Enumeration of $(0,1)$-matrices avoiding some 2×2 matrices

Hyeong-Kwan Ju*
Department of Mathematics
Chonnam National University,
Kwangju 500-757, South Korea
hkju@chonnam.ac.kr

Seunghyun Seo^{\dagger}
Department of Mathematics Education
Kangwon National University
Chuncheon 200-701, South Korea
shyunseo@kangwon.ac.kr

January 30, 2013
Mathematics Subject Classifications: 05A15, 05A19, 05B20

Abstract

We enumerate the number of (0,1)-matrices avoiding 2×2 submatrices satisfying certain conditions. We also provide corresponding exponential generating functions.

1 Introduction

Let $M(k, n)$ be the set of $k \times n$ matrices with entries 0 and 1 . It is obvious that the number of elements in the set $M(k, n)$ is $2^{k n}$. It would be interesting to consider the number of elements in $M(k, n)$ with certain conditions. For example, how many matrices of $M(k, n)$ do not have 2×2 submatrices of the forms $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$? In this article we will give answers to the previous question and other questions.

Consider $M(2,2)$, the set of all possible 2×2 submatrices. For two elements P and Q in $M(2,2)$, we denote $P \sim Q$ if Q can be obtained from P by row or column exchanges. It is obvious that \sim is an equivalence relation on $M(2,2)$. With this equivalence relation, $M(2,2)$ is partitioned with seven equivalent classes having the following seven representatives.

$$
\begin{gathered}
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \Gamma=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \\
T=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad L=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \quad J=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad O=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

[^0]Here C, T, and L mean "corner", "top", and "left", respectively. Let \mathcal{S} be the set of these representatives, i.e.,

$$
\mathcal{S}:=\{I, \Gamma, C, T, L, J, O\}
$$

Given an element S in \mathcal{S}, a matrix A is an element of the set $M(S)$ if and only if for every permutation π_{1} of the rows and π_{2} of the columns, the resulting matrix does not have the submatrix S. Equivalently, $A \in M(S)$ means that A has no submatrices in the equivalent class $[S]$. For a subset α of $\mathcal{S}, M(\alpha)$ is defined by the set $\cap_{S \in \alpha} M(S)$. Note that the definition of $M(S)$ (also $M(\alpha)$) is different from that in [13, 17]. If A belongs to $M(\alpha)$, then we say that A avoids α. We let $\phi(k, n ; \alpha)$ be the number of $k \times n(0,1)$-matrices in $M(\alpha)$.

Our goal is to express $\phi(k, n ; \alpha)$ in terms of k and n explicitly for each subset α of the set \mathcal{S}. For $|\alpha|=1$, We can easily notice that $\phi(k, n ; \Gamma)=\phi(k, n ; C)$ and $\phi(k, n ; J)=$ $\phi(k, n ; O)$ by swapping 0 and 1 . We also notice that $\phi(k, n ; T)=\phi(n, k ; L)$ by transposing the matrices. The number $\phi(k, n ; I)$ is well known (see [2, 7, 8]) and (0,1)-matrices avoiding type I are called (0,1)-lonesum matrices (we will define and discuss this in 2.2). In fact, lonesum matrices are the primary motivation of this article and its corresponding work. The study of $M(J)$ (equivalently $M(O)$) appeared in [9, 13, 17], but finding a closed form of $\phi(k, n ; J)=\phi(k, n ; O)$ is still open. The notion of " Γ-free matrix" was introduced by Spinrad [16]. He dealt with a totally balanced matrix which has a permutation of the rows and coluums that are Γ-free. We remark that the set of totally balanced matrices is different from $M(\Gamma)$.

In this paper we calculate $\phi(k, n ; \alpha$), where α 's are $\{\Gamma\}$ (equivalently $\{C\}$) and $\{T\}$ (equivalently $\{L\}$). We also enumerate $M(\alpha)$ where α 's are $\{\Gamma, C\},\{T, L\}$, and $\{J, O\}$. For the other subsets of \mathcal{S}, we discuss them briefly in the last section. Note that some of our result (subsection (3.5) is an independent derivation of some of the results in 11, section 3] by Kitaev et al.; for other relevant papers see [10, 12 .

