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Abstract

Using the theory of exponential Riordan arrays and orthogonal polynomials, we

demonstrate that the “descending power” Eulerian polynomials, and their once shifted

sequence, are moment sequences for simple families of orthogonal polynomials, which

we characterize in terms of their three-term recurrence. We obtain the generating

functions of the polynomial sequences in terms of continued fractions, and we also

calculate their Hankel transforms.

1 Introduction

The Eulerian polynomials [9, 14, 17, 21]

Pn(x) =

n
∑

k=0

Wn,kx
k

form the sequence Pn(x) which begins

P0(x) = 1, P1(x) = 1, P2(x) = 1 + x, P3(x) = 1 + 4x+ x2, . . . ,

with the well-known triangle of Eulerian numbers [16]























1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 11 11 1 0 0 . . .
1 26 66 26 1 0 . . .
...

...
...

...
...

...
. . .























as coefficient array. These coefficients Wn,k obey the recurrence [17]

Wn,k = (k + 1)Wn−1,k + (n− k)Wn−1,k−1
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with appropriate boundary conditions. The closed form expression

Wn,k =

n−k
∑

i=0

(−1)i
(

n+ 1

i

)

(n− k − i)n

holds. The polynomials Pn(x) were introduced by Euler [13] in the form

∞
∑

k=0

(k + 1)ntk =
Pn(t)

(1− t)n+1
.

They have exponential generating function

∞
∑

n=0

Pn(x)
tn

n!
=

(1− x)e(1−x)t

1− xe(1−x)t
.

We have

Pn(x) =

n
∑

k=0

An,kx
n−k,

and hence we can regard them as “descending power” Eulerian polynomials.
In this note we show that the sequence of Eulerian polynomials Pn(x) is the moment

sequence of a family of orthogonal polynomials. In addition, we show that the sequence
of shifted Eulerian polynomials Pn+1(x) is similarly the moment sequence of a family of
orthogonal polynomials. For this, we will require three results from the theory of exponential
Riordan arrays (see Appendix for an introduction to exponential Riordan arrays). These are
[5, 6]

1. The inverse of an exponential Riordan array [g, f ] is the coefficient array of a family
of orthogonal polynomials if and only if the production matrix of [g, f ] is tri-diagonal;

2. If the production matrix of [g, f ] is tri-diagonal, then the elements of the first column
of [g, f ] are the moments of the corresponding family of orthogonal polynomials;

3. The bivariate generating function of the production matrix of [g, f ] is given by

exy(Z(x) + A(x)y)

where
A(x) = f ′(f̄(x)),

and

Z(x) =
g′(f̄(x))

g(f̄(x))
,

where f̄(x) is the compositional inverse (series reversion) of f(x).
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A quick introduction to exponential Riordan arrays can be found in the Appendix to this
note. For general information on orthogonal polynomials and moments, see [8, 15, 28].
Continued fractions will be referred to in the sequel; [29] is a general reference, while [18, 19]
discuss the connection of continued fractions to orthogonal polynomials, moments and Hankel
transforms [20, 25]. We recall that for a given sequence an its Hankel transform is the
sequence of determinants hn = |ai+j|0≤i,j≤n. Many interesting examples of number triangles,
including exponential Riordan arrays, can be found in Neil Sloane’s On-Line Encyclopedia of
Integer Sequences [26, 27]. Sequences are frequently referred to by their OEIS number. For
instance, the binomial matrix (Pascal’s triangle) B with (n, k)-th element

(

n

k

)

is A007318.

2 The Eulerian polynomials Pn(x)

We consider the sequence with e.g.f.

(α− β)e(α−β)t

α− βe(α−β)t
.

This is the sequence that begins

1, α, α(α+ β), α(α2 + 4αβ + β2), α(α3 + 11α2β + 11αβ2 + β3), . . . .

Setting α = 1 and β = x gives us the Eulerian polynomials Pn(x). We have the

Proposition 1. The production matrix of the exponential Riordan array

[

(α− β)e(α−β)t

α− βe(α−β)t
,
e(α−β)t − 1

α− βe(α−β)t

]

is tri-diagonal.

