Inverses of Motzkin and Schröder Paths

Heinrich Niederhausen
Florida Atlantic University, Boca Raton

May 2011

Abstract

We suggest three applications for the inverses: For the inverse Motzkin matrix we look at Hankel determinants, and counting the paths inside a horizontal band, and for the inverse Schröder matrix we look at the paths inside the same band, but ending on the top side of the band.

1 Introduction

We adopt the convention that lattice paths without restrictions are called "Grand"; the Grand Catalan numbers (step set $\{\nearrow, \searrow\}$) are the number of paths from the origin, taking only \nearrow and \searrow steps, and ending on the x-axis at $(2 n, 0)$. The Grand Catalan numbers are the Central Binomial coefficients, $\binom{2 n}{n}$, with generating function $1 / \sqrt{1-4 t^{2}}=\sum_{n \geq 0}\binom{2 n}{n} t^{2 n}$. The wheighted Grand Motzkin numbers G_{n} take steps from $\{\nearrow, \searrow, \longrightarrow\}$, and end on the x-axis in $(n, 0)$. The horizontal steps get the weight ω. Their generating function is

$$
\begin{equation*}
g(t):=\sum_{n \geq 0} G_{n} t^{n}=1 / \sqrt{(1-\omega t)^{2}-4 t^{2}}, \tag{1}
\end{equation*}
$$

and it is seen immediately that for $\omega=0$ the Grand Catalan numbers are recovered. If $\omega=2$, the $1 / \sqrt{(1-2 t)^{2}-4 t^{2}}=1 / \sqrt{1-4 t}$ is again a generating function for the Grand Catalan numbers, but we get $\sum_{n>0}\binom{2 n}{n} t^{n}$. The general Grand Motzkin numbers $G(n, j)$ enumerate all paths to (n, j), and the first few are given in the following table.

The lower half of the table is the mirror image of the top half; if we write the table in matrix form, $G(n, j)$ stands in row n and column j, and we obtain a $R i$ ordan matrix G, because $G(n+1, j+1)=G(n, j)+\omega G(n, j+1)+G(n, j+2)$ (see Rogers [9, and [6]). It follows that

$$
\begin{aligned}
\sum_{n \geq j} G(n, j) t^{n} & =\frac{1}{\sqrt{(1-\omega t)^{2}-4 t^{2}}}\left(\frac{1}{2 t}\left(1-t \omega-\sqrt{(\omega t-1)^{2}-4 t^{2}}\right)\right)^{j} \\
& =g(t)\left(\frac{1}{2 t}(1-\omega t-1 / g(t))\right)^{j}
\end{aligned}
$$

If we restrict the $\{\nearrow, \searrow, \xrightarrow{\omega}\}$-paths to the first quadrant, they become Motzkin paths $M(n, j)$. We will look at the inverse ($m_{i, j}$) of the matrix M,
and find it useful in some applications (see also A. Ralston and P. Rabinowitz, 1978 [8, p. 256]). Especially, the bounded Motzkin numbers $M_{n ; w}^{(k)}$, the number of Motzkin paths staying strictly below the parallel to the x-axis at height k, have a generating function expressed by the inverse ($m_{i, j}$), through the inverse Motzkin polynomial $m_{k}(t)=\sum_{i=0}^{k} m_{k, i} t^{k-i}$,

$$
\sum_{n \geq 0} M_{n ; \omega}^{(k)} t^{n}=\frac{m_{k-1}(t)}{m_{k}(t)}
$$

(see (8). That makes us wonder if paths with different lengths of the horizontal steps $(w, 0)$ have similar properties. In the case of $w=2$ (Schröder paths) and $\omega=1$ we have a result, $\mathcal{S}^{(k)}(t):=$

$$
\sum_{n \geq 0} S_{n}^{(k)} t^{n}=\frac{(1-t) \sum_{i=0}^{(k-2) / 2} t^{2 i}(-1)^{i} s_{k-2-2 i}(t)+(k \bmod 2)(-1)^{(k-1) / 2} t^{k-1}}{(1-t) \sum_{i=0}^{(k-1) / 2} t^{2 i}(-1)^{i} s_{k-1-2 i}(t)+((k-1) \bmod 2)(-1)^{k / 2} t^{k}}
$$

where the Motzkin terms (M and m) are replaced by the corresponding Schröder terms (S and s), and $s_{i}(t)$ is the inverse Schröder polynomial. Perhaps more interesting is the generating function identity described in Theorem 3,

$$
t^{-k} \mathcal{S}^{(k)}(t) s_{k-1}(t)=t^{-k} \mathcal{S}^{(k)}(t, k-1)
$$

(as power series) where $S^{(k)}(t, k-1)$ is the generating function of the bounded Schröder number ending on $y=k-1$, just below the upper boundary.

2 Motzkin Numbers

Leaving the Grand Motzkin numbers behind, we introduce the restriction of counting only paths that do not go below the x-axis. A general weighted Motzkin path is counted by the recursion

$$
M(n, m ; \omega)=M(n-1, m+1 ; \omega)+\omega M(n-1, m ; \omega)+M(n-1, m-1 ; \omega)
$$

for $m \geq 0$, and $M(n, m ; \omega)=0$ if $m<0$. The numbers $M(n, m ; \omega)$ are weighted counts of all such path from $(0,0)$ to (n, m), and we give the special name $M_{n ; \omega}$ to the Motzkin numbers $M(n, 0 ; \omega)$. These numbers (with weight $\omega=1$) have been studied by Th. Motzkin in 1946 [7].

The above table shows that for $\omega=1$ the original Motzkin numbers are $1,1,2,4,9,21,51,127, \ldots$ (sequence A001006 in the On-Line Encyclopedia of Integer Sequences (OEIS)).

It is well-known that the general ω-weighted Motzkin numbers have the generating function

$$
\mu(t ; j, \omega):=\sum_{n \geq 0} M(n+j, j ; \omega) t^{n}=\left(\frac{1-\omega t-\sqrt{(1-\omega t)^{2}-4 t^{2}}}{2 t^{2}}\right)^{j+1}
$$

thus

$$
\begin{equation*}
\mu(t):=\sum_{n \geq 0} M_{n ; \omega} t^{n}=\sum_{n \geq 0} M(n, 0 ; \omega) t^{n}=\frac{1-\omega t-\sqrt{(1-\omega t)^{2}-4 t^{2}}}{2 t^{2}} \tag{2}
\end{equation*}
$$

is the generating function of the Motzkin numbers, satisfying the quadratic equation [1]

$$
\begin{equation*}
\mu(t)=1+\omega t \mu(t)+t^{2} \mu(t)^{2} \tag{3}
\end{equation*}
$$

Hence

$$
M_{n+2 ; \omega}-\omega M_{n+1 ; \omega}=\sum_{i=0}^{n} M_{i ; \omega} M_{n-i ; \omega}
$$

a well-known identity, combinatorially shown by using the "First Return Decomposition". The generating function (in t^{2}) of the Catalan numbers C_{n} is easily obtained by setting $\omega=0$ in (2), but it also follows from $\omega=2$

$$
\frac{1-2 t-\sqrt{(1-2 t)^{2}-4 t^{2}}}{2 t^{2}}=\frac{1-2 t-\sqrt{1-4 t}}{2 t^{2}}=\sum_{n \geq 1} C_{n} t^{n-1}
$$

