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COMBINATORIAL MINORS OF MATRIX FUNCTIONS

AND THEIR APPLICATIONS

VLADIMIR SHEVELEV

Abstract. For every matrix function we introduce its ”combinatorial
minors”. As important examples of their applications, we give a recur-
sive algorithms for solution of several general enumerative problems of
permutations with restricted positions.

1. Introduction

Let S(n) be symmetric group of permutations of numbers {1, ..., n}. Let

A = {aij} be square matrix of order n. Recall that permanent of A is defined

by formula ([4])

(1.1) perA =
∑

s∈S(n)

n
∏

i=1

ai,s(i).

If A is a (0, 1) matrix, then it defines a class B = B(A) of permutations with

restricted positions, such that the positions of its zeros are prohibited. Such

class could be equivalently defined by a simple inequality: a permutation

π ∈ B if and only if for its incidence matrix P we have P ≤ A. One of the

most important application of perA consists of the equality |B| = perA.

Thus perA enumerates permutations with restricted positions of the class

B(A).

Let γ(π) be number of independent cycles of π, including cycles of length

1. Then the difference d(π) = n− γ(π) is called decrement of π ([3]). Per-

mutation π is called even (odd) if d(π) is even (odd). Note that determinant

of matrix A one can define by the formula

(1.2) detA =
∑

even s∈S(n)

n
∏

i=1

ai,s(i) −
∑

odd s∈S(n)

n
∏

i=1

ai,s(i).

Since, evidently, we also have

(1.3) perA =
∑

even s∈S(n)

n
∏

i=1

ai,s(i) +
∑

odd s∈S(n)

n
∏

i=1

ai,s(i),

then the numbers of even and odd permutations of class B(A) are given by

vector

(1.4) (
1

2
(perA+ detA),

1

2
(perA− detA)).
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Note that, in the contrast to permanent, there exist methods of very fast

calculation of detA. Therefore, the enumerative information given by (1.4)

one can obtain approximately for the same time as the number |B| given by

(1.1).

Let m ≥ 3 and 0 ≤ k < m be given integers. We say that a permutation

π belongs to class k modulo m (π ∈ S
(n)
k,m), if d(π) ≡ k (mod m). Let now A

be (0, 1) square matrix of order n. The first problem under our consideration

is the enumeration of permutations π ∈ B of class k modulo m. It is clear

that this problem is a natural generalization of problem of enumeration of

even and odd permutation with restricted positions which is solved by (1.4).

In order to solve this more general problem, put ω = e
2πi
m and introduce a

new matrix function which we call ω-permanent.

Definition 1. Let A be a square matrix of order n. We call ω-permanent

of matrix A the following matrix function

perωA =
∑

s∈S
(n)
0,m

n
∏

i=1

ai,s(i) + ω
∑

s∈S
(n)
1,m

n
∏

i=1

ai,s(i)+

(1.5) ω2
∑

s∈S
(n)
2,m

n
∏

i=1

ai,s(i) + ...+ ωm−1
∑

s∈S
(n)
m−1,m

n
∏

i=1

ai,s(i).

Note that, if m = 1, then perωA = perA, and if m = 2, then perωA =

detA. In case m ≥ 3, every sum in (1.5) essentially differs from permanent.

Therefore, the known methods of evaluation of permanent ([1], ch. 7) are

not applicable. However, using so-called ”combinatorial miners”, below we

find an expansion perωA over the first row of matrix A. This allows to re-

duce a problem of order n to a few problems of order n− 1.

The second problem under our consideration is another important prob-

lem of enumeration of full cycles with restricted positions. In connection

of this problem, we introduce another new matrix function which we call

cyclic permanent.

Definition 2. Let A be square matrix of order n. The number

(1.6) Cycl(A) =
∑

s

n
∏

i=1

ai,s(i),

where the summing is over all full cycles from S(n), we call a cyclic perma-

nent of A.

The third problem is a problems of enumeration of permutations with

restricted positions with a restrictions on their cycle structure.

Denote γ(s) the number of all cycles of permutation s including cycles of
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length 1. Recall ([1]) that the absolute value of Stirling number S(n, k)

of the first kind equals to number of permutations s ∈ S(n) with γ(s) = k

([1],[5]). A natural generalization of Stirling numbers of the first kind is the

following matrix function.

Definition 3. The matrix function

(1.7) S(A;n, k) =
∑

s∈S(n),γ(s)=k

n
∏

i=1

ai,s(i),

where n is order of square matrix A, we call Stirling function of index k.