Proof. Writing the above exponential Riordan array as [g, f ], we have

f(t) =
e(α−β)t − 1

α− βe(α−β)t

and hence

f ′(t) =
e(α+β)t(α− β)2

βeαt − αeβt
,

and

f̄(t) =
1

α− β
ln

(

αt+ 1

βt+ 1

)

.

Then
A(t) = f ′(f̄(t)) = (αt+ 1)(βt+ 1) = 1 + (α + β)t+ αβt2.

We have

g(t) =
(α− β)e(α−β)t

α− βe(α−β)t

3
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and hence

g′(t) =
αe(α+β)t(α− β)2

(βeαt − αeβt)2
,

and so

Z(t) =
g′(f̄(t))

g(f̄(t))
= α(βt+ 1) = α + αβt.

Thus the production matrix, which has bivariate g.f. given by

ety(α+ αβt+ (1 + (α + β)t+ αβt2)y),

is tri-diagonal.

We note that the production matrix takes the form























α 1 0 0 0 0 . . .
αβ 2α + β 1 0 0 0 . . .
0 4αβ 3α+ 2β 1 0 0 . . .
0 0 9αβ 4α+ 3β 1 0 . . .
0 0 0 16αβ 5α+ 4β 1 . . .
0 0 0 0 25αβ 6α+ 5β . . .
...

...
...

...
...

...
. . .























.

For completeness, we note that while in the special case α = β the Riordan array is not
obviously well-defined, the production matrix is, and it leads in this special case to the
exponential Riordan array

[

1

1− αt
,

t

1− αt

]

which has general element
(

n

k

)

n!
k!
αn−k. In the case α = β = 1, we get the exponential Riordan

array
[

1

1− t
,

t

1− t

]

whose inverse is the coefficient array of the Laguerre polynomials [3].
Returning now to the Eulerian polynomials, we set α = 1 and β = x, to get

Theorem 2. The Eulerian polynomials Pn(x) are the moments of the family of orthogonal

polynomials Qn(t) defined by Q0(t) = 1, Q1(t) = t− 1, and

Qn(t) = (t− ((n− 1)x+ n))Qn−1(t)− (n− 1)2xQn−2(t).

Proof. The initial polynomial terms of the sequence Qn(t) can be read from the elements of

[

(1− x)e(1−x)t

1− xe(1−x)t
,
e(1−x)t − 1

1− xe(1−x)t

]−1

=

[

1

1 + t
,

1

1− x
ln

(

1 + t

1 + xt

)]

,
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which begins














1 0 0 0 . . .
−1 1 0 0 . . .
2 −x− 3 1 0 . . .
−6 2x2 + 5x+ 11 −3(x+ 2) 1 . . .
...

...
...

...
. . .















.

Hence in particular Q0(t) = 1 and Q1(t) = t− 1. The three-term recurrence is derived from
the production matrix, which in this case is























1 1 0 0 0 0 . . .
x 2 + x 1 0 0 0 . . .
0 4x 3 + 2x 1 0 0 . . .
0 0 9x 4 + 3x 1 0 . . .
0 0 0 16x 5 + 4x 1 . . .
0 0 0 0 25x 6 + 5x . . .
...

...
...

...
...

...
. . .























.

Corollary 3. The sequence of Eulerian polynomials Pn(x) has ordinary generating function

given by the continued fraction

1

1− t−
xt2

1− (2 + x)t−
4xt2

1− (3 + 2x)t−
9xt2

1− · · ·

.

Corollary 4. The Hankel transform of the sequence of Eulerian polynomials Pn(x) is given
by

hn = x(
n+1
2 )

n
∏

k=1

k!2.

3 The shifted Eulerian polynomials Pn+1(x)

For the shifted Eulerian polynomials Pn+1(x), we consider the exponential Riordan array

[g′(t), f(t)],

where

g′(t) =
(α− β)2e(α+β)t

βeαt − αeβt
,

where we retain the use of g(t) = (α−β)e(α−β)t

α−βe(α−β)t from the previous section.

When α = 1 and β = x, g′(t) generates the shifted sequence Pn+1(x). We then have
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Proposition 5. The production matrix of the exponential Riordan array

[

(α− β)2e(α+β)t

βeαt − αeβt
,
e(α−β)t − 1

α− βe(α−β)t

]

is tri-diagonal.