(in t). Or we can choose $\omega=1$ and get

$$
\begin{aligned}
(1+t) \sum_{n \geq 1} C_{n}\left(\frac{t}{1+t}\right)^{n-1} & =\sum_{n \geq 0} M_{n ; 1} t^{n} \\
M_{n ; 1} & =\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} C_{k+1}
\end{aligned}
$$

For general ω follows from (2) the explicit expression

$$
M_{n ; \omega}=\sum_{k=0}^{n / 2}\binom{n}{2 k} \frac{\omega^{n-2 k}}{2 k+1}\binom{2 k+1}{k} .
$$

3 The Inverse

Define $\phi(t)$ such that $t / \phi(t)$ is the compositional inverse of $t \mu(t)$ thus

$$
\phi(t \mu(t))=\mu(t)=1+\omega t \mu(t)+t^{2} \mu(t)^{2}
$$

by (3), and therefore

$$
\phi(t)=1+\omega t+t^{2}
$$

This simple form of the inverse is the reason for many special results for Motzkin numbers. Note that

$$
1 / \phi(t)=\left(1+\omega t+t^{2}\right)^{-1}=\sum_{n \geq 0} U_{n}(-\omega / 2) t^{n}
$$

the generating function of the Chebychef polynomials of the second kind.
Because of the inverse relationship between $t \mu(t)$ and $t / \phi(t)$ we have that the matrix inverse of $(M(i, j ; \omega))_{n \times n}$ equals $\left(m_{i, j}\right)_{n \times n}$,

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 \\
4 & 5 & 3 & 1 & 0 \\
9 & 12 & 9 & 4 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & -2 & 1 & 0 & 0 \\
1 & 1 & -3 & 1 & 0 \\
-1 & 2 & 3 & -4 & 1
\end{array}\right)=\left(m_{i, j}\right)_{4 \times 4}
$$

where

$$
\sum_{i \geq 0} m_{i, j} t^{i}=t^{j} \phi(t)^{-j-1}
$$

Note that $\left(m_{i, j}\right)$ is also a Riordan matrix. The above generating function for $m_{i, j}$ implies that

$$
m_{i, j}=\left[t^{i}\right] \frac{1}{1+\omega t+t^{2}}\left(\frac{t}{1+\omega t+t^{2}}\right)^{j}=\left[t^{i-j}\right]\left(1+\omega t+t^{2}\right)^{-j-1}=C_{i-j}^{j+1}(-\omega / 2)
$$

The polynomials $C_{n}^{\lambda}(x)=\sum_{k=0}^{n / 2}\binom{n-k+\lambda-1}{n-k}\binom{n-k}{n-2 k}(-1)^{k}(2 x)^{n-2 k}$ are the Gegenbauer polynomials, and therefore

$$
\begin{equation*}
m_{i, j}=\sum_{l=0}^{(i-j) / 2}\binom{i-l}{i-j-l}\binom{i-j-l}{l}(-1)^{l}(-\omega)^{i-j-2 l} \tag{4}
\end{equation*}
$$

The recurrence relation for the (orthogonal) Gegenbauer polynomials

$$
2 x(n+\lambda) C_{n}^{\lambda}(x)=(n+2 \lambda-1) C_{n-1}^{\lambda}+(n+1) C_{n+1}^{\lambda}(x)
$$

gives us immediately a recurrence for the inverse numbers $m_{i, j}, 0 \leq j \leq i-1$,

$$
(i-j) m_{i, j}=-\omega i m_{i-1, j}-(i+j) m_{i-2, j}
$$

with initial values $m_{i, j}=\delta_{i, j}$ for $j \geq i$.
We need later in the paper the following Motzkin ploynomial

$$
\begin{align*}
\sum_{j=0}^{k} m_{k, j} t^{k-j} & =\sum_{j=0}^{k} C_{j}^{k-j+1)}(-\omega / 2) t^{j} \\
& =\sum_{l=0}^{k / 2} \sum_{j=0}^{k-2 l}\binom{k-l}{k-j-l}\binom{k-j-l}{k-j-2 l}(-1)^{l}(-\omega)^{k-j-2 l} t^{k-j} \\
& =\sum_{l=0}^{k / 2}\binom{k-l}{l}(-1)^{l} t^{2 l}(1-\omega t)^{k-2 l} \tag{5}
\end{align*}
$$

From

$$
\left((M(i, j))_{0 \leq i, j \leq n}\right)^{-1}=\left(m_{i, j}\right)_{0 \leq i, j \leq n}
$$

follows

$$
\sum_{k=0}^{n} M(k, i ; w) m_{k, j}=\delta_{i, j}
$$

However, in the case of Motzkin matrices more than this simple linear algebra result holds.

Lemma 1 For all nonnegative integers i and i holds

$$
M(i, j ; \omega)=\sum_{k=0}^{j} m_{j, k} M_{i+k ; \omega}
$$

and

$$
m_{i, j}=\sum_{k=0}^{i-j} m_{i+1, j+1+k} M_{k ; \omega}
$$

The proof can be done via generating functions. Note that

$$
\sum_{n \geq 0} \sum_{j \geq 0} x^{j} t^{n} M(n, j ; \omega)=\frac{\mu(t)}{1-x t \mu(t)}=\frac{1}{1+\omega x+x^{2}-x / t}\left(\mu(t)-\frac{x}{t}\right)
$$

and
$\sum_{j \geq 0} x^{j} \sum_{i \geq j} m_{i, j} t^{i}=\sum_{j \geq 0} x^{j} t^{j} \phi(t)^{j+1}=\frac{\phi(t)}{1-x t \phi(t)}=\frac{1}{1 / \phi(t)-x t}=\frac{1}{1+\omega t+t^{2}-x t}$.
Replace t by x and x by $1 / t$ in the above generating function for the inverse $m_{i, j}$ to get the Laurent series

$$
\sum_{j \geq 0} t^{-j} \sum_{i \geq j} m_{i, j} x^{i}=\frac{1}{1+\omega x+x^{2}-x / t}
$$

hence

$$
\sum_{n \geq 0} \sum_{j \geq 0} x^{j} t^{n} M(n, j ; \omega)=\left(\mu(t)-\frac{x}{t}\right) \sum_{j \geq 0} t^{-j} \sum_{i \geq j} m_{i, j} x^{i}
$$

Now both sides must be power series in x and t. This condition gives the Lemma. The Lemma also has the

Corollary 2

$$
\begin{equation*}
\sum_{k=0}^{j} m_{j, k} M_{i+k, w}=\delta_{i, j} \text { for } 0 \leq i \leq j \tag{6}
\end{equation*}
$$

because $M(i, j ; \omega)=\delta_{i, j}$ for all $0 \leq i \leq j$.

4 Two applications of the inverse Motzkin matrix

The Lemma says that

$$
\left(m_{i, j}\right)_{0 \leq i, j \leq n}\left(M_{i+j ; \omega}\right)_{0 \leq i, j \leq n}=(M(i, j ; \omega))_{0 \leq i, j \leq n}
$$

which gives a direct way of calculcating the first Hankel determinant

$$
\begin{equation*}
\operatorname{det}\left(M_{i+j ; \omega}\right)_{0 \leq i, j \leq n}=\frac{1}{\operatorname{det}\left(m_{i, j}\right)} \operatorname{det}(M(i, j ; w))=1 \tag{7}
\end{equation*}
$$

However, subsequent Hankel determinants are more complicated; we want to show a way how to calculate a determinant proposed by Cameron and Yip [2]. For a broader theory of Hankel determinants in lattice path enumeration see [3].

