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Abstract

We suggest three applications for the inverses: For the inverse Motzkin

matrix we look at Hankel determinants, and counting the paths inside a

horizontal band, and for the inverse Schröder matrix we look at the paths

inside the same band, but ending on the top side of the band.

1 Introduction

We adopt the convention that lattice paths without restrictions are called “Grand”;
the Grand Catalan numbers (step set {ր,ց}) are the number of paths from
the origin, taking only ր and ց steps, and ending on the x-axis at (2n, 0).
The Grand Catalan numbers are the Central Binomial coefficients,

(

2n
n

)

, with

generating function 1/
√
1− 4t2 =

∑

n≥0

(

2n
n

)

t2n. The wheighted Grand Motzkin

numbers Gn take steps from {ր,ց,−→}, and end on the x-axis in (n, 0). The
horizontal steps get the weight ω. Their generating function is

g (t) :=
∑

n≥0

Gnt
n = 1/

√

(1− ωt)
2 − 4t2, (1)

and it is seen immediately that for ω = 0 the Grand Catalan numbers are

recovered. If ω = 2, the 1/

√

(1− 2t)
2 − 4t2 = 1/

√
1− 4t is again a generating

function for the Grand Catalan numbers, but we get
∑

n≥0

(

2n
n

)

tn. The general

Grand Motzkin numbers G (n, j) enumerate all paths to (n, j), and the first few
are given in the following table.
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↑ j
7
6
5 1
4 1 5ω
3 1 4ω 5 + 10ω2

2 1 3ωց 4 + 6ω2 20ω + 10ω3

1 1 2ω 3 + 3ω2 → 12ω + 4ω3 10 + 30ω2 + 5ω4

0 1 ω 2 + ω2 6ω + ω3 ր 6 + 12ω2 + ω4 30ω + 20ω3 + ω5

-1 1 2ω 3 + 3ω2 12ω + 4ω3 10 + 30ω2 + 5ω4

-2 1 3ω 4 + 6ω2 20 + 10ω3

-3 1 4ω 5 + 10ω2

-4 1 5ω
-5 1
-6

n → 0 1 2 3 4 5
The general Grand Motzkin numbers (Gn is given in row 0)

The lower half of the table is the mirror image of the top half; if we write the
table in matrix form, G (n, j) stands in row n and column j, and we obtain a Ri-

ordan matrix G, because G (n+ 1, j + 1) = G (n, j)+ωG (n, j + 1)+G (n, j + 2)
(see Rogers [9], and [6]). It follows that

∑

n≥j

G (n, j) tn =
1

√

(1− ωt)
2 − 4t2

(

1

2t

(

1− tω −
√

(ωt− 1)
2 − 4t2

))j

= g (t)

(

1

2t
(1− ωt− 1/g (t))

)j

↑ n
0 1
1 ω 1
2 2 + ω2 2ω 1
3 6ω + ω3 3 + 3ω2 3ω 1
4 6 + 12ω2 + ω4 12ω + 4ω3 4 + 6ω2 4ω
5 30ω + 20ω3 + ω5 10 + 30ω2 + 5ω4 20ω + 10ω3 5 + 10ω2

6 20 + 90ω2 + 30ω4 + ω6 60ω + 60ω3 + 6ω5 15 + 60ω2 + 15ω4 30ω + 20ω3

j → 0 1 2 3
The Riordan matrix G = (G (n, j)) n=0,...

j=0,...,n
(Gn is given in column 0)

If we restrict the
{

ր,ց,
ω−→
}

-paths to the first quadrant, they become

Motzkin paths M (n, j). We will look at the inverse (mi,j) of the matrix M ,
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and find it useful in some applications (see also A. Ralston and P. Rabinowitz,

1978 [8, p. 256]). Especially, the bounded Motzkin numbers M
(k)
n;w, the number

of Motzkin paths staying strictly below the parallel to the x-axis at height k,
have a generating function expressed by the inverse (mi,j), through the inverse

Motzkin polynomial mk (t) =
∑k

i=0 mk,it
k−i,

∑

n≥0

M (k)
n;ωt

n =
mk−1(t)

mk (t)

(see (8). That makes us wonder if paths with different lengths of the horizontal
steps (w, 0) have similar properties. In the case of w = 2 (Schröder paths) and
ω = 1 we have a result, S(k) (t) :=

∑

n≥0

S(k)
n tn =

(1− t)
∑(k−2)/2

i=0 t2i (−1)
i
sk−2−2i (t) + (kmod 2) (−1)

(k−1)/2
tk−1

(1− t)
∑(k−1)/2

i=0 t2i (−1)
i
sk−1−2i (t) + ((k − 1)mod 2) (−1)

k/2
tk

where the Motzkin terms (M andm) are replaced by the corresponding Schröder
terms (S and s), and si (t) is the inverse Schröder polynomial. Perhaps more
interesting is the generating function identity described in Theorem 3,

t−kS(k) (t) sk−1 (t) = t−kS(k) (t, k − 1)

(as power series) where S(k) (t, k − 1) is the generating function of the bounded
Schröder number ending on y = k − 1, just below the upper boundary.

