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Abstract. We present an implementation of Redelemeier’s algorithm for the enumeration
of lattice animals in high dimensional lattices. The implementation is lean and fast enough
to allow us to extend the existing tables of animal counts, perimeter polynomials and series
expansion coefficients ind-dimensional hypercubic lattices for 3≤ d≤ 10. From the data we
compute formulas for perimeter polynomials for lattice animals of sizen≤ 11 in arbitrary
dimensiond. When amended by combinatorial arguments, the new data suffices to yield
explicit formulas for the number of lattice animals of sizen≤ 14 and arbitraryd. We also
use the enumeration data to compute numerical estimates forgrowth rates and exponents in
high dimensions that agree very well with Monte Carlo simulations and recent predictions
from field theory.

PACS numbers: 64.60.ah, 64.60.an, 02.10.Ox, 05.10.-a

1. Introduction

A polyominoof sizen is an edge-connected set ofn squares on the square lattice, apolycube
of sizen is a face-connected set ofn cubes in the cubic lattice. Polyominoes and polycubes
are a classical topic in recreational mathematics and combinatorics [1]. In statistical physics
and percolation theory, polyominoes and polycubes are called lattice animals[2, 3]. Lattice
animals are not restricted to dimension 2 or 3: ad-dimensional lattice animal of sizen is a set
of n face-connected hypercubes onZ

d.
In this contribution we will address the problem of countingthe number offixedanimals

of sizen in dimensiond > 2. Fixed animals are considered distinct if they have different
shapes or orientations.Freeanimals, on the other hand, are distinguished only by shape,not
by orientation. Figure 1 shows all fixed polyominoes of size 3and all free polycubes of size
4.

We denote the number ofd-dimensional fixed animals of sizen by Ad(n). There is no
formula forAd(n), but we know thatAd(n) grows exponentially withn. Using subadditivity
and concatenation arguments [4], one can show that there areconstants 1< λd < ∞ such that

lim
n→∞

n
√

Ad(n) = λd . (1)

The constantλ2 is known as Klarner’s constant.
A slightly stronger result due to Madras [5] asserts that

lim
n→∞

Ad(n+1)
Ad(n)

= λd . (2)

http://arxiv.org/abs/1106.1078v2
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Figure 1. All fixed polyominoes of sizen = 3 (top) and allfree polycubes of sizen = 4
(bottom) and their perimeters.

Intuitively, the growth rateλd should grow with the coordination number 2d of the lattice. In
fact, in [6] it is shown that

λd = 2de−o(d) , (3)

and in the same paper it is conjectured thatλd = (2d−3)e+O(1/d). For finited, however,
we know only lower and upper bounds forλd. Numerical estimates forλd can be derived
from extrapolatingAd(n+1)/Ad(n), which is one motivation to computeAd(n) for n as large
as possible. We will try our hands at that in Section 6.

In percolation theory one is interested in counting latticeanimals of a given sizen
according to their perimetert, i.e., to the number of adjacent cells that are empty (see
Figure 1). If each cell of the lattice is occupied independently with probability p, the average
number of clusters of sizen per lattice site reads

∑
t

g(d)n,t pn(1− p)t , (4)

whereg(d)n,t denotes the number of fixedd-dimensional lattice animals of sizen and perimeter
t. Theg’s define theperimeter polynomials

Pd(n,q) =∑
t

g(d)n,t qt . (5)

We can easily computeAd(n) from the perimeter polynomialPd(n,q) through

Ad(n) = Pd(n,1) = ∑
t

g(d)n,t . (6)

In fact we can computeAd(n+1) from the perimeter polynomials up to sizen,

Ad(n+1) =
1

n+1 ∑
m≤n

m∑
t

g(d)m,t

(
t

n+1−m

)

(−1)n−m. (7)

This equation follows from the observation that below the percolation thresholdpc, each
occupied lattice site belongs to some finite size lattice animal,

p=
∞

∑
n=1

npnPd(n,1− p) (8)
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for p< pc. The right hand side is a power series inp, and Equation (7) follows from the fact
that the coefficient ofpn+1 must be zero.

As we will see in the next section, the algorithm for countinglattice animals keeps track
of the perimeter anyway. Hence it is reasonable to use the algorithm to compute the perimeter
polynomials and to apply (7) to get an extra value ofAd.

2. The Algorithm

The classical algorithm for counting lattice animals is dueto Redelmeier [7]. Originally
developped for the square lattice, Redelmeier’s algorithmwas later shown to work on
arbitrary lattices and in higher dimensions [8] and to be efficiently parallelizable [9]. For two
dimensional lattices there is a much faster counting methodbased on transfer matrices [10],
but for d ≥ 3 Redelmeier’s algorithm is still the most efficient known way to count lattice
animals.

The algorithm works by recursively generating all lattice animals up to a given sizenmax.
Given an animal of sizen, the algorithm generates animals of sizen+ 1 by adding a new
cell in the perimeter of the given animal. The lattice sites that are available for extending
the current animal are stored in a setU called theuntried set. To avoid generating the same
fixed animal more than once, lattice sites that have previously been added to the untried set
are marked on the lattice.

×1 3 7 13
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2 3
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Figure 2. Part of the square lattice that can be reached from animals upto size 4 (left). The
number of lattice animals of sizen≤ 4 equals the number of subgraphs in the neighborhood
graph (right) that contain vertex 1.