4.1 The Hankel determinant $\left|\alpha M_{i+j ; \omega}+\beta M_{i+j+1 ; \omega}\right|_{0 \leq i, j \leq n-1}$

The Hankel determinant of $\left(\alpha M_{i+j ; \omega}+\beta M_{i+j+1 ; \omega}\right)_{0 \leq i, j \leq n-1}$ equals for $\omega=1$

$$
\begin{aligned}
& =\left|\begin{array}{ccccc}
\alpha+2 \beta & 2 \alpha+4 \beta & 4 \alpha+7 \beta & \cdots & \alpha M_{n-1 ; 1}+\beta M_{n ; 1} \\
2 \alpha+4 \beta & 4 \alpha+7 \beta & 7 \alpha+9 \beta & & \\
4 \alpha+7 \beta & 7 \alpha+9 \beta & 4 \alpha+7 \beta & \vdots & \vdots \\
7 \alpha+9 \beta & 9 \alpha+21 \beta & 9 \alpha+21 \beta & & \\
\vdots & \vdots & \vdots & & \\
\alpha M_{n-1 ; 1}+\beta M_{n ; 1} & \alpha M_{n ; 1}+\beta M_{n+1 ; 1} & \alpha M_{n+1 ; 1}+\beta M_{n+2 ; 1} & & \alpha M_{2 n-2 ; 1}+\beta M_{2 n, n ; 1}
\end{array}\right| \\
& =\left|\left(M_{i+j ; 1}\right)_{0 \leq i, j \leq n-1}\right|\left|\begin{array}{ccccc}
\alpha & 0 & 0 & \ldots & -\beta m_{n}(0) \\
\beta & \alpha & 0 & & -\beta m_{n}(1) \\
0 & \beta & \alpha & -\beta m_{n}(2) \\
0 & & \vdots & \\
0 & 0 & 0 & \alpha & -\beta m_{n}(n-2) \\
0 & 0 & 0 & \beta & \alpha-\beta m_{n}(n-1)
\end{array}\right|
\end{aligned}
$$

because the last column in the matrix on the right when multiplied with the i-th row of the matrix on the left gives $\alpha M_{i+n-1 ; \omega}-\beta \sum_{k=0}^{n-1} m_{n, k} M_{i+k ; \omega}=$ $\alpha M_{i+n-1 ; \omega}+\beta M_{i+n ; \omega}-\beta \delta_{i, n}$ by Corollary 2 Now

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
\alpha & 0 & 0 & \ldots & -\beta m_{n, 0} \\
\beta & \alpha & 0 & & -\beta m_{n, 1} \\
0 & \beta & \alpha & \ldots & -\beta m_{n, 2} \\
0 & & \vdots & & \\
0 & 0 & \ldots & \alpha & -\beta m_{n, n-2} \\
0 & 0 & \ldots & \beta & \alpha-\beta m_{n, n-1}
\end{array}\right| \\
& =\alpha^{-\binom{n}{2}}\left|\begin{array}{ccccc}
\alpha & 0 & 0 & \ldots & -\beta m_{n, 0} \\
\alpha \beta & \alpha^{2} & 0 & & -\alpha \beta m_{n, 1} \\
0 & \alpha^{2} \beta & \alpha^{3} & \ldots & -\alpha^{2} \beta m_{n, 2} \\
0 & 0 & \ldots & \alpha^{n-1} & -\alpha^{n-2} \beta m_{n, n-2} \\
0 & 0 & \ldots & \alpha^{n-1} \beta & \alpha^{n-1}-\alpha^{n-1} \beta m_{n, n-1}
\end{array}\right| \\
& =\alpha^{-\binom{n}{2}}\left|\begin{array}{cccccc}
\alpha & 0 & 0 & \ldots & -\beta m_{n, 0} \\
0 & \alpha^{2} & 0 & & \beta^{2} m_{n, 0}-\alpha \beta m_{n, 1} \\
0 & 0 & \alpha^{3} & \ldots & -\beta^{3} m_{n, 0}+\alpha \beta^{2} m_{n, 1}-\alpha^{2} \beta m_{n, 2} \\
0 & 0 & \ldots & \vdots & \alpha^{n-1} & -\sum_{i=0}^{n-2}(-1)^{n-2-i} \beta^{n-1-i} \alpha^{i} m_{n, i} \\
0 & 0 & \ldots & 0 & \alpha^{n}-\sum_{i=0}^{n-1}(-1)^{n-1-i} \beta^{n-i} \alpha^{i} m_{n, i}
\end{array}\right|
\end{aligned}
$$

Therefore det $\left(\left(\alpha M_{i+j ; \omega}+\beta M_{i+j+1 ; \omega}\right)_{0 \leq i, j \leq n-1}\right)=\alpha^{n}-\sum_{i=0}^{n-1}(-1)^{n-1-i} \beta^{n-i} \alpha^{i} m_{n, i}=$ $\sum_{i=0}^{n}(-\beta)^{n-i} \alpha^{i} m_{n, i}=\sum_{i=0}^{n}(-1)^{n-i} \beta^{n-i} \alpha^{i} P_{n-i}^{(-i-1)}(-\omega / 2)$. This can be written explicitly as $\operatorname{det}\left(\left(\alpha M_{i+j ; \omega}+\beta M_{i+j+1 ; \omega}\right)_{0 \leq i, j \leq n-1}\right)=$

$$
\begin{aligned}
& (-\beta)^{n} \sum_{k=0}^{n}(-\alpha / \beta)^{k} m_{n, k} \\
& =(-\beta)^{n} U_{n}\left(\frac{-\alpha / \beta-\omega}{2}\right)=(-\beta)^{n} \sum_{k=0}^{n / 2}\binom{n-k}{k}(-1)^{k}(-\alpha / \beta-\omega)^{n-2 k} \\
& =\sum_{k=0}^{n / 2}\binom{n-k}{k}(-1)^{k} \beta^{2 k}(\alpha+\beta \omega)^{n-2 k} \\
& =\frac{2^{-n-1}}{\sqrt{(\alpha+\omega \beta)^{2}-4 \beta^{2}}} \times \\
& \times\left(\left(\sqrt{(\alpha+\omega \beta)^{2}-4 \beta^{2}}+\alpha+\omega \beta\right)^{n+1}+\left(\sqrt{(\alpha+\beta \omega)^{2}-4 \beta^{2}}-\alpha-\beta \omega\right)^{n+1}\right)
\end{aligned}
$$

If $\alpha=\beta=1$, then $\operatorname{det}\left(\left(M_{i+j ; \omega}+M_{i+j+1 ; \omega}\right)_{0 \leq i, j \leq n-1}\right)=$

$$
\begin{aligned}
& \frac{1}{2^{n+1} \sqrt{(\omega+1)^{2}-4}}\left(\left(1+\omega+\sqrt{(\omega+1)^{2}-4}\right)^{n+1}-\left(1+\omega-\sqrt{(\omega+1)^{2}-4}\right)^{n+1}\right) \\
& =\sum_{k=0}^{n}(-1)^{n-k}\binom{k}{n-k}(\omega+1)^{2 k-n}
\end{aligned}
$$

which approaches $n+1$ if $\omega \rightarrow 1$. In the case of Dyck path, we obtain $\delta_{0, n}$ for this determinat of the sum of matrices. If $\beta=1$ and $\alpha=0$, then the determinant is the second Hankel determinant of the Motzkin numbers,

$$
\operatorname{det}\left(\left(M_{i+j+1 ; \omega}\right)_{0 \leq i, j \leq n-1}\right)=\sum_{k=0}^{n / 2}\binom{n-k}{k}(-1)^{k} \omega^{n-2 k}
$$

