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Abstract

A double occurrence word w over a finite alphabet Σ is a word in

which each alphabet letter appears exactly twice. Such words arise

naturally in the study of topology, graph theory, and combinatorics.

Recently, double occurrence words have been used for studying DNA

recombination events. We develop formulas for counting and enu-

merating several elementary classes of double occurrence words such

as palindromic, irreducible, and strongly-irreducible words.

1 Introduction

A double occurrence word w of size n is a word containing n distinct letters

in any order which appear exactly twice, i.e., the length of w is 2n. There

are three common pictorial representations of double occurrence words:

self-intersecting closed curves in R3, chord diagrams, and linked diagrams

as depicted in Figure 1.

Topologically, a double occurrence word with n distinct letters can be

interpreted as a closed curve traversing n fixed points in R3 twice. Such

a curve (also called an assembly graph [2]) is self-intersecting and may

contain over and under crossings when projected into the plane. Each

curve of this type can be characterized through the double occurrence word

corresponding to a path following the direction of the curve in relation to a

fixed base point. Self-intersecting closed curves are closely related to Gauss

words, knot diagrams, and their shadows [3, 7].
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Figure 1: Self-intersecting closed curve (left), chord diagram (center),

and linked diagram (right) representations of the double occurrence word

121323. Base points, indicating the starting point for reading the word, are

marked by ‖.

Chord diagrams are defined in the following way. Start with a circle

and place n distinctly labeled chords with distinct endpoints in any ar-

rangement (possibly crossing) around the circle. Label the endpoints of

each chord with the chord label. Fix a base point on the circle between any

two chord endpoints on the circle. The resulting diagram is called a chord

diagram. Each chord diagram has an associated double occurrence word

formed by reading the labels of the endpoints, from the base point back to

base point, clockwise around the circle. See [6, 8] for more information on

chord diagrams.

A linked (or linearized chord [16]) diagram is a pairing of 2n distinct

ordered points. Graphically, the ordered points are positioned on a line

and their pairing is illustrated by an arc connecting them. Such a diagram

can be specified by listing the pairs defined by the n arcs. See [17, 18, 15].

A linked diagram can be obtained from a chord diagram by cutting the

outer circle at the base point. Conversely, if we arrange the points of the

link diagram in a circle and mark a base point between the first and last

point, the corresponding representation is a chord diagram.

Since double occurrence words naturally arise in a variety of contexts,

insight into their combinatorial structure enriches several fields simultane-

ously. In this paper, we explore several classifications of double occurrence

words based on separating larger double occurrence words into smaller dou-

ble occurrence words. Further, we count and enumerate members of these

2



classes.

Some of these formulas have been derived in completely different con-

texts using a variety of approaches. Moreover none of the papers we came

across seemed to contain a compilation of the known formulas. In this pa-

per we give a unified approach to deriving these formulas and provide a

new formula, giving what appears to be an unobserved integer sequence.

We note that applications of double occurrence words extend to other

disciplines. In 2.2, we observe that certain double occurrence words are

related to particular Feynman diagrams in physics, and in Section 4 we

establish a connection between double occurrence words and DNA recom-

bination events.

2 Preliminaries

2.1 Types of Equivalences

For convenience, we let Σ = {1, 2, . . . , n} and relabel each double occurrence

word such that when i appears for the first time in the word, it is preceded

by 1, 2, . . . , i − 1. Double occurrence words labeled by this convention are

said to be in ascending order. Two double occurrence words are said to be

equivalent if they are equal after being relabeled in ascending order. If two

double occurrence words are not equivalent, they are said to be distinct.

Throughout this paper, we shall assume that all double occurrence words

are in ascending order unless stated otherwise.

For example, 122313 is a double occurrence word in ascending order. Its

reverse with the same letters is 313221, which is not in ascending order. By

relabeling 313221 in asscending order we obtain 121332. In this example

122313 is distinct from its reverse 121332. However it is easily checked that

123312 is equivalent to its reverse which motivates the following classifica-

tion.

Definition 2.1 A double occurrence word is palindromic (or symmetric) if

it is equivalent to its reverse. A double occurrence word that is palindromic

is called a palindrome.

In all three interpretations of double occurrence words (topological,

graph theoretic, and linked diagrams), the reverse word induces a diagram,
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isomorphic to the original, with the orientation reversed. In the topological

sense, the orientation refers to the orientation of the closed curve. While

the reverse of a linked diagram may be interpreted as reading the diagram

right-to-left rather than left-to-right. Finally, the reverse chord diagram

may be achieved by reading the letters of the circle in a counter-clockwise

fashion rather than clockwise.