In order to break the translational symmetry we demand that the initial site, which is
contained in all animals, is an extremal site with respect tothe lexicographic order of lattice
coordinates. Figure 2 illustrates how this can be achieved in the square lattice. We simply
block all lattice sites from further consideration that arein a row below the initial site (marked
with a cross) or in the same row and to the left of the initial site. The generalization tod > 2
is straightforward. These blocked sites are never added to the untried set, but they need to be
taken into account when we compute the perimetert.

We start with all lattice sites being marked “free” or “blocked,” except for the initial site,
which is marked “counted.” Furthermoren= 1, t =1 and the initial site being the only element
of the untried setU . Redelemeier’s algorithm works by invoking the following routine with
this initial settings:

• Iterate untilU is empty:

(1) Remove a sites from U .
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(2) F := set of “free” neighbors,B := set of “blocked” neighbors ofs. N := |U |+ |B|.
(3) Count new cluster: increasegn,t+N−1 by one.
(4) If n< nmax:

(a) Mark all sites inF andB as “counted.”
(b) Call this routine recursively withU ′ =U ∪F , n′ = n+1 andt ′ = t +N−1.
(c) Relabel sites inF as “free” and sites inB as “blocked.”

• Return.

Since the algorithm generates each lattice animal explicitely, its running time scales like
Ad(n). This exponential complexity implies hard limits for the accessible animal sizes. All
we can do is to keep the prefactor in the time complexity function small, i.e., to implement
each step of Redelemeier’s algorithm as efficiently as possible by using an appropriate data
structure for the untried set and for the lattice, see [8].

Another crucial element of tuning Redelmeier’s algorithm is the computation of the
neighborhood of a lattice cell. In a recent paper [11], Aleksandrowicz and Barequet observed
that Redelmeier’s algorithm can be interpreted as the counting of subgraphs in a graph that
represents the neighborhood relation of the lattice. Figure 2 illustrates this for the square
lattice.

For any lattice, the neighborhood graph can be precomputed and be represented as an
adjacency list which is then fed to the actual subgraph counting algorithm. That way the
computation of the neighbors of a lattice cell is taken out ofthe counting loop, and the
prefactor in the exponential scaling is reduced.

The size of the neighborhood graph or, equivalently, the number of lattice points required
to host lattice animals of sizen scales likeΘ(nd). Aleksandrowicz and Barequet [11]
claimed that this exponential growth of memory withd represents a serious bottleneck for
Redelmeier’s algorithm in high dimensions. In a subsequentpaper [12], they therefore present
a variation of the algorithm that avoids the storage of the full graph by computing the relevant
parts of the graph on demand. This cuts down the space complexity to a low order polynomial
in d, but it forfeits the gain in speed that can be obtained by precomputing the complete
neighborhood graph.

We claim that in practice the space complexity of Redelmeier’s algorithm is no
bottleneck. The reason is that the prefactor in theΘ(nd) scaling can be made small enough to
hold the complete graph in memory for all values ofn andd for which Ad(n) is computable
in reasonable time.

The key observation is that in [11], Aleksandrowicz and Barequet used a hyper-cube of
side length 2n of the lattice to host the lattice animals, whereas a hyper-sphere of radiusn
suffices. This is a significant difference, as can be seen fromthe analogous situation inRd.
Here the volume of a cube is much larger than the volume of the inscribed Euclidean sphere,

volume hypercube
volume inscribed hypersphere

=
2dΓ(d

2 +1)

πd/2
≃
(

2d
πe

)d/2 1√
πd

. (9)

In the latticeZd, the number of lattice points in a cube of side length 2n+1 is

C(d,n) = (2n+1)d . (10)

Let B(d,n) denote the number of lattice sites that aren steps or less away from the origin.
This “volume of the crystal ball” can be computed recursively via

B(1,n) = 2n+1

B(d,n) = B(d−1,n)+2
n−1

∑
k=0

B(d−1,k) , (11)
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Figure 3. Volume needed to cage animals of sizen on the hypercubic lattice of dimension
d = 9. Cubic (�) versus spherical cages (©).

which reflects the fact that the crystall ball in dimensiond can be decomposed into(d−1)-
dimensional slices whose diameter decreases with increasing distance from the central slice.
The recursion (11) tells us thatB(d,n) is a polynomial inn of degreed which can easily be
computed, see A001845 to A001848 on oeis.org for the polynomials for d = 3, . . . ,6. Note
thatB(d,n) can also be computed through the generating function [13]

(1+ x)d

(1− x)d+1 =
∞

∑
n=0

B(d,n)xn . (12)

The number of lattice sites needed to cage lattice animals ofsize n is very close to
B(d,n− 1)/2 for spherical cages andC(d,n− 1)/2 for cubical cages. Figure 3 shows both
numbers for the cased = 9. As you can see,d = 9 andn = 12 requires memory on the
Terabyte scale if one uses cubic cages, but only a few Megabytes for spherical cages.

3. Performance

Our implementation of the Redelmeier algorithm consists oftwo programs. The first program
computes the neighborhood graph of a specified lattice and writes this graph as an adjacency
list into a file. The second program reads this file and computes the corresponding perimeter
polynomials. The programs are written in C++ and can be downloaded from the project
webpage [15].