If $\alpha=1$ and $\beta=0$ then $\operatorname{det}\left(M_{i+j ; \omega}\right)_{0 \leq i, j \leq n-1}=1$, independent of ω (see (17). The same approach also shows the recursion

$$
\left|M_{i+j+2 ; \omega}\right|_{0 \leq i, j \leq n-1}=\left|M_{i+j+2 ; \omega}\right|_{0 \leq i, j \leq n-2}+\left|M_{i+j+1 ; \omega}\right|_{0 \leq i, j \leq n-1}^{2}
$$

4.2 Motzkin in a band

The number of Motzkin paths staying strictly below the line $y=k$ for $k>0$ is known to have the generating function [4, Proposition 12]

$$
\begin{aligned}
& \sum_{n \geq 0} M_{n}^{(k)} t^{n}=\mu(t) \frac{1-(t \mu(t))^{2 k}}{1-(t \mu(t))^{2(k+1)}}=\frac{1}{t} \frac{\left(\frac{1}{t \mu}\right)^{k}-(t \mu)^{k}}{\left(\frac{1}{t \mu}\right)^{k+1}-(t \mu)^{k+1}} \\
& k \\
& 3 \\
& 2
\end{aligned} \left\lvert\, \begin{array}{lllllllllll}
\\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & & 1 & 1 & 3 & 9 & 25 & 69 & 189 & 518 & 1422 \\
\mathbf{0} & 1 & 1 & 2 & 4 & 12 & 30 & 76 & 196 & 512 & 1353 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & n \\
& & & M_{n}^{(4)} & \text { is given in row } 0 .
\end{array}\right.
$$

From $\mu(t)(1-\omega t)-1=t^{2} \mu(t)^{2}$ (see (3)) follows

$$
\begin{aligned}
\mu_{1,2}(t) & =\left(1-\omega t \pm \sqrt{(1-\omega t)^{2}-4 t^{2}}\right) /\left(2 t^{2}\right) \\
t \mu_{1,2}(t) & =\left(1-\omega t \pm \sqrt{(1-\omega t)^{2}-4 t^{2}}\right) /(2 t)
\end{aligned}
$$

thus

$$
\mu_{1}+\mu_{2}=(1-\omega t) / t^{2} \text { and } \mu_{1} \mu_{2}=1 / t^{2}
$$

Hence

$$
\begin{aligned}
\sum_{n \geq 0} M_{n ; \omega}^{(k)} t^{n} & =\frac{1}{t} \frac{\left(t \mu_{1}\right)^{k}-\left(t \mu_{2}\right)^{k}}{\left(t \mu_{1}\right)^{k+1}-\left(t \mu_{2}\right)^{k+1}}=\frac{1}{t} \frac{\left(t \mu_{2}\right)^{-k}-\left(t \mu_{1}\right)^{-k}}{\left(t \mu_{2}\right)^{-k-1}-\left(t \mu_{1}\right)^{-k-1}} \\
& =\frac{\sum_{j=0}^{(k-1) / 2}(-1)^{j}\binom{k-1-j}{j} t^{2 j}(1-\omega t)^{k-1-2 j}}{\sum_{j=0}^{k / 2}(-1)^{j}\binom{k-j}{j} t^{2 j}(1-\omega t)^{k-2 j}} \\
& =\frac{\sum_{i=0}^{k-1} m_{k-1, i} t^{k-1-i}}{\sum_{i=0}^{k} m_{k, i} t^{k-i}}
\end{aligned}
$$

(see (5)). The OEIS lists many special cases for k; here are a few, with $\omega=1$.

1. $\sum_{n \geq 0} M_{n ; 1}^{(1)} t^{n} \frac{1}{1-t} \Longleftrightarrow 1,1,1,1, \ldots$
2. $\sum_{n \geq 0} M_{n ; 1}^{(2)} t^{n}=\frac{1-t}{(1-t)^{2}-t^{2}}=1+t+2 t^{2}+4 t^{3}+8 t^{4}+16 t^{5} \ldots$ thus $1,1,2,4,8,16,32,64, \ldots$, the powers of 2 .
3. $\sum_{n \geq 0} M_{n ; 1}^{(3)} t^{n}=\frac{2 t-1}{(1-t)\left(t^{2}+2 t-1\right)}$ thus $1,1,2,4,9,21,50,120, \ldots(\mathrm{~A} 171842)$
4. $\sum_{n \geq 0} M_{n ; 1}^{(4)} t^{n}=\left(1-3 t+t^{2}+t^{3}\right) /\left(1-4 t+3 t^{2}+2 t^{3}-t^{4}\right)$, thus $1,1,2,4,9,21,51,127,322,826, \cdots:(A 005207)$, generating function by Alois P. Heinz.

The special form of the generating function

$$
\begin{equation*}
\sum_{n \geq 0} M_{n ; \omega}^{(k)} t^{n}=\frac{\sum_{i=0}^{k-1} m_{k-1, i} t^{k-1-i}}{\sum_{i=0}^{k} m_{k, i} t^{k-i}} \tag{8}
\end{equation*}
$$

works with weight ω, for all $k=1,2, \ldots$. It is equivalent to the recursion $\sum_{j=0}^{k} M_{n-j}^{(k)} m_{k, k-j}=0$ for all $n \geq k$, with initial values $\sum_{j=0}^{n} M_{n-j}^{(k)} m_{k, k-j}=$ $m_{k-1, k-1-n}$ for all $n=0, \ldots, k-1$.

5 Horizontal steps of length w

A "natural" generalization of Motzkin paths is a lattice path W that takes horizontal steps of some positive length w, weighted by ω. We would like to see similar results as (8) in such cases. However, we have a result only for the case $w=2$, the Schröder paths.