2 Preliminaries

2.1 Definitions and Notations

A matrix P is called $(0,1)$-matrix if all the entries of P are 0 or 1 . From now on we will consider $(0,1)$-matrices only, so we will omit " $(0,1)$ " if it causes no confusion. Let $M(k, n)$ be the set of $k \times n$-matrices. Clearly, if $k, n \geq 1, M(k, n)$ has $2^{k n}$ elements. For convention we assume that $M(0,0)=\{\emptyset\}$ and $M(k, 0)=M(0, n)=\emptyset$ for positive integers k and n.

Given a matrix P, a submatrix of P is formed by selecting certain rows and columns from P. For example, if $P=\left(\begin{array}{cccc}a & b & d \\ e & f & g & h \\ i & j & k & l\end{array}\right)$, then $P(2,3 ; 2,4)=\left(\begin{array}{ccc}f & h \\ j & l\end{array}\right)$.

Given two matrices P and Q, we say P contains Q, whenever Q is equal to a submatrix of P. Otherwise say P avoids Q. For example, $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$ contains $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ but avoids $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. For a matrix P and a set α of matrices, we say that P avoids the type set α if P avoids all the matrices in α. If it causes no confusion we will simply say that P avoids α.

Given a set α of matrices, let $\phi(k, n ; \alpha)$ be the number of $k \times n$ matrices avoiding α. From the definition of $M(k, n)$, for any set α, we have $\phi(0,0 ; \alpha)=1$ and $\phi(k, 0 ; \alpha)=$ $\phi(0, n ; \alpha)=0$ for positive integers k and n. Let $\Phi(x, y ; \alpha)$ be the bivariate exponential generating function for $\phi(k, n ; \alpha)$, i.e.,

$$
\Phi(x, y ; \alpha):=\sum_{n \geq 0} \sum_{k \geq 0} \phi(k, n ; \alpha) \frac{x^{k}}{k!} \frac{y^{n}}{n!}=1+\sum_{n \geq 1} \sum_{k \geq 1} \phi(k, n ; \alpha) \frac{x^{k}}{k!} \frac{y^{n}}{n!}
$$

Let $\Phi(z ; \alpha)$ be the exponential generating function for $\phi(n, n ; \alpha)$, i.e.,

$$
\Phi(z ; \alpha):=\sum_{n \geq 0} \phi(n, n ; \alpha) \frac{z^{n}}{n!} .
$$

Given $f, g \in \mathbb{C}[[x, y]]$, we denote $f \stackrel{2}{=} g$ if the coefficients of $x^{k} y^{n}$ in f and g are the same, for each $k, n \geq 2$.

2.2 $\quad I$-avoiding matrices (Lonesum matrices)

This is related to the lonesum matrices. A lonesum matrix is a $(0,1)$-matrix determined uniquely by its column-sum and row-sum vectors. For example, $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right)$ is a lonesum matrix since it is a unique matrix determined by the column-sum vector $(2,0,3)$ and the row-sum vector $(2,1,2)^{t}$. However $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$ is not, since $\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ has the same column-sum vector $(2,0,2)$ and row-sum vector $(2,1,1)^{\mathrm{t}}$.

Theorem 2.1 (Brewbaker [2]). A matrix is a lonesum matrix if and only if it avoids I.
Theorem 2.1 implies that $\phi(k, n ; I)$ is equal to the number of $k \times n$ lonesum matrices.
Definition 2.2. Bernoulli number B_{n} is defined as following:

$$
\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!}=\frac{x e^{x}}{e^{x}-1}
$$

