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Abstract. Consider the following curious puzzle: call an n-tuple X = (X1, . . . , Xn) of

sets smaller than Y if it has less unordered sections. We show that equivalence classes

for this preorder are very easy to describe and characterize the preorder in terms of the

simpler pointwise inclusion and the existence of a special strictly increasing boolean

function f : Bn → Bn. We also show that contrary to plain boolean functions

or increasing boolean functions, strictly increasing boolean functions aren’t finitely

generated, which might explain why this preorder isn’t easily described concretely.

0. Introduction: a puzzle. Choose a (fixed) set N and a (fixed) natural number n. We can

consider the following partial order on P∗(N)n, the collection of n-tuples of non-empty subsets

of N :

X ⊆ Y
def
=

∏

1≤i≤n

Xi ⊆
∏

1≤i≤n

Yi .

Because we restrict to non-empty subsets, this preorder is just pointwise inclusion:

(X1, . . . , Xn) ⊆ (Y1, . . . , Yn) ⇔ ∀1 ≤ i ≤ n, Xi ⊆ Yi .

Consider now a commutative version of the cartesian product where instead of the usual or-

dered n-tuples, we take “unordered n-tuples”.

Definition 1. If X = (X1, . . . , Xn) is an n-tuple of non-empty subsets of N , define S
(
X
)
,

the set of unordered sections of X, as

S
(
X
) def

=

(
∏

1≤i≤n

Xi

)/
Sn , (1)

where /Sn denotes quotienting by the action of the symmetric group Sn.

From now on, we will drop the adjective “unordered” and refer to an element of S
(
X
)
simply

as a section of X . We now define the preorder ⊑ on P∗(N)n:

Definition 2. If X and Y are in P∗(N)n, put:

X ⊑ Y
def
= S

(
X
)
⊆ S

(
Y
)
. (2)

We write X ≈ Y for “X ⊑ Y and Y ⊑ X”.

Note that this relation isn’t antisymmetric because
(
Xσ(1), . . . , Xσ(n)

)
≈ (X1, . . . , Xn) for any

permutation σ ∈ Sn.

The aim of this note is to answer the following:

Questions.

• When do we have X ≈ Y ?

• What is the relation between X ⊑ Y and X ⊆ Y ?

The problem is subtler than it appears and the first question makes for an interesting puzzle:

while elementary, the proof is more complex than what most people initially think. Readers

are thus encouraged to spend a couple of minutes playing with the problem before reading on.
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Related notions: the notion of system of representatives was introduced by P. Hall in 1935 [3].

A system of representatives for the finite family of sets X is simply a family x such that there

is a bijection σ satisfying xi ∈ Xσ(i) for i = 1, . . . , n. Equivalence classes of those under

permutations are exactly the unordered sections of X of Definition 1. A lot of attention has

been devoted to systems of distinct representatives, also called transversal, where the xi’s are

pairwise distinct [7]. Rather than looking at them individually, this note looks at the collection

of all possible systems of representatives. This shift of focus seems to be new in itself, as is the

notion of strictly increasing boolean function that appears later. Relating the two will give a

concise answer to the second question.

The fact that all the results contained in this note are elementary makes it all the more

interesting, but also more likely that I missed some related notions in the existing literature, or

maybe just an exercises in a classical textbook.*

Notation: to make formulas less verbose, we will abuse the vector notation by lifting “∈”

pointwise: just as X ⊆ Y means “∀1 ≤ i ≤ n, Xi ⊆ Yi”, the notation a ∈ X is a synonym

for “∀1 ≤ i ≤ n, ai ∈ Xi”. The action of Sn on n-tuples is written with a dot and is defined

as σ · a
def
=
(
aσ(1), . . . , aσ(n)

)
. When talking about n-multisets (orbits for the action of Sn), we

identify an n-tuple with its orbit. In particular, a ∈ S
(
X
)
means that σ · a ∈ X for some

permutation σ.

