
ar
X

iv
:1

10
6.

01
41

v2
 [

cs
.D

M
]

 2
2

N
ov

 2
01

2

Counting or producing all fixed cardinality transversals

MARCEL WILD

ABSTRACT: An algorithm to count, or alternatively generate, all k-element
transversals of a set system is presented. For special cases it works in output-
linear time.

1 Introduction

Generating all minimal transversals of a hypergraph H based on a set W is a prominent
research endeavour [EMG]. But also generating (and evaluating) all transversals of H
may be required [W3]. Likewise, the focus may be on all k-element transversals for some
integer k. For instance in [W2] they need to be counted (not generated) for k = 1 up to
k = |W |. As to fixed cardinality constraints in general, see also [BEHM]. While [W2] and
[W3] display particular applications of the so called transversal e-algorithm, the present
paper harks back to [W1] and provides additional theoretic results.

Let us begin with a broader perspective and then zoom in onto transversals. Suppose
that a1 up to ah denote “constraints” applying to subsets X of a finite set W . Many
kinds of combinatorial objects X can be modelled as the sets X that satisfy h suitably
chosen constraints. The principle of inclusion-exclusion states that

N(a1 ∧ · · · ∧ ah) = 2w −
h∑

i=1

N(ai) +
∑

1≤i<j≤h

N(ai ∧ aj) − · · · ± N(a1 ∧ · · · ∧ ah),

where N(a1∧· · ·∧ah) is the number ofX ⊆ W satisfying all constraints, and e.g. N(ai∧aj)
is the number of X ⊆ W satisfying neither ai nor aj . Unfortunately 2h terms need to be
added or subtracted, and often it is cumbersome to compute the terms themselves.

Enter the principle of exclusion (POE) which is discussed in detail in [W1]. Its basic
policy is simply to start with Mod0 = 2W and exclude iteratively all sets X ⊆ W that fail
to have property a1, a2, . . . , ah. Thus, writing X |= ai when X satisfies ai, one has:

Mod0 ⊇ Mod1 := {X ∈ Mod0 : X |= a1} ⊇ Mod2 := {X ∈ Mod1 : X |= a2}

and so forth. Obviously Modh := {X ∈ Modh−1 : X |= ah} comprises exactly the
X ’s that satisfy all constraints, and so N(a1 ∧ · · · ∧ ah) = |Modh|. This seems like
a naive approach but a compact way to pack the members of Modi (within so called
multivalued rows) often makes it work. In the present article the combinatorial objects
at stake are the transversals (or hitting sets) X of a given set system (= hypergraph)
H = {H1, H2, · · · , Hh} of subsets of W . Indeed, defining X |= ai by X ∩Hi 6= φ unleashes
the POE framework.

1

http://arxiv.org/abs/1106.0141v2

Here comes the section break up. A medium-size example is given in Section 2, and
endowed with theory in Section 4. (Section 3 is discussed in a moment.) Specifically,
transversals can be viewed as models of a (dual) Horn formula, and hence some facts of
[W1] will carry over, but simplify and fortify in the process. This is done in Theorem
4 which exclusively targets fixed cardinality transversals, be it counting or generating.
Under quite natural side conditions that can be done in output-linear time.

Whereas [W1] concentrates on how mentioned multivalued rows reproduce, in Section 3
of the present article we focus on individual multivalued rows r and how the k-element
sets contained in r can be counted or generated efficiently. We also give the asymptotic
number of length n multivalued rows as n goes to ∞. Parts of Section 4 depend on Section
3. Section 5 briefly points out the pros and cons of POE as compared to binary decision
diagrams.

For positive integers w we put [w] := {1, 2, · · · , w}.

2 The transversal e-algorithm by example

Consider the (14, 6)-hypergraph with vertex set W = [14] and set H = {H1, · · · , H6} of
hyperedges defined by

H1 = {3, 4, 9}, H2 = {5, 10}, H3 = {6, 7, 11, 12}, H4 = {8, 13, 14},

H5 = {1, 2, 3, 4, 5, 6, 7, 8}, H6 = {3, 4, 5, 8, 12, 13}.

As alluded to in the introduction, starting with the powerset Mod0 := 2W we filter out
the family Mod1 ⊆ Mod0 of all X ∈ Mod0 with X ∩H1 6= ∅. Then we filter out the family
Mod2 ⊆ Mod1 of all X ∈ Mod1 with X ∩ H2 6= ∅, and so forth. After having processed
Hh (h = 6), the family Mod6 obviously consists of all transversals of H.

Under the transversal e-algorithm (or briefly e-algorithm) each set X in Mod0 will be
identified with its characteristic 0, 1-vector of length 14. But whenever possible we use
the label 2 to indicate that an entry is allowed to be either 0 or 1. Thus the powerset is
written as Mod0 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2). Actually, it is more precise to write
Mod0 = {(2, · · · , 2)}. Similarly set Mod1 = {(2, 2, e, e, 2, 2, 2, 2, e, 2, 2, 2, 2, 2)} because
H1 = {3, 4, 9} and a string of symbols e by definition means that only characteristic
vectors X are allowed which have at least one 1 in a position occupied by an e. Similarly
we obtain Mod2,Mod3,Mod4, but of course we need to introduce subscripts to distinguish
the three e-constraints. Thus Mod4 = {r} where

r := (2, 2, e1, e1, e2, e3, e3, e4, e1, e2, e3, e3, e4, e4).