Note that B_{n} can be written explicitly as

$$
B_{n}=\sum_{m=0}^{n}(-1)^{m+n} \frac{m!S(n, m)}{m+1}
$$

where $S(n, m)$ is the Stirling number of the second kind. The poly-Bernoulli number, introduced first by Kaneko [7], is defined as

$$
\sum_{n \geq 0} B_{n}^{(k)} \frac{x^{n}}{n!}=\frac{\operatorname{Li}_{k}\left(1-e^{-x}\right)}{1-e^{-x}}
$$

where the polylogarithm $\operatorname{Li}_{k}(x)$ is the function $\operatorname{Li}_{k}(x):=\sum_{m \geq 1} \frac{x^{m}}{m^{k}}$. Bernoulli numbers are nothing but poly-Bernoulli numbers with $k=1$. Sanchez-Peregrino [15] proved that $B_{n}^{(-k)}$ has the following simple expression:

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min (k, n)}(m!)^{2} S(n+1, m+1) S(k+1, m+1)
$$

Brewbaker [2] and Kim et. al. [8] proved that the number of $k \times n$ lonesum matrices is the poly-Bernoulli number $B_{n}^{(-k)}$, which yields the following result.

Proposition 2.3 (Brewbaker [2]; Kim, Krotov, Lee [8]). The number of $k \times n$ matrices avoiding I is equal to $B_{n}^{(-k)}$, i.e.,

$$
\begin{equation*}
\phi(k, n ; I)=\sum_{m=0}^{\min (k, n)}(m!)^{2} S(n+1, m+1) S(k+1, m+1) . \tag{1}
\end{equation*}
$$

The generating function $\Phi(x, y ; I)$, given by Kaneko [7], is

$$
\begin{equation*}
\Phi(x, y ; I)=e^{x+y} \sum_{m \geq 0}\left[\left(e^{x}-1\right)\left(e^{y}-1\right)\right]^{m}=\frac{e^{x+y}}{e^{x}+e^{y}-e^{x+y}} . \tag{2}
\end{equation*}
$$

Also, $\Phi(z ; I)$ can be easily obtained as follows:

$$
\begin{align*}
\Phi(z ; I)=\sum_{n \geq 0} \phi(n, n ; I) \frac{z^{n}}{n!} & =\sum_{n \geq 0} \sum_{m \geq 0}(-1)^{m+n} m!S(n, m)(m+1)^{n} \frac{z^{n}}{n!} \\
& =\sum_{m \geq 0}(-1)^{m} m!\sum_{n \geq 0} S(n, m) \frac{(-(m+1) z)^{n}}{n!} \\
& =\sum_{m \geq 0}\left(1-e^{-(m+1) z}\right)^{m} \tag{3}
\end{align*}
$$

3 Main Results

3.1 $\quad \Gamma$-avoiding matrices (or C)

By row exchange and column exchange we can change the original matrix into a block matrix as in Figure 1. Here [0] (resp. [1]) stands for a 0-block (resp.1-block) and [0*] stands for a 0 -block or an empty block. Diagonal blocks are [1]'s except for the last block $\left[\mathbf{0}^{*}\right]$, and the off-diagonal blocks are $[\mathbf{0}]$'s.

Theorem 3.1. The number of $k \times n$ matrices avoiding Γ is given by

$$
\begin{equation*}
\phi(k, n ; \Gamma)=\sum_{m=0}^{\min (k, n)} m!S(n+1, m+1) S(k+1, m+1) \tag{4}
\end{equation*}
$$

$[1]$	$[0]$	$[0]$	$\left[0^{\star}\right]$
$[0]$	$[1]$	$[0]$	$\left[0^{\star}\right]$
$[0]$	$[0]$	$[1]$	$\left[0^{\star}\right]$
$\left[0^{*}\right]$	$\left[0^{*}\right]$	$\left[0^{\star}\right]$	$\left[0^{\star}\right]$

Figure 1: A matrix avoiding Γ can be changed into a block diagonal matrix.