Finally, recall ([5]) that a permutation s ∈ S(n) with k1 cycles of length

1, k2 cycles of length 2, and so on, is said to be of cycle structure k =

(k1, k2, ..., kn). Denote ν(k1, k2, ..., kn) the number of permutations of class

k = (k1, k2, ..., kn). Then polynomial

(1.8) C(t1, t2, ..., tn) =
∑

ν(k1, k2, ..., kn)t
k1
1 tk22 ...tknn

is called the cycle indicator of permutations of S(n). A natural generalization

of the cycle indicator of permutations with restricted positions is

(1.9) C(A; t1, t2, ..., tn) =
∑

ν(A; k1, k2, ..., kn)t
k1
1 tk22 ...tknn

where ν(A; k1, k2, ..., kn) is the number of permutations of class B(A) with

the cycle structure k.

2. Observations in case m = 2 of ω-determinant

The case of determinant (m = 2) is a unique case when it is easy to obtain

a required enumerative information formally given by formulas (1.4). For

the passage to a general case it is important for us to understand how one

can obtain such information from the definition (1.2) of determinant only.

Essentially, the required information is contained in vector

(2.1) detA = (
∑

even s∈S

n
∏

i=1

ai,s(i) , −
∑

odd s∈S

n
∏

i=1

ai,s(i)),

and it immediately disappears if to use an identity of the form 1 − 1 = 0.

None of algorithms of fast calculation of determinant exists without such

identity. On the other hand, in the Laplace algorithm of expansion of

determinant over (the first) row such identity one can use only in the last

step. Therefore, if not to do the last step, we can obtain the required

enumerative information.

Example 1. By the Laplace expansion, we have

det





0 1 1
1 1 1
1 1 1



 = −(1 − 1) + (1− 1) = −1 + 1 + 1− 1 = 2− 2
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and, if not to do the useless (with the enumerative point of view) last step,

then we have

det





0 1 1
1 1 1
1 1 1



 = (2,−2).

This means that there are two even and two odd permutations with the

prohibited position (1, 1).

Unfortunately, most likely, it is impossible to generalize for ω-permanent

the Laplace expansion of determinant over the first row in its classic form

(2.2) detA =
n

∑

j=1

(−1)j−1a1,jM1j ,

where M1j is minor of element a1j , i.e., determinant of the complementary

to a1j submatrix A1j .

Therefore, let us introduce a more suitable for our aims notion of a ”com-

binatorial minor” of element aij . Let the complementary to aij submatrix

Aij have the following n− 1 columns

(2.3) c1, c2, ..., cj−1, cj+1, ..., cn.

The first j − 1 of these columns we change in the following cyclic order:

c2, c3, ..., cj−1, c1. Then we obtain a new matrix Aij with the columns

(2.4) c2, c3, ..., cj−1, c1, cj+1, ..., cn.

Determinant of matrix Aij we call combinatorial minor (CM)ij of element

aij . It is easy to see that

(2.5) (CM)i1 = Mi1; (CM)ij = (−1)j−2Mij, j = 2, ..., n.

Therefore, e.g., expansion (2.2) one can rewrite in the form

(2.6) detA = a1,1(CM)11 −
n

∑

j=2

a1,j(CM)1j .

In general, let us give a definition of combinatorial minors for arbitrary

matrix function X(A).

Definition 4. Let X be matrix function defined on all square matrices of

order n ≥ 3. Let A = {aij} be a square matrix of order n and Aij be

the complementary to aij submatrix with columns (2.3). Denote Aij a new

square matrix of order n− 1 with columns (2.4). Then the number X(Aij)

is called a combinatorial minor of aij .

It appears that our observation (2.6) has a general character. So, in

Sections 4 we give a generalization of the Laplace expansion of type (2.6)

for perωA, Cycl(A), S(A;n, k) and Cn(t1, t2, ..., tn).
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3. Main lemma

Lemma 1. Let π ∈ S(n) with π(j) = 1 and σ = σj(π), j ≥ 2, such that

σ(1) = π(2), σ(2) = π(3), ..., σ(j − 2) = π(j − 1), σ(j − 1) = π(1),

(3.1) σ(j) = π(j) = 1, σ(j + 1) = π(j + 1), ..., σ(n) = π(n).

Let, further, π∗ ∈ S(n−1) defined by the formula

(3.2) π∗(i) =

{

σ(i)− 1, if 1 ≤ i ≤ j − 1,

σ(i+ 1)− 1, if j ≤ i ≤ n− 1.

Then permutations π and π∗ have the same number of cycles:

(3.3) γ(π) = γ(π∗).

Proof. From (3.1)-(3.2) we find

(3.4) π∗(i) =

{

π(i+ 1)− 1, if i 6= j − 1,

π(1)− 1, if i = j − 1.

Consider a cycle of π containing number j. Let it has length l ≥ 2, such

that

π(j) = 1, π(1) = k1, π(k1) = k2, ..., π(kl−3) = kl−2, π(kl−2) = j.