When run on a laptop with an Intel® Core™ 2 Duo CPU at 2 GHz, the program
enumerates perimeter polynomials at a rate of roughly 2·107 animals per second. This means
that generating and counting one lattice animal and measuring its perimeter takes about 100
clock cycles, which is reasonable for a program compiled from C++.

At this rate, our laptop needs 35 days to enumerate the perimeter polynomials ford = 9
andn≤ 11 (see Table 2). Computing the next perimeter polynomial (n = 12) would take
more than three years. Note that according to Figure 3, the neighborhood graph ford = 9 and

http://oeis.org/A001845
http://oeis.org/A001848
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Perimeter Polynomial Ad(n)
d old nmax newnmax old nmax newnmax

3 15 18 18 19
4 10 15 15 16
5 9 14 13 15
6 8 14 10 15
7 8 13 10 14
8 11 8 12
9 11 4 12

10 11 12

Table 1. Range of perimeter polynomials and animal numbers in dimensionsd≥ 3 that have
been found by exhaustive enumerations. The old perimeter polynomials are from [8] and [14],
the old values ofAd(n) are from [11] and [12].

n A6(n) A7(n) A8(n) A9(n)
1 1 1 1 1
2 6 7 8 9
3 66 91 120 153
4 901 1484 2276 3309
5 13881 27468 49204 81837
6 231008 551313 1156688 2205489
7 4057660 11710328 28831384 63113061
8 74174927 259379101 750455268 1887993993
9 1398295989 5933702467 20196669078 58441956579
10 27012396022 139272913892 558157620384 1858846428437
11 532327974882 3338026689018 15762232227968 60445700665383
12 10665521789203 81406063278113 453181069339660 2001985304489169
13 227093585071305 2014611366114053
14 4455636282185802 50486299825273271
15 92567760074841818

Table 2. Number of lattice animals in the hypercubic lattice ford = 6. . .9 obtained bydirect
enumeration. New results in boldface, the numbers of smaller animals arefrom [11, 12] and
references therein. Note that in [16],A8(n) andA9(n) for n≤ 9 were computed rather than
enumerated by the same method that we will use in Section 4 to extend this table ton≤ 14
and all values ofd.

n= 12 easily fits into the memory of a run-of-the-mill laptop. These numbers illustrate that
for for all practical purposes, the bottleneck of Redelemeier’s algorithm is time, not memory.

Using a parallel implementation [9] that we ran on a Linux cluster with 128 Intel®
Xeon® 3.2 GHz CPUs, or for the most demanding computations, on a SciCortex SC5832
with 972 MIPS64 6-core nodes, we could extend the table of known perimeter polynomials
and animal counts considerably, see Table 1. The new values for d≤ 5 are

A3(19) = 651459315795897,

A4(16) = 692095652493483,

A5(14) = 227093585071305,

A5(15) = 3689707621144614.

The numbers for 6≤ d ≤ 9 are given in Table 2, the corresponding perimeter polynomials
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can be found on the project webpage [15]. Before we evaluate the results, we will discuss a
combinatorial argument that allows us to extend the enumeration data considerably.

Note that the most demanding computation in this paper was the enumeration of the
perimeter polynomial forn= 14 in d = 6. On a single core of a MIPS64, this enumeration
would have taken 77 CPU years, on our Laptop from above it would still have taken about 7
CPU years. In practice we used a parallel implementation that ran on many cores (and several
different machines) such that no computation took longer than two weeks wall clock time.

4. Proper Animals

A lattice animal of sizen can’t span more thann−1 dimensions. This simple observation
allows us to derive explicit formulas forAd(n) for fixed n. Obviously Ad(1) = 1 and
Ad(2) = d. A lattice animal of sizen= 3 is either a one-dimensional “stick” withd possible
orientations or “L-shaped” and spanning 2 out ofd dimensions. Within these 2 dimensions
there are 4 possible orientations for the L-shaped animal (see Figure 1), hence

Ad(3) = d+4

(
d
2

)

= 2d2−d .

For n = 4, we have again the “stick” that lives in one dimension, 17 animals that span 2
dimensions and 32 animals that span 3 dimensions:

Ad(4) = d+17

(
d
2

)

+32

(
d
3

)

=
16
3

d3− 15
2

d2+
19
6

d .

In general we can write

Ad(n) =
d

∑
i=0

(
d
i

)

DX(n, i) , (13)

where DX(n, i) denotes the number of fixedproper animals of sizen in dimensioni. An
animal is called proper in dimensiond if it spans alld dimensions. Equation (13) is due to
Lunnon [17]. If we knowAd(n) for a givenn andd ≤ dmax, we can use (13) to compute
DX(n,d) for the same value ofn and alld≤ dmax, and vice versa.

Since DX(n, i) = 0 for i ≥ n, Lunnon’s equation tells us thatAd(n) is a polynomial
of degreen− 1 in d, and sinceA0(n) = 0 for n > 1, it suffices to know the values
A1(n),A2(n), . . . ,An−1(n) to compute the polynomialAd(n). From our enumeration data
(Table 1), we can compute these polynomials up toAd(11), see Table 3.

