertices on an hypertetrahedron.

In particular the number Mn(q) of closed n-step paths inequivalent under permutations on an

hypertetrahedron with q vertices is constant for any q ≥ n, and we have already shown in Section

2.3 that, when no restriction is assumed on the number of available vertices so that all closed

inequivalent paths are counted, this number coincides with Fn:

Mn(q) = Fn for q ≥ n . (106)

Appendix C

Given the diagonal form (65) and the unitary matrix U , we have

Cρσ
α =

∑

λ,ν

U
†
ρλ(qδαν − 1)δλνUνσ (107)

= qU †
ραUασ − δρσ . (108)

Requiring C
ρρ
α = 0 for ρ, α = 1 . . . q, gives

Uαρ =
1√
q
eiϕαρ ; (109)

the equation (69) for the phases is then the self-consistent condition of unitarity of the matrix

U . Substituting (109) back into (108) we obtain (68). The matrices Cα in (35) and (38) for

q = 2, 3 are reproduced by the solution

ϕαρ = ±2π

q
αρ (110)

of the phase equation (69). For q = 4, the matrix (43) corresponds instead26 to the solution

ϕαρ = ±π(α1ρ1 + α2ρ2), (111)

with α = (α1, α2), ρ = (ρ1, ρ2), αi, ρi = 1, 2.

We conclude this appendix giving a simple geometrical interpretation of the relation (63).

Without loss of generality we can choose the phases so that one of the matrices Cα, say Cq, is

real, i.e.

Cq =













0 1 · · · 1

1 0 · · · 1
...

...
. . .

...

1 1 · · · 0













. (112)

26Of course (110) solves (69) also for q = 4. This solution, however, would lead to a matrix Cα associated to

K4 = Z4, inconsistent with our general discussion of section 3 (in particular, Aut(Z4) = Z2).
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This is the adjacency matrix of a fully connected graph with q sites, i.e. the projection on the

plane of a hypertetrahedron with q vertices. We can then use the formula (63) to compute

powers of Cq and obtain

Cn
q = y(n)I + x(n)Cq, (113)

with the integers x(n) and y(n) satisfying the recursive equations

y(n+1) = q1x
(n), (114)

x(n+1) = q2x
(n) + y(n). (115)

It is now simple to realize that y(n) and x(n) are, respectively, the number of closed paths of

length n starting from a vertex v1 of the hypertetrahedron and the number of open paths of

length n from v1 to vk. Indeed, if we consider such an open path and we add the link (vk, v1)

we obtain a closed path of length n+ 1; however, by permutational symmetry, all the locations

of vk 6= v1 are equivalent, and we obtain (114). Suppose instead to remove from the original

open path the last link (vj , vk); this gives a path of length n− 1 from v1 to vj that can be open

with multiplicity q2 (j 6= 1, k), or closed with multiplicity one (j = 1), reproducing (115). The

recursions (114) and (115) give for y(n) equation (101), whose solution is

y(n) =
1

q

[

(−1)nq1 + qn1
]

, (116)

which is q−1 times the chromatic polynomial27 πCn(q) for the the cyclic graph Cn, i.e. the graph

obtained putting n points on a circle. We conclude that the decompositions over kink fields

of the correlator 〈µα(x1)µα(x2) . . . µα(xn)〉 can be associated to closed n-step paths on a fully

connected graph with q vertices, or to colorations of a ring of n points with q colors.
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