2 Motzkin Numbers

Leaving the Grand Motzkin numbers behind, we introduce the restriction of
counting only paths that do not go below the x-axis. A general weighted Motzkin

path is counted by the recursion

M (n,m;ω) = M (n− 1,m+ 1;ω) + ωM (n− 1,m;ω) +M (n− 1,m− 1;ω)

form ≥ 0, andM (n,m;ω) = 0 ifm < 0. The numbersM (n,m;ω) are weighted
counts of all such path from (0, 0) to (n,m), and we give the special name Mn;ω

to the Motzkin numbers M (n, 0;ω). These numbers (with weight ω = 1) have
been studied by Th. Motzkin in 1946 [7].
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↑ m
7
6
5 1
4 1 5ω
3 1 4ω 4 + 10ω2

2 1 3ω ց 3 + 6ω2 15ω + 10ω3

1 1 2ω 2 + 3ω2 → 8ω + 4ω3 5 + 20ω2 + 5ω4

0 1 ω 1 + ω2 3ω + ω3ր 2 + 6ω2 + ω4 10ω + 10ω3 + ω5

0 1 2 3 4 5
Mn;ω is given in row 0.

The above table shows that for ω = 1 the original Motzkin numbers are
1, 1, 2, 4, 9, 21, 51, 127, . . . (sequence A001006 in the On-Line Encyclopedia of
Integer Sequences (OEIS)).

It is well-known that the general ω-weighted Motzkin numbers have the
generating function

µ (t; j, ω) :=
∑

n≥0

M (n+ j, j;ω) tn =





1− ωt−
√

(1− ωt)
2 − 4t2

2t2





j+1

thus

µ (t) :=
∑

n≥0

Mn;ωt
n =

∑

n≥0

M (n, 0;ω) tn =
1− ωt−

√

(1− ωt)
2 − 4t2

2t2
(2)

is the generating function of the Motzkin numbers, satisfying the quadratic
equation [1]

µ (t) = 1 + ωtµ (t) + t2µ (t)2 (3)

Hence

Mn+2;ω − ωMn+1;ω =

n
∑

i=0

Mi;ωMn−i;ω

a well-known identity, combinatorially shown by using the ”First Return De-

composition”. The generating function (in t2) of the Catalan numbers Cn is
easily obtained by setting ω = 0 in (2), but it also follows from ω = 2

1− 2t−
√

(1− 2t)
2 − 4t2

2t2
=

1− 2t−
√
1− 4t

2t2
=
∑

n≥1

Cnt
n−1
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(in t). Or we can choose ω = 1 and get

(1 + t)
∑

n≥1

Cn

(

t

1 + t

)n−1

=
∑

n≥0

Mn;1t
n

Mn;1 =

n
∑

k=0

(

n

k

)

(−1)
n−k

Ck+1

For general ω follows from (2) the explicit expression

Mn;ω =

n/2
∑

k=0

(

n

2k

)

ωn−2k

2k + 1

(

2k+1
k

)

.

3 The Inverse

Define φ (t) such that t/φ (t) is the compositional inverse of tµ (t) thus

φ (tµ (t)) = µ (t) = 1 + ωtµ (t) + t2µ (t)2

by (3), and therefore
φ (t) = 1 + ωt+ t2

This simple form of the inverse is the reason for many special results for Motzkin
numbers. Note that

1/φ (t) =
(

1 + ωt+ t2
)−1

=
∑

n≥0

Un (−ω/2) tn

the generating function of the Chebychef polynomials of the second kind.
Because of the inverse relationship between tµ(t) and t/φ(t) we have that

the matrix inverse of (M (i, j;ω))n×n equals (mi,j)n×n,













1 0 0 0 0
1 1 0 0 0
2 2 1 0 0
4 5 3 1 0
9 12 9 4 1













−1

=













1 0 0 0 0
−1 1 0 0 0
0 −2 1 0 0
1 1 −3 1 0
−1 2 3 −4 1













= (mi,j)4×4

Inverse Motzkin matrix when ω = 1

where
∑

i≥0

mi,jt
i = tjφ (t)

−j−1

Note that (mi,j) is also a Riordan matrix. The above generating function for
mi,j implies that

mi,j =
[

ti
] 1

1 + ωt+ t2

(

t

1 + ωt+ t2

)j

=
[

ti−j
] (

1 + ωt+ t2
)−j−1

= Cj+1
i−j (−ω/2) .
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The polynomials Cλ
n (x) =

∑n/2
k=0

(

n−k+λ−1
n−k

)(

n−k
n−2k

)

(−1)
k
(2x)

n−2k
are the

Gegenbauer polynomials, and therefore

mi,j =

(i−j)/2
∑

l=0

(

i− l

i− j − l

)(

i− j − l

l

)

(−1)
l
(−ω)

i−j−2l
(4)