If we wish to count the non-isomorphic diagrams generated from dou-

ble occurrence words, we observe that each diagram can have exactly two

orientations. Thus, no more than two distinct double occurrence words can

correspond to the same diagram with regard to a starting base point.

If a diagram corresponds to a palindrome, only one distinct double oc-

currence word is associated with the diagram. Therefore we may count the

number of non-isomorphic diagrams with regard to a base point as

Total Diagrams = (# of Palindromes) +
1

2
(# of Non-Palindromes)

=
(# of D.O. Words) + (# of Palindromes)

2
. (∗)

We will make use of this formula extensively throughout Section 3 to count

the number of distinct diagrams corresponding to double occurrence words

with each separation property.

It should be noted that omitting the base point in the closed curve or

chord diagram makes it possible for more than two double occurrence words

to be associated with the same diagram. For instance, rotating the base

point around the circle in Figure 1 would lead to 121323, 213231, and 132312

which is 121323, 123132, and 123213 in ascending order, respectively. We

do not consider isomorphisms of this type in this paper.

2.2 Types of Separations

As mentioned in the introduction, double occurrence words regularly appear

in various fields of mathematics. Unfortunately as a result, there are several

different, and sometimes conflicting, definitions used to express identical

properties. We shall make note of these discrepancies in notation as they

come up.

Jacques Touchard was one of the first researchers to comprehensively

consider the counting of double occurrence words. In his paper [17], he
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classified several types of linked diagrams and enumerated the number of

diagrams containing a fixed number of crossings. He introduced the classi-

fication of “unique systems” and “proper unique systems” which coincide

with the following two definitions for irreducible and strongly-irreducible

words.

Definition 2.2 If a double occurrence word w can be written as a product

w = uv of two non-empty double occurrence words u, v, then w is called

reducible; otherwise, it is called irreducible.

The number of irreducible double occurrence words has a close con-

nection with the number of non-isomorphic unlabeled connected Feynman

diagrams (also called irreducible Feynman diagrams [14]) arising in a sim-

plified model of quantum electrodynamics [4, 9].

This definition for irreducibility agrees with [1] and [2] yet conflicts

with [15] where “irreducible” is used for our notion of strongly-irreducible

as defined below.

Definition 2.3 A non-empty double occurrence word is strongly-irreducible

if it does not contain a proper sub-word that is also a double occurrence

word.

The double occurrence word 12213434 is reducible because it can be

written as the product of the two double occurrence words 1221 and 3434,

but 12344123 is irreducible. However, since 44 is a proper sub-word of

12344123 it is not strongly-irreducible. The word 12132434 is strongly-

irreducible. By definition, strongly-irreducible words are also irreducible,

so 12132434 is irreducible as well. In particular 11 is strongly-irreducible.

Strongly-irreducible double occurrence words are also called connected

words [8]. This terminology is motivated by the circle graph associated

with a chord diagram. The circle graph is formed by representing the

chords as vertices and the intersection of those chords as edges in the graph.

In the topological convention, a circle graph is also called an interlinking

graph [3]. Without too many difficulties it can be proven that a double

occurrence word is strongly-irreducible if and only if the circle graph of the

corresponding chord diagram, or interlinking graph of the corresponding

closed curve, is connected.
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Lemma 2.4 Every double occurrence word contains a strongly-irreducible

sub-word.

Proof. If a double occurrence word w is strongly-irreducible, then w itself

is a strongly-irreducible sub-word of w. Double occurrence words which are

not strongly-irreducible, by definition, contain a proper sub-word w1 which

is a double occurrence word and is either strongly-irreducible or not. If the

sub-word is not strongly-irreducible we check the reducibility of its proper

sub-word w2. Since w has finite length, we must reach a double occurrence

word wi, which is a strongly-irreducible proper sub-word of wi−1, through

finite recursion. Since wi must be a proper sub-word of w, this completes

the proof. �

3 Counting

It is well known [2, 8, 15, 18] and straightforward to show that the total

number of double occurrence words is (2n− 1)!!. Formula (∗) motivates us

to enumerate the number of double occurrence words which correspond to

palindromes.

3.1 Palindromes

Theorem 3.1 The number Ln of palindromic double occurrence words of

length 2n, is given by

Ln =

bn/2c∑
k=0

n!

(n− 2k)! k!
for n ≥ 1.

Proof. Observe that L1 = 1 since there is a unique one letter palindrome,

and L2 = 3 because 1122, 1212, and 1221 are all the two letter palindromes.

If a double occurrence word w of size n ≥ 2 is a palindrome beginning

and ending with 1, then the word formed by removing both 1s is also a

palindrome. Hence there are Ln−1 palindromes with n letters that start

and end with 1.