Proof. As in the previous proposition, we obtain

A(t) = f ′(f̄(t)) = (αt+ 1)(βt+ 1) = 1 + (α + β)t+ αβt2,

where

f̄(t) =
1

α− β
ln

(

αt+ 1

βt+ 1

)

.

Then

Z(t) =
g′′(f̄(t))

g′(f̄(t))
= (α + β) + 2αβt.

The bivariate generating function of the production matrix is then

ety((α + β) + 2αβt+ (1 + (α+ β)t+ αβt2)y),

and hence the production matrix is tri-diagonal.

The production matrix in this case begins














α + β 1 0 0 . . .
2αβ 2(α + β) 1 0 . . .
0 6αβ 3(α+ β) 1 . . .
0 0 12αβ 4(α+ β) . . .
...

...
...

...
. . .















.

In the case α = β, we obtain the exponential Riordan array
[

1

(1− αt)2
,

t

1− αt

]

,

with (n, k)-th element
(

n+1
k+1

)

n!
k!
αn−k. For α = β = 1 this gives us

[

1

(1− t)2
,

t

1− t

]

,

which is A105278.
Specializing to the values α = 1, β = x, we get the

Theorem 6. The shifted Eulerian polynomials Pn+1(x) are the moments of the family of

orthogonal polynomials Rn(t) given by R0(t) = 1, R1(t) = t− x− 1, and for n > 1,

Rn(t) = (t− n(1 + x))Rn−1(t)− n(n− 1)xRn−2(t).

6

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A105278


Proof. The initial terms of the polynomial sequence Rn(t) can be read from the elements of
the inverse matrix

[

(α− β)2e(α+β)t

βeαt − αeβt
,
e(1−x)t − 1

1− xe(1−x)t

]−1

=

[

1

(1 + t)(1 + tx)
,

1

1− x
ln

(

1 + t

1 + xt

)]

,

which begins















1 0 0 0 . . .
−x− 1 1 0 0 . . .

2x2 + 2x+ 2 −3(x+ 1) 1 0 . . .
−6(x3 + x2 + x+ 1) 11x2 + 14x+ 11 −6(x+ 1) 1 . . .

...
...

...
...

. . .















.

The three-term recurrence is derived from the production matrix, which in this case is























1 + x 1 0 0 0 0 . . .
2x 2(1 + x) 1 0 0 0 . . .
0 6x 3(1 + x) 1 0 0 . . .
0 0 12x 4(1 + x) 1 0 . . .
0 0 0 20x 5(1 + x) 1 . . .
0 0 0 0 30x 6(1 + x) . . .
...

...
...

...
...

...
. . .























.

Corollary 7. The sequence of shifted Eulerian polynomials Pn+1(x) has ordinary generating

function given by the continued fraction

1

1− (1 + x)t−
2xt2

1− 2(1 + x)t−
6xt2

1− 3(1 + x)t−
12xt2

1− · · ·

.

Corollary 8. The Hankel transform of the shifted Eulerian polynomials Pn+1(x) is given by

hn = (2x)(
n+1
2 )

n
∏

k=1

(

k + 2

2

)n−k

.

4 The Eulerian number triangles

As with the Narayana numbers and their associated number triangles [7], we can distinguish
between three distinct but related triangles of Eulerian numbers. Thus we have the triangle
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A173018 [16, 17]






















1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 11 11 1 0 0 . . .
1 26 66 26 1 0 . . .
...

...
...

...
...

...
. . .























of Eulerian numbers Wn,k that obey the recurrence

Wn,k = (k + 1)Wn−1,k + (n− k)Wn−1,k−1

with appropriate boundary conditions, for which the closed form expression

Wn,k =
n−k
∑

i=0

(−1)i
(

n+ 1

i

)

(n− k − i)n

holds. We have the reversal of this triangle, which is the triangle A123125 of the coefficients
An,k [1] where

An,k =
k

∑

i=0

(−1)i
(

n+ 1

i

)

(k − i)n,

which begins






















1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 4 1 0 0 . . .
0 1 11 11 1 0 . . .
0 1 26 66 26 1 . . .
...

