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Abstract

In this paper, we present a new method to derive formulas for the
generating functions of interval orders, counted with respect to their size,
magnitude, and number of minimal and maximal elements. Our method
allows us not only to generalize previous results on refined enumeration
of general interval orders, but also to enumerate self-dual interval orders
with respect to analogous statistics.

Using the newly derived generating function formulas, we are able to
prove a bijective relationship between self-dual interval orders and upper-
triangular matrices with no zero rows. Previously, a similar bijective rela-
tionship has been established between general interval orders and upper-
triangular matrices with no zero rows and columns.
Key words: interval orders, (2+ 2)-free posets, self-dual posets

1 Introduction

The aim of this paper is to enumerate interval orders (also known as (2+ 2)-free
posets) with respect to several natural poset statistics, including the size, the
magnitude, and the number of minimal and maximal elements. We are mostly
motivated by the generating function formulas recently obtained by Bousquet-
Mélou et al. [3], Kitaev and Remmel [17], and Dukes et al. [7].

Although the formulas derived in this paper provide a common generaliza-
tion of these previous results, the method we use is different. The previous
results were derived using a recursive bijection between interval orders and as-
cent sequences, due to Bousquet-Mélou et al. [3]. In this paper, we instead use
an encoding of interval orders by upper-triangular matrices without zero rows
and zero columns (we call such matrices Fishburn matrices). Our approach,
which builds upon previous work of Haxell et al. [14], is considerably simpler
than the approach based on ascent sequences. More importantly, our approach
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allows to easily capture the notion of poset duality, which corresponds to trans-
position of Fishburn matrices. Consequently, we are able to adapt our method
to the problem of enumerating self-dual interval orders, for which no explicit
enumeration has been known before. As a by-product, we establish a bijective
correspondence between self-dual interval orders and upper-triangular integer
matrices with no zero rows, in which several natural poset statistics map into
natural matrix statistics.

Basic Notions

All the posets considered in this paper are assumed to be finite. We also assume
that the posets are unlabeled, that is, isomorphic posets are taken to be identical.
Let P be a poset with a strict order relation ≺. A strict down-set of an element
y ∈ P is the set D(y) of all the elements of P that are smaller than y, i.e.,
D(y) = {x ∈ P ; x ≺ y}. Similarly, the strict up-set of y, denoted by U(y), is
the set {x ∈ P ; x ≻ y}. Note that y is a minimal element of P if and only if
D(y) is empty, and y is a maximal element if and only if U(y) is empty.

For a poset P , the following conditions are known to be equivalent [2, 10]:

• P is (2+ 2)-free, that is, P does not have an induced subposet isomorphic
to the disjoint union of two chains of length two.

• P has an interval representation, that is, to each element x ∈ P we may
associate a real closed interval [lx, rx], in such a way that x ≺ y if and
only if rx < ly.

• For any two elements x, y ∈ P , the strict down-sets D(x) and D(y) are
comparable by inclusion, i.e., D(x) ⊆ D(y) or D(y) ⊆ D(x).

• For any two elements x, y ∈ P , the strict up-sets U(x) and U(y) are
comparable by inclusion.

The posets that satisfy these properties are known as interval orders or as
(2+ 2)-free posets. Let us review some of their basic properties. For a more
thorough exposition, the reader is referred to Fishburn’s monograph [13].

Let P be an interval order. Two elements x and y of P are indistinguishable
if U(x) = U(y) and D(x) = D(y). This is an equivalence relation on P . If no
two distinct elements of P are indistinguishable, then P is said to be primitive.
Every interval order P can be uniquely obtained from a primitive interval order
P ′ by simultaneously replacing each element of P ′ by a positive number of
‘duplicates’. Thus, the enumeration of primitive interval orders is a key step in
the enumeration of general interval orders.

Since any two strict down-sets in P are comparable by inclusion, it is possible
to arrange all the distinct strict down-sets into an increasing chain

D1 ( D2 ( · · · ( Dm,

where m is the number of distinct strict down-sets determined by elements of P .
An element x ∈ P is said to have level i, if D(x) = Di. Note that D1 is always
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the empty set, and the elements of level 1 are exactly the minimal elements of P .
Following Fishburn [11, 12], we call the number m of distinct strict down-sets
the magnitude of P . It turns out that m is also equal to the number of distinct
strict up-sets, and we can order the strict up-sets of P into a decreasing chain

U1 ) U2 ) · · · ) Um,

and we say that x has up-level i if U(x) = Ui. The maximal elements of P
are precisely the elements of up-level m, and we have Um = ∅. It can be
shown [12] that an element of level i has an up-level greater than or equal to i.
An interval representation of P can be obtained by mapping an element x with
level i and up-level j to the (possibly degenerate) interval [i, j]. This is the
unique representation of P by intervals with endpoints belonging to the set
[m] = {1, 2, . . . ,m}, and in particular, there is no interval representation of P
with fewer than m distinct endpoints.

The dual of a poset P is the poset P with the same elements as P and
an order relation ≺ defined by x≺y ⇐⇒ y ≺ x. A poset is self-dual if it is
isomorphic to its dual. The dual of an interval order P of magnitude m is again
an interval order of magnitude m, and an element of level i and up-level j in P
has the level m+ 1− j and up-level m+ 1− i in P .

Throughout this paper, an important part will be played by a bijective
correspondence between interval orders and a certain kind of integer matrices,
which we will call Fishburn matrices. We will state the key properties of the
correspondence without proof; more details can be found, e.g., in the work of
Fishburn [11, 13], where these matrices are called ‘characteristic matrices’.

A Fishburn matrix is an upper-triangular square matrix M of nonnegative
integers with the property that every row and every column contains a nonzero
entry. A Fishburn matrix is called primitive if all its entries are equal to 0 or 1.
We will assume throughout this paper that each matrix has its rows numbered
from top to bottom, and columns numbered left-to-right, starting with row and
column number one. We let Mij denote the entry of M in row i and column j.