Now consider a word w of size n ≥ 3 where the second symbol 1 is at

the position j 6= 2n. Note that there are 2n − 2 possible positions for j.

Then the word w is a palindrome if and only if w contains the same symbol
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s at the positions 2n and n− j+1. Removing symbols 1 and s from w, and

relabeling the resulting word accordingly, produces a palindrome of length

n− 2. Hence there are Ln−2 palindromes that have a symbol 1 at the jth

position for 2 ≤ j ≤ 2n− 1.

According to the above argument,

Ln = Ln−1 + (2n− 2)Ln−2 for n ≥ 3, L1 = 1 and L2 = 3

is a recurrence relation for Ln. It is known [11] that the closed formula for

this recursive relations is as stated. �
This formula is expressed without proof in a comment by Ross Drewe in

A047974 of the OEIS [11] in 2008, but this may not be the original source.

Similar results, such as the number of palindromic chord diagrams without

a base point, were known in 2000 [16]. The above proof reprinted here is

found in [2].

3.2 Irreducibles

Though Touchard introduced the classification of irreducible words in 1952,

there seems to be little continuation of his efforts. In 2000, Martin and

Kearney [9] expressed the number of irreducible words in the broader con-

text of solutions to generating functions. Here, we address the count and

construction of both the irreducible double occurrence words and irre-

ducible palindromes directly.

Lemma 3.2 The number of irreducible double occurrence words In with

length 2n satisfies the recurrence formula I1 = 1 and

In = (2n− 1)!!−
n−1∑
k=1

In−k (2k − 1)!! for n ≥ 2.

Proof. We shall count the number of irreducible double occurrence words

by subtracting the number of reducible double occurrence words from the

total number of double occurrence words of length 2n and show that each

reducible word may be written as the product of an irreducible word and

a non-empty double occurrence word.

Without loss of generality, let w = uv be a reducible double occurrence

word of length 2n such that u is also an irreducible double occurrence word.
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Note that every proper prefix of an irreducible word is not necessarily a

double occurrence word. If the length of v is 2k, for some 1 ≤ k ≤ n − 1,

then the length of u is 2(n − k). By construction, u is irreducible and is

counted among In−k and v is counted among the (2k− 1)!! possible double

occurrence words of length 2k.

Summing over the possible symbols in v yields the desired count. Since

u is irreducible and v is non-empty, this ensures that each reducible double

occurrence word w is counted exactly once. �

Theorem 3.3 The number of irreducible palindromes Jn with length 2n

satisfies the recurrence formula J1 = 1 and

Jn = Ln −
bn/2c∑
k=1

(2k − 1)!! Jn−2k for n ≥ 2.

where Ln is the total number of palindromes with length 2n.

Proof. Similar to the above argument, we first count the reducible palin-

dromes and subtract them from the total number of palindromic words.

Suppose w is a reducible double occurrence word with length 2n. Then

w can be written as w = uvu′ where u is an arbitrary double occurrence

word with length 2k (1 ≤ k ≤ bn/2c), u′ is the double occurrence word

corresponding to u by reversing the orientation, and v is an irreducible

palindrome with length 2(n− 2k). �
Though the number of irreducible double occurrence words appears in

the OEIS (A000698), we note that the number of irreducible palindromes is

the only sequence discussed in this paper which is not currently listed in the

OEIS [11]. See Table 1, Table 2, and Table 3 for the number of irreducibles,

strong-irreducibles, and the number of non-isomorphic diagrams as defined

according to (∗), respectively.

3.3 Strong-Irreducibles

The classification of strongly-irreducible double occurrence words was in-

troduced in [18] and the first counting of the strong-irreducibles was done

by Stein in [15]. Stein was the first to count both the strongly-irreducible

double occurrence words and the strongly-irreducible palindromes, but his

counting methods and recursive formulas were simplified in [10] and later
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by Klazar in [8]. In Theorem 3.5, we present a proof similar to [8] expressed

in terms of language theory.

Using language theory to count double occurrence words led directly

to a characterization of the strongly-irreducible double occurrence words,

which we express in Lemma 3.4, and Theorem 3.5 follows as a natural

consequence.

Lemma 3.4 Every strongly-irreducible double occurrence word w in as-

cending order may be written in a unique form as w = 1u1v11v2u2 where

1u11u2 and v1v2 are both strongly-irreducible.

Proof. Let w be strongly-irreducible. Every double occurrence word w in

ascending order must be of the form w = 1p11p2. Delete both 1’s. Then we

have a double occurrence word p1p2 = u1xu2 where x is the first strongly-

irreducible double occurrence word of smallest positive length. Thus u1
and u2 are uniquely defined. Note that u1 and u2 may be empty words.