1. The equivalence relation. The first question has a simple answer: equivalence is just

equality up-to a permutation of the sets. In other words, the failure of antisymmetry isn’t more

complex than what was noted after Definition 1.

Proposition 1. Given any X and Y in P∗(N)n, we have

X ≈ Y ⇔ ∃σ ∈ Sn, σ ·X = Y . (3)

This is slightly surprising because the left-hand side is definitionally equal to

∀a ∈ X, ∃σ ∈ Sn, σ · a ∈ Y and ∀a ∈ Y , ∃σ′ ∈ Sn, σ′ · a ∈ X ,

while the right-hand side is definitionally equal to

∃σ ∈ Sn,
(
∀a ∈ X, σ · a ∈ Y and ∀a ∈ Y , σ−1 · a ∈ X

)
.

That the latter implies the former is trivial. Proposition 1 asserts the converse, i.e., that we

can choose the permutation uniformly for all the a ∈ X and a ∈ Y !

Lemma 1.

• If X ⊑ Y then, for all 1 ≤ j ≤ n, there is some 1 ≤ i ≤ n s.t. Xi ⊆ Yj .

• If X ≈ Y then Xi0 = Yj0 for some pair i0, j0.

Proof. The first point is shown by contradiction. Suppose that ∃j0, ∀i,Xi 6⊆ Yj0 , this implies

that there is an a ∈ X s.t. ∀i, ai /∈ Yj0 . This a cannot be a section of Y . Contradiction!

The second point follows easily: starting from Y1 and repeatedly using the first point, we

can construct an infinite chain of reverse inclusions:

Y1 ⊇ Xi1 ⊇ Yj2 ⊇ Xi2 ⊇ Yj2 ⊇ . . .

Because there are finitely many Xi’s and Yj ’s, the chain must contain cycles. This gives an

equality between some Xi and Yj .

* This problem comes from a very different area: denotational models of linear logic. In [4],

the relation S
(
X
)
⊆ U played an important role, where the set U was an arbitrary collection

of n-multisets. Thinking about the preorder “⊑” was a natural step from there.
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This solves the beginning of Proposition 1: if X ≈ Y , then at least one of the sets appears on

both sides. What we now need is to show that

(Z,X2, . . . , Xn) ≈ (Z, Y2, . . . , Yn) ⇒ (X2, . . . , Xn) ≈ (Y2, . . . , Yn) .

This will allow to finish the proof of Proposition 1 by induction on n. If unordered sections

are seen as a “commutative cartesian product”, the next definition would be the corresponding

“division”:

Definition 3. Let T be a collection of n-multisets and Z ∈ P∗(N) we put

T ÷ Z
def
=

{
(a2, . . . , an)

∣∣∣ ∀a ∈ Z, (a, a2, . . . , an) ∈ T
}
.

Lemma 2. We have:

S
(
X1, X2, . . . , Xn

)
÷X1 = S

(
X2, . . . , Xn

)
. (4)

Proof. The “⊇” inclusion follows from the definition.

For the “⊆” inclusion, suppose (a2, . . . , an) ∈ S
(
X
)
÷X1. Let b ∈ X1: we necessarily have

that (b, a2, . . . , an) ∈ S
(
X
)
, i.e., there is a permutation τ s.t. (b, a2, . . . , an) ∈ (Xτ(1), . . . , Xτ(n)).

If τ(1) = 1, we have (a2, . . . , an) ∈ (Xτ(2), . . . , Xτ(n)) and we can conclude directly.

If τ(1) 6= 1, up-to choosing an appropriate element in the orbit of (a2, . . . an), we can assume

that τ(1) = 2, τ(2) = 1 and τ(i) = i when 2 < i ≤ n, i.e., that b ∈ X2, a2 ∈ X1, and ai ∈ Xi

whenever 2 < i ≤ n.

Put a1
def
= a2. Because a1 = a2 ∈ X1, we have (a1, a2, . . . , an) ∈ S

(
X
)
, i.e., σ · a ∈ X for some

permutation σ. Let k
def
= min{i | i > 0, aσi(1) = a1}. This k exists and is at most the length of

the cycle of σ containing 1. We put I
def
=
{
1, σ(1), . . . , σk−1(1)

}
and Ic = {1, . . . , n} \ I.