Proof. Let $\mu=\left\{C_{1}, C_{2}, \ldots, C_{m+1}\right\}$ be a set partition of $[n+1]$ into $m+1$ blocks. Here the block C_{l} 's are ordered by the largest element of each block. Thus $n+1$ is contained in C_{m+1}. Likewise, let $\nu=\left\{D_{1}, D_{2}, \ldots, D_{m+1}\right\}$ be a set partition of $[k+1]$ into $m+1$ blocks. Choose $\sigma \in S_{m+1}$ with $\sigma(m+1)=m+1$, where S_{m+1} is the set of all permutations of length $m+1$. Given (μ, ν, σ) we define a $k \times n$ matrix $M=\left(a_{i, j}\right)$ by

$$
a_{i, j}:= \begin{cases}1, & (i, j) \in C_{l} \times D_{\sigma(l)} \text { for some } l \in[m] \\ 0, & \text { otherwise }\end{cases}
$$

It is obvious that the matrix M avoids the type Γ.
Conversely, let M be a $k \times n$ matrix avoiding type Γ. Set $(k+1) \times(n+1)$ matrix \widetilde{M} by augmenting zeros to the last row and column of M. By row exchange and column exchange we can change \widetilde{M} into a block diagonal matrix B, where each diagonal is 1-block except for the last diagonal. By tracing the position of columns (resp. rows) in \widetilde{M}, B gives a set partition of $[n+1]$ (resp. $[k+1]$). Let $\left\{C_{1}, C_{2}, \ldots, C_{m+1}\right\}\left(\right.$ resp. $\left.\left\{D_{1}, D_{2}, \ldots, D_{m+1}\right\}\right)$ be the set partition of $[n+1]$ (resp. $[k+1]$). Note that the block C_{i} 's and D_{i} 's are ordered by the largest element of each block. Let σ be a permutation on $[m$] defined by $\sigma(i)=j$ if C_{i} and D_{j} form a 1-block in B.

The number of set partitions π of $[n+1]$ is $S(n+1, m+1)$, and the number of set partitions π^{\prime} of $[k+1]$ is $S(n+1, k+1)$. The cardinality of the set of σ^{\prime} s is the cardinality of S_{m}, i.e., m !. Since the number of blocks $m+1$ runs through 1 to $\min (k, n)+1$, the sum of $S(k+1, m+1) S(n+1, m+1) m$! gives the required formula.
Example 1. Let $\mu=4 / 135 / 26 / 7$ be a set partition of [7] and $\nu=25 / 6 / 378 / 149$ of [9] into 4 blocks. Let $\sigma=3124$ be a permutation in S_{4} such that $\sigma(4)=4$. From (μ, ν, σ) we can construct the 6×8 matrix M which avoids type Γ as in Figure 2,

To find the generating function for $\phi(k, n ; \Gamma)$ the following formula (see [5]) is helpful.

$$
\begin{equation*}
\sum_{n \geq 0} S(n+1, m+1) \frac{x^{n}}{n!}=e^{x} \frac{\left(e^{x}-1\right)^{m}}{m!} \tag{5}
\end{equation*}
$$

Figure 2: A matrix avoiding Γ corresponds to two set partitions with a permutation.

From Theorem 3.1 and (5), we can express $\Phi(x, y ; \Gamma)$ as follows:

$$
\begin{align*}
\Phi(x, y ; \Gamma) & =\sum_{n, k \geq 0} \sum_{m \geq 0} m!S(n+1, m+1) S(k+1, m+1) \frac{x^{k}}{k!} \frac{y^{n}}{n!} \\
& =\sum_{m \geq 0} \frac{1}{m!} \sum_{k \geq 0} m!S(k+1, m+1) \frac{x^{k}}{k!} \sum_{n \geq 0} m!S(n+1, m+1) \frac{y^{n}}{n!} \\
& =\sum_{m \geq 0} \frac{1}{m!} e^{x}\left(e^{x}-1\right)^{m} e^{y}\left(e^{y}-1\right)^{m} \\
& =\exp \left[\left(e^{x}-1\right)\left(e^{y}-1\right)+x+y\right] . \tag{6}
\end{align*}
$$