Let v1 be the prefix of x which is a suffix of p1 and let v2 be the suffix

of x which is the prefix of p2. This means that x = v1v2. Neither v1
nor v2 is empty as it would imply that x is a sub-word of either p1 or p2
which would constitute a proper sub-word of w. Since w is taken to be

strongly-irreducible, this cannot be.

We show that 1u11u2 is strongly-irreducible. Suppose not. Then there

exists a non-empty double occurrence sub-word z in either u1 or u2 which

implies that w contains z and is not strongly-irreducible. This is a contra-

diction. Hence 1u11u2 and v1v2 are strongly-irreducible. �

Theorem 3.5 The number of strongly-irreducible double occurrence words

Sn with length 2n satisfies the recurrence formula

Sn = (n− 1)

n−1∑
k=1

SkSn−k,

where S1 = 1 and n ≥ 2.

Proof. Note that the only strongly-irreducible double occurrence word of

length 2 is 11, i.e., S1 = 1.

Let u and v be strongly-irreducible double occurrence words such that

the length of v is 2k, the length of u is 2(n− k), u = 1u11u2, and v = v1v2.
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Since the length of v is 2k, there are 2k−1 ways to write v = v1v2 with v1, v2
not empty. By Lemma 3.4, each strongly-irreducible double occurrence

word w of length 2n can be uniquely represented as w = 1u1v11v2u2. Hence

there are 2k − 1 possibilities for such w’s to be formed from each u and v.

Since there are Sn−k choices for u and Sk choices for v the total counting

for Sn when n ≥ 2 is given by

Sn =

n−1∑
k=1

(2k − 1)SkSn−k = (n− 1)

n−1∑
k=1

SkSn−k. �

For completeness, we state Klazar’s counting formula of the strongly-irreducible

palindromes. See [8] for the proof.

Theorem 3.6 Let Sn and Tn be the number of strongly-irreducible double

occurrence words and strongly-irreducible palindromes of length 2n, respec-

tively. Then

Tn =

n−2∑
i=1

TiTn−i +

bn/2c∑
i=1

(2n− 4i− 1)SiTn−2i

for n ≥ 2 where T0 = −1 and T1 = 1.

Theorem 3.5 and Theorem 3.6 correspond to the sequences A000699

and A004300 listed in the OEIS. For the first few values of these sequences,

see Table 1 and Table 2.

4 Connection with DNA recombination

Several species of ciliates, such as Oxytricha and Stylonychia, undergo mas-

sive genome rearrangement during sexual reproduction. These massively

occurring recombination processes make them ideal model organisms to

study gene rearrangements. See [5] and references therein for details of the

descriptions below.

There are two types of nuclei, a micronucleus and a macronucleus, in

these species. Micronuclear genes contain both coding and non-coding seg-

ments which are reassembled to macronuclear genes during sexual repro-

duction. The coding segments, called macronuclear destined sequences or

MDSs, are part of the final unscrambled gene. The individual MDSs within

10



Figure 2: Scrambled Actin I micronuclear gene in Oxytricha nova [13].

Figure 3: Unscrambled Actin I macronuclear gene in Oxytricha nova [13].

a micronuclear gene may be separated by non-coding segments, called in-

ternal eliminated sequences or IESs, which are excised during the recombi-

nation process.

In relation to an unscrambled macronuclear gene (Fig. 3), a scrambled

micronuclear gene (Fig. 2) may have permuted or inverted MDS segments

separated by IESs. Formation of the macronuclear genes in these ciliates

thus requires any combination of the following three events: unscrambling

of segment order, DNA inversion, and IES removal.

Since the IESs are removed in the unscrambled gene, it is only necessary

to record the order and direction of the MDSs in the scrambled gene. A

micronuclear arrangement (cf. [5]) is a sequence of permuted and inverted

MDSs. In particular, each micronuclear arrangement α with k MDSs has

a corresponding permutation σα : [k] → [k] and a signing function εα :

[k] → {−1,+1} which uniquely defines the arrangement. A sign of −1

indicates that an MDS is inverted with respect to the gene sequence in the

macronuclear gene while a sign of +1 indicates a regular orientation.

For example, the micronuclear arrangement of the Actin I gene in Figure

2 is

M+1
3 M+1

4 M+1
6 M+1

5 M+1
7 M+1

9 M−12 M+1
1 M+1

8

or more commonly denoted

M3M4M6M5M7M9M2M1M8

where M2 indicates that MDS2 is inverted in the scrambled micronuclear

gene.