Rearrange the columns of

aσ(1)
•

. . . a1 = a2
• . . . aσ(i)

•
. . . a2

• . . . aσ(n)
•

|∈ |∈ |∈ |∈ |∈
•

X1
. . .

•

X?
. . .

•

Xi
. . .

•

X?
. . .

•

Xn

into two parts:

aσ(1)
•

aσ2(1)
• . . . aσk(1) = a1

•

•

X1

•

Xσ(1)
. . .

•

Xσk−1(1)︸ ︷︷ ︸
I

. . . a2
• . . . aσ(i)

• . . .

|∈ |∈

. . .
•

X?
. . .

•

Xi
. . .

︸ ︷︷ ︸
Ic

.

The indices of X on the left are exactly those in I, and so are the indices of a. Thus, the indices

of X and a on the right are exactly those in Ic. This shows that (ai)i∈Ic is a section of (Xi)i∈Ic .

Moreover, because each of σ(1), . . . , σk−1(1) is strictly more than 2 (by the definition of k), we

also have aσi(1) ∈ Xσi(1) for each 1 ≤ i ≤ k − 1 by a previous hypothesis. This shows that the

permutation

ρ : {2, . . . , n} → {2, . . . , n} ρ(i)
def
=

{
i if i is one of σ(1), . . . , σk−1(1)
σ(i) otherwise

satisfies ρ · (a2, . . . , an) ∈ (X2, . . . , Xn), and this finishes the proof that (a2, . . . , an) is indeed a

section of (X2, . . . , Xn).
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2. The preorder. The initial question wasn’t very formal and read as: “What is the relation

between X ⊑ Y and X ⊆ Y ?” It is obvious that X ⊆ Y implies X ⊑ Y , but unfortunately, the

converse doesn’t hold, even if we consider n-tuples of sets up-to permutations. For example, we

have

X :=
(
{3}, {1, 2, 3}

)
⊑ Y :=

(
{1, 3}, {2, 3}

)

because the sections of X are all sections of Y :

S
(
X
)
=
{
[3, 1], [3, 2], [3, 3]

}
⊂ S

(
Y
)
=
{
[1, 2], [1, 3], [3, 2], [3, 3]

}
.

However, one of the Xi’s is strictly bigger than all the Yj ’s: we have {1, 2, 3} ⊃ {2, 3}

and {1, 2, 3} ⊃ {1, 3}! More generally,
(
Yi ∩ Yj , Yi ∪ Yj) ⊑

(
Yi, Yj

)
and any operator F on n-

tuples of sets obtained by composing such ∩/∪ functions will satisfy F (Y ) ⊑ Y . For example:

F (Y1, Y2, Y3) :=
(
Y1 ∩ Y3, Y2 ∩ (Y1 ∪ Y3), Y2 ∪ (Y1 ∪ Y3)

)
⊑

(
Y1 ∩ Y3, Y2, Y1 ∪ Y3

)

⊑
(
Y1, Y2, Y3

)
.

We will now characterize exactly which F ’s satisfy this property by looking at functions fromBn

to itself.

Definition 4.

• Let B
def
= {0, 1} equipped with the order 0 ≤ 1. This is a complete lattice with operations

written ∨ and ∧. The lattice structure is lifted pointwise to Bn.

• If u ∈ Bn, the weight of u is the number of 1’s in u. It is written |u|.

We write elements of Bn without parenthesis as in “011101 ∈ B6”.

Definition 5. If a ∈ N and X ∈ P∗(N)n, χX(a) ∈ Bn is defined by
(
χX(a)

)
i
= 1 iff a ∈ Xi.

Thus, χX(a) describes in which Xi’s the element a appears, and |χX(a)| is the number of Xi’s

which contain a. There is a necessary condition for X ⊑ Y : “for all a ∈ N , if a appears in k

sets Yi’s, then it appears in at most k sets Xi’s”. The essence of the next lemma is that this is

also sufficient. It can be seen as yet another variant of Hall’s celebrated “marriage theorem” [3].