$\uparrow m$									1
7								1	0

5.1 The recursion for W

Let us consider the step set $\left\{\nearrow, \searrow, \longrightarrow^{w}\right\}$, where $\rightarrow^{w}=:(w, 0)$, for any positive integer w. Denote the number of paths from $(0,0)$ to (n, j) by $W(n, j ; \omega)$, where the horizontal steps are weighted by ω. We get the recursion

$$
\begin{aligned}
W(n, j ; \omega) & =W(n-1, j+1 ; \omega)+W(n-1, j-1 ; \omega)+\omega W(n-w, j ; \omega) \\
W(n, j ; \omega) & =0 \text { for } j<n \\
W_{n ; \omega} & =W(n, 0 ; \omega) .
\end{aligned}
$$

The generating function is well known,

$$
\begin{equation*}
\sum_{n \geq 0} W_{n ; \omega} t^{n}=\frac{1-\omega t^{w}-\sqrt{\left(1-\omega t^{w}\right)^{2}-4 t^{2}}}{2 t^{2}}=: \mu_{w}(t ; \omega) \tag{9}
\end{equation*}
$$

The recursion can be reformulated as
$W(n, j ; \omega)=W(n+1, j-1 ; \omega)-W(n, j-2 ; \omega)-\omega W(n+1-w, j-1 ; \omega)$ for $m \geq n$ We find the generating function identity $\sum_{i \geq 0} W(i, j ; \omega) t^{i}=$

$$
\begin{aligned}
& \sum_{i \geq 0} W(i+1, j-1 ; \omega) t^{i}-\sum_{i \geq 0} W(i, j-2 ; \omega) t^{i} \\
& -\omega \sum_{i \geq w-1} W(i+1-w, j-1 ; \omega) t^{i} \\
& =\sum_{i \geq 0} W(i+1, j-1 ; \omega) t^{i}-\omega\left(\sum_{i \geq-1} W(i+1, j-1 ; \omega) t^{i+1+w-1}\right) \\
& -\sum_{i \geq 0} W(i, j-2 ; \omega) t^{i} \\
& =t^{-1} \sum_{i \geq 0} W(i+1, j-1 ; \omega) t^{i+1}-\omega t^{w-1}\left(\sum_{i \geq-1} W(i+1, j-1 ; \omega) t^{i+1}\right) \\
& -\sum_{i \geq 0} W(i, j-2 ; \omega) t^{i} \\
& =\left(t^{-1}-\omega t^{w-1}\right)\left(\sum_{i \geq 0} W(i, j-1 ; \omega) t^{i}-\delta_{j, 1}\right)-\sum_{i \geq 0} W(i, j-2 ; \omega) t^{i}
\end{aligned}
$$

Let $\mathcal{W}(t, j ; \omega)=\sum_{i \geq 0} W(i, j ; \omega) t^{i}$. In this notation,

$$
\begin{align*}
& \mathcal{W}(t, j ; \omega)=\frac{1-\omega t^{w}}{t} \mathcal{W}(t, j-1 ; \omega)-\mathcal{W}(t, j-2 ; \omega) \text { for } j>1 \tag{10}\\
& \mathcal{W}(t, 1 ; \omega)=\frac{1}{t}\left(\left(1-\omega t^{w}\right) \mathcal{W}(t, 0 ; \omega)-1\right)
\end{align*}
$$

For example,
$\mathcal{W}(t, 2 ; \omega)=\frac{\left(1-\omega t^{w}\right)}{t} \mathcal{W}(t, 1 ; \omega)-\mathcal{W}(t, 0 ; \omega)=\frac{\left(1-\omega t^{w}\right)}{t} \frac{1}{t}\left(\left(1-\omega t^{w}\right) \mathcal{W}(t, 0 ; \omega)-1\right)-$ $\mathcal{W}(t, 0 ; \omega)$
$=\left(\frac{\left(1-\omega t^{w}\right)^{2}}{t^{2}}-1\right) \mathcal{W}(t, 0 ; \omega)-\frac{\left(1-\omega t^{w}\right)}{t^{2}}$, and $\mathcal{W}(t, 0 ; \omega)=\mu_{w}(t ; \omega)$ is given in
(9).

$$
\begin{aligned}
& \mathcal{W}(t, 3 ; \omega)=\frac{\left(1-\omega t^{w}\right)}{t} \mathcal{W}(t, 2 ; \omega)-\mathcal{W}(t, 1 ; \omega) \\
= & \frac{\left(1-\omega t^{w}\right)}{t}\left(\left(\frac{\left(1-\omega t^{w}\right)^{2}}{t^{2}}-1\right) \mathcal{W}(t, 0 ; \omega)-\frac{\left(1-\omega t^{w}\right)}{t^{2}}\right)-\frac{1}{t}\left(\left(1-\omega t^{w}\right) \mathcal{W}(t, 0 ; \omega)-1\right) \\
= & \left(\frac{\left(1-\omega t^{w}\right)^{2}}{t^{2}}-2\right)\left(\frac{\left(1-\omega t^{w}\right)}{t} \mu_{w}(t ; \omega)\right)+\frac{1}{t}-\frac{\left(1-\omega t^{w}\right)^{2}}{t^{3}}
\end{aligned}
$$

We find an explicit expression for $\mathcal{W}(t, j ; \omega)$ in the next section.

5.2 Solution to Recursion for \mathcal{W} and $\mathcal{W}^{(k)}$

The linear recursion (10) is called Fibonacci-like. It is of the form

$$
\sigma_{n}=u \sigma_{n-1}+v \sigma_{n-2}
$$

with $u=\frac{1-\omega t^{w}}{t}$ and $v=-1$, for $n>1$. We know the inital values σ_{0} and $\sigma_{1}=u \sigma_{0}-1 / t$.

Hence $\sigma_{n}=\left[\tau^{n}\right] \frac{\sigma_{0}+\left(\sigma_{1}-u \sigma_{0}\right) \tau}{1-u \tau-v \tau^{2}}=\left[\tau^{n}\right] \frac{\sigma_{0}-\tau / t}{1-u \tau+\tau^{2}}$ in this case, or $\sigma_{n}=$

$$
\begin{align*}
& {\left[\tau^{n}\right]\left(\sigma_{0}-\frac{\tau}{t}\right) \sum_{i=0}^{\infty}\binom{i}{j}(-1)^{j} u^{i-j} \tau^{i-j+2 j}} \tag{11}\\
& =\sigma_{0} \sum_{j=0}^{n}\binom{n-j}{j}(-1)^{j}\left(\frac{1-\omega t^{w}}{t}\right)^{n-2 j}-\frac{1}{t} \sum_{j=0}^{n-1}\binom{n-1-j}{j}(-1)^{j}\left(\frac{1-\omega t^{w}}{t}\right)^{n-1-2 j}
\end{align*}
$$

Let us define

$$
\begin{equation*}
p_{n}(t):=\sum_{j=0}^{n}\binom{n-j}{j}\left(\frac{1-\omega t^{w}}{t}\right)^{n-2 j}(-1)^{j} \tag{12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathcal{W}(t, j ; \omega)=\left(\frac{1-\omega t^{w}-\sqrt{\left(1-\omega t^{w}\right)^{2}-4 t^{2}}}{2 t^{2}}\right) p_{j}(t)-p_{j-1}(t) / t \tag{13}
\end{equation*}
$$

where $p_{j}=0$ for all $j<0$.
The generating function $\mathcal{W}^{(k)}(t, j ; \omega)=\sum_{n \geq 0}^{(k)} W^{(k)}(n, j ; \omega) t^{n}$ is generating the case where the lattice paths stay strictly below $y=k$; the numbers $W^{(k)}(n, j ; \omega)$ are the number of paths with ω-weighted horizontal steps of length w, and diagonal up and down steps, that do not reach the line $y=k$, and stay above the x-axis. That means, $0 \leq j<k$. We also know $\mathcal{W}^{(k)}(t, 0 ; \omega)$

$$
\begin{aligned}
& =\sum_{n \geq 0} W_{n}^{(k)} t^{n}=\mu_{w}(t ; \omega) \frac{1-\left(t \mu_{w}(t ; \omega)\right)^{2 k}}{1-\left(t \mu_{w}(t ; \omega)\right)^{2(k+1)}} \\
& =\frac{1-\omega t^{w}-\sqrt{\left(1-\omega t^{w}\right)^{2}-4 t^{2}}}{2 t^{2}} \frac{1-\left(\frac{1-\omega t^{w}-\sqrt{\left(1-\omega t^{w}\right)^{2}-4 t^{2}}}{2 t}\right)^{2 k}}{1-\left(\frac{1-\omega t^{w}-\sqrt{\left(1-\omega t^{w}\right)^{2}-4 t^{2}}}{2 t}\right)^{2(k+1)}}
\end{aligned}
$$

The recursion is the same as for $\mathcal{W}(t, j ; \omega)$. Only the initial values have changed (see $\mathcal{W}^{(k)}(t, 0 ; \omega)$ above).