Proposition 4.1 Let An be the number of micronuclear arrangements of

n MDSs. Then

An = 2nn! = (2n)!!.
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Proof. Each micronuclear arrangement α with n MDSs is uniquely defined

by its corresponding permutation σα and signing function εα. Since each

MDS may be signed in one of two ways, there are 2n ways to sign the n!

permutations of all arrangements of α with n MDSs. �

The exact process by which the scrambled micronuclear gene recom-

bines into an unscrambled macronuclear gene is unknown. However it is

theorized [12] that short sequences of nucleotides, called pointers, found at

the beginning and end of each MDS, guide the recombination process. In

fact, each MDS is characterized by its pointers in the following sense.

Each MDS is labeled according to its order in the unscrambled macronu-

clear gene. The pointers flanking the MDSs correspond to the order of the

MDSs such that the pointer sequence at the end of the ith MDS coincides

with the pointer sequence at the beginning of the (i+ 1)th MDS. IESs are

excised and their coding is not necessary. Since the pointers at the begin-

ning and end of the whole gene do not align with any other pointers, we

omit them. Mathematically, this translates to the following.

Let An be the set of all micronuclear arrangements with n MDSs and

Kn be the set of all double occurrence words with length 2n. Then % : An →
Kn−1 is a homomorphism which translates a micronuclear arrangement to

the ordered sequence of pointers which describes it, i.e.,

1. %(M−11 ) 7→ (1) and %(M+1
1 ) 7→ (1)

2. %(M−1i ) 7→ (i)(i− 1)

3. %(M+1
i ) 7→ (i− 1)(i)

4. %(M−1n ) 7→ (n− 1) and %(M+1
n ) 7→ (n− 1).

For the micronuclear arrangement α = M−12 M+1
4 M+1

1 M−15 M+1
3 ,

%(α) = (2)(1)(3)(4)(1)(4)(2)(3)

which corresponds to the double occurrence word 12342413 in ascending

order. Therefore each scrambled micronuclear gene corresponds to a mi-

cronuclear arrangement which, in turn, has an associated double occurrence

word.

A double occurrence word is called realizable if it has a corresponding

micronuclear arrangement. The shortest double occurrence word which is
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not realizable is 11233244. For further information on realizable double

occurrence words see [2].

5 Conclusions

Double occurrence words are studied in topology, graph theory, and com-

binatorics by way of self-intersecting closed curves in R3, chord graphs and

linked diagrams, respectively. Their applications extend beyond abstraction

to other disciplines such as physics and genetics. We considered the count-

ing and enumeration of several reducibility classes of double occurrence

words which directly led to a new characterization of strongly-irreducible

double occurrence words. Further, all but one of the enumerated sequences

are listed in the OEIS [11], which suggests both the relevance of the previ-

ously listed enumerations and the novelty of the unlisted irreducible palin-

drome count. It should be noted that all the counting arguments present

in this paper followed a similar theme: separate the classes of double oc-

currence words into palindromes and non-palindromes and describe the

construction of large double occurrence words from smaller double occur-

rence words. We believe that the counting techniques presented here could

be used to enumerate new classes of double occurrence words as they arise

in future research.
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Symbols All Irreducible Strongly Irreducible

1 1 1 1

2 3 2 1

3 15 10 4

4 105 74 27

5 945 706 248

6 10395 8162 2830

7 135135 110410 38232

8 2027025 1708394 593859

9 34459425 29752066 10401712

10 654729075 576037442 202601898

11 13749310575 12277827850 4342263000

12 316234143225 285764591114 101551822350

OEIS A001147 (Kn) A000698 (In) A000699 (Sn)

Table 1: All Double Occurrence Words.

Symbols All Irreducible Strongly Irreducible

1 1 1 1

2 3 2 1

3 7 6 2

4 25 20 7

5 81 72 22

6 331 290 96

7 1303 1198 380

8 5937 5452 1853

9 26785 25176 8510

10 133651 125874 44940

11 669351 637926 229836

12 3609673 3448708 1296410

OEIS A047974 (Ln) —— (Jn) A004300 (Tn)

Table 2: Palindromic Double Occurrence Words.

14



Symbols All Irreducible Strongly Irreducible

1 1 1 1

2 3 2 1

3 11 8 3

4 65 47 17

5 513 389 135

6 5363 4226 1463

OEIS
A001147 (Kn) A000698 (In) A000699 (Sn)

A047974 (Ln) —— (Jn) A004300 (Tn)

Table 3: Non-isomorphic diagrams in (∗) are obtained by summing all words

with the palindromes of each class and halving the total. These sequences

do not appear in the OEIS [11], but can be built from listed sequences.
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