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Abstract

New methods for derivation of Bell polynomials of the second kind are presented.
The methods are based on an ordinary generating function and its composita. The
relation between a composita and a Bell polynomial is demonstrated. Main theorems
are written and examples of Bell polynomials for trigonometric functions, polynomials,
radicals, and Bernoulli functions are given.

1 Introduction

Bell polynomials are an important tool in solving various mathematical problems, among
which is finding of higher derivatives of composite functions [1l 2, 3]. However, a general
expression for Bell polynomials is rather difficult to derive. One of the main tools in com-
putations of Bell polynomials is exponential generating functions [2, 3]. In this paper, it is
proposed to use ordinary generating functions and their compositae [4] to derive expressions
for Bell polynomials. Let us introduce the following notation. Let there be given a function
y(z) and an ordinary generating function Y(z,2) = > _, y(n;(m) z". By definition, the Bell
polynomial of the second kind is written as

n— 1 n
By, y?, .y = k! Z ()\1, Ag, - )\k) y ey

TLECH

or as

n! yM(z) yP(z) M (a)
B, = — .
kT > ! A

[ [
ry 9! !

where y) is the i-th derivative of the function y(x), C, is the set of compositions of n, and
Ty is the composition of n with k parts exactly {A; + Ao + ... Ay = n}.
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The polynomial B,, ; has the form of a triangle in which the left part contains all deriva-
tives of the function y(x) and the right part contains [¢/(z)]".
y®

y(2) [y(l)]2
y(3) Bss [y(l)]?)
?/(4) B4,2 B4,3 [y(”]‘*

y™ By - .. By [y(l)]n

The generating function is Y (z,2) = ) ARG P y(x + z) —y(x) [1, 2, B]. Hence, we

n>0 nl
can introduce the composita of the generating function Y (z, z) as [4] 5]

A2) (Ak)

y ()  y™ ()
(n, k,x) E 2! Nl
TLECH

and the generating function for Y2(n, k, z) will have the expression:

Y (2, 2)]F = (y(z + 2) ZYA (n,k,z)z

n>k

In view of the foregoing, we can write the relation for the Bell polynomial and composita of
the ordinary generating function Y (z, z):

Buy = HYA(n k,x). (1)

Because there is a one-to-one relation between the composita and the Riordan array [5], the
exponential Riordan array (1,y(z)) and the Bell polynomial B,, x(y1,%2; - - -, Yn—k+1), Where

y(z) =3, Yn’r, are equivalent.

2 Expressions for Bell polynomials based on the com-
posita of a generating function Y («, 2)

Let us consider the problem of finding the Bell polynomial B, ; as the problem of finding
coefficients of an ordinary generating function Y («, z)*. This is possible if we represent the
generating function Y'(z, z) as F(g(z), h(z)); then we can use the apparatus of compositae
introduced in [4], B]. Let us consider the following examples:

Example 2.1. Let there be given a function y(z) with two derivatives y'(z) and y”(z). Let
us find an expression for the composita of this function. By definition,

Al Ag! Al

Y&(n, k,x) =

TE€ECH
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Then, the generating function has the expression y(z + z) — y(x) = v'(z)z + #22. Hence,

according to the formula of the composita for the polynomial az + bz? [4], we obtain
k o (F@\T
o =, ° e (5 )

Thus, the Bell polynomial for the function with derivatives y'(z) and y”(z) is equal to

B= 10, F Y (K )

Example 2.2. Let there be given a function y(x) = z™, where m > 0. The generating
function is Y (x, z) = (x4 2)™ — 2™. Let us find a composita of Y (z, z); for this purpose, we
are to find the coefficients:

k .
km Z>m r_ km k ( Z)Jm -
1+—) —1| = 1+ — -1
v [( T v Z (j T2 (=07
7=0
From whence, knowing that the coefficients for (1 + i)jm are equal to (j m) L we obtain the

desired composita o
k .
kN (jm ,
Y2, k,z) = 2" <) ( )x_" —1)k,
k) =32 () (7)o

Then the Bell polynomial is

k .
_ n' km—n k Jjm k—j
B = 2 <y) ( " )(_1) i

J=0

m

Example 2.3. Let there be given a function y(x) = =™, where m > 0. The generating
function is Y (x,2) = —2 1