An interval order P of magnitude m corresponds to an m × m Fishburn
matrix M with Mij being equal to the number of elements of P that have level
i and up-level j. Conversely, given an m × m Fishburn matrix M , we may
recover the corresponding interval order P by taking the collection of intervals
that contains precisely Mij copies of the interval [i, j], and taking this to be the
interval representation of P .

This correspondence is a bijection between Fishburn matrices and interval
orders. In fact, in this correspondence, each nonzero entry Mij of M can be
associated with a set of Mij indistinguishable elements of P . Note that the sum
of the i-th row of M is equal to the number of elements of level i in P , and
similarly for column-sums and up-levels.

Primitive interval orders correspond to primitive Fishburn matrices. If the
order P is mapped to a matrix M , then the dual order P is mapped to the
matrix M obtained from M by transposition along the diagonal running from
bottom-left to top-right. If a matrix M is equal to M , we call it self-dual. Of
course, self-dual matrices are representing precisely the self-dual interval orders.
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Previous work and our results

Interval orders are equinumerous with several other combinatorial structures.
Apart from the correspondence between interval orders and Fishburn matri-
ces, there are also bijections mapping interval orders to ascent sequences [3],
Stoimenow matchings [20], certain classes of pattern-avoiding permutations [3,
19], or special kinds of inversion tables [18]. Some of these combinatorial struc-
tures have been studied independently even before their relationship to interval
orders was discovered. Thus, some results on the enumeration of interval orders
were first derived in different contexts, and some of them were in fact derived
several times under different guises.

The concept of interval order has been introduced by Fishburn [10] in 1970.
In 1976, Andresen and Kjeldsen [1], motivated by a counting problem related
to subgraphs of transitively oriented tournaments, introduced (under different
terminology) the problem of enumerating Fishburn matrices. They studied,
among other problems, the number of primitive Fishburn matrices with respect
to their dimension and the number of elements in the first row, which in poset
terminology corresponds to the number of primitive interval orders of a given
magnitude and number of minimal elements (but not the number of all ele-
ments). Andresen and Kjeldsen obtained asymptotic bounds for the number
of these matrices, as well as recurrence formulas that allowed them to compute
several exact initial values. At the time of their writing, the connection between
Fishburn matrices and interval orders was not known, and it appears that their
results went unnoticed by later works on interval orders.

In 1987, Haxell, McDonald and Thomason [14] provided an efficient way
to compute the number of interval orders, using a recurrence derived using
Fishburn matrices, which were already known to be equinumerous with interval
orders, thanks to the work of Fishburn [13].

In 1998, Stoimenow [20] introduced the concept of ‘regular linearized chord
diagram’, later often referred to as a ‘Stoimenow matching’. A Stoimenow
matching of size n is a matching on the set [2n] in which no two nested edges
have adjacent endpoints. Stoimenow has introduced these matchings as a tool
in the study of Vassiliev invariants of knots, and computed several asymptotic
bounds on their number. Later, these bounds were improved by Zagier [22], who
also showed that the generating function of Stoimenow matchings enumerated
by their size admits a simple formula

F (x) =
∑

n≥0

n
∏

i=1

(

1− (1− x)i
)

. (1)

Recently, Bousquet-Mélou, Claesson, Dukes and Kitaev [3] have found a
sequence of bijections, showing that interval orders are equinumerous with sev-
eral other combinatorial objects, including Stoimenow matchings and ascent
sequences. They have also provided an alternative proof for (1), and derived
a formula for the refined generating function that counts interval order with
respect to their size and magnitude. These results have prompted a renewed
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interest in the study of interval orders. Several other papers have focused on
bijections between interval orders and other objects. For instance, Dukes and
Parviainen [9] have described a direct bijection between Fishburn matrices and
ascent sequences, Claesson and Linusson [4] gave a direct mapping from Fish-
burn matrices to Stoimenow matchings, while the papers of Claesson et al. [5]
and Dukes et al. [8] extend the bijection between interval orders and Fishburn
matrices to more general combinatorial structures.

Another line of research has focused on refined enumeration of interval orders
with respect to some natural poset statistics. Dukes, Kitaev, Remmel and
Steingŕımsson [7] have found an expression for the generating function that
enumerates primitive interval orders with respect to their size and magnitude,
and deduced a formula that counts interval orders by their size, magnitude
and the number of indistinguishable elements. Kitaev and Remmel [17] have
obtained, among other results, the formula

F (x, y) = 1 +
∑

n≥0

xy

(1− xy)n+1

n
∏

i=1

(

1− (1− x)i
)

, (2)

where F (x, y) is the generating function of interval orders in which x counts
the size and y the number of minimal elements of the interval order. They
conjectured that F (x, y) can be also expressed in the following form:

F (x, y) =
∑

n≥0

n
∏

i=1

(

1− (1 − x)i−1(1− xy)
)

. (3)

This conjecture has been subsequently confirmed by Yan [21] and independently
by Levande [18]. Let us remark formula (3) also appears in Zagier’s work [22,
Theorem 1], but there it is interpreted in terms of Stoimenow matchings, not
interval orders.

In Section 2 of this paper, we generalize the above-mentioned results of
Bousquet-Mélou et al. [3], Dukes et al. [7], and Kitaev and Remmel [17], by ob-
taining a closed-form expression for the generation function of primitive interval
orders, counted with respect to their magnitude, their size, and their number of
minimal and maximal elements. From this expression, it is possible to directly
derive the generating function of general interval orders, or of interval orders
with bounded size of indistinguishability classes, counted with respect to the
same statistics.

However, the main significance of our results is not in counting more statis-
tics than previous papers, but rather in presenting a much simpler method to
derive the generating functions. Previous results were largely based on a bijec-
tion, constructed by Bousquet-Mélou et al. [3], which maps interval orders to
a certain kind of integer sequences, known as ‘ascent sequences’. This bijec-
tion has a complicated recursive definition, which consequently leads to difficult
recurrences for generating functions, which then require a large amount of in-
genuity to be solved into closed form expressions, typically by an application of
the kernel method. In contrast, the arguments in this paper are based on the
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direct encoding of interval orders as Fishburn matrices. We exploit a relation-
ship between Fishburn matrices of dimension m and those of dimension m+ 1
to obtain a recurrence for the generating function that can be easily solved by
elementary expression manipulation.