In order to computeAd(12), we need to knowA11(12) or equivalently, DX(12,11). The
latter can actually be computed with pencil and paper. That’s because an animal of size 12 in
11 dimensions has to span a new dimension with each of its cells to be proper. In particular,
its cells can’t form loops. Hence computing DX(12,11) is an exercise in counting trees. This
is true for DX(n,n−1) in general, so let’s compute this function.

The adjacency graph of a lattice animal of sizen is an edge labeled graph withn vertices,
in which each vertex represents a cell of the animal and two vertices are connected if the
corresponding cells are neighbors in the animal. Every edgeof the adjacency graph is labeled
with the dimension along which the two cells touch each other.

In the case DX(n,n− 1), every pair of adjacent cells must span a new dimension.
Therefore the corresponding adjacency graph contains exactly n−1 edges, i.e. it is a tree,
and each edge has a unique label. There are two directions foreach dimensions that we
represent by the orientation of the edge in the tree. Hence DX(n,n−1) equals the number of
directed, edge-labeled trees of sizen, where in our context “directed” means that each edge
has an arbitrary orientation in addition to its label.
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Ad(2) = d

Ad(3) = 2d2−d

Ad(4) =
16
3

d3− 15
2

d2+
19
6

d

Ad(5) =
50
3

d4−42d3+
239
6

d2− 27
2

d

Ad(6) =
288
5

d5−216d4+
986
3

d3−231d2 +
926
15

d

Ad(7) =
9604
45

d6−1078d5 +
20651

9
d4− 14927

6
d3+

120107
90

d2− 827
3

d

Ad(8) =
262144

315
d7− 26624

5
d6+

132320
9

d5− 65491
3

d4+
1615991

90
d3− 113788

15
d2+

52589
42

d

Ad(9) =
118098

35
d8−26244d7 +

447903
5

d6− 511082
3

d5+
23014949

120
d4− 1522261

12
d3

+
38839021

840
d2− 30089

4
d

Ad(10) =
8000000

567
d9− 2720000

21
d8+

14272000
27

d7− 11092360
9

d6+
239850598

135
d5

− 14606026
9

d4+
1067389643

1134
d3− 42595493

126
d2+

2804704
45

d

Ad(11) =
857435524

14175
d10− 67319318

105
d9+

2884481974
945

d8− 380707987
45

d7+
40341440233

2700
d6

− 1260803635
72

d5+
79118446751

5670
d4− 19252021283

2520
d3+

17126616179
6300

d2− 7115086
15

d

Ad(12) =
509607936

1925
d11− 15925248

5
d10+

607592448
35

d9− 1956324864
35

d8+
2930444704

25
d7

− 2522387284
15

d6+
17894522696

105
d5− 1242881121

10
d4

+
22272055467

350
d3− 4225468993

210
d2+

181356011
66

d

Ad(13) =
551433967396

467775
d12− 75047226332

4725
d11+

166095324499
1701

d10− 48436628461
135

d9

+
49499551181119

56700
d8− 1335959158369

900
d7+

248648897740349
136080

d6− 25156285613453
15120

d5

+
757565736903221

680400
d4− 5607318230581

10800
d3+

12648671104037
83160

d2− 135165335
6

d

Ad(14) =
4628074479616

868725
d13− 23612624896

297
d12+

3309261190144
6075

d11− 304034058496
135

d10

+
12648090831712

2025
d9− 553376997376

45
d8+

758347226205724
42525

d7− 2633038200122
135

d6

+
98388569956577

6075
d5− 2734657007119

270
d4+

11824147558382
2475

d3− 560344373791
330

d2

+
97500388612

273
d

Table 3. Number of lattice animals of sizes 2, . . . ,14 in hypercubic lattices of dimensiond.
The polynomials forn≤ 11 have been obtained by direct enumeration and confirm thoselisted
in [6]. Polynomials forn> 11 have been computed from enumeration data and known values
of DX(n,n−k).
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The number ofvertex labeled trees of sizen is given by nn−2, the famous fomula
published by Cayley in 1889 [18]. The number ofedgelabeled trees seems to be much less
known, at least it is proven afresh in recent papers like [19]. The following nice derivation
is from [6]. Start with a vertex labeled tree of sizen and mark the vertex with labeln as the
root. Then shift every label smaller thann from its vertex to the incident edge towards the
root. This gives an edge labeled tree with a single vertex marked (the root). Since the mark
can be on any vertex, the number of edge labeled trees equals the number of vertex labeled
trees divided by the number of vertices. According to Cayley’s formula, this number isnn−3.
And since each directed edge can have two directions, we get

DX(n,n−1) = 2n−1nn−3 . (14)

This formula has been known in the statistical physics community for a long time [20]. We
used it to compute DX(12,11) and thenAd(12) (Table 3).

We can proceed further along this line. To computeAd(13) we have to extend our
enumeration data byA12(13), . . . ,A8(13) or equivalently by DX(13,12), . . . ,DX(13,8). What
we need are formulas DX(n,n− k) for k> 1.