We get

$$
\begin{aligned}
& \mathcal{W}^{(k)}(t, j ; \omega) \\
& =\left(\mu_{w}(t ; \omega) \frac{1-\left(t \mu_{w}(t ; \omega)\right)^{2 k}}{1-\left(t \mu_{w}(t ; \omega)\right)^{2(k+1)}}\right) p_{j}(t)-p_{j-1}(t)
\end{aligned}
$$

and $\sum_{n \geq 0} W_{n}^{(k)} t^{n}$

$$
\begin{align*}
& =\frac{1}{2 t^{2}} \frac{\left(\frac{1-\omega t^{w}-\sqrt{\left(1-\omega t^{w}\right)^{2}-4 t^{2}}}{2 t}\right)^{-k}-\left(\frac{1-\omega t^{w}-\sqrt{\left(1-\omega t^{w}\right)^{2}-4 t^{2}}}{2 t}\right)^{k}}{\left(\frac{1-\omega t^{w}-\sqrt{\left(1-\omega t^{w}\right)^{2}-4 t^{2}}}{2 t}\right)^{-(k+1)}-\left(\frac{1-\omega t^{w}-\sqrt{\left(1-\omega t^{w}\right)^{2}-4 t^{2}}}{2 t}\right)^{(k+1)}} \\
& =2 \frac{\sum_{i=0}^{(k-1) / 2}(-1)^{i} 2^{2 i} t^{2 i}\left(1-\omega t^{w}\right)^{k-2 i} \sum_{j=0}^{\infty}\binom{j+i}{i}\binom{k}{2 j+2 i+1}}{\sum_{i=0}^{(k+1) / 2}(-1)^{i} 2^{2 i} t^{2 i}\left(1-\omega t^{w}\right)^{k+1-2 i} \sum_{j=0}^{\infty}\binom{j+i}{i}\binom{k+1}{2 j+1+2 i}} \\
& =\frac{\sum_{i=0}^{k / 2}(-1)^{i} t^{2 i}\left(1-\omega t^{w}\right)^{k-2 i}\binom{k-i-1}{i}}{\sum_{i=0}^{(k+1) / 2}(-1)^{i} t^{2 i}\left(1-\omega t^{w}\right)^{k+1-2 i}\binom{k-i}{i}}=\frac{p_{k-1}(t)}{t p_{k}(t)} \tag{14}
\end{align*}
$$

where $p_{n}(t)$ is given in (12).

6 Schröder numbers

If $w=2$, then every horizontal steps gains two units. We denote the number of paths to (n, j) by $S(n, j ; \omega)$, the general weighted Schröder numbers.

$j \uparrow$				1	0	$5+5 \omega$
3			1	0	$4+4 \omega$	0
2		1	0	$3+3 \omega$	0	$9+15 \omega+6 \omega^{2}$
1		1	0	$2+2 \omega$	0	$5+8 \omega+3 \omega^{2}$

The general weighted Schröder numbers $S(n, j ; \omega)$. The numbers $S_{n ; \omega}$ are in row 0 .
The following matrix contains the "compressed" Schröder numbers by removing the zeroes and shifting all entries into the empty places. This is the same effect as replacing t^{2} in $\sum_{n=0}^{\infty} S(n, j ; \omega) t^{j}$ by t.

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
6 & 4 & 1 & 0 & 0 \\
22 & 16 & 6 & 1 & 0 \\
90 & 68 & 30 & 8 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 & 0 \\
2 & -4 & 1 & 0 & 0 \\
-2 & 8 & -6 & 1 & 0 \\
2 & -12 & 18 & -8 & 1
\end{array}\right)
$$

compressed Schröder numbers $(\omega=1) \quad$ inverse compressed Schröder numbers
The power series $\sum_{n=0}^{\infty} S(n, j ; \omega) t^{j}$ is given in (9). For the compressed Schröder numbers this equation says
$\mathcal{S}(t, j ; \omega)=\sum_{n=0}^{\infty} S(n, j ; \omega) t^{j}=\left(\frac{1-\omega t-\sqrt{(1-\omega t)^{2}-4 t}}{2 t}\right) p_{j}(t)-p_{j-1}(t) / t$
where

$$
\begin{equation*}
p_{n}(t)=t^{-n} \sum_{j=0}^{n}\binom{n-j}{j} t^{j}(1-\omega t)^{n-2 j}(-1)^{j} \tag{15}
\end{equation*}
$$

All references to Schröder numbers will from now on mean the compressed Schröder numbers. Note that

$$
\begin{equation*}
\mathcal{S}^{(k)}(t ; \omega)=\sum_{n \geq 0} S_{n}^{(k)} t^{n}=\frac{p_{k-1}(t)}{t p_{k}(t)} \tag{16}
\end{equation*}
$$

by (14).

6.1 Inverse Schröder numbers

From (9) we see that

$$
\mu_{s}(t)=1+\omega t^{2} \mu_{s}(t)+t^{2} \mu_{s}(t)^{2}
$$

Hence

$$
\begin{aligned}
\phi\left(t \mu_{s}(t)\right) & =\mu_{s}(t)=1+\omega t^{2} \mu_{s}(t)+t^{2} \mu_{s}(t)^{2} \\
\phi(t) & =1+\frac{\omega t^{2}}{\phi(t)}+t^{2}
\end{aligned}
$$

thus $\phi(t)=\frac{1}{2}+\frac{1}{2} t^{2}+\frac{1}{2} \sqrt{\left(1+t^{2}\right)^{2}+4 t^{2} \omega}$, a power series in t^{2}. We let $\xi=t^{2}$ and get

$$
\begin{aligned}
\phi(\xi) & =\frac{1}{2}+\frac{1}{2} \xi+\frac{1}{2} \sqrt{(1+\xi)^{2}+4 \xi \omega} \\
\mu_{s}(\xi) & =1+\omega \xi \mu_{s}(t)+\xi \mu_{s}(\xi)^{2} \\
& =\frac{1-\omega \xi-\sqrt{(1-\omega \xi)^{2}-4 \xi}}{2 \xi}
\end{aligned}
$$