Remark 1. It seems to be difficult to find a simple expression of $\Phi(z ; \Gamma)$. The sequence $\phi(n, n ; \Gamma)$ is not listed in the OEIS [14]. The first few terms of $\phi(n, n ; \Gamma)(0 \leq n \leq 9)$ are as follows:

$$
1,2,12,128,2100,48032,1444212,54763088,2540607060,140893490432, \ldots
$$

$3.2\{\Gamma, C\}$-avoiding matrices

Given the equivalence relation \sim on $M(2,2)$, which is defined in Section 1, if we define the new equivalent relation $P \sim^{\prime} Q$ by $P \sim Q$ or $P \sim\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right)-Q$, then $[\Gamma] \cup[C]$ becomes a single equivalent class. Clearly $\phi(k, n ;\{\Gamma, C\})$ is the number of $k \times n(0,1)$-matrix which does not have a submatrix in $[\Gamma] \cup[C]$. From now on we simply write $\phi(k, n ; \Gamma, C)$, instead of $\phi(k, n ;\{\Gamma, C\})$. The reduced form of a matrix M avoiding $\{\Gamma, C\}$ is very simple as in Figure 3. In this case if the first row and the first column of M are determined then the rest of the entries of M are determined uniquely. Hence the number $\phi(k, n ; \Gamma, C)$ of such matrices is

$$
\begin{equation*}
\phi(k, n ; \Gamma, C)=2^{k+n-1} \quad(k, n \geq 1) \tag{7}
\end{equation*}
$$

and its exponential generating function is

$$
\begin{equation*}
\Phi(x, y ; \Gamma, C)=1+\frac{1}{2}\left(e^{2 x}-1\right)\left(e^{2 y}-1\right) . \tag{8}
\end{equation*}
$$

Figure 3: Possible reduced forms of matrices avoiding $\{\Gamma, C\}$

Clearly, $\phi(n, n ; \Gamma, C)=2^{2 n-1}$ for $n \geq 1$. Thus its exponential generating function is

$$
\begin{equation*}
\Phi(z ; \Gamma, C)=\frac{1}{2}\left(e^{4 z}+1\right) \tag{9}
\end{equation*}
$$

3.3 T-avoiding matrices (or L)

Given a $(0,1)$-matrix, 1 -column (resp. 0 -column) is a column in which all entries consist of 1's (resp. 0's). We denote a 1 -column (resp. 0-column) by 1 (resp. 0). A mixed column is a column which is neither $\mathbf{0}$ nor 1 . For $k=0$, we have $\phi(0, n ; T)=\delta_{0, n}$. In case $k \geq 1$, i.e., there being at least one row, we can enumerate as follows:

- case 1: there are no mixed columns. Then each column should be $\mathbf{0}$ or $\mathbf{1}$. The number of such $k \times n$ matrices is 2^{n}.
- case 2: there is one mixed column. In this case each column should be $\mathbf{0}$ or $\mathbf{1}$ except for one mixed column. The number of $k \times n$ matrices of this case is $2^{n-1} n\left(2^{k}-2\right)$.
- case 3: there are two mixed columns. As in case 2 , each column should be $\mathbf{0}$ or $\mathbf{1}$ except for two mixed columns, say, v_{1} and v_{2}. The number of $k \times n$ matrices of this case is the sum of the following three subcases:

$$
\begin{aligned}
& -v_{1}+v_{2}=1: 2^{n-2}\binom{n}{2} 2!S(k, 2) \\
& -v_{1}+v_{2} \text { has an entry } 0: 2^{n-2}\binom{n}{2} 3!S(k, 3) \\
& -v_{1}+v_{2} \text { has an entry } 2: 2^{n-2}\binom{n}{2} 3!S(k, 3)
\end{aligned}
$$

- case 4: there are $m(m \geq 3)$ mixed columns v_{1}, \ldots, v_{m}. The number of $k \times n$ matrices of this case is the sum of the following four subcases:

$$
\begin{aligned}
& -v_{1}+\cdots+v_{m}=1: 2^{n-m}\binom{n}{m} m!S(k, m) \\
& -v_{1}+\cdots+v_{m}=(m-1) 1: 2^{n-m}\binom{n}{m} m!S(k, m) \\
& -v_{1}+\cdots+v_{m} \text { has an entry } 0: 2^{n-m}\binom{n}{m}(m+1)!S(k, m+1) \\
& -v_{1}+\cdots+v_{m} \text { has an entry } m: 2^{n-m}\binom{n}{m}(m+1)!S(k, m+1)
\end{aligned}
$$

Adding up all numbers in the previous cases yields the following theorem.