For k > 1, there is no longer a simple correspondence between edge labeled trees and
proper animals. We need to take into account that there are edge labels with the same value,
that the adjacency graph may contain loops, and that some labeled trees represent a self-
overlapping and therefore illegal lattice animal. A careful consideration of these issues yields

DX(n,n−2) = 2n−3nn−5(n−2)(9−6n+2n2) , (15)

see [6] for the derivation of (15).
For k > 2, the computation of DX(n,n− k) gets very complicated and is better left to a

computer. In Appendix A we show that

DX(n,n− k) = 2n−2k+1nn−2k−1gk(n) , (16)

wheregk(n) is a polynomial of degree 3k− 3. Hence we can computegk from 3k− 2 data
points, like the values of DX(n,n− k) for n= k, . . . ,4k−3. Our enumeration data suffices to
computeg2 andg3 with this method, but notg4.

However, there is a trick that allows us to computegk from many fewer data points. The
free energy

fn =
1
n

logAd(n)

has a well defined 1/d expansion whose coefficients depend onn. If we assumethat these
coefficients are bounded in the limitn→ ∞, most of the coefficients ingk are fixed, and we
only need to knowk+ 1 data points to fully determinegk. See Appendix B for the details
of this argument. In our case this enables us to computegk up to k = 7, see Table 4, and
consequentlyAd(13) andAd(14), see Table 3.

We actually know all data to computeAd(15) with the exception of the numberA7(15).
On our laptop, the enumeration of the missing numberA7(15) would take about 80 years. On
a parallel system with a few hundred CPUs this would still take several months, which is not
out of reach. Computing the formula forAd(16), however, is definitely beyond the power of
our machinery.

Before we turn our attention to the analysis of the enumeration data we note that
Lunnon’s equation (13) has a corresponding equation for perimeter polynomials:

g(d)n,t = ∑
i

(
d
i

)

G(i)
n,t−2(d−i)n . (17)
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g2(n) = (n−2)(9−6n+2n2)

g3(n) =
n−3

6
(−1560+1122n−679n2 +360n3−104n4+12n5)

g4(n) =
n−4

6
(204960−114302n+41527n2 −17523n3 +7404n4−2930n5 +828n6−128n7+8n8)

g5(n) =
n−5
360

(−3731495040+1923269040n−535510740n2 +150403080n3−42322743n4

+12397445n5−4062240n6 +1335320n7−356232n8 +62240n9−6000n10+240n11)

g6(n) =
n−6
360

(1785362705280−939451308048n+248868418932n2 −56265094748n3

+11984445891n4−2448081038n5 +535284255n6−127651774n7 +33940138n8

−9580440n9 +2398912n10−440688n11+51856n12−3424n13+96n14)

g7(n) =
n−7
45360

(−156017752081551360+85163968967728896n−22517704978919136n2

+4585470174542376n3−851686123590540n4 +146137469433102n5

−24441080660523n6 +4148836864606n7−747463726205n8

+149724735468n9−33793043592n10+8322494124n11−1946680944n12

+363148352n13−47679184n14+4019904n15−193536n16+4032n17)

Table 4. Polynomialsgk(n) that appear in DX(n,n− k) (16). The polynomialsg2, . . . ,g6 can
be found asgk,0 in Appendix 2 of [21]. As far as we know, the polynomialg7 has not been
published before. See the Appendix of this paper for the method how to compute thegk.

G(d)
n,t denotes the number of properd-dimensional animals of sizen and perimetert. Since

G(d)
n,t = 0 for d > n−1, we can write

Pd(n,q) = q2dn−2(n−1)
n−1

∑
i=1

(
d
i

)

∑
t

G(i)
n,tq

t−2−2n(i−1) . (18)

For a given value ofn, (18) represents the perimeter polynomial for general dimensiond.

Our enumeration data allowed us to compute theG(d)
n,t and hence the formulas (18) forn≤ 11

(see [15] for the data), extending the previously known formulas forn≤7 [14]. A computation
of the next formulaPd(12,q) requires the knowledge of the perimeter polynomials ford≤ 11
andn≤ 12. The enumeration ford = 11 andn = 12 alone would take ca. 38 years on our
laptop.

5. Mean Cluster Size

From the perimeter polynomials we can compute moments of thecluster statistics like the
mean cluster size

S(p) =
1
p

∞

∑
n=1

n2pnPd(n,1− p) = ∑
r

bd(r)p
r . (19)

The coefficients of the series expansion read

bd(r) =
r+1

∑
n=1

n2∑
t

g(d)n,t

(
t

r +1−n

)

(−1)r+1−n

= (r +1)2Ad(r +1)+
r

∑
n=1

n2∑
t

g(d)n,t

(
t

r +1−n

)

(−1)r+1−n . (20)
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r d = 3 d = 4 d = 5 d = 6
1 6 8 10 12
2 30 56 90 132
3 114 320 690 1272
4 438 1832 5290 12252
5 1542 9944 39210 115332
6 5754 55184 293570 1091472
7 19574 290104 2135370 10159252
8 71958 1596952 15839690 95435172
9 233574 8237616 113998170 883192392
10 870666 45100208 840643170 8258076192
11 2696274 229502616 6017266290 76196541732
12 10375770 1254330128 44178511010 710151162432
13 30198116 6307973352 315024296150 6540805549192
14 122634404 34574952952 2307462163110 60831844077672
15 327024444 171364602736
16 1460721616
17 3347244554
18 17795165832

r d = 7 d = 8 d = 9
1 14 16 18
2 182 240 306
3 2114 3264 4770
4 24542 44368 74322
5 280238 595632 1146834
6 3210074 8012384 17720514
7 36394302 107053424 272530194
8 414610014 1434259248 4198328082
9 4685293438 19125485024 64487361906
10 53201681162 255662267296 991886672898
11 600207546946 3405928921264 1522687319670
12 6800785109594 45466350310880 233996383280898
13 76649757121000

Table 5. Series coefficients of the mean cluster sizeS(p) = ∑
r

br pr in hypercubic lattices of

dimensiond. New values in boldface, older values from [8] (d = 3) and [14] (d = 4, . . . ,7) and
references therein.