— —=. Let us find a composita of Y (z, z); for this purpose, we
are to find the coefficients

(z+2)™ ™

1
k __
)_zmk

Y(x,z

k
1 1
(1+32)" ’
from whence it follows that the composita is equal to

() o (1)) e

J=1

Then the Bell polynomial is equal to

() e (12m)) aee



Example 2.4. Let us consider the example of use of the composita for the generating
function f(z2) = az + bz? + c2*:

k .
FA(n, k‘) = Z (f) (n _jk: B ]) ak—j62j+k—ncn—k—j‘

i=0

Substitution of a = &) = f”(w)a c= @

e () Yo (5 (™

Let us consider the example f(z) = 23 + 2z, f'(x) = 32* + 2, f"(x) = 62, f"(x) = 6; then,
a=32>+2, b= 3wz, c=1. Then the Bell polynomial is

k .
n! J K\ nikr2j —nikros k—j
EE (n_k ) <])3 ++2]l’ +k+25 (31’2+2)
Jj=0

Presented below are the first terms of this polynomial

gives the Bell polynomial:

32242
6z, (3% + 2)?
6, 187(32” +2), (32* +2)3
0, 1802* + 48, 36x(32* +2)?, (3z° +2)*

The same reasoning allows us to obtain Bell polynomials for functions whose generating
functions y(x + z) — y(z) are expressed in polynomials. Expressions for the compositae of
polynomials and methods of their derivation are described in [4].

Example 2.5. Let us find a Bell polynomial for the function sinx. For this purpose, we
find the composita of the function sin(x + z) — sinx. Then

S(z,z) = coswsin z + sinz(cosz — 1),

where sin z and cos z are generating functions, and sinz and cosx are coefficients. Hence
the composita of the function cosx sin z [4] is

[ME

0 () om = ks

m

p(L+(=D)"")

F2(n,k,z) = (cosz) S

m=
Now, let us write the coefficients T}, for cos®(z) = Y om0 Tni2™.
1, n=>0
T,.=2 0 n — odd,

Bl _giyn n
ST Di20 (lf) (k(nz),) (—=1)2, n —even.
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Then we obtain the composita of the generating function sin z(cos(z) — 1)

n k Nyl L%J .
A Y G i e Gt LA oo [
R3(n,k,x) = (sina)*>— ; > Y G- 2i) Z,

J =0

Next, from the theorem of the composita of the sum of generating functions [4], we obtain
the desired composita

k—1 n—k+j
S¥(n,k,x) = F3(n,k,x) + R (n, k,z) + ) ( ) > FA(ij,x)R¥n — ik — j,x).
J

j=1 i=j

Presented below are the first terms of the Bell polynomial B, ; = Z—;SA(n,k,:c) for the
function sin x:
cos T

—sinz, cos®x
—cosx, —3 cosx sinx, cos®x

sinz, 3sin?z —4 cos’x, —6 cos’z sinzx, cos’x

3 5

cosx, 15 cosz sinz, 15 cosx sin®x — 10 cos®z, —10 cos® z sinz, cos®

Now the derivative f1(4) (z) for the function f(z) = ™% is expressed as
f1(4) (z) = €™ (sinz + 3sin’z — 4 cos’ z — 6 cos” rsinx + cos’ z) .
The derivative f\”(z) for fo(z) = sin®z is expressed as

2

f2(5)(x) = 3sin® 2(cos ) + 6sinz(15 cos zsin ) + 6(15 cos rsin® . — 10 cos® ) =

= 183 sin® z cos  — 60 cos® .

In the same way, we can find a Bell polynomial for the function cos x; for this purpose,
we are to find the composita of the generating function:

C(x,z) = cosx(cos z — 1) — sinzsin z.

Example 2.6. Let us consider the function y(x) = /x. The generating function is Y (x, z) =

Y7+ 7z — /7. Hence
V(o) = ()" 1 - W}m

Given the composita of the generating function 1 — v/1 — z [5], we obtain the desired com-
posita

A _ n—m
Y (n,m, ZL’) = (%)m% (n_r];—k)g_2n+m+k(_1)k (n-i—k—l)x—n7 n>m.