The recurrence relation for the (orthogonal) Gegenbauer polynomials

2x (n+ λ)Cλ
n (x) = (n+ 2λ− 1)Cλ

n−1 + (n+ 1)Cλ
n+1 (x)

gives us immediately a recurrence for the inverse numbers mi,j , 0 ≤ j ≤ i− 1,

(i− j)mi,j = −ωimi−1,j − (i+ j)mi−2,j

with initial values mi,j = δi,j for j ≥ i.
We need later in the paper the following Motzkin ploynomial

k
∑

j=0

mk,jt
k−j =

k
∑

j=0

C
k−j+1)
j (−ω/2) tj

=

k/2
∑

l=0

k−2l
∑

j=0

(

k − l

k − j − l

)(

k − j − l

k − j − 2l

)

(−1)
l
(−ω)

k−j−2l
tk−j

=

k/2
∑

l=0

(

k − l

l

)

(−1)
l
t2l (1− ωt)

k−2l
(5)

From
(

(M (i, j))0≤i,j≤n

)−1

= (mi,j)0≤i,j≤n

follows
n
∑

k=0

M (k, i;w)mk,j = δi,j .

However, in the case of Motzkin matrices more than this simple linear algebra
result holds.

Lemma 1 For all nonnegative integers i and i holds

M (i, j;ω) =

j
∑

k=0

mj,kMi+k;ω

and

mi,j =

i−j
∑

k=0

mi+1,j+1+kMk;ω

6



The proof can be done via generating functions. Note that

∑

n≥0

∑

j≥0

xjtnM (n, j;ω) =
µ (t)

1− xtµ (t)
=

1

1 + ωx+ x2 − x/t

(

µ (t)− x

t

)

and

∑

j≥0

xj
∑

i≥j

mi,jt
i =

∑

j≥0

xjtjφ (t)
j+1

=
φ (t)

1− xtφ (t)
=

1

1/φ (t)− xt
=

1

1 + ωt+ t2 − xt
.

Replace t by x and x by 1/t in the above generating function for the inverse
mi,j to get the Laurent series

∑

j≥0

t−j
∑

i≥j

mi,jx
i =

1

1 + ωx+ x2 − x/t

hence
∑

n≥0

∑

j≥0

xjtnM (n, j;ω) =
(

µ (t)− x

t

)

∑

j≥0

t−j
∑

i≥j

mi,jx
i

Now both sides must be power series in x and t. This condition gives the Lemma.
The Lemma also has the

Corollary 2
j
∑

k=0

mj,kMi+k,w = δi,j for 0 ≤ i ≤ j (6)

because M (i, j;ω) = δi,j for all 0 ≤ i ≤ j.

4 Two applications of the inverse Motzkin ma-

trix

The Lemma says that

(mi,j)0≤i,j≤n (Mi+j;ω)0≤i,j≤n = (M (i, j;ω))0≤i,j≤n

which gives a direct way of calculcating the first Hankel determinant

det (Mi+j;ω)0≤i,j≤n =
1

det (mi,j)
det (M (i, j;w)) = 1 (7)

However, subsequent Hankel determinants are more complicated; we want to
show a way how to calculate a determinant proposed by Cameron and Yip [2].
For a broader theory of Hankel determinants in lattice path enumeration see
[3].

7



4.1 The Hankel determinant |αMi+j;ω + βMi+j+1;ω|0≤i,j≤n−1

The Hankel determinant of (αMi+j;ω + βMi+j+1;ω)0≤i,j≤n−1 equals for ω = 1

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α+ 2β 2α+ 4β 4α+ 7β . . . αMn−1;1 + βMn;1

2α+ 4β 4α+ 7β 7α+ 9β

4α+ 7β 7α+ 9β 4α+ 7β
...

...
7α+ 9β 9α+ 21β 9α+ 21β

...
...

...
αMn−1;1 + βMn;1 αMn;1 + βMn+1;1 αMn+1;1 + βMn+2;1 αM2n−2;1 + βM2n,n;1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣
(Mi+j;1)0≤i,j≤n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α 0 0 . . . −βmn (0)
β α 0 −βmn (1)
0 β α −βmn (2)

...
0 0 0 α −βmn (n− 2)
0 0 0 β α− βmn (n− 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

because the last column in the matrix on the right when multiplied with the
i-th row of the matrix on the left gives αMi+n−1;ω − β

∑n−1
k=0 mn,kMi+k;ω =

αMi+n−1;ω + βMi+n;ω − βδi,n by Corollary 2. Now

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α 0 0 . . . −βmn,0

β α 0 −βmn,1

0 β α . . . −βmn,2

...
0 0 . . . α −βmn,n−2

0 0 . . . β α− βmn,n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= α−(n2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α 0 0 . . . −βmn,0

αβ α2 0 −αβmn,1

0 α2β α3 . . . −α2βmn,2

...
0 0 . . . αn−1 −αn−2βmn,n−2

0 0 . . . αn−1β αn−1 − αn−1βmn,n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= α−(n2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α 0 0 . . . −βmn,0

0 α2 0 β2mn,0 − αβmn,1

0 0 α3 . . . −β3mn,0 + αβ2mn,1 − α2βmn,2

...