Lagrange inversion tells us that for all $0 \leq i \leq k$ holds

$$
(i+1)\left[\mu_{s}^{-k-1}\right]_{k-i}=(k+1)\left[\phi^{-i-1}\right]_{k-i}=(k+1) s_{k, i}
$$

and therefore

$$
\begin{aligned}
s_{k, j} & =\left[\mu_{s}^{-k-1}\right]_{k-j}=\frac{j+1}{k+1}\left[t^{k-j}\right]\left(\frac{1-\omega t-\sqrt{(1-\omega t)^{2}-4 t}}{2 t}\right)^{-k-1} \\
& =\left[t^{k-j}\right] \frac{j+1}{k+1}\left(\frac{2 t\left(1-\omega t+\sqrt{(1-\omega t)^{2}-4 t}\right)}{4 t}\right)^{k+1} \\
& =\left[t^{k-j}\right] \frac{j+1}{k+1}\left(\frac{1}{2}(1-\omega t)\left(1+\sqrt{1-\frac{4 t}{(1-\omega t)^{2}}}\right)\right)^{k+1} \\
& =\frac{j+1}{k+1}(-1)^{k-j} \sum_{m=0}^{k-j} 2^{2 m-k-1}\binom{k+1-2 m}{k-j-m} \omega^{k-j-m} \sum_{l=0}^{k+1}\binom{k+1}{l}\binom{l / 2}{m}
\end{aligned}
$$

Now $\sum_{l=0}^{k+1}\binom{k+1}{l}\binom{\frac{1}{2} l}{m}=\frac{k+1}{k-2 m+1}\binom{k-m}{m} 2^{k+1-2 m}$ for $0 \leq m$ (see Gould 5. (3.163)], who attributes the formula to Carlitz). Therefore

$$
s_{k, j}=(-1)^{k-j} \sum_{m=0}^{k-j}\binom{k+1-2 m}{k-j-m} \frac{j+1}{k-m+1}\binom{k-m+1}{m} \omega^{k-j-m}
$$

the compressed weighted inverse Schröder numbers. We need the following polynomials: $\sum_{k \geq 0} s_{n, k} t^{n-k}$

$$
\begin{aligned}
& =\sum_{k=0}^{n} \sum_{m=0}^{n-k} \frac{k+1}{n-m+1}\binom{n-m+1}{m}\binom{n+1-2 m}{n-k-m} t^{n-k}(-1)^{n-k} \omega^{n-k-m} \\
& =t^{n} \sum_{m=0}^{n} \frac{1}{n-m+1}\binom{n-m+1}{m} \omega^{-m} \sum_{k=0}^{\infty}(k+1)\binom{n+1-2 m}{n-k-m}(-\omega)^{n-k} t^{-k} \\
& =\sum_{m=0}^{n} \frac{1}{n-m+1}\binom{n-m+1}{m}(-1)^{m+1}(1-\omega t)^{n-2 m} t^{m}(t m \omega+m-n-1)
\end{aligned}
$$

Hence

$$
\begin{align*}
s_{n}(t) & =\sum_{k \geq 0} s_{n, k} t^{n-k} \tag{17}\\
& =\sum_{m=0}^{n}\left(\frac{t \omega m}{n-m+1}-1\right)\binom{n-m+1}{m}(-1)^{m+1}(1-\omega t)^{n-2 m} t^{m}
\end{align*}
$$

1	0	0	0	0
-2	1	0	0	0
2	-4	1	0	0
-2	8	-6	1	0
2	-12	18	-8	1

The compressed inverse $\left(s_{n, k}\right)$ for $\omega=1$

This matrix is A080246 in the OEIS. At the same reference we find the generating function of the k-th column,

$$
\sum_{n \geq k} s_{n, k} t^{n}=\left(\frac{1-t}{1+t}\right)^{k}
$$

Also,

$$
\sum_{n \geq 0} \sum_{k=0}^{n} s_{n, k} t^{n-k}=\sum_{k=0}^{\infty} t^{-k}\left(\frac{1-t}{1+t}\right)^{k}=\frac{t(1+t)}{2 t+t^{2}-1}
$$

Example: $\sum_{k=0}^{n} s_{4, k} t^{4-k}=s_{4}(t)=1-8 t+18 t^{2}-12 t^{3}+2 t^{4}$.

6.2 Delannoy numbers

The numbers $D(n, k)=\sum_{l=0}^{n}\binom{k}{l}\binom{n+k-l}{k} \omega^{l}$ are the Delannoy numbers; the numbers $D(n, n+j)$ are counting all weighted Grand Schröder paths to $(2 n+j, j)$. Hence they satisfy the recursion

$$
\begin{equation*}
D(n, n+j)=\omega D(n-1, n-1+j)+D(n, n+j-1)+D(n-1, n+j) \tag{18}
\end{equation*}
$$

$j \uparrow$							1	0
5						1	0	$7+6 \omega$
4					1	0	$6+5 \omega$	0
3				1	0	$5+4 \omega$	0	$21+30 \omega+10 \omega^{2}$
2			1	0	$4+3 \omega$	0	$15+20 \omega+6 \omega^{2}$	0
1		1	0	$3+2 \omega$	0	$10+12 \omega+3 \omega^{2}$	0	129
0	1		$2+\omega$	0	$6+6 \omega+\omega^{2}$	0	63	0
$n \rightarrow$	0	1	2	3	4	5	6	7
				Unco	mpressed Gra	d Schröder numb	ers $(\omega=1)$	

The generating function

$$
\sum_{n=0}^{\infty} \sum_{l=0}^{n}\binom{k}{l}\binom{n+k-l}{n-l} \omega^{l} t^{n}=\frac{1}{1-t}\left(\frac{1+t \omega}{1-t}\right)^{k}
$$

shows that $D(n, k)$ is a Sheffer polynomial of degree n in k. The Delannoy polynomial is of the form

$$
\begin{aligned}
d_{k}(t) & =\sum_{j=0}^{k} D(k-j, j) t^{j}=\sum_{j=0}^{k} \sum_{l=0}^{k-j}\binom{j}{l}\binom{k-l}{j} \omega^{l} t^{j} \\
& =\sum_{l=0}^{k}\binom{k-l}{l} \omega^{l} t^{l} \sum_{j=0}^{k-2 l}\binom{k-2 l}{j} t^{j}=\sum_{l=0}^{k}\binom{k-l}{l} \omega^{l} t^{l}(1+t)^{k-2 l}
\end{aligned}
$$

and has generating function

$$
\sum_{k=0}^{\infty} d_{k}(t) x^{k}=\frac{1}{1-x-t\left(x+\omega x^{2}\right)} .
$$

From (18) follows for $\omega=1$ that

$$
d_{k-1}(t)=t d_{k-1}(t)+t d_{k-2}(t)+d_{k}(t)
$$

Also for $\omega=1$ holds

$$
p_{k}(t)=t^{-k} \sum_{l=0}^{k}\binom{k-l}{l} t^{l}(1-t)^{k-2 l}(-1)^{l}=t^{-k} d_{k}(-t)
$$