Theorem 3.2. For $k, n \geq 1$ the number of $k \times n$ matrices avoiding T is given by

$$
\begin{equation*}
\phi(k, n ; T)=2 \sum_{l \geq 1}\binom{n}{l-1} l^{k}+\left(n^{2}-n-4\right) 2^{n-2}-n(n+3) 2^{n+k-3} \tag{10}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\phi(k, n ; T)= & 2^{n}+2^{n-1}\binom{n}{1}\left(2^{k}-2\right)+2^{n-2}\binom{n}{2}(2!S(k, 2)+3!2 S(k, 3)) \\
& +\sum_{m=3}^{n} 2^{n-m+1}\binom{n}{m}(m!S(k, m)+(m+1)!S(k, m+1)) \\
= & 2 \sum_{m=0}^{n} 2^{n-m}\binom{n}{m} m!S(k+1, m+1)+\left(n^{2}-n-4\right) 2^{n-2}-n(n+3) 2^{n+k-3} \\
= & 2 \sum_{l \geq 1}\binom{n}{l-1} l^{k}+\left(n^{2}-n-4\right) 2^{n-2}-n(n+3) 2^{n+k-3} .
\end{aligned}
$$

Note that in the proof of Theorem 3.2 we use the identity

$$
\sum_{m \geq 0}\binom{n}{m} m!S(k, m) 2^{n-m}=\sum_{l \geq 0}\binom{n}{l} l^{k}
$$

where both sides count the number of functions f from $[k]$ to $[n]$ such that each element of $[n] \backslash f([k])$ has two colors.

The generating function $\Phi(x, y ; T)$ is given by

$$
\begin{align*}
\Phi(x, y ; T)= & 1+\sum_{n \geq 1} \sum_{k \geq 1} 2 \sum_{l \geq 1}\binom{n}{l-1} l^{k} \frac{x^{k}}{k!} \frac{y^{n}}{n!} \\
& +\sum_{n \geq 1} \sum_{k \geq 1}\left(n^{2}-n-4\right) 2^{n-2} \frac{x^{k}}{k!} \frac{y^{n}}{n!}-\sum_{n \geq 1} \sum_{k \geq 1} n(n+3) 2^{n+k-3} \frac{x^{k}}{k!} \frac{y^{n}}{n!} \\
= & 1+\left(2 e^{x}\left(e^{y\left(e^{x}+1\right)}-1\right)-2 e^{2 y}+2\right) \\
& +\left(e^{x}-1\right)\left(\left(y^{2}-1\right) e^{2 y}+1\right)-\frac{1}{2} y(y+2) e^{2 y}\left(e^{2 x}-1\right) \\
= & 2 e^{y\left(e^{x}+1\right)+x}-\frac{y^{2}+2 y}{2} e^{2 x+2 y}+\left(y^{2}-1\right) e^{x+2 y}-e^{x}-\frac{y^{2}-2 y+2}{2} e^{2 y}+2 . \tag{11}
\end{align*}
$$

Note that if we use the symbol " $=$ " introduced in Section 2.1, then

$$
\Phi(x, y ; T) \stackrel{2}{=} 2 e^{y\left(e^{x}+1\right)+x}-\frac{y^{2}+2 y}{2} e^{2 x+2 y}+\left(y^{2}-1\right) e^{x+2 y} .
$$

For the $n \times n$ matrices we have

$$
\phi(n, n ; T)=2 \sum_{l \geq 1}\binom{n}{l-1} l^{n}+\left(n^{2}-n-4\right) 2^{n-2}-n(n+3) 2^{2 n-3}
$$