To further illustrate the benefit of this approach, in Section 3 we enumerate
self-dual interval orders, by a slightly more elaborate application of the same
basic technique. The duality map of interval orders translates into ‘obvious’
involutions on related combinatorial classes — for example, it corresponds to
transposition of a Fishburn matrix along the north-east diagonal, or to the
reversal of vertex order in a Stoimenow matching. This suggest that poset
duality represents a fundamental symmetry of these classes of objects, and it is
therefore natural to consider the enumeration of symmetric objects, that is, of
objects that are fixed points of this symmetry map.

The problems of counting self-dual interval orders with respect to their size
and of counting primitive self-dual Fishburn matrices with respect to their di-
mension do not seem to have been addressed by previous research, presumably
because there is no known way to characterize self-duality in terms of ascent
sequences. In view of this, it is remarkable that the expressions we obtain for
the generating functions of self-dual objects are almost as simple as those of
their non-self-dual counterparts.

Moreover, in Section 4, we introduce row-Fishburn matrices, which are
upper-triangular matrices with no zero rows, and we prove that there is a close
link between the refined enumeration of these matrices and the refined enu-
meration of self-dual interval orders. This yields a surprising analogue to the
correspondence between general interval orders and Fishburn matrices.

2 Enumeration of Interval Orders

Recall that a primitive poset is a poset that does not contain any two indis-
tinguishable elements. Our main concern will be to find an expression for the
generating function of primitive interval orders, or equivalently, of 01-Fishburn
matrices.

Let us call an element of a poset P isolated if it is not comparable to any
other element of P . Note that an element is isolated if and only if it is both
minimal and maximal. The number of isolated elements of an interval order P
is equal to the value of the top-right cell of the corresponding Fishburn matrix.
We will call the top-right cell of the matrix the corner cell.

Let us also say that an element of the poset P is internal if it is neither
minimal nor maximal. We will consider these statistics of an interval order P :

• the magnitude of P , denoted by mag(P ),

• the number of isolated elements, denoted by iso(P ),

• the number of non-isolated minimal elements, denoted by min(P ),

• the number of non-isolated maximal elements, denoted by max(P ), and
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statistic poset interpretation matrix interpretation variable

mag magnitude number of rows t

iso num. of isolated elements value of corner cell x

min num. of non-isolated mini-
mal elements

sum of the first row, except
the corner cell

y

max num. of non-isolated maxi-
mal elements

sum of the last column, ex-
cept the corner cell

v

int num. of internal elements sum of cells outside first
row and last column

w

Table 1: The statistics of interval orders

• the number of internal elements, denoted by int(P ).

In particular, the size of P is equal to iso(P ) + min(P ) + max(P ) + int(P ),
and its number of minimal elements is equal to min(P ) + iso(P ). In Table 1,
we summarize these statistics, with their interpretation both in terms of posets
and in terms of matrices. As a matter of convenience, we restrict ourselves to
non-empty interval orders and non-empty matrices in all the arguments. If M
is the Fishburn matrix representing an interval order P , we write iso(M) as a
synonym for iso(P ), and similarly for the other statistics.

Let P be the set of all non-empty primitive interval orders, and let G be the
generating function

G(t, v, w, x, y) =
∑

P∈P

tmag(P )xiso(P )ymin(P )vmax(P )wint(P ).

We shall use the following notation: for an integer n ≥ 0, we let Vn(a, b)
denote the polynomial (a+ 1)(b+ 1)n − 1.

We can now state the main result of this section.

Theorem 2.1. The generating function G(t, v, w, x, y) satisfies the identity

G(t, v, w, x, y) =
∑

n≥0

tn+1 Vn(x, y)

1 + tVn(v, w)

n−1
∏

i=0

Vi(v, w)

1 + tVi(v, w)
. (4)

Remark 2.2. Let Sn ≡ Sn(t, v, w, x, y) denote the n-th summand of the sum
on the right-hand side of (4). Clearly, Sn is a multiple of tn+1. Consequently,
the sum on the right-hand side of (4) converges as a sum of power series in t.
Moreover, since for each i ≥ 0 the polynomial Vi(v, w) has constant term equal
to zero, it follows that Sn has total degree at least n in the variables v and w.
Thus, the sum also converges as a sum of power series in v and w. Furthermore,
for all k, the coefficient of tk in Sn is a polynomial in v, w, x and y, and for all
k, ℓ, the coefficient of vkwℓ is a polynomial in t, x, and y.

The properties stated in the above remark make the identity (4) amenable
to many combinatorially meaningful substitutions. Before we state the proof of
the theorem, we demonstrate several possible substitutions. Note that some of
the formulas we derive have been previously obtained by different methods.
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Corollary 2.3. [7, Theorem 8] Let pk be the number of primitive interval orders
of size k. The generating function of pk is equal to

∑

k≥1

pkx
k = G(1, x, x, x, x) =

∑

n≥0

n
∏

i=0

Vi(x, x)

1 + Vi(x, x)
=
∑

n≥0

n
∏

i=0

(

1− 1

(1 + x)i+1

)

.

Corollary 2.4. Let mk be the number of primitive k×k Fishburn matrices (or
equivalently, the number of primitive interval orders of magnitude k). Then

∑

m≥1

mkt
k = G(t, 1, 1, 1, 1) =

∑

n≥0

tn+1
n
∏

i=0

2i+1 − 1

1 + t(2i+1 − 1)
.

Let G be the set of non-empty interval orders, and let G∗(t, v, w, x, y) be the
corresponding generating function

G∗(t, v, w, x, y) =
∑

P∈G

tmag(P )xiso(P )ymin(P )vmax(P )wint(P ).

Each interval order can be uniquely obtained from a primitive interval order by
replacing each element with a group of indistinguishable elements. In terms of
generating functions, this means that

G∗(t, v, w, x, y) = G(t,
v

1− v
,

w

1− w
,

x

1− x
,

y

1− y
).