So far so good, but it’s going to be harder to get Mod5 because H5 intersects four e-
bubbles. As a starter, in view of H5 ∩ H1 = {3, 4} let us split r into the disjoint union

2

of
r[e] := {X ∈ r : X ∩ {3, 4} 6= ∅} and r[0] := {X ∈ r : X ∩ {3, 4} = ∅}.

Using our new notation,

r[e] = (2, 2, e, e, e2, e3, e3, e4, 2, e2, e3, e3, e4, e4),

r[0] = (2, 2, 0, 0, e2, e3, e3, e4, 1, e2, e3, e3, e4, e4).

Thus e1e1e1 is split in ee2 and 001. All X ∈ r[e] satisfy the fifth constraint since X∩H5 ⊇
X ∩ {3, 4} 6= ∅. But some X ∈ r[0] do not satisfy it. In order to exclude these X ’s and
in view of H5 ∩H2 = {5}, we split r[0] into

r[0, e] := (2, 2, 0, 0, 1, e3, e3, e4, 1, 2, e3, e3, e4, e4),

r[0, 0] := (2, 2, 0, 0, 0, e3, e3, e4, 1, 1, e3, e3, e4, e4).

Now all X ∈ r[0, e] satisfy X∩H5 6= ∅, but not all X ∈ r[0, 0] satisfy this. Thus, similarly,
we split r[0, 0] into r[0, 0, e] and r[0, 0, 0]. Then r[0, 0, 0] is split into r[0, 0, 0, e] and

r[0, 0, 0, 0]′ = (2, 2, 0, 0, 0, 0, 0, 0, 1, 1, e3, e3, e4, e4).

This row need not be split; the only sets X ∈ r[0, 0, 0, 0]′ satisfying X ∩ H5 6= ∅ are the
ones with X ∩ {1, 2} 6= ∅. They are precisely the elements of

r[0, 0, 0, 0] := (e, e, 0, 0, 0, 0, 0, 0, 1, 1, e3, e3, e4, e4).

Thus
Mod5 = {r[e], r[0, e], r[0, 0, e], r[0, 0, 0, e], r[0, 0, 0, 0]}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 e1 e1 e2 e3 e3 e4 e1 e2 e3 e3 e4 e4 r

2 2 e e e2 e3 e3 e4 2 e2 e3 e3 e4 e4 r[e]
2 2 0 0 1 e3 e3 e4 1 2 e3 e3 e4 e4 r[0, e]
2 2 0 0 0 e e e4 1 1 2 2 e4 e4 r[0, 0, e]
2 2 0 0 0 0 0 1 1 1 e3 e3 2 2 r[0, 0, 0, e]
e e 0 0 0 0 0 0 1 1 e3 e3 e4 e4 r[0, 0, 0, 0]

2 2 e e e2 e3 e3 e4 2 e2 e3 e3 e4 e4 r1
2 2 0 0 1 e3 e3 e4 1 2 e3 e3 e4 e4 r2
2 2 0 0 0 e1 e1 e 1 1 2 2 e 2 r3
2 2 0 0 0 e1 e1 0 1 1 2 1 0 1 r4
2 2 0 0 0 0 0 1 1 1 e3 e3 2 2 r5
e e 0 0 0 0 0 0 1 1 2 1 e4 e4 r6
e e 0 0 0 0 0 0 1 1 1 0 1 2 r7

Table 1: Compact representation of a transversal hypergraph

Let us process the rows of Mod5 and sieve out in each row the X ’s that satisfy X∩H6 6= ∅.
All X ∈ r[e] satisfy this constraint (because of ee at positions 3, 4), so we carry over r[e]

3

unaltered but relabel it r1. Ditto r[0, e] satisfies the sixth constraint (because of the 1 at
position 5) and carries over alias r2. Let ρ := r[0, 0, e] and replace ee by e1e1 for cosmetic
reasons. Using obvious notation we have H6 ∩ supp(e4) = {8, 13}, and so we need to split
ρ into

ρ[e] = (2, 2, 0, 0, 0, e1, e1, e, 1, 1, 2, 2, e, 2),

ρ[0] = (2, 2, 0, 0, 0, e1, e1, 0, 1, 1, 2, 2, 0, 1).

Row ρ[e] carries over alias r3. With obvious notation, twos(ρ)∩H6 = {1, 2, 11, 12}∩H6 6=
∅, and so row ρ[0] can change and survive as

ρ[0; e] = (2, 2, 0, 0, 0, e1, e1, 0, 1, 1, 2, 1, 0, 1) (= r4).