Beginning with the equality π(1) = k1, by (3.4), this means that

π∗(j − 1) = k1 − 1, π∗(k1 − 1) = k2 − 1, ...,

π∗(kl−3 − 1) = kl−2 − 1, π∗(kl−2 − 1) = j − 1.

Thus to cycle of π containing number j of length l ≥ 2 corresponds a cycle

of length l − 1 of π∗. Quite analogously, we verify that to cycle of π not

containing number j of length l ≥ 2 corresponds a cycle of the same length

of π∗. E.g., to cycle of length l ≥ 2 of the form

π(j−1) = k1, π(k1) = k2, π(k2) = k3, ..., π(kl−2) = kl−1, π(kl−1) = j−1

(beginning with the equality π(k1) = k2), corresponds the cycle of the same

length

π∗(k1 − 1) = k2 − 1, π∗(k2 − 1) = k3 − 1, ...,

π∗(kl−2 − 1) = kl−1 − 1, π∗(kl−1 − 1) = j − 2

such that π∗(j − 2) = π(j − 1)− 1 = k1 − 1.

�

Note that the structure of Lemma 1 completely corresponds to the pro-

cedure of creating the combinatorial minors.
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4. Laplace expansions of type (2.6) of perωA, Cycl(A), S(A;n, k)

and C(t1, t2, ..., tn)

1) perωA. Consider all permutations π with the condition π(j) = 1. Let j

corresponds to j-th column of matrix A. Then the considered permutations

correspond to diagonals of matrix A having the common position (1, j). If

j = 1, then, removing the first row and column, we diminish on 1 the number

of cycles of every such permutation, but also we diminish on 1 the number

of elements of permutations. Therefore, the decrement of permutations

does not change. If j ≥ 2, consider continuation of these diagonals in the

matrix of combinatorial miner A1,j . Then, by Lemma 1, the number of cycles

of every its diagonal does not change and, consequently, the decrement is

diminished by 1. This means that we have the following expansion of perωA

over the first row

(4.1) detωA = a1,1(CM)11 + ω

n
∑

j=2

a1,j(CM)1j ,

where (CM)1j , j ≥ 1, are combinatorial minors of perωA.

Note that, as for determinant (see Section 2), for the receiving the re-

quired enumerative information, we should prohibit to use the identities of

type 1 + ω + ... + ωm−1 = 0.

2) Cycl(A). For n > 1, here we should ignore element a11. Consider all

full cycles π with the condition π(j) = 1. Let j corresponds to j-th column

of matrix A. Then the considered full cycles correspond to diagonals of ma-

trix A having the common position (1, j), j ≥ 2. Consider continuation of

these diagonals in the matrix of combinatorial miner A1,j. Then, by Lemma

1, the number of cycles of every its diagonal does not change, i.e., they are

full cycles of of order n− 1. Therefore, we have the following expansion of

Cycle(A) over the first row of A

(4.2) Cycle(A) =
n

∑

j=2

a1,j(CM)1j ,

where (CM)1j , j ≥ 1, are combinatorial minors of Cycle(A).

3) S(A;n, k). From very close to 1) arguments, we have the following

expansion of S(A;n, k) over the first row of A

(4.3) S(A;n, k) = a1,1(CM)
(k−1)
11 +

n
∑

j=2

a1,j(CM)
(k)
1j ,

where (CM)
(k)
1j , j ≥ 1, are combinatorial minors of S(A;n, k).
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Note that close to (4.3) formula was found by the author in [6] but using

much more complicated way.

4) C(t1, t2, ..., tn). We need lemma.

Lemma 2. Let

(4.4) {a1j , ak11, ak2k1, ..., akr ,kr−1, aj,kr}

be a cycle. Then

(4.5) {ak11, ak2k1, ..., akr,kr−1, aj,kr}

is a cycle with respect to the main diagonal of the matrix of combinatorial

miner A1,j.

Proof. According to the construction of A1,j , the main its diagonal is

(4.6) {a22, a33, ..., aj−1j−1, aj1, aj+1j+1, ..., ann}.

With respect to this diagonal we have the following contour which shows

that (4.5) is, indeed, a cycle.

(4.7) {ak11 → aj1 → ajkr → akrkr−1 → akr−1kr−2 → ... → ak2k1(→ ak11)}.

�

Quite analogously we can prove that to every another cycle of a diagonal

containing element a1j correspond the same cycle with respect to the main

diagonal of the matrix A1,j.

Let A be (0, 1) square matrix of order n. Denote C(r)(A; t1, t2, ..., tn) a

partial cyclic indicator of indicator (1.9) of permutations π ∈ B(A) for

which {1, π(1), π(2), ..., π(r− 1)} is a cycle of length r. Then we have

(4.8)

n
∑

r=1

C(r)(A; t1, t2, ..., tn) = C(A; t1, t2, ..., tn).