3 Method based on operations on compositae Y2(n, k, z)

Let us consider peculiarities of the generating function Y (z,2) = > _, %z" =y(r+2)—
y(x). For this purpose, we prove the following theorem.

Theorem 3.1. Let there be given a composition f(x) = g(y(z)) and functions g(z), y(x)
with an infinite number of derivatives in the general case. Then the generating functions
F(z,2) = > .50 f(nrz!(x)z", Y(r,2) = > y(n;,(x)z u G(r,2) = 3,5 g(n;!(x)z” form the
composition

F(z,2) = G(y, Y (2, 2))
Proof. Let us write the known Faa di Bruno formula [1 2, 3):

(>\1 A2) (k)
(o) y (@) y™(x)
f Zg (%) ku Z ! N

TLECH 2.

Hence

A!
TRECH k

Thus, we obtain the formula for the composition of ordinary generating functions [4]. It is
evident that the nonzero term of F(z, 2) is equal to g(y(z)). O

The peculiarity here is that in the operation of the composition of generating functions,
the argument z in G(z, 2z) is replaced by y(z). Let us turn to the problem of finding com-
positae of the generating functions (y(z + z) — y(z)) using the operations of summation,
product, and composition.

Theorem 3.2. Let there be generating functions F(x,z) = f(x + 2) — f(z) = > %z",
n>0
G(z,2) = glx +2) — g(z) = 3 ¢™(x)2" and their compositae F2(n,k,z) , G(n, k, ).
n>0
Then the generating function A(z, z) = F(z, 2) + G(z, z) has the composita

n—k+j

k-1
A% (n, k,z) = F2(n, k,x) + Z Cj) Z F2(i,5,0)G%n — i,k — j,2) + G2 (n, k, x).
Jj=1 =]

Proof. without proof 0
Example 3.3. Let there be f(x) = 22, F(x,2) = 2wz + 22, a composita F>(n, k,x) =
(n L) (22)%k=n and g(z) = In(z), G(x,2) = In(z + 2z) — In(z) = In(1 + Z), and a composita

G2 (n,k,z) = £ ["] 27", Then for the function a(z) = 22 + In(z), the Bell polynomial is

B nl G~ [k " K k—3j 92(k—j)—n-+i . 2(k—j)—n
kL 4 <j) Zﬁu (n—z‘—k+j) )
J=0 i=]
Now let us turn to finding of the composita Y2 (n,k, x) of the function y(z) = f(x)g(x)
expressed as the product of the functions f(z) and g(z). Let us prove the following theorem.

6



Theorem 3.4. Let there be a function a(z) = f(x)g(x); then the composita of the function
Y(z,2) = f(x + 2)g(x + z) — f(x)g(x) is equal to

YA k) =3 (f) <Z F(i, j.2)G(n — i, x>> [F@)gla)) 7 (~1)5.

=0
where F(n, k) are coefficients of the generating function [f(x+2)]*, and G(n, k) — [g(x +2)]*.

Proof. Here we have the second peculiarity: it is necessary to take into account the rule of
finding a derivative of the product. According to the Leibniz rule, we can write

Hence
y(z+2) = flz+ 2)9(z + 2)

Now let us find coefficients for the expression [f(z + 2)g(x + 2) — f(z)g(z)]*. By removing
the brackets and substituting the expression for the coefficients of the generating functions
f(z+ z) and g(z + z), we obtain the desired formula. O

Given the composita of the generating function f(x + 2) — f(z) — F2(n, k, ), the coeffi-
cients of the generating function [f(z + 2)] are calculated by the formula:

F(n, k,x) i( )FAn], x) f(z)F.