As to r[0, 0, 0, e], all its members X satisfy X ∩H6 6= ∅ and so r[0, 0, 0, e] carries over alias
r5. But σ := r[0, 0, 0, 0] has H6 ∩ supp(e3) = {12} and needs to be split in

σ[e] = (e1, e1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, e4, e4),

σ[0] = (e1, e1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, e4, e4).

Row σ[e] carries over alias r6, but σ[0] in view of H6 ∩ supp(e4) = {13} is further split
into

σ[0, e] = (e1, e1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2),

σ[0, 0] = (e1, e1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1).

Row σ[0, e] carries over alias r7, but σ[0, 0] is cancelled since H6∩X = ∅ for allX ∈ σ[0, 0].
To summarize, Mod6 := {r1, · · · , r7} encodes all transversals of the set system H.

Due to the disjointness of rows the number N of transversals of H, i.e. the sum of the
cardinalities of the R = 7 final rows constituting Mod6, is

N = 23(22 − 1)(22 − 1)(24 − 1)(23 − 1) + 840 + 288 + 24 + 48 + 18 + 6 = 8784.

This is fairly evident, and further formalized in Section 4.

2.1 Another benefit of the e-formalism

This ad hoc subsection fits in well but is not related to the remainder of the paper.
Put W = [w]. Rather than Modh we shall henceforth write Tr(H) for the transversal

hypergraph, i.e. for the family of all transversals of a hypergraph H ⊆ 2W . Fixing A ⊆ W
we aim to find all X ∈ Tr(H) with X ⊆ A. Dually we may wish to sieve all X ∈ Tr(H)
with A ⊆ X . Set H′ := {Hi ∩ A : Hi ∈ H} and H′′ := {Hi ∈ H : Hi ∩ A = ∅}. Then

{X ∈ Tr(H) : X ⊆ A} = Tr(H′)

4

{X ∈ Tr(H) : A ⊆ X} = {A ∪ Y : Y ∈ Tr(H′′)}

Suppose for 1000 sets Aj one has to solve one of these tasks (or variations thereof). Rather
than running the e-algorithm 1000 times for varying H′,H′′, it’s better to run it once for
H. The 1000 required set families are then easily obtained from Tr(H). For instance, if
H = {H1, · · · , H6} is as above, then

{X ∈ Tr(H) : 7 /∈ X and {8, 9} ⊆ X}

is the disjoint union of these four rows derived from r1, r2, r3, r5 in Table 1:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 e e e2 e3 0 1 1 e2 e3 e3 2 2
2 2 0 0 1 e3 0 1 1 2 e3 e3 2 2
2 2 0 0 0 1 0 1 1 1 2 2 2 2
2 2 0 0 0 0 0 1 1 1 e3 e3 2 2

3 Individual {0, 1, 2, e}-valued rows

Here we look at {0, 1, 2, e}-valued rows on their own. Thus the row splitting process we
glimpsed at in Section 2, and the resulting interdependence of rows, will be postponed to
Section 4. Subsection 3.1 gives the formal definition of a {0, 1, 2, e}-valued row r, along
with the number f(w) of such rows of length w. In 3.2 and 3.3 we show how the k-element
sets within a fixed row can be counted, respectively generated. The special case k = kmin

deserves extra attention (3.4).

3.1 Formal definition and number of {0, 1, 2, e}-valued rows

Formally, a {0, 1, 2, e}-valued row on a finite set W is a quadruplet

r := {zeros(r), ones(r), twos(r), ebubbles(r)}

such that W is a disjoint union of the sets zeros(r), · · · , ebubbles(r), where any of these
may be empty. Furthermore, if ebubbles(r) 6= ∅ then it is a union of t ≥ 1 many sets
eb1, · · · , ebt (called e-bubbles) such1 that εi := |ebi| ≥ 2 for all 1 ≤ i ≤ t. Thus r can be
visualized (up to permutation of the entries) as

(1) r = (0, · · · , 0
︸ ︷︷ ︸

α

, 1, · · · , 1
︸ ︷︷ ︸

β

, 2, · · · , 2
︸ ︷︷ ︸

γ

, e1, · · · , e1
︸ ︷︷ ︸

ε1

, · · · , et, · · · , et
︸ ︷︷ ︸

εt

).

1It has been observed that a 1 could be viewed as an e-bubble of length one. However, it’s better to
stick to the given definition and demand a length of at least two. We further note that multivalued means
{0, 1, 2, e}-valued in the present article, but can have other meanings in other applications of the POE.

5

By definition, r represents the family of sets X ⊆ W satisfying

(2) X ∩ zeros(r) = ∅ and ones(r) ⊆ X and (∀1 ≤ i ≤ t) ebi ∩X 6= ∅.

It is however convenient to identify r with the family ofX ’s satisfying (2). Then, obviously,

(3) |r| = 2γ · (2ε1 − 1) · · · (2εt − 1).