Since we can computeAd(r +1) from the perimeter polynomialsPd(n,q) for n≤ r via (7),
we can also compute the series coefficientsbd(r) from this set of perimeter polynomials. If
we happen to knowAd(r +2), we can get an extra coefficient through

bd(r +1) =(r +2)Ad(r +2)

+
r

∑
n=1

n(n− r−1)∑
t

g(d)n,t

(
t

r +2−n

)

(−1)r−n .
(21)

This formula can be derived by solving (7) for∑t gn,tt and plugging the result into (20).
We used (21) to extend the table of coefficients (Table 5) ford≥ 8, since here we know

perimeter polynomials only up ton= 11, but the cluster numbersAd up ton= 14.
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Figure 4. Growth rateλd for d = 9. The symbols areλ9(n) computed from Eqs. (23). The
correction exponent∆ = 0.58 and the line are the result of a numerical fit to the three leftmost
data points.
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Figure 5. ExponentΘd for d = 9. The symbols areθ9(n) computed from Eqs. (23). The
correction exponent∆ = 0.50 and the line are the result of a numerical fit to the three leftmost
data points.

6. Growth Rates and Exponents

The cluster numbersAd(n) are expected to grow asymptocically as

Ad(n)∼Cλ n
d n−Θd (1+

b
n∆ + corrections), (22)

where the exponentsΘd and ∆ are universal constants, i.e., their value depends on the
dimensiond, but not on the underlying lattice, whileC and b are nonuniversal, lattice
dependent quantities [22]. The universality facilitates the computation ofΘd for some values
of d using field theoretic arguments. We knowΘ3 = 3/2 [23, 24], Θ4 = 11/6 [25] and
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logλd Θd

d enum. MC enum. exact, MC

3 2.12169 2.1218588(25) 1.489 3/2
4 2.58750 2.587858(6) 1.796 11/6
5 2.92254 2.922318(6) 2.113 2.080(7)
6 3.17838 3.178520(4) 2.232 2.261(12)
7 3.38403 3.384080(5) 2.357 2.40(2)
8 3.55484 3.554827(4) 2.441 5/2
9 3.70057 3.700523(10) 2.489 5/2

Table 6. Growth ratesλd and exponentsθd obtained from extrapolating the enumeration data.
The columns marked MC contain values from large scale Monte Carlo simulations [27, 28].

Θd = 5/2 (the value for the Bethe lattice) ford ≥ dc = 8, the critical dimension for animal
growth [26].

The enumeration data forAd(n) can be used to estimate bothλd andΘd. For that we
computeλd(n) andΘd(n) as the solutions of the system

logAd(n− k) = logC+(n− k) logλd(n)−Θd(n) log(n− k) (23)

for k = 0,1,2. We need three equations to eliminate the constant logC. Growth rateλd and
exponentΘd are obtained by extrapolating the numbersλd(n) andΘd(n) to n→∞. From (22)
we expect that

logλd(n)∼ logλd +
b

n∆+1 (24)

for large values ofn. We used the data pointsλd(n) for the three largest values ofn to fit the
parameters logλd, b and∆ in (24). A plot of logλd(n) versusn−∆−1 (Figure 4) then shows
that the data points in fact scale like (24). The resulting estimates for logλd are listed in
Table 6. They agree very well with the high precision values from large scale Monte Carlo
simulations [27,28].

The same approach can be used to compute the exponentΘd. Here we expect

Θd(n)∼ Θd +
b
n∆ . (25)

Again we used the data pointsΘd(n) for the three largest values ofn to fit the parametersΘd,
b and∆. Figure 5 shows thatΘd(n) in fact scales like (25). The resulting estimates forΘd

(Table 6) deviate from the Monte Carlo results and the exact values by no more than 3%.
The estimates forλd andΘd based on the current known values ofAd(n) are much more

precise than previous extrapolations based on shorter sequencesAd(n), see [14,16].

7. Conclusions

We have seen that the memory requirements of Redelmeier’s algorithm can be kept low by
using hyperspherical regions of the lattice. Even in high dimensions, the limiting resource in
Redelmeier’s algorithm is time, not space.

We used a lean and efficient implementation of Redelmeier’s algorithm to compute new
perimeter polynomials in hypercubic lattices of dimensionsd≤ 10. We have used these new
perimeter polynomials together with combinatorial arguments based on proper animals to
compute new values of the cluster numbersAd(n) and new formulas forAd(n) for n≤ 14 and



Counting Lattice Animals in High Dimensions 14

i

j

i

Figure A1. A labeled spanning tree that contains a part#
i−→#

j←→#
i←−# corresponds

to a 4-loop in the lattice animals, a quadrilateral that lives in thei- j plane (left). To count the
number of spanning trees with such a 4-loop, the edges of the quadrilateral are removed and
the vertices of the quadrilateral are considered the root vertices of disconnected trees (right).
The number of the latter is given by (A.1) withℓ= 4.

arbitraryd. We’ve also used the new data to compute formulas for the perimeter polynomials
Pd(n;q) for n ≤ 11 and arbitraryd. We haven’t shown these formulas here, but you can
download them from the project webpage [15].