0 0 . . . αn−1 −
∑n−2

i=0 (−1)
n−2−i

βn−1−iαimn,i

0 0 . . . 0 αn −∑n−1
i=0 (−1)

n−1−i
βn−iαimn,i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Therefore det
(

(αMi+j;ω + βMi+j+1;ω)0≤i,j≤n−1

)

= αn−∑n−1
i=0 (−1)n−1−i βn−iαimn,i =

∑n
i=0 (−β)n−i αimn,i =

∑n
i=0 (−1)n−i βn−iαiP

(−i−1)
n−i (−ω/2). This can be writ-

ten explicitly as det
(

(αMi+j;ω + βMi+j+1;ω)0≤i,j≤n−1

)

=

(−β)n
n
∑

k=0

(−α/β)k mn,k

= (−β)
n
Un

(−α/β − ω

2

)

= (−β)
n

n/2
∑

k=0

(

n− k

k

)

(−1)
k
(−α/β − ω)

n−2k

=

n/2
∑

k=0

(

n− k

k

)

(−1)
k
β2k (α+ βω)

n−2k

=
2−n−1

√

(α+ ωβ)
2 − 4β2

×

×
(

(
√

(α+ ωβ)
2 − 4β2 + α+ ωβ

)n+1

+

(
√

(α+ βω)
2 − 4β2 − α− βω

)n+1
)

If α = β = 1, then det
(

(Mi+j;ω +Mi+j+1;ω)0≤i,j≤n−1

)

=

1

2n+1

√

(ω + 1)
2 − 4

(

(

1 + ω +

√

(ω + 1)
2 − 4

)n+1

−
(

1 + ω −
√

(ω + 1)
2 − 4

)n+1
)

=

n
∑

k=0

(−1)
n−k

(

k

n− k

)

(ω + 1)
2k−n

which approaches n + 1 if ω → 1. In the case of Dyck path, we obtain
δ0,n for this determinat of the sum of matrices. If β = 1 and α = 0, then the
determinant is the second Hankel determinant of the Motzkin numbers,

det
(

(Mi+j+1;ω)0≤i,j≤n−1

)

=

n/2
∑

k=0

(

n− k

k

)

(−1)
k
ωn−2k

If α = 1 and β = 0 then det (Mi+j;ω)0≤i,j≤n−1 = 1, independent of ω (see (7).
The same approach also shows the recursion

|Mi+j+2;ω |0≤i,j≤n−1 = |Mi+j+2;ω|0≤i,j≤n−2 + |Mi+j+1;ω |20≤i,j≤n−1

9



4.2 Motzkin in a band

The number of Motzkin paths staying strictly below the line y = k for k > 0 is
known to have the generating function [4, Proposition 12]

∑

n≥0

M (k)
n tn = µ (t)

1− (tµ (t))
2k

1− (tµ (t))
2(k+1)

=
1

t

(

1
tµ

)k

− (tµ)
k

(

1
tµ

)k+1

− (tµ)
k+1

k 0 0 0 0 0 0 0 0 0 0
3 1 4 14 44 133 392 1140
2 1 3 9 25 69 189 518 1422
1 1 2 5 12 30 76 196 512 1353
0 1 1 2 4 9 21 51 127 323 835
-1 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 n

M
(4)
n is given in row 0.

From µ (t) (1− ωt)− 1 = t2µ (t)2 (see (3)) follows

µ1,2 (t) =

(

1− ωt±
√

(1− ωt)
2 − 4t2

)

/
(

2t2
)

tµ1,2 (t) =

(

1− ωt±
√

(1− ωt)
2 − 4t2

)

/ (2t)

thus
µ1 + µ2 = (1− ωt) /t2 and µ1µ2 = 1/t2

Hence

∑

n≥0

M (k)
n;ωt

n =
1

t

(tµ1)
k − (tµ2)

k

(tµ1)
k+1 − (tµ2)

k+1
=

1

t

(tµ2)
−k − (tµ1)

−k

(tµ2)
−k−1 − (tµ1)

−k−1

=

∑(k−1)/2
j=0 (−1)

j (k−1−j
j

)

t2j (1− ωt)
k−1−2j

∑k/2
j=0 (−1)j

(

k−j
j

)

t2j (1− ωt)k−2j

=

∑k−1
i=0 mk−1,it

k−1−i

∑k
i=0 mk,itk−i

(see (5)). The OEIS lists many special cases for k; here are a few, with ω = 1.

1.
∑

n≥0 M
(1)
n;1t

n 1
1−t ⇐⇒ 1, 1, 1, 1, . . .

2.
∑

n≥0 M
(2)
n;1t

n = 1−t
(1−t)2−t2

= 1 + t+ 2t2 + 4t3 + 8t4 + 16t5 . . .

thus 1, 1, 2, 4, 8, 16, 32, 64, . . . , the powers of 2.

3.
∑

n≥0 M
(3)
n;1t

n = 2t−1
(1−t)(t2+2t−1) thus 1, 1, 2, 4, 9, 21, 50, 120, . . . (A171842)
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4.
∑

n≥0 M
(4)
n;1t

n =
(

1− 3t+ t2 + t3
)

/
(

1− 4t+ 3t2 + 2t3 − t4
)

, thus
1, 1, 2, 4, 9, 21, 51, 127, 322, 826, · · · : (A005207), generating function by Alois
P. Heinz.