The Boolean lattice 2[w] has 2(2
w) many subsets S. The {0, 1, 2, e}-valued rows of length

w yield some of these S, but far from all. However, as we shall see, one gets vastly more
sets S than with {0, 1, 2}-valued rows; the latter merely deliver the 3w many intervals S
of 2[w]. So let us proceed to calculate the number f(w) of {0, 1, 2, e}-valued rows of length
w. Let B ⊆ 2[w] be any Boolean sublattice say with bottom and top elements ⊥,⊤ ∈ B
and with atoms A1, A2, · · · , As. Since Ai ∩ Aj =⊥ for i 6= j and A1 ∪ A2 ∪ · · · ∪ As = ⊤,
it follows that the sets

A1\ ⊥, · · · , Aγ\ ⊥, Aγ+1\ ⊥, · · · , Aγ+t\ ⊥

partition ⊤\ ⊥. Upon permutation we can assume that s = γ+ t and that for some γ ≥ 0
the sets Ai\ ⊥ are singletons for i ≤ γ, and of higher cardinalities ε1, · · · , εt otherwise.
Hence B matches a type (1) row r with

zeros(r) = W \ ⊤, ones(r) = ⊥, twos(r) = (A1\ ⊥) ∪ · · · ∪ (Aγ\ ⊥),

eb1 = Aγ+1\ ⊥, eb2 = Aγ+2\ ⊥, up to ebt = Aγ+t\ ⊥ .

Vice versa, every {0, 1, 2, e}-valued row r yields2 a Boolean sublattice B ⊆ 2[w]. Thus f(w)
equals the number of Boolean sublattices of 2[w]. As detailed in [IS], this interpretation
of f(w) yields

f(w) = Beℓℓ(w + 2)− Beℓℓ(w + 1)

where the nth Bell number Beℓℓ(n) gives the number of set partitions of a n-element set.
For instance f(3) = Beℓℓ(5) − Beℓℓ(4) = 52 − 15 = 37. Indeed, besides twenty seven
{0, 1, 2}-valued rows there are three rows of type (∗, e, e), (e, ∗, e), (e, e, ∗) respectively
(where ∗ is 0, 1, 2), plus the row (e, e, e).

It readily follows from (5.47) in [O] that Beℓℓ(w+2)−Beℓℓ(w+1) is asymptotically equal
to Beℓℓ(w + 2) as w → ∞. For all large enough w it e.g. holds that

3w ≪ (w0.99)(w
0.99) < Beℓℓ(w + 2) < ww ≪ 2(2

w)

3.2 Counting all k-element transversals within a row

In order to calculate the number

τk = τk(H)

2Notice that |B| < |r| but B 6⊆ r for t > 0. Of course B = r for t = 0.

6

of all k-element transversals of a hypergaph H on W , define

Card(r, k) := |{X ∈ r : |X| = k}|

for any {0, 1, 2, e}-valued r. Obviously τk is the sum of all Card(r, k) where r ranges over
all final rows produced by the transversal e-algorithm. For r fixed, let us first determine
the range of k’s for which Card(r, k) 6= 0. With notation as in (1) set

(4) cmin(r) := min{|X| : X ∈ r} = β + t.

Put Xmax = W \ zeros(r). Then Xmax ∈ r and X ⊆ Xmax for all X ∈ r, whence

cmax(r) := max{|X| : X ∈ r} = |Xmax| = w − α.

By (3) it is easy to compute |r|, but now we fix k ∈ {cmin(r), . . . , cmax(r)} and strive for
Card(r, k). The extreme cases k∗ = cmin(r) and k∗ = cmax(r) are trivial:

(5) Card(r, k∗) = ε1, ε2 · · · εt and Card(r, k∗) = 1.

Computing Card(r, k) when k∗ < k < k∗ is more subtle. It is an exercise (carried out
in [W4]) to apply inclusion-exclusion and obtain Card(r, k) as an alternating sum of 2t

binomial coefficients. Unless r is long and t is small this method is inferior to the following
manner, particularly when Card(r, k) is needed for subsequent values of k. We illustrate
it on

r0 := (e1, e1, e2, e2, e2, e3, e3, e3, e4, e4, e4, e4)

and for w = 12 and 1 ≤ k ≤ 5:

k = 1 2 3 4 5
2 1 0 0 0
0 6 9 5 1
0 0 18 45 48
0 0 0 72 288

Table 2: Calculating τk recursively

The line 2, 1, 0, 0, 0 gives the number of sets in (e1, e1) having cardinality 1, 2, 3, 4, 5 re-
spectively. The next line gives the number of sets in (e1, e1, e2, e2, e2) having these car-
dinalities, and so forth. In general, if c1, c2, · · · , ck−1 are the numbers of sets in the seg-
ment (e1, · · · , e1, · · · , es−1, · · · , es−1) having cardinality 1, 2, · · · , k−1 respectively, then the
number of sets in the extended segment (e1, · · · , e1, · · · , es−1, · · · , es−1, es, · · · , es) having
cardinality k equals

(6)

(
εs
1

)

ck−1 +

(
εs
2

)

ck−2 + · · ·+

(
εs
εs

)

ck−εs

This also holds for k ≤ εs provided we put ci := 0 for i ≤ 0. For instance, if we take s = 3

7

and k = 5 in r0, then (6) evaluates to
(
3

1

)

c4 +

(
3

2

)

c3 +

(
3

3

)

c2 = 3 · 5 + 3 · 9 + 1 · 6 = 48.