By substituting into (4), and using, e.g., the identity

Vn(
a

1− a
,

b

1− b
) = − Vn(−a,−b)

(1− a)(1 − b)n
= − Vn(−a,−b)

1 + Vn(−a,−b)

we get the next corollary.

Corollary 2.5. The generating function G∗(t, v, w, x, y) is equal to

∑

n≥0

tn+1 1 + Vn(−v,−w)

1 + Vn(−x,−y)
· Vn(−x,−y)

(t− 1)Vn(−v,−w)− 1
·
n−1
∏

i=0

Vi(−v,−w)

(t− 1)Vi(−v,−w)− 1
.

From Corollary 2.5 we can obtain yet another proof of the formula (3) de-
rived by Levande [18] and Yan [21] (and indirectly also by Zagier [22]) for the
generating function of interval orders counted by their size and number of max-
imal elements.

Corollary 2.6. [18, 21, 22] Let gk,ℓ be the number of interval orders with k
elements and having exactly ℓ maximal elements (including isolated ones). We
have

∑

k,ℓ≥1

gk,ℓ r
ksℓ = G∗(1, rs, r, rs, r) =

∑

n≥0

n
∏

i=0

−Vi(−rs,−r)

=
∑

n≥0

n
∏

i=0

(1− (1− rs)(1 − r)i).
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Kitaev and Remmel [17] have obtained a different expression for the gener-
ating function from the previous corollary. This alternative expression can also
be derived from the general formula for G∗.

Lemma 2.7. [17] With gk,ℓ as in Corollary 2.6, we have

∑

k,ℓ≥1

gk,ℓ r
ksℓ =

∑

n≥0

rs

(1− rs)n+1

n−1
∏

i=0

(

1− (1 − r)i+1
)

. (5)

Proof. Since the dual of an interval order is also an interval order, gk,ℓ is also
equal to the number of interval orders with k elements and ℓ minimal elements.
Therefore,

∑

k,ℓ gk,ℓr
ksℓ = G∗(1, r, r, rs, rs), which is equal to

∑

n≥0

1 + Vn(−r,−r)

1 + Vn(−rs,−rs)
(−Vn(−rs,−rs))

n−1
∏

i=0

(−Vi(−r,−r))

=
∑

n≥0

1− (1− rs)n+1

(1− rs)n+1
(1 + Vn(−r,−r))

n−1
∏

i=0

(−Vi(−r,−r))

=
∑

n≥0

1− (1− rs)n+1

(1− rs)n+1

n−1
∏

i=0

(−Vi(−r,−r))−
∑

n≥0

1− (1− rs)n+1

(1− rs)n+1

n
∏

i=0

(−Vi(−r,−r))

=
∑

n≥0

(

1− (1− rs)n+1

(1− rs)n+1
− 1− (1− rs)n

(1− rs)n

) n−1
∏

i=0

(−Vi(−r,−r)) ,

which simplifies to yield (5).

Let us now prove Theorem 2.1. Define Gk(v, w, x, y) = [tk]G(t, v, w, x, y),
that is, Gk is the coefficient of tk in G. We will state the proof in the language
of Fishburn matrices rather than in the equivalent language of interval orders.
It is thus convenient to view Gk as the generating function of the primitive k×k
Fishburn matrices.

The next lemma provides the main idea in the proof of Theorem 2.1.

Lemma 2.8. For any k ≥ 1, we have

Gk+1(v, w, x, y) = vGk(v + w + vw,w, x + y + xy, y)− vGk(v, w, x, y). (6)

Proof. Let Mk denote the set of primitive k × k Fishburn matrices. We will
describe an operation which from a given matrix M ∈ Mk produces a (typically
not unique) new matrix M ′ ∈ Mk+1. The matrix M ′ is created by adding to
M a new rightmost column and a new bottom row, and filling them according
to these rules:

• M ′
k+1,k+1 = 1, and all the other cells in row k + 1 of M ′ have value 0.
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• For every j ≤ k, if Mj,k = 0, then M ′
j,k = M ′

j,k+1 = 0.

• For every j ≤ k, if Mj,k = 1 we choose one of the three possibilities to fill
M ′

j,k and M ′
j,k+1: either M

′
j,k = 0 and M ′

j,k+1 = 1, or M ′
j,k = M ′

j,k+1 = 1,
or M ′

j,k = 1 and M ′
j,k+1 = 0.

• Any other cell has the same value in M ′ as in M .

If M has p 1-cells in column k, then the above operation can produce 3p matri-
ces M ′. All these 3p matrices are upper-triangular, all of them have at least one
1-cell in each row, all of them have at least one 1-cell in each column different
from column k, and all except for exactly one of them have at least one 1-cell in
column k. In other words, for a given M ∈ Mk with p 1-cells in column k, the
above operation produces 3p− 1 matrices M ′ from Mk+1 (and one ‘bad’ matrix
not belonging to Mk+1). It is not difficult to see that each matrix M ′ ∈ Mk+1

can be created in this way from exactly one matrix M ∈ Mk.
More generally, suppose thatM ∈ Mk is a matrix with iso(M)=a, min(M)=

b, max(M) = c and int(M) = d, that is, M contributes the monomial xaybvcwd

into Gk(v, w, x, y). Then all the Fishburn matrices produced from M have
generating function v

(

(x+ y + xy)ayb(v + w + vw)cwd − xaybvcwd
)

, where the
leftmost factor of v counts the 1-cell (k+1, k+1) ofM ′. Summing this expression
over all M ∈ Mk gives the recurrence from the statement of the lemma.

We remark the recursive procedure that generates matrices of Mk+1 from
matrices of Mk is not new. In fact, this idea has already been used by Haxell,
McDonald, and Thomason [14] to obtain an efficient algorithm for the enumer-
ation of interval orders. It is also very closely related to the approach that
Khamis [16] has used to derive a recurrence formula for the number of interval
orders of a given size and height.