Lemma 3. We have X ⊑ Y iff f(u)
def
=
∨

χ
Y
(a)≤u χX(a) satisfies |f(u)| ≤ |u| for all u’s.

The function f is the least (for the extensional order) increasing boolean function satisfy-

ing f
(
χY (a)

)
≥ χX(a). When the function a 7→ χY (a) is bijective from N to Bn \ {0 · · ·0} and

the function χY (a) 7→ χX(a) is increasing (i.e., “when a appears in more Yi’s than b, then a

appears in more Xi’s than b”), the condition of the lemma simplifies to
∣∣χX(a)

∣∣ ≤
∣∣χY (a)

∣∣,
for each a. This what happens in the example of

(
{3}, {1, 2, 3}

)
⊑
(
{2, 3}, {1, 3}

)
, where the

function f is (b1, b2) 7→ (b1 ∧ b2, b1 ∨ b2):

a : 1 2 3

χY (a) : 01 10 11

χX(a) : 01 01 11 .

Proof. For the “⇐” implication, suppose that a ∈ X. We want to show that σ · a ∈ Y for

some permutation σ. If we look at the bipartite graph

a1
•

a2
• . . . an

•

•

Y1

•

Y2
. . .

•

Yn
,
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with an edge between ai and Yj when ai ∈ Yj , finding a σ s.t. σ · a ∈ Y is equivalent to finding

a perfect matching in the bipartite graph. By Hall’s marriage theorem, this is equivalent to

“every subset of the ai’s of cardinality c has at least c neighbors among the Yj ’s”.

Take some subset U ⊆ {a1, . . . , an} of cardinality c. Because a is a section of X , by the

marriage theorem, this set has at least c neighbors in the corresponding a/X bipartite graph.

By the construction, we have

c ≤

∣∣∣∣∣
∨

a∈U

χX(a)

∣∣∣∣∣
︸ ︷︷ ︸
# of neighboors

of U in a/X.

≤

∣∣∣∣∣f
(
∨

a∈U

χY (a)

)∣∣∣∣∣ ≤

∣∣∣∣∣
∨

a∈U

χY (a)

∣∣∣∣∣
︸ ︷︷ ︸
# of neighboors

of U in a/Y .

where the second inequality follows from the definition of f , and the third inequality follows

from the hypothesis. This concludes the “⇐” implication.

For the “⇒” implication, let X ⊑ Y and c = |u| < |f(u)|. We can find {a1, . . . , ak} ⊆ N

which satisfies
∨

i≤k χX(ai) ≤ u and
∣∣∨

i≤k χX(ai)
∣∣ > c. In particular, we have

∣∣∣∣∣∣

∨

1≤i≤k

χY (ai)

∣∣∣∣∣∣
≤ c <

∣∣∣∣∣∣

∨

1≤i≤k

χX(ai)

∣∣∣∣∣∣
.

For each 1 in
∨

i≤k χX(ai) take one of the ai’s which has a 1 in the same position. Call the

resulting tuple a. Note that this tuple has length strictly greater than c and may contain

repetitions. This is a partial section of X: take those Xj ’s s.t.
∨

i≤k χX(ai) contains a 1 on

the j-th coordinate. To complete this tuple into a section of the whole X , add one element

from each of the remaining sets to obtain a section (a, a′) of X. This is also a section of Y and

in particular, each element of a needs to find its place into one of the Yi’s. This is impossible

because there are at most c sets Yi that can contain the elements of the tuple a. Contradiction!

Lemma 3 does characterize the ⊑ preorder but still looks a little ad-hoc. To give a more concise

answer, we will use strictly increasing boolean functions.

3. Interlude: strictly increasing boolean functions. The next notion is quite natural,

but the literature is scarce on the subject. While they are a natural generalization of increasing

boolean functions, neither the big book [9] nor the survey [2] seem to mention them. Note that

in computer science, a boolean function is implicitly a function from some Bn to B. What we

are interested in here are functions from some Bn to some Bm, i.e., boolean functions with

several outputs.