As to the calculation of binomial coefficients of type
(
ε

1

)
,
(
ε

2

)
, · · · ,

(
ε

ε

)
, they are conveniently

calculated as follows:
(
ε

1

)

= ε,

(
ε

j + 1

)

=

(
ε

j

)
ε− j

j + 1
for 1 ≤ j ≤ ε− 1.

By first multiplying with ε−j and then dividing by j+1 one stays in the realm of integers.
Doing this for ε = ε1 up to ε = εs requires (ε1−1)+ · · ·+(εs−1) < w multiplications and
just as many integer-valued divisions. Applying the O(w logw log logw) = O(w log2w)
(for shortness) Schönhage-Strassen algorithm for multiplying two w-digit numbers (see
Wikipedia), the at most w many required binomial coefficients can be readied in time
O(w2 log2w), and they occupy space O(w2).

Theorem 1: Let r be a {0, 1, 2, e}-valued row of length w and let K ≤ w.
Then it costs space O(w2) and time O(Kw2 log2 w) to compute the K numbers Card(r, 1)
up to Card(r,K).

Proof. We assume that r consists only of tmany e-bubbles, so α = β = γ = 0 in (1). Other
choices of α, β, γ only cause trivial adaptions. As seen, preparing the binomial coefficients
occuring in (6) costs O(w2 log2w). For fixed s ≤ t consider an initial segment of e-bubbles
(e1, · · · , e1, · · · , es, · · · es) of lengths ε1, · · · , εs respectively. If Card′(r, k) is the number of
k-element sets represented by this segment then, as seen in (6), calculating Card′(r, k)
involves εs many multiplications of pairs of previously determined at most w-digit numbers
(and εs − 1 free additions), whence costs O(εsw log2w). Doing this for 1 ≤ k ≤ K
gives O(Kεsw log2w). Summing up yields O(Kε1w log2w) + · · · + O(Kεtw log2w) =
O(Kw2 log2w).

�

It is easy to see that the described method to calculate Card(r, k) amounts3 to expanding
a product of some obvious polynomials associated to the e-bubbles of r. For r0 this gives

(2x+ x2) (3x+ 3x2 + x3)2 (4x+ 6x2 + 4x3 + x4)

= 72x4 + 288x5 + 534x6 + 594x7 + 431x8 + 208x9 + 65x10 + 12x11 + x12.

Here Card(r0, 4) = Card(r0, k∗) = ε1ε2ε3ε4 = 72 and Card(r0, 12) = Card(r0, k
∗) = 1

match (5), and Card(r0, 5) = 288 matches Table 2.

3The author adopted this polynomial point of view and the matching Mathematica command
Expand[· · ·] to get the numbers Card(r, k). Whatever the underlying method of Expand[· · ·], for our
small values of w that hardwired command likely beats a high level Mathematica implementation of the
O(w2 log2 w) method from Theorem 1.

8

3.3 Generating all k-element transversals within a row

As to generating all k-element members of a {0, 1, 2, e}-valued row r, let us look at

r = (2, e2, e1, 2, 1, e2, e1, 0, e2)

and k = 6. Similar to before we apply recursion according to the partition

{5} = ones(r), {1, 4} = twos(r), {3, 7} (for e1), {2, 6, 9} (for e2).

Additionally we employ a last in first out (LIFO) stack management. Namely, the stack
starts out with a single “root object” x = ({5}, {1, 4}, [0, 2]). This is a cryptic command
that in the next step x needs to split into four sons whose first components are, respec-
tively, the subsets of {1, 4} with cardinality between 0 and 2 joined to {5}. Each son’s
second component is the next block of the partition (here {3, 7}). This gives rise to the
height four stack in Fig. 1. Notice that [1, 2] rather than [0, 2] occurs three times be-
cause e1e1 (as opposed to 22) forbids the empty set. More subtle, in the bottom object
({5}, {3, 7}, [2, 2]) the entry [2, 2] demands that only {3, 7} itself may eventually be added
to {5} (because otherwise the final cardinality k = 6 cannot be reached).

The philosophy of LIFO being that always only the top record of the stack is treated,
the second stack gives rise to the third stack in Fig. 1. Its top object gives rise to the
final k-sets {5, 1, 4, 3, 7, 2}, {5, 1, 4, 3, 7, 6}, {5, 1, 4, 3, 7, 9}. After the next two new top
objects have each given rise to three final k-sets, the stack has ({5, 4}, {3, 7}, [1, 2]) as its
top object. Splitting it yields the fourth stack in Fig. 1. And so on and so forth.