We now deduce Theorem 2.1 from Lemma 2.8 by simple manipulation of
series. Let us introduce the following notation: for any power series F (v, w, x, y),
let σ[F (v, w, x, y)] denote the power series F (v+w+ vw,w, x+ y+ xy, y), that
is, σ represents the substitution of v + w + vw for v and x+ y + xy for x. Let
σ(i)[F (v, w, x, y)] denote the i-fold iteration of σ; in other words, σ(0)[F ] = F
and for i ≥ 1, σ(i)[F ] = σ

[

σ(i−1)[F ]
]

. It can be easily checked by induction
that

σ(i)[F (v, w, x, y)] = F (Vi(v, w), w, Vi(x, y), y).

Writing Gk for Gk(v, w, x, y) and G for G(t, v, w, x, y), we can rewrite (6) as
Gk+1 = vσ[Gk]− vGk. Multiplying this by tk+1 and summing for all k ≥ 1, we
get G− tG1 = tvσ[G] − tvG. Since G1 = x, this simplifies into

G =
tx

1 + tv
+

tv

1 + tv
σ[G]. (7)

Substituting the right-hand side of this expression for the occurrence of G
on the right-hand side, we obtain

G =
tx

1 + tv
+

tv

1 + tv
σ

[

tx

1 + tv

]

+
tv

1 + tv
σ

[

tv

1 + tv

]

σ(2)[G]. (8)
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We may again substitute the right-hand side of (7) into the right-hand side
of (8). In general, iterating this substitution m times gives the identity

G =

(

m
∑

n=0

σ(n)

[

tx

1 + tv

] n−1
∏

i=0

σ(i)

[

tv

1 + tv

]

)

+

(

m
∏

i=0

σ(i)

[

tv

1 + tv

]

)

σ(m+1)[G].

(9)
Since the rightmost summand of the right-hand side of (9) is O(tm+1), we can
take the limit as m goes to infinity, to obtain

G =
∑

n≥0

σ(n)

[

tx

1 + tv

] n−1
∏

i=0

σ(i)

[

tv

1 + tv

]

=
∑

n≥0

tn+1 Vn(x, y)

1 + tVn(v, w)

n−1
∏

i=0

Vi(v, w)

1 + tVi(v, w)
.

This proves Theorem 2.1.

3 Self-Dual Interval Orders

Recall that a k × k Fishburn matrix M represents a self-dual interval order if
and only if M is invariant under transposition along the north-east diagonal,
or in other words, if for each i, j the cell (i, j) has the same value as the cell
(k− j+1, k− i+1). We will say that the two cells (i, j) and (k− j+1, k− i+1)
form a symmetric pair.

As in the previous section, we will first concentrate on enumerating the
primitive matrices, and the enumeration of general integer matrices is obtained
as a consequence. Unless otherwise noted, the generating functions are only
counting nonempty objects.

We distinguish three types of cells in a k × k matrix M : a cell (i, j) is a
diagonal cell if i+ j = k+1, i.e., (i, j) belongs to the north-east diagonal of the
matrix. If i+ j < k+1 (i.e., (i, j) is above and to the left of the diagonal) then
(i, j) is a North-West cell, or NW-cell, while if i + j > k + 1, then (i, j) is an
SE-cell. The diagonal cells and SE-cells together uniquely determine a self-dual
matrix.

Apart of the statistics introduced in Section 2 (see Table 1), we will also
consider three new statistics of a matrix M .

• diag(M) is the sum of all the diagonal cells except for the corner cell.

• se(M) is the sum of all the SE-cells that do not belong to the last column.

• nw(M) is the sum of all the NW-cells that do not belong to the first row.

In particular, the sum of all cells in M is equal to iso(M)+min(M)+max(M)+
se(M) + nw(M) + diag(M). In a self-dual matrix we of course have min(M) =
max(M) and se(M) = nw(M), so the above sum is equal to iso(M)+diag(M)+
2max(M) + 2se(M).

11



Notice that if k > 1, then among all the k × k primitive self-dual Fishburn
matrices, exactly half have the corner cell filled with 1 and half have the corner
cell filed with 0. This is because changing the corner cell from 1 to 0 cannot
create an empty row or empty column, since the cells (1, 1) and (k, k) are always
1-cells and the value of the corner cell also does not affect the symmetry of the
matrix. It is simpler to first enumerate the symmetric matrices whose corner
cell has the fixed value 1, and then use this result to obtain the full count, rather
than to enumerate all the symmetric matrices at once.

Let S+ be the set of primitive self-dual Fishburn matrices whose corner cell
is equal to 1. Define the generating function S+(t, v, w, z) by

S+(t, v, w, z) =
∑

M∈S+

tmag(M)vmax(M)wse(M)zdiag(M).

The next theorem is the key result of this section.

Theorem 3.1. The generating function S+(t, v, w, z) is equal to

∑

n≥0

t2n+1 1 + tVn(v, w)

1 + t2Vn(v, w)
(1 + z)n(1 + v)n(1 + w)(

n

2)
n−1
∏

i=0

Vi(v, w)

1 + t2Vi(v, w)
. (10)

The comments in Remark 2.2 apply to the expression (10) as well.
Before we prove Theorem 3.1, we first state some of its consequences. Al-

though Theorem 3.1 provides all the information we need for our enumerations,
it is often more convenient to work with the closely related generating function
that counts all Fishburn matrices, rather than just those that belong to S+. Let
S be the set of primitive self-dual Fishburn matrices, and define

S(t, v, w, x, z) =
∑

M∈S

tmag(M)vmin(M)+max(M)wse(M)+nw(M)xiso(M)zdiag(M).

Lemma 3.2. The generating function S satisfies the identity

S(t, v, w, x, z) = (1 + x)S+(t, v2, w2, z)− t. (11)

Consequently, S(t, v, w, x, z) is equal to

−t+ (1 + x)
∑

n≥0

t2n+1 1 + tVn(v
2, w2)

1 + t2Vn(v2, w2)
(1 + z)n(1 + v2)n(1 + w2)(

n

2)

×
n−1
∏

i=0

Vi(v
2, w2)

1 + t2Vi(v2, w2)
.