Ultra Simple Lemma. If f : Bn → Bm is strictly increasing, then n ≤ m.

Proof. Just note that chains in Bn have length at most n and that a strictly increasing function

preserves the cardinality of chains.

This might be the reason why the notion doesn’t appear much in the literature: it is not possible

to decompose a strictly increasing function Bn → Bm into an m-tuple of strictly increasing

functions Bn → B. In other words, the outputs of a strictly increasing boolean function cannot

be treated independently.

Simple Lemma. An increasing function f : Bn → Bn is strictly increasing iff it is weight

preserving: |f(u)| = |u| for all u ∈ Bn.

In particular, the values of f(0 · · · 0) and f(1 · · · 1) are fixed to 0 · · · 0 and 1 · · · 1.
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Examples of such functions are the permutations u 7→ σ · u: they are exactly the invert-

ible strictly increasing boolean functions. Less trivial and more interesting is the “and/or”

function: (b1, b2) 7→ (b1 ∧ b2, b1 ∨ b2) whose full graph is





00 7→ 00
10 7→ 01
01 7→ 01
11 7→ 11 .

Applying this “and/or” function repeatedly yields many more examples, including the function

pushing all the 1’s to the right:

u 7→ 00 · · ·00 11 . . .11︸ ︷︷ ︸
|u|

.

Unfortunately, strictly increasing boolean functions aren’t generated by those two families. For

example, it can be shown that the next function cannot be obtained by composing permutations

with “and/or” functions:





0000 7→ 0000
0001, 0010, 0100, 1000 7→ 0001

1100, 0110, 0011 7→ 0011
1010, 0101, 1001 7→ 0101

1110, 1101, 1011, 0111 7→ 0111
1111 7→ 1111 .

We will see in Section 5 that strictly increasing boolean functions aren’t even finitely generated.

Because of global constraints, not every partial weight preserving function can be promoted

to a total one. For example, {
1100 7→ 1100
1010 7→ 0011

cannot appear in the graph of a strictly increasing: it would imply 1110 7→ 1111, which con-

tradicts the “simple lemma”. In general, to check if a partial weight-preserving function f can

be extended to a total one, compute f ′ : u 7→
∨

v≤u f(v), the least increasing total function

agreeing with f . For f to be part of a total strictly increasing function, it is necessary (by the

“simple lemma”) to have |f ′(u)| ≤ |u| for all u ∈ Bn. The next lemma shows that this is also

sufficient.

Lemma 4. An increasing function f : Bn → Bn is extensionally smaller than a strictly

increasing function if and only if |f(u)| ≤ |u| for all u ∈ Bn.

Proof. The implication “⇒” follows directly from the “simple lemma”. For the converse, we

define a new function f ′ from f in such a way that:

• f ≤ f ′,

• f ′ is increasing and weight preserving.

We define f ′(u) inductively by looking at u’s with decreasing weights. Whenever |f(u)| = |u|,

we put f ′(u)
def
= f(u). Otherwise, we look at

∧
u<v f

′(v). Note that because we start with the

“heavy” u’s, this is well defined. There are two possibilities:

•

∣∣∧
u<v f

′(v)
∣∣ = |u|, in this case we use

∧
u<v f

′(v) for the value of f ′(u),

•

∣∣∧
u<v f

′(v)
∣∣ = 1+ |u|, in that case we choose a “1” in

∧
u<v f

′(v) that is not in f(u) and

replace it with a “0”.

Provided no other case appears, this defines a weight-preserving increasing function greater

than f .
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Claim. During the construction, we always have

|u| ≤

∣∣∣∣∣
∧

u<v

f ′(v)

∣∣∣∣∣ ≤ 1 + |u| .