We’ve also used our data to compute the formula for DX(n,n−7), the number of proper
animals of sizen in dimensionn−7, and new coefficients in the series expansion of the mean
cluster sizeS(p).

Based on the enumeration data, we’ve finally computed numerical values for the growth
ratesλd and the critical exponentsθd that agree very well with the results of Monte Carlo
simulations and field theoretical predictions.

All in all we have explored the limits of computerized counting of lattice animals in
dimensionsd ≥ 3. Any significant extension of the results presented here would require
either a considerable amount of CPU time or an algorithmic breakthrough comparable to the
transfer matrix methods ford = 2.

Appendix A. Formulas for DX(n,n− k): Structure

In the physics literature like [21], equation (16) is usually assumedto be true just because it is
supported by the available enumeration data. But as a matterof fact, one can actuallymotivate
(16) using the type of arguments that were used in [6] to provethe formula for DX(n,n−2).
The idea is to show that the leading order of DX(n,n− k) is∼ 2nnn+k−4 whereas the lowest
order contributions are∼ 2nnn−2k−1. This is exactly the range of terms in (16) ifgk is a
polynomial of degree 3(k−1).

Equation (16) is obviously correct fork = 1 (with g1 = 1). For k > 1, we can still
represent lattice animals by trees, namely the spanning trees of their adjacency graph. Each
spanning tree is again an edge labeled tree, but this time there are onlyn− k labels forn−1
edges, i.e.,k−1 edges will carry a label that is also used elsewhere in the tree. Consider a tree
whosen−1 edges are labeled with numbers 1, . . . ,n−1. If we identify each of the high value
labelsn− k+1,n− k+2, . . . ,n−1 with one of the low value labels 1, . . . ,n− k, we get the
right set of labels. Since there are(n− k)k−1 ways to this, the number of edge labeled trees
with n− k distinct labels scales likenk−1nn−3 = nn+k−4 in leading order. With two directions
for every edge we get 2nnn+k−4 for the leading order in DX(n,n− k).

For k > 1, a proper animal can contain loops. Figure A1 shows the simplest case: a
loop that arises because one dimension (i) is explored twice. The result is a quadrilateral that
lives in the i- j plane of the lattice. In the spanning tree, this correspondsto a part that is

labeled#
i−→ #

j←→ #
i←− #. Since graphs with loops have several spanning trees, our

count of edge labeled trees overcounts the number of proper animals. We need to subtract
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i1 i2 ik−1

j

i1ik−2ik−1

Figure A2. An animal that contributes to DX(n,n− k) uses at mostk− 1 dimensions more
than once, and the longest loop arises when each of thesek−1 dimensions is explored twice.
Such a loop contains 2k vertices, as shown here.

some contributions from loopy animals. The idea is to break up the part of the spanning tree
that corresponds to the loop and to separately count the number of trees that are attached to
the vertices on the loopy part.

Consider an animal with a loop that containsℓ cells and one of its spanning trees. If we
remove all the edges from the spanning tree that connect the vertices in the loop, the remaining
graph is a forest, i.e., a collection of trees, where each tree is rooted in one of theℓ vertices.
The forest hasn− ℓ vertices with a total ofn− ℓ edges, and it is independent from the way
that the root vertices have been connected in the loop.

Now the number of ordered sequences ofℓ≥ 1 directed rooted trees with a total ofn− ℓ
edges andn− ℓ distinct edge labels is

2n−ℓnn−ℓ−1ℓ . (A.1)

See [6] for a proof of (A.1). The lowest order corrections come from those animals for which
the numberℓ of cells in a loop is maximal. This is the case for a loop that joins all k− 1
non-unique edge labels, see Figure A2. The number of vertices in these loops isℓ= 2k, hence
the lowest order corrections are∼ 2n−2knn−2k−1.

If we want the exact number of spanning trees for loopy animals, we need to count the
number of ways to reconnect the roots of the forest to form a single tree. But since this number
does depend onk but not onn and we are interested only in the scaling withn, we don’t need
to enter this discussion here. The same is true for animals that contain several small loops
instead of a single loop of maximal length. If we apply the separation trick to one of the
shorter loops, we get a scaling of order larger than∼ 2n−2knn−2k−1, and the resulting forest
is then labeled with fewer labels than edges, which increases the order even further. So the
lowest order corrections from loops come in fact from singleloops of maximum length, and
these contributions are of order∼ 2n−2knn−2k−1, as claimed in (16).

Besides the non-uniquess of spanning trees for loopy graphs, there is another type of error
that needs to be corrected: some edge labeled trees correspond to animals with overlapping
cells, i.e., to illegal animals. For instance, if a spanningtree contains the subtree

 
i−→# i←− or  

i←−# i−→ ,

the two ’s represent the very same cell of the animal. But these “colliding” configurations
can be interpreted as 3-loops, or more generally, asℓ loops, and counted in the same way as
the legal loops above. Again the lowest order contributionscome from the longest “colliding”
loops which are formed byk−1 labels assigned to two edges each and arranged like

 
i1−→# i2−→# · · ·# ik−1−→#

i1←−# i2←−# · · ·# ik−1←− .