{5}, {1, 4}, [0, 2] →

{5, 1, 4}, {3, 7}, [1, 2]
{5, 4}, {3, 7}, [1, 2]
{5, 1}, {3, 7}, [1, 2]
{5}, {3, 7}, [2, 2]

→

{5, 1, 4, 3, 7}, {2, 6, 9}, [1, 1]
{5, 1, 4, 7}, {2, 6, 9}, [2, 2]
{5, 1, 4, 3}, {2, 6, 9}, [2, 2]
{5, 4}, {3, 7}, [1, 2]
{5, 1}, {3, 7}, [1, 2]
{5}, {3, 7}, [2, 2]

→ · · ·

→

{5, 4, 3, 7}, {2, 6, 9}, [2, 2]
{5, 4, 7}, {2, 6, 9}, [3, 3]
{5, 4, 3}, {2, 6, 9}, [3, 3]
{5, 1}, {3, 7}, [1, 2]
{5}, {3, 7}, [2, 2]

→ · · ·

Fig. 1: Generating all k-element transversals with LIFO

Theorem 2: Let r be a {0, 1, 2, e}-valued row of length w and let k ≤ w
be fixed. Then the sets X ∈ r with |X| = k can be generated in time O(w2Card(r, k)).

Proof. We first make precise how the top object (A,B, [i, j]) in the sketched LIFO al-
gorithm is to be split. Here A ⊆ W is the accumulated target set, and B ⊆ W is the

9

e-bubble to some emem · · · em (see (1)), and [i, j] by induction is the appropriate subinter-
val of the integer interval [1, |B|]. The “sons” of (A,B, [i, j]) must be of type (C,D, [∗, ∗])
where D is the e-bubble4 to em+1 · · · em+1, and C can be any of the sets A ∪ B′ where
B′ ranges over all subsets of B with cardinality between i and j. What is the interval
[∗, ∗] for a particular fixed C? Recalling that k is the final cardinality to be achieved, and
putting δ := k − |C|, a moment’s thought shows that

[∗, ∗] = [max(1, δ − εm+2 − · · · − εt), min(εm+1, δ − σ)]

where σ is the cardinality of {m+ 2, m+ 3, · · · , t}.

Running the LIFO algorithm amounts to building a rooted tree T whose leaves correspond
to the Card(r, k) sets X ∈ r with |X| = k. The unique path from a leaf X to the root
hence traces t + 2 nodes. For instance:

X = {5, 1, 4, 3, 7, 2} → {{5, 1, 4, 3, 7}, {2, 6, 9}, [1, 1]) →

({5, 1, 4}, {3, 7}, [1, 2]) → ({5}, {1, 4}, [0, 2]).

These nodes correspond to the objects that were split to create X . The claim follows
from |T | ≤ (t + 2)Card(r, k) ≤ w Card(r, k) and the fact that each object in T requires
work O(w), as is clear from the above. �

It is easy to see that O(w2) is the maximum size of the LIFO stack in Fig.1; this height
can be much smaller than Card(r, k).

3.4 The special case k = kmin

The important transversal number of a set system H is defined as

kmin(H) := min{|X| : X ∈ T r(H)}

For instance, finding the minimum number of pieces necessary in a set covering problem
amounts to determine kmin = kmin(H) for some associated hypergraph H. Note that
kmin as well as τmin := τkmin

can be gleaned at once from a representation of T r(H) by
{0, 1, 2, e}-valued rows. For instance, with respect to Table 1 we get from (4) that:

kmin = min{cmin(r1), · · · , cmin(r7)}

= min{0 + 4, 2 + 2, 2 + 2, 4 + 1, 3 + 1, 3 + 2, 4 + 1} = 4.

Using (5) that gives

τmin = τ4 = Card(r1, 4) + Card(r2, 4) + Card(r3, 4) + Card(r5, 4)

= (2 · 2 · 4 · 3) + (4 · 3) + (2 · 2) + 2 = 66.

4For convenience we assume that m + 1,m + 2 are still ≤ t. Otherwise special cases arise that are
similarly handled.

10

It is evident that also generating all transversals X with |X| = kmin can be done more
smoothly than in Section 3.3. The minimum-cardinality transversals constitute a sub-
family of the popular [EMG] inclusion-minimal transversals. The e-algorithm seems to
be predestined to handle that subfamily, although it isn’t easy to formally assess its
performance (work in progress).

4 The transversal e-algorithm in theory

If a seventh constraint corresponding to say H7 = {3, 4, 5} were to be imposed in Table
1, this would cause the cancellation of r3 to r7, and so the work to produce these (mul-
tivalued) rows would have been in vain. Fortunately such costly deletions of rows can

be prevented by looking ahead. Specifically, any POE-produced row is called feasible if it
contains at least one model X0. Because r is the disjoint union of its “candidate sons”
r[e], r[0, e], r[0, 0, e] and so forth (Section 2), at least one of them will remain feasible. As
opposed to other applications of the POE, here feasibility is easily tested. Namely, r is
feasible if and only if

(7) (∀1 ≤ i ≤ h) Hi 6⊆ zeros(r).