Note that the infimum can be obtained by looking at the successors* of u, whose weight is

always 1 + |u|. Since f ′ is weight preserving, we have
∣∣∧

u<v f
′(v)
∣∣ ≤ 1 + |u|. Suppose by

contradiction that
∣∣∧

u<v f
′(v)
∣∣ < |u|. By enumerating the successors v1, . . . , vk of u and

expanding the infimum as

∨

v<u

f ′(v) =

|···| ≤ |u|︷ ︸︸ ︷
f ′(v1) ∨ · · · ∨ f ′(vi) ∨ · · · ∨ f ′(vj)︸ ︷︷ ︸

|···|< |u|

∨ · · ·

with minimal i and j, we can find some w1 and w2 s.t.

• w1 and w2 are successors of v,

• |f ′(w1) ∧ f ′(w2)| < |u|.

It is easy to see that either “w1
def
= v1 and w2

def
= vj” or “w1

def
= vi and w2

def
= vj” will work. We

obtain a contradiction because

2 + |u| =
∣∣f ′(w1 ∨w2)

∣∣
≥

∣∣f ′(w1) ∨ f ′(w2)
∣∣

=
∣∣f ′(w1)

∣∣+
∣∣f ′(w2)

∣∣−
∣∣f ′(w1) ∧ f ′(w2)

∣∣
> 1 + |u|+ 1 + |u| − |u|

= 2 + |u| .

This finishes the proof.

4. Back to the preorder. We can now give a more elegant answer to the original question.

First note that we can lift any function f : Bn → Bm to a function P∗(N)n → P∗(N)m:

Definition 6. Suppose f : Bn → Bm, define f̂ : P∗(N)n → P∗(N)m as

f̂(Y )
def
= X with a ∈ Xi iff f

(
χY (a)

)
contains a 1 at coordinate i .

This transformation is, in a precise categorical sense, natural. It amounts to lifting the boolean

operations ∧ and ∨ to their set theoretic versions ∩ and ∪ in a way that is compatible with

function composition. For example, with the “and/or” function (b1, b2) 7→ (b1 ∧ b2, b1 ∨ b2)

we obtain “intersection/union” (Y1, Y2) 7→ (Y1 ∩ Y2, Y1 ∪ Y2). Putting Lemma 3 and Lemma 4

together, we can now answer the initial question:

Proposition 2. For any X and Y , we have

X ⊑ Y ⇔ X ⊆ ĝ(Y ) for some strictly increasing g : Bn → Bn.

Proof. We know that X ⊑ Y is equivalent to having |f(u)| ≤ |u| for all u in Bn, where f

is defined as in Lemma 3. By Lemma 4, this is equivalent to saying that there is a strictly

increasing g s.t. f ≤ g. The two following points are thus equivalent:

• X ⊑ Y ,

• there is a strictly increasing g : Bn → Bn s.t. χY (a) ≤ u implies χX(a) ≤ g(u).

The second point implies that X ⊆ ĝ(Y ): use u
def
= χY (a) to check that a ∈ Xi is an element

of the i-th set of ĝ(Y ). For the converse, suppose g is strictly increasing s.t. X ⊆ ĝ(Y ) and

let χY (a) ≤ u. Suppose that χX(a) contains a 1 in position i, this means that a ∈ Xi and

thus a is in the i-th set of ĝ(Y ), i.e., g
(
χY (a)

)
contains a 1 in position i. This implies that g(u)

also contains a 1 in position i.

* successors of u are those v’s with v > u and |v| = |u|+ 1.
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5. Strictly increasing functions are not finitely generated. If one had a simple represen-

tation of strictly increasing boolean functions from Bn to itself, then Proposition 2 would give a

simple representation of the ⊑ preorder. It is well known that all boolean functions Bn → Bm

with n inputs and m outputs can be represented by a boolean circuit using only “and”, “or”

together with “not” gates. Strictly speaking, we also need constant values and need a way to

forget or duplicate inputs:

��� �� ���

�

��	




where the last cells are:

• constants 0 and 1 (zero input, one output),

• drop (one input, zero output),

• duplicate (one input, two outputs),

• crossing (two inputs, two outputs).