The special form of the generating function

∑

n≥0

M (k)
n;ωt

n =

∑k−1
i=0 mk−1,it

k−1−i

∑k
i=0 mk,itk−i

(8)

works with weight ω, for all k = 1, 2, . . . .It is equivalent to the recursion
∑k

j=0 M
(k)
n−jmk,k−j = 0 for all n ≥ k, with initial values

∑n
j=0 M

(k)
n−jmk,k−j =

mk−1,k−1−n for all n = 0, . . . , k − 1.

5 Horizontal steps of length w

A “natural” generalization of Motzkin paths is a lattice path W that takes
horizontal steps of some positive length w, weighted by ω. We would like to see
similar results as (8) in such cases. However, we have a result only for the case
w = 2, the Schröder paths.

↑ m 1 0
7 1 0 8
6 1 0 7 7ω
5 1 0 6 6ω 27
4 1 0 5 5ω 20 35ω
3 1 0 4 4ω 14 24ω 48 + 10ω2

2 1 0 3 3ω 9 15ω 28 + 6ω2 63ω
1 1 0 2 2ω 5 8ω 14 + 3ω2 30ω 42 + 20ω2

0 1 0 1 ω 2 3ω 5 + ω2 10ω 14 + 6ω2 35ω + ω3

0 1 2 3 4 5 6 7 8 n →
w = 3 (Wn is given in row 0)

5.1 The recursion for W

Let us consider the step set {ր,ց,−→w}, where →w=: (w, 0), for any positive
integer w. Denote the number of paths from (0, 0) to (n, j) by W (n, j;ω), where
the horizontal steps are weighted by ω. We get the recursion

W (n, j;ω) = W (n− 1, j + 1;ω) +W (n− 1, j − 1;ω) + ωW (n− w, j;ω)

W (n, j;ω) = 0 for j < n

Wn;ω = W (n, 0;ω).

The generating function is well known,

∑

n≥0

Wn;ωt
n =

1− ωtw −
√

(1− ωtw)
2 − 4t2

2t2
=: µw (t;ω) (9)

11



The recursion can be reformulated as

W (n, j;ω) = W (n+ 1, j − 1;ω)−W (n, j − 2;ω)−ωW (n+ 1− w, j − 1;ω) for m ≥ n

We find the generating function identity
∑

i≥0 W (i, j;ω) ti =
∑

i≥0

W (i+ 1, j − 1;ω) ti −
∑

i≥0

W (i, j − 2;ω) ti

− ω
∑

i≥w−1

W (i+ 1− w, j − 1;ω) ti

=
∑

i≥0

W (i+ 1, j − 1;ω) ti − ω





∑

i≥−1

W (i+ 1, j − 1;ω) ti+1+w−1





−
∑

i≥0

W (i, j − 2;ω) ti

= t−1
∑

i≥0

W (i+ 1, j − 1;ω) ti+1 − ωtw−1





∑

i≥−1

W (i+ 1, j − 1;ω) ti+1





−
∑

i≥0

W (i, j − 2;ω) ti

=
(

t−1 − ωtw−1
)





∑

i≥0

W (i, j − 1;ω) ti − δj,1



−
∑

i≥0

W (i, j − 2;ω) ti

Let W (t, j;ω) =
∑

i≥0 W (i, j;ω) ti. In this notation,

W (t, j;ω) =
1− ωtw

t
W (t, j − 1;ω)−W (t, j − 2;ω) for j > 1 (10)

W (t, 1;ω) =
1

t
((1− ωtw)W (t, 0;ω)− 1)

For example,

W (t, 2;ω) = (1−ωtw)
t W (t, 1;ω)−W (t, 0;ω) = (1−ωtw)

t
1
t ((1− ωtw)W (t, 0;ω)− 1)−

W (t, 0;ω)

=
(

(1−ωtw)2

t2 − 1
)

W (t, 0;ω) − (1−ωtw)
t2 , and W (t, 0;ω) = µw (t;ω) is given in

(9).

W (t, 3;ω) = (1−ωtw)
t W (t, 2;ω)−W (t, 1;ω)

= (1−ωtw)
t

((

(1−ωtw)2

t2 − 1
)

W (t, 0;ω)− (1−ωtw)
t2

)

− 1
t ((1− ωtw)W (t, 0;ω)− 1)

=
(

(1−ωtw)2

t2 − 2
)(

(1−ωtw)
t µw (t;ω)

)

+ 1
t −

(1−ωtw)2

t3

We find an explicit expression for W (t, j;ω) in the next section.

5.2 Solution to Recursion for W and W(k)

The linear recursion (10) is called Fibonacci-like. It is of the form

σn = uσn−1 + vσn−2

12



with u = 1−ωtw

t and v = −1, for n > 1. We know the inital values σ0 and
σ1 = uσ0 − 1/t.

Hence σn = [τn] σ0+(σ1−uσ0)τ
1−uτ−vτ2 = [τn] σ0−τ/t

1−uτ+τ2 in this case, or σn =

[τn]
(

σ0 −
τ

t

)

∞
∑

i=0

(

i

j

)

(−1)
j
ui−jτ i−j+2j (11)

= σ0

n
∑

j=0

(

n−j
j

)

(−1)
j

(

1− ωtw

t

)n−2j

− 1

t

n−1
∑

j=0

(

n−1−j
j

)

(−1)
j

(

1− ωtw

t

)n−1−2j

Let us define

pn (t) :=
n
∑

j=0

(

n−j
j

)

(

1− ωtw

t

)n−2j

(−1)j (12)

Hence

W (t, j;ω) =





1− ωtw −
√

(1− ωtw)
2 − 4t2

2t2



 pj (t)− pj−1 (t) /t (13)

where pj = 0 for all j < 0.