Example 3.5. Let there be a function 2% (see the example in [3] ). Let us find an expression
for the n-th derivative of this function. Let us write it in the form exp(az In(z)). For this
purpose, we find a composita of the function (x + z)In(x + z) — zIn(z) and expressions

for coefficients of the generating functions (z + 2)* and In(x + 2)*. For the first function,

F(n,k) = (z)xk_"; for the second function, G(n, k) = Z?:o (];)7]7" ["} x7"In(z)*~7. Then

J
the composita of the function (z + 2)In(z + 2) — xIn(z) is

st () (Ot g (O] m)

From this it follows that the composita of the function azInz is equal to a*A%(n, k, z).
Presented below are the first terms of this composita.

a(lnx +1)

%, a’*(Inx +1)2



21 2

622’ T
a 4a®nx+a® 3a®In*z+6a*nz+3a® A
- a*(lnz + 1)
1223 1222 7 2z ’

Hence the expression for the n-th derivative of the generating function x** has the form:

] = 2% Y 1 ;) (Z C) > o) ] (ln‘”k_m)'

§=0 i=0 m=0

Now let us consider the operation of product of compositae. For this purpose, we prove
the following theorem.

Theorem 3.6. Let there be functions f(x), g(z) and compositae of the generating functions
FA(n, k,z) for f(x+2)— f(x) and G*(n, k, x) for g(x+ 2) — g(x). Then for the composition
of the functions y(z) = ¢g(f(x)), the composita of the generating function Y'(z, z) = g(f(z +
2)) —g(f(x)) is

Y2(n,m,z) =Y FAn, k2)G*(k,m, f(z)).

Proof. _
[f@+2) = f(@)]™ = FA(n,m,x)z"

n>m

From formula () we have

Y2(n,m,z) =Y Fn, k)G (k,m, f(z)).

k=m

Given the expression for the coefficients Y (n, k, z) of the generating function y(z + 2)*, the
expression for the coefficients of the composition of the generating functions a(z + 2) =
y(f(x + z) has the form:

(f(x))™, n=0
A(n,m, l’) = { yZZ:1 FA(H, ij)Y(]ﬁm’ x), n > 0.

Note that this theorem holds true for Bell polynomials as well [3], because

< n! k! | &
Bunlx) = 3 G0 k) G f(0) = 5 3 Pk 1) ., £ ()

k=m



Example 3.7. Let us find a composita of the function f(x) = % The generating function
11 12

Ttz z T oz l4Z

for the composita is F(z, z) = Hence

FA(n, b, z) = (Z - 1) (—1)"z—k.

Now let us write the composition a(x) = @ The composita for the generating function

In(z 4 2) — In(z) is & [?] 2" From this it follows that the desired composita is equal to

Ao = 3 [ (12 e

k=m

and the Bell polynomial is

By, = m! g;nk! m z (Z__ 11) (—1)(In(z))~"*.

Example 3.8. Let us find a Bell polynomial for the function a(x) = ﬁ, the function
a(x) = g(f(x)), where g(z) = =, f(z) = = + 2% The composita of the function f(z)
is equal to F2(n, k,z) = (n L) (23 + 1) (see example No. 22)). The composita of the

function g(z) = 1; is equal to F2(n,k,z) = (7_})(1 — 2)~*". Using theorem B0, we

obtain the desired Bell polynomial:

nl e (k-1 k
B _ 2 1 2k—n 1_ 2 —m—k‘.
o m!k:m(m—l)(n—k:)(:EjL Tl — e

2241
(=22 — 2 +1)°
2 222+ 1) 2z +1)°
(=22 —z+1)° * (=22 —2+1)" (=22 —z+1)*
12 2z +1) 6(2z+1)° 6 (2z+1) 6(2z+1)° 2z +1)°

(—22 —2+1)° (—22—z4+1D" (—22—z+1)" (—22—2+1)° (—2—z+1)°
Example 3.9. Let us find a Bell polynomial for the function tan(x). For this purpose, we
represent the generating function as

tan(z) sec(z)?
1 — tan(z) tan(z)

tan(z) + tan(z)
1 — tan(z) tan(z)

A(z,z) = tan(z + z) — tan(z) =

— tan(z) =

Hence A(z,z) = f(x,tan(z)), where f(z,z) = ls_efsi)(i')zz Then the composita of f(x,z) is
equal to
n—1

FA(n,k,z) = (k B 1) tan(z)"* sec(z)?.