Proof. The factor (1 + x) on the right-hand side of (11) corresponds to the
fact that each primitive self-dual matrix either belongs to S+ or is obtained
from a matrix in S+ by changing its corner cell from 1 to 0. The subtracted t
accounts for the fact that the 1×1 matrix containing 0 is not a Fishburn matrix,
even though it can be obtained from a matrix in S+ by changing the corner
cell. The substitutions into S+ correspond straightforwardly to the fact that
vmin(M)+max(M) = v2max(M) for any self-dual matrix, and similarly for w.
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Corollary 3.3. Let sm be the number of self-dual primitive interval orders on
m elements, with s0 = 1. Then

∑

m≥0

smxm = 1 + S(1, x, x, x) =
∑

n≥0

(1 + x)n+1
n−1
∏

i=0

(

(1 + x2)i+1 − 1
)

.

Corollary 3.4. Let rm be the number of primitive self-dual m × m Fishburn
matrices. Then

∑

m≥1

rmtm = S(t, 1, 1, 1)

= −t+
∑

n≥0

2(
2n+2

2 )t2n+1 1 + (2n+1 − 1)t

1 + (2n+1 − 1)t2

n−1
∏

i=0

2i+1 − 1

1 + (2i+1 − 1)t2
.

Let S∗(t, v, w, x, z) be the generating function of (not necessarily primi-
tive) self-dual interval orders, with variables having the same meaning as in
S(t, v, w, x, z). Clearly, a Fishburn matrix M representing a self-dual interval
order may be obtained in a unique way from a matrix M ′ representing a prim-
itive self-dual interval order, by changing each diagonal 1-cell of M ′ into an
arbitrary non-zero cell, and by changing a symmetric pair of non-diagonal 1-
cells of M ′ into a pair of nonzero cells having the same value. Repeating the
reasoning of Lemma 3.2, we get the identity

S∗(t, v, w, x, z) =
1

1− x
S+

(

t,
v2

1− v2
,

w2

1− w2
,

z

1− z

)

− t.

It follows that S∗(t, v, w, x, z) is equal to

−t+
∑

n≥0

t2n+1
(

1 + (1− t)Vn(−v2,−w2)
)
∏n−1

i=0
−Vi(−v2,−w2)

1+(1−t2)Vi(−v2,−w2)

(1− x)(1 − z)n(1− v2)n(1− w2)(
n

2) (1 + (1− t2)Vn(−v2,−w2))
.

Corollary 3.5. Let gm be the number of self-dual interval orders on m elements,
with g0 = 1. Then

∑

m≥0

gmxm = 1 + S∗(1, x, x, x, x)

=
∑

n≥0

1

(1− x2)(
n+1

2 )(1 − x)n+1

n−1
∏

i=0

(

1− (1 − x2)i+1
)

=
∑

n≥0

1

(1− x)n+1

n−1
∏

i=0

(

1

(1− x2)i+1
− 1

)

.

The proof of Theorem 3.1 is based on the same general idea as the proof of
Theorem 2.1. Let us define S+

k (v, w, z) = [tk]S+(t, v, w, z). The next lemma is
the self-dual analogue of Lemma 2.8.
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Lemma 3.6. For any k ≥ 1, we have

S+
k+2(v, w, z) = v(1 + v)(1 + z)S+

k (v + w + vw,w, z)− vS+
k (v, w, z). (12)

Proof. Let S
+
k be the set of matrices of S+ of size k × k. We will show how

a given matrix M ∈ S
+
k can be extended into a matrix M ′ ∈ S

+
k+2. Assume,

just for the sake of this proof, that matrices in S
+
k have rows and columns

indexed by 1, 2, . . . , k, while matrices in S
+
k+2 have rows and columns indexed

by 0, 1, . . . , k + 1. Thus, if a cell (i, j) is a diagonal cell in M ∈ S
+
k , then (i, j)

is also a diagonal cell in M ′ ∈ S
+
k+2, and similarly for SE-cells and NW-cells.

The matrix M ′ is created from M by adding a new left-most and right-most
row, and a new top-most and bottom-most column, and then filling the new
cells by these rules:

• M ′
k+1,k+1 = 1, and any other cell in row k + 1 of M ′ has value 0.

• M ′
0,k+1 = 1. Note that the cell (0, k + 1) is the corner cell of M ′.

• M ′
1,k is filled arbitrarily by 0 or 1, and M ′

1,k+1 is filled arbitrarily by 0 or

1 as well. (Recall that M1,k = 1 by the definition of S+.)

• For any j ∈ {2, . . . , k}, if Mj,k = 0, then M ′
j,k = M ′

j,k+1 = 0.

• For any j ∈ {2, . . . , k}, if Mj,k = 1, we choose one of three possibilities to
fill M ′

j,k and M ′
j,k+1: either M

′
j,k = 0 and M ′

j,k+1 = 1, orM ′
j,k = M ′

j,k+1 =
1, or M ′

j,k = 1 and M ′
j,k+1 = 0.

• Any other SE-cell or diagonal cell of M ′ has the same value in M ′ as in
M , and the NE-cells of M ′ are filled in order to form a self-dual matrix.

From a given matrix M ∈ S
+
k with max(M) = p, this procedure creates 4 · 3p

distinct self-dual matrices of size (k + 2) × (k + 2). Of these 4 · 3p matrices,
all belong to S

+
k+2 except for one matrix, which has column k (and hence also

row k) filled with zeros.
In terms of generating functions, if M is a matrix that contributes a mono-

mial vpwqzr into the generating function S+
k (v, w, z), then the matrices in S

+
k+2

created from M have generating function

∑

M ′∈S
+

k+2

M ′ obtained from M

vmax(M ′)wse(M ′)zdiag(M
′) =

= v
(

(1 + v)(1 + z)(v + w + vw)pwqzr − vpwqzr
)

. (13)

It is easy to see that each matrix M ′ ∈ S
+
k+2 can be generated by the above

rules from a unique matrix M ∈ S
+
k . By summing the identity (13) over all

M ∈ S
+
k , we obtain the identity (12).