The generating function W(k) (t, j;ω) =
∑(k)

n≥0 W
(k) (n, j;ω) tn is generat-

ing the case where the lattice paths stay strictly below y = k; the numbers
W (k) (n, j;ω) are the number of paths with ω-weighted horizontal steps of length
w, and diagonal up and down steps, that do not reach the line y = k, and stay
above the x-axis. That means, 0 ≤ j < k. We also know W(k) (t, 0;ω)

=
∑

n≥0

W (k)
n tn = µw (t;ω)

1− (tµw (t;ω))2k

1− (tµw (t;ω))
2(k+1)

=
1− ωtw −

√

(1− ωtw)
2 − 4t2

2t2

1−
(

1−ωtw−
√

(1−ωtw)2−4t2

2t

)2k

1−
(

1−ωtw−
√

(1−ωtw)2−4t2

2t

)2(k+1)

The recursion is the same as for W (t, j;ω). Only the initial values have
changed (see W(k) (t, 0;ω) above).

We get

W(k) (t, j;ω)

=

(

µw (t;ω)
1− (tµw (t;ω))

2k

1− (tµw (t;ω))2(k+1)

)

pj (t)− pj−1 (t)

and
∑

n≥0 W
(k)
n tn

13



=
1

2t2

(

1−ωtw−
√

(1−ωtw)2−4t2

2t

)−k

−
(

1−ωtw−
√

(1−ωtw)2−4t2

2t

)k

(

1−ωtw−
√

(1−ωtw)2−4t2

2t

)−(k+1)

−
(

1−ωtw−
√

(1−ωtw)2−4t2

2t

)(k+1)

= 2

∑(k−1)/2
i=0 (−1)

i
22it2i (1− ωtw)

k−2i∑∞
j=0

(

j+i
i

)(

k
2j+2i+1

)

∑(k+1)/2
i=0 (−1)

i
22it2i (1− ωtw)

k+1−2i∑∞
j=0

(

j+i
i

)(

k+1
2j+1+2i

)

=

∑k/2
i=0 (−1)

i
t2i (1− ωtw)

k−2i (k−i−1
i

)

∑(k+1)/2
i=0 (−1)

i
t2i (1− ωtw)

k+1−2i (k−i
i

)
=

pk−1 (t)

tpk (t)
(14)

where pn (t) is given in (12).

6 Schröder numbers

If w = 2, then every horizontal steps gains two units. We denote the number of
paths to (n, j) by S (n, j;ω), the general weighted Schröder numbers.

j ↑ 1 0 5 + 5ω
3 1 0 4 + 4ω 0
2 1 0 3 + 3ω 0 9 + 15ω + 6ω2

1 1 0 2 + 2ω 0 5 + 8ω + 3ω2 0
0 1 0 1 + ω 0 2 + 3ω + ω2 0 5 + 10ω + 6ω2 + ω3

n → 0 1 2 3 4 5 6
The general weighted Schröder numbers S (n, j;ω) . The numbers Sn;ω are in row 0.

The following matrix contains the “compressed” Schröder numbers by removing
the zeroes and shifting all entries into the empty places. This is the same effect
as replacing t2 in

∑∞
n=0 S (n, j;ω) tj by t.













1 0 0 0 0
2 1 0 0 0
6 4 1 0 0
22 16 6 1 0
90 68 30 8 1













−1

=













1 0 0 0 0
−2 1 0 0 0
2 −4 1 0 0
−2 8 −6 1 0
2 −12 18 −8 1













compressed Schröder numbers (ω = 1) inverse compressed Schröder numbers

The power series
∑∞

n=0 S (n, j;ω) tj is given in (9). For the compressed Schröder
numbers this equation says

S (t, j;ω) =

∞
∑

n=0

S (n, j;ω) tj =





1− ωt−
√

(1− ωt)2 − 4t

2t



 pj (t)− pj−1 (t) /t
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where

pn (t) = t−n
n
∑

j=0

(

n−j
j

)

tj (1− ωt)n−2j (−1)j (15)

All references to Schröder numbers will from now on mean the compressed
Schröder numbers. Note that

S(k) (t;ω) =
∑

n≥0

S(k)
n tn =

pk−1 (t)

tpk (t)
(16)

by (14).

6.1 Inverse Schröder numbers

From (9) we see that

µs (t) = 1 + ωt2µs (t) + t2µs (t)
2 .