...
...

...
...

...
. . .























,

and finally we have the Pascal-like triangle of coefficients

Ãn,k = An+1,k+1 =
k+1
∑

i=0

(−1)i
(

n+ 2

i

)

(k − i)n+1,

which begins






















1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 11 11 1 0 0 . . .
1 26 66 26 1 0 . . .
1 57 302 302 57 1 . . .
...

...
...

...
...

...
. . .























.
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This is A008292.
We have

Ãn,k = (n− k + 1)Ãn−1k − 1 + (k + 1)Ãn−1k,

with appropriate boundary conditions. As with the Narayana numbers, each of these tri-
angles has signficant combinatorial applications and it is often important to distinguish one
from the other.

Example 9. The sequence an =
∑n

k=0Wn,k2
k is the sequence A000670 of preferential ar-

rangements, or rankings of competitors in a race, with ties [23]. The sequence

bn =
n

∑

k=0

An,k2
k =

n
∑

k=0

Wn,n−k2
k

or A000629 is the sequence of rankings of competitors in a race, with ties and dropouts [22].
Note that from our results above, the sequence an has generating function given by

1

1− x−
2x2

1− 4x−
8x2

1− 7x−
18x2

1− · · ·

.

The g.f. of the sequence an+1 is given by

1

1− 3x−
4x2

1− 6x−
12x2

1− 9x−
24x2

1− · · ·

.

In this case it happens that bn is the binomial transform of an, and hence [4] its g.f. has
continued fraction expression

1

1− 2x−
2x2

1− 5x−
8x2

1− 8x−
18x2

1− · · ·

.

5 A related ODE

The form of f(t) above is related to a simple ODE. This arises as follows. In order to have
a tri-diagonal production matrix, we need to have an expression of the form

A(z) = f ′(f̄(z)) = 1 + µz + νz2.

9
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Now substituting z = f(t) we obtain

f ′(f̄(f(t))) = 1 + µf(t) + νf(t)2

or
f ′(t) = 1 + µf(t) + νf(t)2

or
dy

dt
= 1 + µy + νy2,

where y = f(t). In the Eulerian case above, we have

dy

dt
= (1 + αy)(1 + βy),

with initial condition y(0) = 0. The form of y = f(t) follows from this variant of the logistic
equation.

6 Appendix: exponential Riordan array

The exponential Riordan group [2, 10, 12], is a set of infinite lower-triangular integer matrices,
where each matrix is defined by a pair of generating functions g(x) = g0 + g1x+ g2x

2 + · · ·
and f(x) = f1x+ f2x

2 + · · · where g0 6= 0 and f1 6= 0. We usually assume that

g0 = f1 = 1.

The associated matrix is the matrix whose i-th column has exponential generating function
g(x)f(x)i/i! (the first column being indexed by 0). The matrix corresponding to the pair
f, g is denoted by [g, f ]. The group law is given by

[g, f ] · [h, l] = [g(h ◦ f), l ◦ f ].

The identity for this law is I = [1, x] and the inverse of [g, f ] is [g, f ]−1 = [1/(g ◦ f̄), f̄ ] where
f̄ is the compositional inverse of f .

IfM is the matrix [g, f ], and u = (un)n≥0 is an integer sequence with exponential generat-
ing function U (x), then the sequence Mu has exponential generating function g(x)U(f(x)).
Thus the row sums of the array [g, f ] have exponential generating function given by g(x)ef(x)

since the sequence 1, 1, 1, . . . has exponential generating function ex.
As an element of the group of exponential Riordan arrays, the binomial matrix B with

(n, k)-th element
(

n

k

)

is given by B = [ex, x]. By the above, the exponential generating
function of its row sums is given by exex = e2x, as expected (e2x is the e.g.f. of 2n).

To each exponential Riordan array L = [g, f ] is associated [11, 12] a matrix P called its
production matrix, which has bivariate g.f. given by

exy(Z(x) + A(x)y)

where

A(x) = f ′(f̄(x)), Z(x) =
g′(f̄(x))

g(f̄(x))
.

10



We have
P = L−1L̄

where L̄ [24, 29] is the matrix L with its top row removed.
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