Therefore, it is sufficient to give an expansion of C(r)(A; t1, t2, ..., tn), r =

1, ..., n. First of all, note that

(4.9) C(1)(A; t1, t2, ..., tn) = a11t1C(A; t1, t2, ..., tn−1).

Furthermore, using Lemmas 1-2, we have

(4.10) C(r)(A; t1, t2, ..., tn) =
tr

tr−1

n
∑

j=2

a1,j(CM)1,j ,

where

(4.11) (CM)1,j = C(r−1)(A1,j; t1, t2, ..., tn−1), j = 2, ..., n,

are the combinatorial miners of cyclic indicator of permutations with re-

stricted positions.
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Note that factor tr
tr−1

in (4.10) corresponds to the diminution of the length

of cycle (4.5) with respect to length of cycle (4.4). Thus formulas (4.8)-

(4.11) reduce calculation of cyclic indicator of n-permutations to n − 1-

permutations with a rather simple computer realization of this procedure.

Note that similar but much more complicated procedure was indicated by

the author in [7].

5. An example of enumerating the permutations of classes

0,1,2 modulo 3 with restricted positions

Let

A =













1 1 1 1 0
0 1 0 1 1
1 0 1 1 1
1 1 1 0 0
1 1 1 1 1













.

Consider class B(A) of permutations with restricted positions and find the

distribution of them over classes 0,1,2 modulo 3. We use ω-permanent

with ω = e
2πi
3 and its expansion over elements of the first row, given by

(4.1). Recall that, for the receiving the required enumerative information,

we cannot use identities of type 1 + ω + ω2 = 0.

We have

perωA = perω









1 0 1 1
0 1 1 1
1 1 0 0
1 1 1 1









+

ω( perω









0 0 1 1
1 1 1 1
1 1 0 0
1 1 1 1









+ perω









1 0 1 1
0 1 1 1
1 1 0 0
1 1 1 1









+ perω









1 0 0 1
0 1 1 1
1 1 1 0
1 1 1 1









) =

perω





1 1 1
1 0 0
1 1 1



 + ω( perω





1 0 1
1 1 0
1 1 1



 + perω





1 1 0
1 0 1
1 1 1



)+

ω2( perω





1 1 1
1 1 0
1 1 1



 + perω





1 1 1
1 0 1
1 1 1



) + ωperω





1 1 1
1 0 0
1 1 1



+

ω2( perω





1 0 1
1 1 0
1 1 1



 + perω





1 1 0
1 0 1
1 1 1



) + ωperω





1 1 1
1 1 0
1 1 1



+

ω2perω





1 1 0
1 1 1
1 1 1



 = (ω + ω2) + (ω + ω2 + 1) + (2ω2 + 1)+

(ω2 + 2 + ω) + (2 + 2ω) + (ω2 + 1) + (ω2 + 1 + ω) + (2 + ω)+

(ω + 2ω2 + 1) + (ω2 + 2 + ω) = 13 + 9ω + 10ω2.
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Thus in B(A) we have 13 permutation of class 0; 9 permutations of class

1 and 10 ones from class 2 modulo 3.

�

6. On two sequences connected with Cycle(A)

In summer of 2010, the author published two sequences A179926 and

A180026 in OEIS [8]. a(n) := A179926(n) is defined as the number of per-

mutations of the divisors of n of the form d1 = n, d2, d3, ..., dτ(n) such

that di+1

di
is a prime or 1/prime for all i. Note that a(n) is a function of

exponents of prime power factorization of n only; moreover, it is invariant

with respect to permutations of them. This sequence is equivalently defined

as the number of ways, for a given finite multiset E, to get, beginning with

E, all submultisets of E, if in every step we remove or join 1 element of E.

Sequence A180026 differs from A179926 by an additional condition:
dτ(n)

d1
is

a prime. In the equivalent formulation it corresponds to the condition that

E is obtained from a submultiset in the last step, by joining 1 element.

Note that, it is easy to prove that, knowing any permissible permutation

of divisors, say, δ1 = n, δ2, ..., δτ(n) (such that δi+1

δi
is a prime or 1/prime),

we can calculate b(n) := A180026(n), using the following construction. Con-

sider square (0,1) matrix B = {bij} of order τ(n) in which bij = 1, if δi
δj

is

prime or 1/prime, and bij = 0, otherwise. Then b(n) = Cycle(B). In case of

A179926, the construction is a little more complicated: a(n) = Cycle(A),

where A is obtained from B by the replacing the first its column by the

column from 1’s.

Note also that A. Heinz [2] proved that, in particular, a(Πn
i=1pi), where

pi are distinct primes, equals to the number of Hamiltonian paths (or Gray

codes) on n-cube with a marked starting node (see A003043 in [8]), while

b(Πn
i=1pi) equals to the number of directed Hamiltonian cycles on n-cube

(see A003042 in [8]).
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