These longest collision loops contain 2k−1 vertices of the tree (representing 2k−2 cells of
the animal). According to (A.1), their number scales like 2n−2k+1nn−2k, one order above the
lowest order of legal loops.
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This concludes the motivation of (16). Note that aproof of (16) would require a thorough
analysis to exclude contributions outside the range covered by (16).

Appendix B. Formulas for DX(n,n− k): Coefficients

Having established the fact that DX(n,n− k) is given by (16) we still have to determine
the coefficients of the polynomialsgk(n). Sincegk has degree 3(k− 1), it seems that we
need to know the 3k−2 values DX(k,0),DX(k+1,1), . . . ,DX(4k−3,3k−3) to compute the
coefficients. In terms of our enumeration data this means knowledge ofAd(n) for n≤ 4k−3
andd≤ n− k. The data in Table 2 suffices to compute the coefficients ofgk for k= 2,3, but
not fork≥ 4. Nevertheless we can computegk for k≤ 7 byassumingthat the “free energy”

lim
n→∞

1
n

logAd(n)

has a well defined 1/d series expansion. This approach has been used to computegk for k≤ 6
from much less enumeration data in [21] and [29], and we used it to computeg7 from the new
enumeration data. Since the method hasn’t been described indetail elsewhere, we provide a
description in this Appendix.

Let’s start with Lunnon’s equation, which tells us thatAd(n) is a polynomial of degree
n−1 in d with coefficients that depend onn. Ford≥ n we have

Ad(n) =
n−1

∑
k=1

DX(n,k)

(
d
k

)

=
n−1

∑
j=1

a j(n)d j (B.1)

with

a j(n) =
n−1

∑
k=1

DX(n,k)
k!

[
k
j

]

, (B.2)

where
[

k
j

]

denotes the Stirling number of the first kind. In particular we get

an−1(n) =
DX(n,n−1)
(n−1)!

an−2(n) =
DX(n,n−2)
(n−2)!

+
DX(n,n−1)
(n−1)!

[
n−1
n−2

]

an−3(n) =
DX(n,n−3)
(n−3)!

+
DX(n,n−2)
(n−2)!

[
n−2
n−3

]

+
DX(n,n−1)
(n−1)!

[
n−1
n−3

]

and so on. From (B.1) we get

Ad(n) = an−1(n)d
n−1

(

1+
n−2

∑
j=1

an−1− j

an−1
d− j

)

,

and with ln(1+ x) = x+ x2/2+ x3/3. . . this gives the 1/d series for the “free energy”

1
n

lnAd(n) =

(

1− 1
n

)

lnd+
1
n

lnan−1(n)+
1
n

an−2(n)
an−1(n)

1
d
+O

(
1
d2

)

.(B.3)

We assumethat all coefficients in this series remain bounded in the limit n→ ∞. This is
definitely true for the zeroth order term:

lim
n→∞

1
n

lnan−1(n) = 1+ ln2.
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For the first order coefficient we get

1
n

an−2

an−1
=

n−1
n

DX(n,n−2)
DX(n,n−1)

+
1
n

[
n−1
n−2

]

=

(

1− 1
n

)(
g2(n)
4n2 −

n−2
2

)

.

This is only bounded if theg2(n) term balances the second term, i.e., if then3 coefficient of
g2 equals 2. Using also the fact that DX(2,0) = 0, we can write

g2(n) = (n−2)(2n2+bn+ c) .

To compute the remaining coefficents, we only need to know DX(3,1) = 1 and

DX(4,2) = A2(4)−2= 17

to get

g2(n) = (n−2)(2n2−6n+9) .

The postulation of bounded coefficients in the series (B.3) has saved us from knowing the
value DX(5,3) to computeg2. How much does it help us to computegk?

The polynomialgk enters the series expansion (B.3) via the term

1
n

DX(n,n− k)
DX(n,n−1)

(n−1)!
(n− k)!

= 22−2kn1−2kgk(n)(n−1)(n−2) · · ·(n− k+1)
︸ ︷︷ ︸

Θ(nk−1)

in the coefficient ofd−(k−1). The leading order of this term isn−kgk(n). All terms of degree
larger thank in the polynomialgk lead to unbounded contributions to the series coefficient
that need to be counterbalanced by other terms. These balancing terms always exist, a
fact that gives additional support for the claim of bounded coefficients. The coefficients
of the terms of order larger thank in gk are therefore computable from the known terms
gk−1(n),gk−2(n), . . . that also enter the same coefficient. Only thek+ 1 low order terms
of gk are not fixed by the postulate of bounded coefficients and we need k+ 1 data points
DX(k,0),DX(k+1,1), . . . ,DX(2k,k) to completegk.

Our enumeration data suffices to computeg7 (see Table 4). The computation ofg8

requires knowledge of DX(15,7) and DX(16,8), or in terms ofAd(n),

DX(15,7) = A7(15)−572521427068702741

and

DX(16,8) = A8(16)+48366334433679758−56∗A5(16)

+28∗A6(16)−8∗A7(16) .
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