9



The composita of the generating function tan(z) is
7 n! o j : E—1 .

Using the theorem of product of compositae [5], we obtain the composita of the desired
function:

G®(n,m) = z": G2 (n,k)FA(k,m) =
k=m

n

=> H(;—'l)n_k izn—j—l {7};’!(—1)’%1@1 (i - D <:;__11) tan(z)* ™ sec(z)*™.

k=m j=k J

Hence the Bell polynomial is equal to

_osec(r)’ K1+ ()P . gy (J=1\ (k=1 e
Bym = - Z 5 ZQ j Jl(—1) 1) g tan(z) ",

k=m j=k

sec(x)?

2 sec(z)? tan(z), sec(x)*
6 sec(x)? tan(x)? + 2sec(r)?, 6sec(x)* tan(x), sec(x)°]
24 sec(z)? tan(z)® + 16 sec(r)? tan(w), 36 sec(z)* tan(z)? + 8sec(x)*, 12 sec(x)’ tan(z), sec(w)®

Given the composita of the function tan(z), we can obtain the composita of cot(z) by
representing cot(z) = tanl(x) (see example [3.7]).

Example 3.10. Let us derive a Bell polynomial for the function arctan(x). For this purpose,
we write the generating function

A(x, 2) = arctan(z + z) — arctan(z) = arctan (ﬁ) '

Let us find a composita of the function ;———. We represent it as
1 z
flz,2) = —.
( ) (1+$2)1+1+x2

Hence, the composita of the function f(z, z) is equal to

FA(n, k) = (Z } i)(—l)"‘k%-

Given the composita of the generating function arctan(z) [5]

((—1)3n2+k + (—1)”7%) k! i 9i (n _ 1) {j] |

2h-+1 FIAVERVAL:

= !

10



we obtain the composita of the desired generating function A(x, z):

k—m

=35 (27 G (O VT iy ]

k=m

Hence the desired Bell polynomial is equal to

3k

3ktm
| n—l )nk((—l) > +(_1)2) 9 (k- 1\ [
"m—”z 1+$2) gm+1 ZF j—1) |m|"
Presented below are the first terms of the Bell polynomial for the function arctan(x)

1
x2+1
2z 1
(22 +1)*" (22 +1)°

6( x? B 1 ) B 6 1
(a?2+1)3 3(x2+1)3 ’ (ZL'2+1)3’ (a?2+1)3

! ((x2 i ' (x2xj1)4)7 2 ((x23i1)4 3 (x22+ 1)4)’ _(x2lix1>4’ (2 i 1)

Example 3.11. Let us find a Bell polynomial for the function a(x) = \/iﬁ For this
1

Let us write the

purpose, we represent this function in the form g(h(g(f(z))) =

H

1
22
compositae for the functions f(z) = 2? and g(z) = 1

FAn,k,z) = (n ﬁ k) (2z)%n

GA(n, b, z) = (Z - i) (—1)"a—k.

Hence the composita of g(f(x) = miz is equal to

o (e

Now let us find a composita of the function f For this purpose, we also use the composition

of the functions g(h(x)). Let us derive a composita for the function y/x. For this purpose,
we write the generating function v/x + 2

(1-y1-4%)
. .

H(z,2) =vVr+2— Vo =—12

11



Note that the generating function in the brackets is the generating function for Catalan
numbers [5]. Given the composita of the function, we obtain the composita for H(z, z)

H%n, k,z) = —

n

o N ISR VEE T

n—1
Hence the composita of the function % is equal to
“k(2n—k-1 k—1
—D)"(Vx)m 4y — 2k :
(-1)"(V3) Zmn( I E

This result was obtained by L. Comtet [3]. Now from theorem [B.6] we obtain the composita