14



To prove Theorem 3.1 from Lemma 3.6, we imitate the proof of Theorem 2.1
from Lemma 2.8. Let us write S+ instead of S+(t, v, w, z), and S+

k instead of
S+
k (v, w, z). Multiplying (12) by tk+2 and summing for all k ≥ 1 gives

S+ − tS+
1 − t2S+

2 = t2v(1 + v)(1 + z)σ[S+]− t2vS+.

Since S+
1 = 1 and S+

2 = v, this gives

S+ =
t+ t2v

1 + t2v
+

t2v(1 + v)(1 + z)

1 + t2v
σ[S+]. (14)

Repeatedly substituting for S+ on the right-hand side of (14), and writing
Vn instead of Vn(v, w) to save space, we get for each m ≥ 0 the identity

S+ =

(

m
∑

n=0

σ(n)

[

t+ t2v

1 + t2v

] n−1
∏

i=0

σ(i)

[

t2v(1 + v)(1 + z)

1 + t2v

]

)

+

m
∏

i=0

σ(i)

[

t2v(1 + v)(1 + z)

1 + t2v

]

σ(m+1)[S+]

=

m
∑

n=0

t2n+1 1 + tVn

1 + t2Vn

n−1
∏

i=0

(1 + Vi)(1 + z)Vi

1 + t2Vi
+ O(t2m+2)

=

m
∑

n=0

t2n+1 1 + tVn

1 + t2Vn

n−1
∏

i=0

(1 + v)(1 + w)i(1 + z)Vi

1 + t2Vi
+ O(t2m+2)

=

m
∑

n=0

t2n+1 1 + tVn

1 + t2Vn
(1 + v)n(1 + z)n(1 + w)(

n

2)
n−1
∏

i=0

Vi

1 + t2Vi
+ O(t2m+2).

Taking the limit as m goes to infinity proves Theorem 3.1.

4 Self-Dual Orders Counted by Reduced Size

So far, the main statistic of a Fishburn matrix has always been its size, i.e., the
sum of its entries. However, for a self-dual Fishburn matrix M , we may consider
an alternative notion of size, which we call the reduced size of M and denote by
rs(M), and which we define as the sum of all the diagonal and south-east cells
of the matrix. Note that the diagonal and south-east cells determine a self-dual
matrix uniquely. With the notation of the previous section, rs(M) is equal to
diag(M) + se(M) + max(M) + iso(M).

It turns out that the notion of reduced size is in some respects a more natural
statistic of self-dual interval orders than the notion of size that we have used
so far. In particular, we show that self-dual interval orders of a given reduced
size admit a matrix representation by a family of matrices that have simpler
structure than self-dual Fishburn matrices.

A row-Fishburn matrix is an upper-triangular matrix of nonnegative integers
with the property that each row has at least one nonzero entry. A row-Fishburn
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matrix is primitive if all its entries are equal to 0 or 1. As usual, the size of a
row-Fishburn matrix is taken to be the sum of its cells. The matrix statistics
from Table 1 can be applied to row-Fishburn matrices, even though the poset
interpretations listed there are not applicable.

Theorem 4.1. For any integers n ≥ 1 and m ≥ 1, the following three quantities
are all equal.

1. The number of self-dual Fishburn matrices of reduced size n, whose last
column has sum m, and whose diagonal cells are all equal to zero.

2. The number of self-dual Fishburn matrices of reduced size n, whose last
column has sum m, and whose diagonal cells are not all equal to zero.

3. The number of row-Fishburn matrices of size n whose last column has
sum m.

Moreover, for integers n, m, p and q with p+q ≥ 1, the number of self-dual Fish-
burn matrices M with rs(M) = n, max(M) = m, diag(M) = p and iso(M) = q
is equal to the number of row-Fishburn matrices N of size n with max(N) = m,
min(N) = p and iso(N) = q. All these relationships remain valid when restricted
to primitive matrices.

Proof. We prove the statements by comparing the generating functions of the
relevant objects. We will first prove the statement for primitive matrices, the
statement for general matrices then follows easily.

Let R be the set of primitive row-Fishburn matrices, and consider the gen-
erating function

R(v, w, x, y) =
∑

N∈R

vmax(N)wint(N)xiso(N)ymin(N).

This generating function satisfies the identity

R(v, w, x, y) =
∑

n≥0

((1 + x)(1 + y)n − 1)

n−1
∏

i=0

(

(1 + v)(1 + w)i − 1
)

.

To see this, note that the n-th summand on the right-hand side of this expression
is the generating function of primitive row-Fishburn matrices with (n+1) rows.
Indeed, the factor (1 + x)(1 + y)n − 1 counts the number of possibilities to fill
the first row of such a matrix, while the factor (1 + v)(1 + w)i − 1 counts the
number of possibilities to fill the row n+ 1− i.

Recall that S is the set of primitive self-dual Fishburn matrices, and let
S0 denote the set of primitive self-dual Fishburn matrices whose north-east
diagonal only contains zeroes, while S1 = S \ S0 is the set of primitive self-dual
Fishburn matrices whose north-east diagonal contains at least one positive cell.
Let S′(v, w, x, z) be the generating function

S′(v, w, x, z) =
∑

M∈S

vmax(M)wse(M)xiso(M)zdiag(M),
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and let S′
0(v, w) and S′

1(v, w, x, z) be the analogous generating functions for the
sets S0 and S1, respectively, where S′

0 does not depend on x and z because
matrices from S0 have iso(M) = diag(M) = 0. From Theorem 3.1, and in
analogy to Lemma 3.2, we see that

S′(v, w, x, z) = (1 + x)S+(1, v, w, z)− 1

= −1 + (1 + x)
∑

n≥0

(1 + z)n(1 + v)n(1 + w)(
n

2)
n−1
∏

i=0

Vi(v, w)

1 + Vi(v, w)

= −1 + (1 + x)
∑

n≥0

(1 + z)n(1 + v)n(1 + w)(
n

2)
n−1
∏

i=0

(1+v)(1+w)i−1

(1+v)(1+w)i

= −1+
∑

n≥0

(1 + x)(1 + z)n
n−1
∏

i=0

(

(1 + v)(1 + w)i − 1
)

.