(see (15)). Hence

$$
\begin{equation*}
\mathcal{S}^{(k)}(t ; 1)=\sum_{n \geq 0} S_{n ; 1}^{(k)} t^{n}=\frac{p_{k-1}(t)}{t p_{k}(t)}=\frac{d_{k-1}(-t)}{d_{k}(-t)} \tag{19}
\end{equation*}
$$

by (16). This shows an intimate connection between the generating function of the Schröder numbers in a band and the Delannoy polynomials, when $\omega=1$. The Delannoy polynomials at negative argument, $d_{k}(-t)$, satisfy for $\omega=1$ the same recursion as $d_{k}(t)$,

$$
d_{k-1}(-t)=t d_{k-1}(-t)+t d_{k-2}(-t)+d_{k}(-t) .
$$

This follows again from (18).
Another connection exists with the inverse polynomial $s_{n}(t)$; from (17) $s_{n}(t)=\sum_{k \geq 0} s_{n, k} t^{n-k}=$
$t \omega \sum_{m=1}^{n}\binom{n-m}{m-1}(-1)^{m+1}(1-\omega t)^{n-2 m} t^{m}-\sum_{m=0}^{n}\binom{n-m+1}{m}(-1)^{m+1}(1-\omega t)^{n-2 m} t^{m}$
follows for $\omega=1$

$$
\begin{equation*}
s_{n}(t)=\frac{t^{2}}{1-t} d_{n-1}(-t)+d_{n+1}(-t) /(1-t) . \tag{20}
\end{equation*}
$$

and vice-versa,

$$
\begin{aligned}
d_{n+1}(-t) & =(1-t) s_{n}(t)-t^{2} d_{n-1}(-t) \\
& =(1-t) \sum_{i=0}^{n / 2} t^{2 i}(-1)^{i} s_{n-2 i}(t)+(n \bmod 2)(-1)^{(n+1) / 2} t^{n+1}
\end{aligned}
$$

Hence the generating function of the bounded Schröder numbers can for $\omega=1$ be written as
$\mathcal{S}^{(k)}(t ; 1)=\sum_{n \geq 0} S_{n ; 1}^{(k)} t^{n}=\frac{(1-t) \sum_{i=0}^{(k-2) / 2} t^{2 i}(-1)^{i} s_{k-2-2 i}(t)+(k \bmod 2)(-1)^{(k-1) / 2} t^{k-1}}{(1-t) \sum_{i=0}^{(k-1) / 2} t^{2 i}(-1)^{i} s_{k-1-2 i}(t)+((k-1) \bmod 2)(-1)^{k / 2} t^{k}}$

7 Schröder in a Band

From (19) follows for $\omega=1$ the generating function of the (compressed) bounded (by k) Schröder numbers,

$$
\begin{equation*}
\mathcal{S}^{(k)}(t ; 1)=\frac{d_{k-1}(-t)}{d_{k}(-t)} \tag{21}
\end{equation*}
$$

Example: $\mathcal{S}^{(4)}(t ; 1)=\frac{d_{3}(-t)}{d_{4}(-t)}=\frac{1-5 t+5 t^{2}-t^{3}}{1-7 t+13 t^{2}-7 t^{3}+t^{4}}$
$=1+2 t+6 t^{2}+22 t^{3}+89 t^{4}+377 t^{5}+1630 t^{6}+7110 t^{7}+31130 t^{8}+136513 t^{9}+$ $599041 t^{10}+2629418 t^{11}+11542854 t^{12}+50674318 t^{13}+222470009 t^{14}+976694489 t^{15}+$ $4287928678 t^{16}+O\left(t^{17}\right)$

$\begin{aligned} & \uparrow m \\ & \mathrm{k}=4 \end{aligned}$									
3				1	7	36	168	756	3353
2			1	6	29	132	588	2597	11430
1		1	4	16	67	288	1253	5480	24020
0	1	2	6	22	89	377	1630	7110	31130
		1	2	3	4	5	6	7	$\rightarrow n$

From the recursion (18) follows that

$$
\begin{aligned}
& d_{k-1}(-t)=t d_{k-1}(-t)+t d_{k-2}(-t)+d_{k}(-t) \text { and therefor } \\
& d_{k-1}(-t)=\frac{t}{1-t} d_{k-2}(-t)+\frac{1}{1-t} d_{k}(-t)
\end{aligned}
$$

Hence

$$
d_{k-1}(-t)-t d_{k-2}(-t)=\frac{t^{2}}{1-t} d_{k-2}(-t)+\frac{1}{1-t} d_{k}(-t)=s_{k-1}(t)
$$

(see (20)) and

$$
\frac{d_{k-1}(-t)}{d_{k}(-t)}\left(d_{k-1}(-t)-t d_{k-2}(-t)\right)-\frac{d_{k-1}(-t)}{d_{k}(-t)} s_{k-1}(t)=0
$$

Therefore

$$
\frac{d_{k-1}(-t)}{d_{k}(-t)} s_{k-1}(t)=\mathcal{S}^{(k)}(t, k-1 ; 1)-\left(d_{k-2}(-t)-t d_{k-3}(-t)\right)
$$

(see (21).
Theorem 3 The power series part of $t^{-k} \mathcal{S}^{(k)}(t ; 1) s_{k-1}(t)$ equals $t^{-k} S^{(k)}(t, k-1 ; 1)$.
Example: (a) $t^{-4} \mathcal{S}^{(4)}(t ; 1) s_{3}(t)=\frac{(t-1)\left(2 t^{3}-8 t^{2}+6 t-1\right)\left(1-4 t+t^{2}\right)}{\left(1-7 t+13 t^{2}-7 t^{3}+t^{4}\right) t^{4}}$ $=\left(t^{-4}-4 t^{-3}+2 t^{-2}\right)+1+7 t+36 t^{2}+168 t^{3}+756 t^{4}+3353 t^{5}+14783 t^{6}+$

$$
\begin{aligned}
& 65016 t^{7}+285648 t^{8}+1254456 t^{9} \\
& +5508097 t^{10}+24183271 t^{11}+106173180 t^{12}+O\left(t^{13}\right) \\
& \quad(\mathrm{b}) t^{-4} \mathcal{S}^{(4)}(t, 4-1 ; 1)=t^{-4} \frac{1-5 t+5 t^{2}-t^{3}}{1-7 t+13 t^{2}-7 t^{3}+t^{4}}\left(1-6 t+8 t^{2}-2 t^{3}\right)-\frac{2 t^{2}+1-4 t}{t^{4}}= \\
& 1+7 t+36 t^{2}+168 t^{3}+756 t^{4}+3353 t^{5}+14783 t^{6}+65016 t^{7}+285648 t^{8}+1254456 t^{9} \\
& \quad+5508097 t^{10}+24183271 t^{11}+106173180 t^{12}+O\left(t^{13}\right)
\end{aligned}
$$

References

[1] Bernhart, F. R. (1999) Catalan, Motzkin, and Riordan numbers. Discrete Math. 204, 73 - 112.
[2] Cameron, N. T. and Yip, A. C. (2010) Hankel Determinants of Sums of Consecutive Motzkin Numbers. Linear Algebra and its Appl. 434, 712-722
[3] J. Cigler and C. Krattenrhaler (2011) Some determinants of path generating functions, Adv. Appl. Math. 46, 144-174
[4] Flajolet, P. (1980), Combinatorial aspects of continued fractions. Discrete Math. 32, 125-161.
[5] Gould, H.W. (1972) Combinatorial Identities, Morgantown, W. Va.
[6] Merlini, D.,Rogers, D. G., Sprugnoli, R., and Verri, M.C. (1997). On some alternative characterizations of Riordan arrays. Canadian J. Math. 49, 301320.
[7] Motzkin, T. (1948) Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. Bull. Amer. Math. Soc. 54, Number 4, 352-360.
[8] Ralston, A. and Rabinowitz, P. (1978), A First Course in Numerical Analysis, Mcgraw-Hill, ISBN 0070511586
[9] Rogers, D.G. (1978). Pascal triangles, Catalan numbers and renewal arrays, Discrete Math. 22, 301-310.
[10] Schröder, E. (1870) Vier kombinatorische Probleme. Z. Math. Phys. 15, $361-376$.