T

of the function a(z) = =

It T Cy G D oIEH ) [N B RE

k=m j=m i=k

Example 3.12. Let us find a Bell polynomial for the generating function of Bernoulli num-
bers a(x) = 2= For this purpose, we write the expressions for the coefficients of the

er—1"

generating functions F'(z,z) = (v + 2)¥ and G(z,2) = (Hi_l)k. Hence

F(n, k,z) = (k)xk_"

n

Gln, k, ) = (" Zf; 1) (z — 1)k (1),

Using formula (H]) for the composition of the generating functions g(z + z)™ and e*™* we

obtain expressions for the coefficients of h(z + z) = [m]m
1
n=>0
H(n,m,z) = ¢ ©2)m k ooy fmak—1\ (Y ¢ a ik ks
{ %Zkﬂ(_l) k!(;@rﬁll) {k} (e" —1) e n >0,

From theorem [3.4] we obtain the composita of the product a:ez—l_l

J 1=

Then the Bell polynomial for the generating function of Bernoulli numbers has the form:

n! — _ (m x m=j j .
Bym=— -1 H(i,j ALy
=D () () Swan(,’,)-

(2

12



4 Bell polynomials of inverse functions

Theorem 4.1. Let there be given a function f(x) and its composita F>(n, m, z). For the com-
posita Y2(n, m, ) of the inverse function f~!(x) = y(z), the following recurrent expressions
hold true:

1

o F&(m,m,y()) . n=m 5
Cm =N S YA k@) FA (kum,y(x) 0> 0. 8
Y k=m-+1
FA(in x) n=m

\ ) i
BT stz £ P kY2 hm @) >0

Proof. For self-inverse functions, the condition

(@) = 7 (f @) ==

is fulfilled. Hence from theorem [B.6] we can write

ZYAnkx)FA(kmy ZFAnk:x)YA(k:mf( )) = d(n,m).
k=m k=m
Simple transformations give us formulae (&l [). O

Now from formula ([II) we can write the Bell polynomial of the inverse function

nl A n! A
Bum = ﬁYl (n,m,x) = ﬁYz (n,m, f(x)).
Example 4.2. Let us consider a simple example. Let there be a function f(z) = 22, its
composita F2(n, k,z) = (n .)(22)%*7" and inverse function g(z) = y/z. Let us find an
expression for the Bell polynomial of the function /x, given the composita of the function
f(x) = 2*. In view of expression (f), we obtain

A Tlx)mv m=n
Zy(n,m, x) :{ _W ZZ:erlZ (n, k :)3)( )(2\/_)2m k > m.
In view of expression ([@l), we derive
: m=mn

(n k) (2z)k—Z2(k,m,x), n>m.

T ongn k=m

Z3 (n,m,x) = { C e
Hence the Bell polynomial for the function y/z is equal to

! n!
anm = ﬁzlA(nvmvx) = %Zf(namv \/§>

13



Example 4.3. Let there be a function f(z) = zexp(x) and Lambert function W(x). Let
us find an expression for the n-derivative of the function W (f(z)). From theorem [B.4] the
composita of the function f(z) is equal to

n jn—i (k) l.k—i
A _ kzx 7
F2(n,k,z)=e¢ ZE:O o

and the Bell polynomial is equal to

R i L
Bn,k: = H€ Z W

i=0
Hence from theorem M and in view of the fact that these are self-inverse functions we
obtain

1 n=1

W) = { P, |

— S BuW® (f(2)), n> 1.

Now we can write
e 0=t
W(n) - e—nT | =y max W(m) UL j—m (m . jnii (Z) zm
— e 216 T 1(—1) (") ZO —0)! n>1
m= J]= 1=

Presented below are the first terms for the derivative

1 —x
e
1+=x
1+a)3°
(222 +8x+9)
(14 z)de3=
(6% —362° — 792 —64)
(1+ )7
24 2% +1922°% + 62222 + 974 + 625
o—5%.
(1+x)° ’

from whence we can obtain an expression for coefficients of the sequence A042977 [6].

5 Conclusion

For derivation of the Bell polynomial of the second kind for the generating function Y (z, z) =
y(z + z) — y(z), it is necessary to use the composita of the generating function that can be
obtained:

14



1) directly from the expression Y (z, z) through transformations;

2) from theorem (B.IHAT]).

Next, using formula (), the desired polynomial is derived. The numerous examples consid-
ered in the paper convincingly prove the efficiency of the proposed methods.
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