Hence

φ (tµs (t)) = µs (t) = 1 + ωt2µs (t) + t2µs (t)
2

φ (t) = 1 +
ωt2

φ (t)
+ t2

thus φ (t) = 1
2 + 1

2 t
2 + 1

2

√

(1 + t2)2 + 4t2ω, a power series in t2. We let ξ = t2

and get

φ (ξ) =
1

2
+

1

2
ξ +

1

2

√

(1 + ξ)
2
+ 4ξω

µs (ξ) = 1 + ωξµs (t) + ξµs (ξ)
2

=
1− ωξ −

√

(1− ωξ)
2 − 4ξ

2ξ

Lagrange inversion tells us that for all 0 ≤ i ≤ k holds

(i + 1)
[

µ−k−1
s

]

k−i
= (k + 1)

[

φ−i−1
]

k−i
= (k + 1) sk,i

15



and therefore

sk,j =
[

µ−k−1
s

]

k−j
=

j + 1

k + 1

[

tk−j
]





1− ωt−
√

(1− ωt)2 − 4t

2t





−k−1

=
[

tk−j
] j + 1

k + 1









2t

(

1− ωt+

√

(1− ωt)
2 − 4t

)

4t









k+1

=
[

tk−j
] j + 1

k + 1

(

1

2
(1− ωt)

(

1 +

√

1− 4t

(1− ωt)
2

))k+1

=
j + 1

k + 1
(−1)

k−j
k−j
∑

m=0

22m−k−1

(

k + 1− 2m

k − j −m

)

ωk−j−m
k+1
∑

l=0

(

k + 1

l

)(

l/2

m

)

Now
∑k+1

l=0

(

k+1
l

)( 1

2
l

m

)

= k+1
k−2m+1

(

k−m
m

)

2k+1−2m for 0 ≤ m (see Gould [5, (3.163)],
who attributes the formula to Carlitz). Therefore

sk,j = (−1)
k−j

k−j
∑

m=0

(

k + 1− 2m

k − j −m

)

j + 1

k −m+ 1

(

k −m+ 1

m

)

ωk−j−m,

the compressed weighted inverse Schröder numbers. We need the following
polynomials:

∑

k≥0 sn,kt
n−k

=

n
∑

k=0

n−k
∑

m=0

k + 1

n−m+ 1

(

n−m+ 1

m

)(

n+ 1− 2m

n− k −m

)

tn−k (−1)n−k ωn−k−m

= tn
n
∑

m=0

1

n−m+ 1

(

n−m+ 1

m

)

ω−m
∞
∑

k=0

(k + 1)

(

n+ 1− 2m

n− k −m

)

(−ω)
n−k

t−k

=

n
∑

m=0

1

n−m+ 1

(

n−m+ 1

m

)

(−1)
m+1

(1− ωt)
n−2m

tm (tmω +m− n− 1)

Hence

sn (t) =
∑

k≥0

sn,kt
n−k (17)

=

n
∑

m=0

(

tωm

n−m+ 1
− 1

)(

n−m+ 1

m

)

(−1)
m+1

(1− ωt)
n−2m

tm

1 0 0 0 0
−2 1 0 0 0
2 −4 1 0 0
−2 8 −6 1 0
2 −12 18 −8 1

The compressed inverse (sn,k) for ω = 1

16



This matrix is A080246 in the OEIS. At the same reference we find the
generating function of the k-th column,

∑

n≥k

sn,kt
n =

(

1− t

1 + t

)k

.

Also,
∑

n≥0

n
∑

k=0

sn,kt
n−k =

∞
∑

k=0

t−k

(

1− t

1 + t

)k

=
t (1 + t)

2t+ t2 − 1
.

Example:
∑n

k=0 s4,kt
4−k = s4 (t) = 1− 8t+ 18t2 − 12t3 + 2t4.

6.2 Delannoy numbers

The numbers D (n, k) =
∑n

l=0

(

k
l

)(

n+k−l
k

)

ωl are the Delannoy numbers; the
numbersD (n, n+ j) are counting all weighted Grand Schröder paths to (2n+ j, j).
Hence they satisfy the recursion

D (n, n+ j) = ωD (n− 1, n− 1 + j) +D (n, n+ j − 1) +D (n− 1, n+ j) (18)

j ↑ 1 0
5 1 0 7 + 6ω
4 1 0 6 + 5ω 0
3 1 0 5 + 4ω 0 21 + 30ω + 10ω2

2 1 0 4 + 3ω 0 15 + 20ω + 6ω2 0
1 1 0 3 + 2ω 0 10 + 12ω + 3ω2 0 129
0 1 0 2 + ω 0 6 + 6ω + ω2 0 63 0

n → 0 1 2 3 4 5 6 7
Uncompressed Grand Schröder numbers (ω = 1)

The generating function

∞
∑

n=0

n
∑

l=0

(

k

l

)(

n+ k − l

n− l

)

ωltn =
1

1− t

(

1 + tω

1− t

)k

shows that D (n, k) is a Sheffer polynomial of degree n in k. The Delannoy

polynomial is of the form

dk (t) =

k
∑

j=0

D (k − j, j) tj =

k
∑

j=0

k−j
∑

l=0

(

j

l

)(

k − l

j

)

ωltj

=

k
∑

l=0

(

k − l

l

)

ωltl
k−2l
∑

j=0

(

k − 2l

j

)

tj =

k
∑

l=0

(

k − l

l

)

ωltl (1 + t)
k−2l
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and has generating function

∞
∑

k=0

dk (t)x
k =

1

1− x− t (x+ ωx2)
.