These cells, together with a finite set of relations expressing properties of the operations (as-

sociativity, etc.), give a finite presentation of the monoidal category of boolean functions.*

We can generate the subcategory of increasing functions by removing the “not” cell from the

generators. Unfortunately, no such thing is possible for strictly increasing boolean functions.

Proposition 3. Strictly increasing boolean functions are not finitely generated.

Proof. First note that because of the “ultra simple lemma”, we cannot use cells with more

inputs than outputs as they wouldn’t be strictly increasing on their own. In particular, any

strictly increasing boolean function from Bn to itself must be represented using cells with just

as many inputs as outputs. An example of such cell could be (b1, b2) 7→ (b1 ∧ b2, b1 ∨ b2), with

two inputs and two outputs.

We will prove Proposition 3 by contradiction: suppose there is a finite set of cells that

generates all strictly increasing boolean functions, and write A for the maximal arity of the

cells in this set.

Any function has a representation

... ...

...

...

... ... ...

...

�

where

• the topmost rectangle contains only crossing (or invertible cells),

• the cell C is not invertible,

• and the lowermost rectangle contains the rest of the circuit.

The cell C has arity less than A and is not a bijection. It implies that it has at least two

input wires a and b s.t. C gives the same value on the two elements of Bn consisting of 0’s and

a single 1 in position a or b. Because this is independent of the remaining wires, the whole

function must give the same result when:

• a takes value 1, all other inputs to C (including b) take value 0 and the rest takes value v,

* All of this has a precise algebraic meaning, see [6] for details.
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• b takes value 1, all other inputs to C (including a) take value 0 and the rest takes value v.

This will be true for any tuple of values v for the remaining wires.

We will find a rather large n and construct a function f : Bn → Bn that contradicts this

fact: whenever we choose input wires a and b and put A − 2 other input wires to 0, we can

complete the other input wires in such a way that putting a
def
= 0 and b

def
= 1, or putting b

def
= 0

and a
def
= 1 makes a difference in the output of the function. Thus, this function will not be

representable using the given set of cells.

Given a large n, define f : Bn → Bn as:

f(u)
def
=





0n if |u| = 0
1 0n−1 if |u| = 1
1k 0n−k if |u| = k is even

1101 0n−4 if u = 0 · · · 0 110l1 0 · · · 0, with l > 0
1110 0n−4 if |u| = 3 but u not of the previous shape

12
k

01 0n−2k−2 if u = 0 · · · 0 12
k

02
k

1 0 · · · 0, with k > 1

12
k

01 0n−2k−2 if u = 0 · · · 0 102
k

12
k

0 · · · 0, with k > 1
12k10 0n−2k−2 if |u| = 2k + 1 > 3 but u not of the previous shapes.

This function is strictly increasing because whenever v is a successor of u, we have f(v) > f(u):

• f(u) = 12k 0 · · · when |u| = 2k

• f(u) = 12k10 0 · · · or f(u) = 12k01 0 · · · when |u| = 2k + 1.

Suppose input wires i1, . . . , iA−2 are fixed to 0 and we want to differentiate between input

wires a and b, with a < b. By putting some 1’s in the remaining wires, we can make f give

different results when “a
def
= 0, b

def
= 1” and “a

def
= 1, b

def
= 0”.

• If there are two consecutive wires between a and b (but not touching b) which are not

among i1, . . . , iA−2, we put those two wires to 1 and all the other wires to 0. By lines 4

and 5 from the definition of f , we will get two different results.

• If not, the wires a and b cannot be too far apart. (There are at most 2A− 2 wires between

them...) If we can find a sequence of 2k consecutive wires at distance 2k to the left of a, or

a sequence of 2k consecutive wires at distance 2k to the right of b, we can put those wires

to 1 and the rest to 0. By lines 6 and 8 or 7 and 8 of the definition of f , we will also get

different results.