Since S′
0(v, w) = S′(v, w, 0, 0) and S′

1(v, w, x, z) = S′(v, w, x, z) − S′
0(v, w), we

get

S′
0(v, w) = −1 +

∑

n≥0

n−1
∏

i=0

(

(1 + v)(1 + w)i − 1
)

, and

S′
1(v, w, x, z) =

∑

n≥0

((1 + x)(1 + z)n − 1)

n−1
∏

i=0

(

(1 + v)(1 + w)i − 1
)

We see that S′
0(v, w) = S′

1(v, w, v, w) = R(v, w, v, w), and that S′
1(v, w, x, z) =

R(v, w, x, z), proving the theorem for primitive matrices. To prove the non-
primitive case, it is enough to observe that the generating functions for general
matrices may be obtained from the generating functions of primitive matrices
by substituting α/(1− α) for each variable α ∈ {v, w, x, y, z}.

Although Theorem 4.1 follows easily from the generating function formulas
established before, it might still be worthwhile to provide a bijective argument.
Currently, we are not aware of such an argument.

From Theorem 4.1, we may directly deduce the following corollary.

Corollary 4.2. Let sm be the number of primitive self-dual interval orders of
reduced size m and let rm be the number of primitive row-Fishburn matrices of
size m. Then sm = 2rm for each m ≥ 1, and

∑

m≥1

rmxm =
∑

n≥0

n
∏

i=0

(

(1 + x)i+1 − 1
)

.

Let tm be the number of self-dual interval orders of reduced size m, and let qm
be the number of row-Fishburn matrices of size m. Then tm = 2qm for each
m ≥ 1, and

∑

m≥1

qmxm =
∑

n≥0

n
∏

i=0

(

1

(1− x)i+1
− 1

)

.
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Let us remark that the numbers (rm)m≥1 from Corollary 4.2 correspond to
the sequence A179525 in OEIS [15], while (qm)m≥1 conjecturally correspond to
A158691. To be more precise, A158691 is the sequence of coefficients of the
power series

∑

n≥0

∏n
i=1

(

1− (1− x)2i−1
)

, which, according to the notes in the
OEIS entry, are conjectured to be equal to qm for m ≥ 1.

5 Final Remarks and Open Problems

The formulas of the form we derived in this paper provide an efficient way
to explicitly compute the coefficients of the corresponding generating functions.
They are also occasionally useful in establishing correspondences between differ-
ent combinatorial structures, as shown in Theorem 4.1. It is not clear, however,
whether one can use such formulas to extract information about the asymptotic
growth of the coefficients. Zagier [22] has used formula (1), together with several
non-trivial power series identities, to find a very precise asymptotic estimate of
the number of interval orders on n elements. We state a weaker version of this
estimate as fact.

Fact 5.1 ([22]). If gn is the number of interval orders of size n, then

gn = (α+ O(n−1))n!

(

6

π2

)n √
n with α =

12
√
3

π−5/2
eπ

2/12.

Drmota [6] has pointed out that from this estimate, we may deduce the
asymptotic fraction of primitive posets among all interval orders.

Fact 5.2 ([6]). With gn as above, and with pn being the number of primitive
interval orders of size n, we have

lim
n→∞

pn
gn

= e−π2/6.

Proof. The generating functions F (x) =
∑

m≥0 gmxm and G(x) =
∑

n≥0 pnx
n

are related by F (x) = G(x/(1−x)), or equivalently, G(x) = F (x/(1+x)). Thus,
for every n ≥ 1, we have

pn = [xn]F

(

x

1 + x

)

= [xn]

n
∑

m=1

gm

(

x

1 + x

)m

=

n
∑

m=1

gm(−1)n−m

(

n− 1

m− 1

)

=

n
∑

m=1

m!

(

6

π2

)m √
m(−1)n−m (n− 1)!

(m− 1)!(n−m)!

(

α+ O

(

1

m

))

= αn!

(

6

π2

)n √
n

n
∑

m=1

(m

n

)3/2

(−1)n−m

(

6

π2

)m−n
1

(n−m)!

(

1 + O

(

1

m

))

= gn

n−1
∑

k=0

(

1− k

n

)3/2
(−π2/6)k

k!

(

1 + O

(

1

n− k

))

= gne
−π2/6(1 + o(1)).
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Our main general open problem is to obtain similar asymptotic estimates for
the enumeration of self-dual interval orders, counted either by their size or their
reduced size. Using the generating function formulas, we can easily enumerate
self-dual interval orders of a given size, and using numerical manipulations sim-
ilar to those described by Zagier [22, Section 3] to accelerate convergence, we
can then make conjectures about the coefficient asymptotics.

Conjecture 5.3. Let sn be the number of primitive self-dual interval orders of
reduced size n, and let tn be the number of self-dual interval orders of reduced
size n. Then

tn = (β + O(n−1))n!

(

12

π2

)n

with β =
12

√
2

π2
eπ

2/24,

and lim
n→∞

sn
tn

= e−π2/12.

Conjecture 5.4. Let rn be the number of self-dual interval orders of size n,
and let qn be the number of primitive self-dual interval orders of size n. Then

rn=(γ+O(n−1/2))
√
n

(

δn

e

)n/2

2
√
δn with γ≈1.361951039 . . . and δ=

6

π2
,

and lim
n→∞

qn
rn

=
1

2
e−π2/12.

In a similar vein, one can ask whether the multi-variate generating functions
can provide information about the distribution of the relevant statistics within
the set of interval orders of a given size, or within the set of Fishburn matrices
of a given dimension. Here are two examples of the kind of questions that arise.

Problem 5.5. What is the average sum of entries in a primitive k×k Fishburn
matrix?

Problem 5.6. What is the average number of minimal elements in an n-element
interval order?
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