From (18) follows for ω = 1 that

dk−1 (t) = tdk−1 (t) + tdk−2 (t) + dk (t)

Also for ω = 1 holds

pk (t) = t−k
k
∑

l=0

(

k−l
l

)

tl (1− t)
k−2l

(−1)
l
= t−kdk (−t)

(see (15)). Hence

S(k) (t; 1) =
∑

n≥0

S
(k)
n;1t

n =
pk−1 (t)

tpk (t)
=

dk−1 (−t)

dk (−t)
(19)

by (16). This shows an intimate connection between the generating function of
the Schröder numbers in a band and the Delannoy polynomials, when ω = 1.
The Delannoy polynomials at negative argument, dk (−t), satisfy for ω = 1 the
same recursion as dk (t),

dk−1 (−t) = tdk−1 (−t) + tdk−2 (−t) + dk (−t) .

This follows again from (18).
Another connection exists with the inverse polynomial sn (t); from (17)

sn (t) =
∑

k≥0 sn,kt
n−k =

tω

n
∑

m=1

(

n−m

m− 1

)

(−1)
m+1

(1− ωt)
n−2m

tm−
n
∑

m=0

(

n−m+ 1

m

)

(−1)
m+1

(1− ωt)
n−2m

tm

follows for ω = 1

sn (t) =
t2

1− t
dn−1 (−t) + dn+1 (−t) / (1− t) . (20)

and vice-versa,

dn+1 (−t) = (1− t) sn (t)− t2dn−1 (−t)

= (1− t)

n/2
∑

i=0

t2i (−1)
i
sn−2i (t) + (nmod 2) (−1)

(n+1)/2
tn+1

Hence the generating function of the bounded Schröder numbers can for ω = 1
be written as

S(k) (t; 1) =
∑

n≥0

S
(k)
n;1t

n =
(1− t)

∑(k−2)/2
i=0 t2i (−1)

i
sk−2−2i (t) + (kmod 2) (−1)

(k−1)/2
tk−1

(1− t)
∑(k−1)/2

i=0 t2i (−1)
i
sk−1−2i (t) + ((k − 1)mod 2) (−1)

k/2
tk

18



7 Schröder in a Band

From (19) follows for ω = 1 the generating function of the (compressed) bounded
(by k) Schröder numbers,

S(k) (t; 1) =
dk−1 (−t)

dk (−t)
(21)

Example: S(4) (t; 1) = d3(−t)
d4(−t) =

1−5t+5t2−t3

1−7t+13t2−7t3+t4

= 1+ 2t+ 6t2 + 22t3 + 89t4 + 377t5 + 1630t6 + 7110t7 + 31 130t8 + 136 513t9 +
599 041t10+2629 418t11+11 542 854t12+50 674 318t13+222 470 009t14+976 694 489t15+
4287 928 678t16+O

(

t17
)

↑ m
k=4
3 1 7 36 168 756 3353
2 1 6 29 132 588 2597 11 430
1 1 4 16 67 288 1253 5480 24 020
0 1 2 6 22 89 377 1630 7110 31130

0 1 2 3 4 5 6 7 → n
The compressed bounded (k = 4) Schröder numbers (ω = 1)

From the recursion (18) follows that

dk−1 (−t) = tdk−1 (−t) + tdk−2 (−t) + dk (−t) and therefor

dk−1 (−t) =
t

1− t
dk−2 (−t) +

1

1− t
dk (−t)

Hence

dk−1 (−t)− tdk−2 (−t) =
t2

1− t
dk−2 (−t) +

1

1− t
dk (−t) = sk−1 (t)

(see (20)) and

dk−1 (−t)

dk (−t)
(dk−1 (−t)− tdk−2 (−t))− dk−1 (−t)

dk (−t)
sk−1 (t) = 0

Therefore

dk−1 (−t)

dk (−t)
sk−1 (t) = S(k) (t, k − 1; 1)− (dk−2(−t)− tdk−3 (−t))

(see (21).

Theorem 3 The power series part of t−kS(k) (t; 1) sk−1 (t) equals t
−kS(k) (t, k − 1; 1).

Example: (a) t−4S(4) (t; 1) s3 (t) =
(t−1)(2t3−8t2+6t−1)(1−4t+t2)

(1−7t+13t2−7t3+t4)t4

= (t−4 − 4t−3 + 2t−2) + 1 + 7t + 36t2 + 168t3 + 756t4 + 3353t5 + 14 783t6 +

19



65 016t7 + 285 648t8 + 1254 456t9

+5508 097t10 + 24 183 271t11 + 106 173 180t12 +O
(

t13
)

(b) t−4S(4) (t, 4− 1; 1) = t−4 1−5t+5t2−t3

1−7t+13t2−7t3+t4

(

1− 6t+ 8t2 − 2t3
)

− 2t2+1−4t
t4 =

1+7t+36t2+168t3+756t4+3353t5+14 783t6+65 016t7+285 648t8+1254 456t9

+5508 097t10 + 24 183 271t11 + 106 173 180t12 +O
(

t13
)
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