For this to work, we have to make sure n is big enough. At worst, the wires i1,. . . , iA−2 can

prevent us from finding an appropriate sequence A− 2 times. In particular, if a is big enough

(bigger than 2A+1), such a sequence is bound to happen. The same is true when b is small

enough compared to n. In the end, choosing n bigger than, say, 22A+2 plus an additional ε

will guarantee that we can differentiate any a and b among any set of A wires. A more careful

analysis shows that it is in fact enough to take n
def
= 2A+1+4. This finishes the proof.

∞. Further questions.

There are more questions one can ask about this preorder, or more generally about strictly

increasing boolean functions. Readers will probably come up with more examples but the most

immediate ones are:

• Strictly increasing boolean functions aren’t finitely generated, but how many cells are

needed to generate those functions that are in Bn → Bn? (Asymptotic bounds etc.) Can

we give canonical minimal generating families? If so, what can be said about the complexity

of strictly increasing boolean functions expressed with those cells?

• How many strictly increasing boolean functions from Bn to itself are there? The first

four values of this sequence are “1, 4, 66, 7128” or “1, 2, 11, 297” if one divides each number

by n! to take symmetries on the outputs into account. Neither of them appears in Sloane’s
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encyclopedia [8]. This question is a variant of Dedekind’s problem from [1] of counting the

number of increasing boolean functions form Bn to B. Besides some asymptotic bounds,

only the first eight Dedekind numbers are known [10]. The global nature of strict mono-

tonicity makes it unlikely that the answers to these two questions are related.
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Appendix: an algorithm.

Proposition 2 is more elegant but Lemma 3 has an interesting byproduct: it gives a concrete

algorithm to check if X ⊑ Y . For that, construct the function f from Lemma 3 and check that it

satisfies the condition. Just as a proof of concept, here is the main part of the algorithm, in the

Python programming language. Minor alterations have been made to make it more readable.

The most difficult (and fun) part was to write the function “combinations” that generates all

the vectors of length n and weight w using one of the subtle algorithms from [5]!*

def check(N,n,X,Y): # N is a set, n is an integer, X / Y are tuples of sets
def combinations(w):

# generates all vectors of weight w
# omitted (see Knuth, or use you favorite method)

def sup(u,v): # complexity: O(n)
# computes the pointwise "or" on n-tuples
# omitted (simple)

def weight(u): # complexity: O(n)
# computes the weight of an n-tuple
# omitted (simple)

def chi(a,Z): # complexity: O(n log(z)) (z is cardinality of Z)
for i in range(n): # we use Python builtin "set" type

if a in Z[i]: # so that "a in Z[i]" mean "a belongs to Z[i]"
u[i] = 1

return u

F = {} # F is a finite map with at most 2^n elements,
# access is logarithmic: O(log(2^n)) = O(n)

for a in N: # complexity: c *
chiX = chi(a,X) # n log(x)
chiY = chi(a,Y) # + n log(y)
F[chiY] = sup(F[chiY] , chiX) # + 2n

for w in range(n+1): # generating all tuples
for u in combinations(w): # complexity : about 2^n *

v = F[u] # n
for i in range(n): # + n *

if u[i] == 1: #
u[i] = 0 #
v = sup(v,F[u]) # n^2
u[i] = 1 #

F[u] = v #
if weight(v) > w: # + n

return False

return True # if we reached this far, the condition is satisfied

If N has cardinality c and the setsXi’s and Yi’s have cardinalities at most x and y; and if we

suppose that the standard operations on sets and finite functions have logarithmic complexity,

the hints in the comments give a total complexity of roughly O
(
cn
(
log(x) + log(y)

)
+ 2nn3

)
.

Because x = O(c) and y = O(c), we get a complexity of O
(
nc log(c) + 2nn3

)
. If c is fixed, this

is O(n32n); if n is fixed, this is O
(
c log(c)

)
. In almost all cases, this is better (and much easier

to write) than the naive approach that checks if each a ∈ X is a section of Y , even if we are

allowed to use an oracle to guess the permutations.

* The file is available from http://lama.univ-savoie.fr/~hyvernat/research.php
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