Obviously (7) is necessary, and it is sufficient because then Xmax = W \ zeros(r) is a
model. The non-feasible sons can hence be deleted right away. More generally, fix k ∈ [w]
and call r extra feasible if it contains a model of cardinality ≥ k. The above remarks
constitute the essence of the proof of Theorem 3.

Theorem 3: Let H be a (w, h)-hypergraph, and let k ∈ [w]. Then the
transversal e-algorithm can be adapted to calculate:

a) The number N of all transversals of H in time O(Nh2w2);

b) The number of N of all at least k-element transversals of H in time O(Nkh2w2 log2w).

Proof. As before we think of r0 = (2, 2, · · · , 2), with components labelled by the elements
of W = [w], as the powerset of W . Initially the “working stack” solely comprises the row
r0 with the pointer PC(r0) = 1 (where PC stands for pending constraint). Note that r0
is extra feasible since W ∈ r0. Generally, the top row r of the working stack is treated
as follows. If PC(r) = j (for some j ∈ [h]) then the hyperedge Hj ∈ H is “imposed”
upon r, which means that the set U of all X ∈ r with X ∩ Hj 6= ∅ is represented as a
disjoint union of s ≤ w many rows r1, · · · , rs. According to [W1, Section 5], this is always
possible. (Section 2 of the present article illustrates the most subtle case.) Writing U as
r1∪ r2∪ · · · ∪ rs costs O(sw) = O(w2). Because r was extra feasible by induction, at least
one of its candidate sons rj will be as well. Since the extra feasibility of rj amounts to

11

the truth of both (7) and |Xmax| ≥ k, it costs O(shw) = O(hw2) to sieve the sons of r,
i.e. the extra feasible rows amoung r1, · · · , rs. Altogether the cost of one imposition of a
constraint upon a row is O(w2) +O(hw2) = O(hw2).

The R final rows can be viewed as the leaves of a tree with root (2, 2, · · ·2) that has height
h; each imposition triggers all sons of some node. Therefore the number of impositions is
at most Rh (distinct final rows possibly having some of their h forfathers coinciding). It
follows that producing the R final rows costs O(Rh ·hw2) = O(Nh2w2) in view of R ≤ N ,
by the disjointness of final rows. Counting all transversals within a row costs O(w) by
(3), whence doing it for all rows costs O(Nw) = O(Nh2w2). This yields claim (a).

As to (b), by Theorem 1 it costs O(kw2 log2w) to count the

|r| − Card(r, 1)− Card(r, 2)− · · · − Card(r, k − 1)

many transversals X ∈ r with |X| ≥ k. Doing it for all final rows costs O(Nkw2 log2w).
Claim (b) thus follows from

O(Nh2w2) +O(Nkw2 log2w) = O(Nkh2w2 log2w). �

As is clear from the proof, theO(Nkh2w2 log2w) bound can be improved toO(Rkh2w2 log2w)
where R ≤ N is the mentioned number of final {0, 1, 2, e}-valued rows. Albeit in practise
R is often much smaller than N , the only obvious theoretic upper bound of R is N . If
rather than counting we must5 generate all relevant transversals one by one, then we have
no choice between R and N but are stuck with the latter.

Let smax be the maximum number of sons of a multivalued row that occurs in any fixed
run of the POE (whether e-algorithm or something else). According to [W1, Thm.6] using
a LIFO stack management (akin to Section 3.3) reduces the space requirement of POE-
counting to O(hwsmax). It is easy to see that for the e-algorithm one has smax ≤ min{d, w

2
}

where d := max{|Hi| : 1 ≤ i ≤ h}, and so O(hwsmax) = O(hw2) is independent of N .

Notice that X is a transversal of H1, · · · , Hh if and only if its complement Xc = W \X
is a noncover in the sense that Xc 6⊇ Hi for all 1 ≤ i ≤ h. Although the e-algorithm
can thus count (or generate) noncovers, it pays to introduce the symbolism nn · · ·n :=
“at least one 0” and a corresponding noncover n-algorithm which produces the noncovers
“directly”, not as Xc. The noncover n-algorithm in turn generalizes to the Horn n-
algorithm of [W1] which counts the models of any given Horn formula. Because Theorem
3a and Theorem 3b above correspond to not so obvious special (and dualized) cases of
[W1, Thm.2] respectively [W1, Thm.7], we deemed it worthwile to offer a fresh proof.
Even more so because (7) is much smoother than the corresponding feasibility test for
general Horn formulae. Theorem 4 below transfers further results of [W1] about fixed

cardinality models to our framework. Its proof is omitted (being along the lines of the
proof above) but we mention that Theorem 1 and Theorem 2 are used throughout. They

5In practise, generating all of them is mainly necessary for exact optimization, but then one rather
generates them bunch-wise in multivalued rows.

12

appeared already as statements (16) and (15) in [W1], but their proofs were postponed6

to the present article.

Theorem 4: Let H be a (w, h)-hypergraph and let k ∈ [w]. To avoid trivial
special cases we assume that the number N of various models considered below, is > 0.
Define R ≤ N as the number of final rows delivered by the transversal e-algorithm
when applied to H.

(a) [W1, Thm.10] The number N of transversals of H with |X| = k can be calculated in
time O(R2hhw4k).

(a′) [W1, remark to Thm.10] The N transversals of H with |X| = k can be generated in
time O(N2hhw5).

(b) [W1, Thm.8] Suppose that h ≤ k ≤ w. Then the number N of transversals X of H
with |X| = k can be calculated in time O(Rkh2w3).

(b′) [W1, Thm.4] Suppose that h ≤ k ≤ w. Then the N transversals of H with |X| = k
can be generated in time O(Nh2w2).

(c) [W1, Thm.9] Suppose the number of k′-element transversals increases as k′ ranges
from w down to k. Then the number N of H-transversals X with |X| = k can
be calculated in time O(Nh2w5).

5 Conclusion

In [W4], which is a somewhat verbose preliminary version of the present article, a Mathe-
matica implementation of the e-algorithm is pitted against Mathematica implementations
of (a) inclusion-exclusion, (b) lexicographic generation, and (c) the “hardwired” whence
advantaged Mathematica command SatisfiabilityCount. The latter is based on binary
decision diagrams (BDD’s).

Broadly speaking, the e-algorithm combines the advantages of inclusion-exclusion and
SatisfiabilityCount without adopting their disadvantages. Let τ be the number of all
transversals. The advantage of inclusion-exclusion is that calculating all τk (1 ≤ k ≤ w)
doesn’t take much longer than calculating τ (for fixed h time scales about proportional
to w), its disadvantage the ominous factor 2h. The advantage of SatisfiabilityCount
is its benign exponential dependence on h. Its disadvantage is the inability of BDD’s to

6The O(Kw2 log2 w) bound in Theorem 1 actually improves upon the O(Kw3) bound in [W1, (16)].
This entails that (a′) in Theorem 4 above could be slightly improved accordingly; we omitted it in order
to minimize confusion.

13

handle fixed-cardinality constraints.

Albeit some of the experimential results in [W4] remain interesting, the author also accepts
the following criticism of one Referee:

SatisfiabilityCount is a function to count the solutions of a satisfiability
problem, and transversals are only a special case, so the function is “abused”
(in particular when lots of artificial constraints are added to find transversals
of a certain size!) to perform a task it was not programmed for.

But then again, the principle of exclusion (Section 1) continues to tease SatisfiabilityCount
when the issue is counting (let alone generating) the models of an arbitrary Boolean func-
tion in CNF, provided it happens to have few or no models. This is work in progress, and
so are other applications of POE. If Mathematica code algorithms compare favorably with
corresponding hardwired Mathematica commands, obviously the former algorithms are
inherently superior. It has been suggested (fairly or not) that Mathematica commands
aren’t state of the art, and hence the author’s POE-algorithms should be implemented
in C+ (say) and compared to existing C+-implementations. Being not familiar with C+

(and too lazy to learn), I leave that worthwile task to others.

See also Section 9 in [W1] for further analysis of the pros and cons of POE.

Acknowledgement.

I am grateful to Stephan Wagner and Andrew Odlyzko for pointing out references [IS]
respectively [O].

References

[BEHM] M. Bruglieri, M. Ehrgott, H.W. Hamacher, F. Maffioli, An annotated bibliography of
combinatorial optimization problems with fixed cardinality constraints, Disc. Appl.
Math. 154 (2006) 1344-1357.

[EMG] T. Eiter, K. Makino, G. Gottlob, Computational aspects of monotone dualization:
A brief survey, Discrete Appl. Math. 156 (2008) 2035-2049.

[IS] The Integer-Sequences-Webpage, http://oeis.org/A005493.

[O] A. Odlyzko, Asymptotic enumeration methods, Handbook of Combinatorics Vol.2,
1063-1229, Elsevier 1995.

14

http://oeis.org/A005493

[W1] M. Wild, Compactly generating all satisfying truth assignments of a Horn formula,
Journal on Satisfiability, Boolean Modeling and Computation 8 (2012) 63-82.

[W2] M. Wild, S. Janson, S. Wagner, D. Laurie, Coupons collecting and transversals of
hypergraphs, to appear in DMTCS.

[W3] M. Wild, Computing the output distribution and selection probabilities of a stack
filter from the DNF of its positive Boolean function, Journal of Math. Imaging and
Vision, online, 1 August 2012.

[W4] M. Wild, Counting or producing all fixed cardinality transversals, preliminary ver-
sion of the present article, arXiv : 1106.0141v1.

15

	1 Introduction
	2 The transversal e-algorithm by example
	2.1 Another benefit of the e-formalism

	3 Individual {0,1,2,e}-valued rows
	3.1 Formal definition and number of {0,1,2,e}-valued rows
	3.2 Counting all k-element transversals within a row
	3.3 Generating all k-element transversals within a row
	3.4 The special case k=kmin

	4 The transversal e-algorithm in theory
	5 Conclusion