Thus the generating function $\Phi(n, n ; T)$ is given by

$$
\begin{align*}
\sum_{n \geq 0} \phi(n, n ; T) \frac{z^{n}}{n!}= & 2 \sum_{n \geq 0} \sum_{l \geq 1}\binom{n+1}{l} l^{n+1} \frac{z^{n}}{(n+1)!} \\
& +\sum_{n \geq 0} \frac{n^{2}-n-4}{4} \frac{(2 z)^{n}}{n!}-\frac{n(n+3)}{8} \frac{(4 z)^{n}}{n!} \\
= & \frac{2}{z} \sum_{l \geq 1} \frac{(l z)^{l}}{l!} \sum_{n \geq l-1} \frac{(l z)^{n-l+1}}{(n-l+1)!}+\left(z^{2}-1\right) e^{2 z}-2 z(z+1) e^{4 z} \\
= & \frac{2}{z} \sum_{l \geq 1} \frac{l^{l}}{l!}\left(z e^{z}\right)^{l}+\left(z^{2}-1\right) e^{2 z}-2 z(z+1) e^{4 z} \\
= & \frac{2}{z}\left(z e^{z} W^{\prime}\left(-z e^{z}\right)\right)+\left(z^{2}-1\right) e^{2 z}-2 z(z+1) e^{4 z} \\
= & \frac{-2 W\left(-z e^{z}\right)}{z+z W\left(-z e^{z}\right)}+\left(z^{2}-1\right) e^{2 z}-2 z(z+1) e^{4 z} \tag{12}
\end{align*}
$$

where

$$
W(x):=\sum_{n \geq 1}(-n)^{n-1} \frac{x^{n}}{n!}
$$

is the Lambert W-function which is the inverse function of $f(W)=W e^{W}$. See [3 for extensive study about the Lambert W-function.
Remark 2. The sequence $\phi(n, n ; T)$ is not listed in the OEIS [14]. The first few terms of $\phi(n, n ; T)(0 \leq n \leq 9)$ are as follows:

$$
1,2,14,200,3536,67472,1423168,34048352,927156224,28490354432, \ldots
$$

3.4 $\{T, L\}$-avoiding matrices

Given the equivalence relation \sim on $M(2,2)$, which is defined in Section 1, if we define the new equivalent relation $P \sim^{\prime \prime} Q$ by $P \sim Q$ or $P \sim Q^{\mathrm{t}}$, then $[T] \cup[L]$ becomes a single equivalent class. Clearly $\phi(k, n ;\{T, L\})$ is the number of $k \times n(0,1)$-matrix which does not have any submatrix in $[T] \cup[L]$. By the symmetry of $\{T, L\}$, we have

$$
\phi(k, n ; T, L)=\phi(n, k ; T, L) .
$$

So it is enough to consider the case $k \geq n$. For $k \leq 2$ or $n \leq 1$, we have

$$
\begin{gathered}
\phi(0, n ; T, L)=\delta_{0, n}, \quad \phi(1, n ; T, L)=2^{n}, \\
\phi(k, 0 ; T, L)=\delta_{k, 0}, \quad \phi(k, 1 ; T, L)=2^{k}, \\
\phi(2,2 ; T, L)=12 .
\end{gathered}
$$

Given a $(0,1)$-vector v with a length of at least $3, v$ is called 1 -dominant (resp. 0 dominant) if all entries of v are 1's (resp. 0's) except one entry.
Theorem 3.3. For $k \geq 3$ and $n \geq 2$, the number of $k \times n$ matrices avoiding $\{T, L\}$ is equal to twice the number of rook positions in the $k \times n$ chessboard. In other words,

$$
\begin{equation*}
\phi(k, n ; T, L)=2 \sum_{m=0}^{\min (k, n)}\binom{k}{m}\binom{n}{m} m!. \tag{13}
\end{equation*}
$$

Proof. Suppose M is a $k \times n$ matrix avoiding $\{T, L\}$. It is easy to show each of the following steps:
(i) If M has a mixed column v, then v should be either 0-dominant or 1-dominant.
(ii) Assume that v is 0 -dominant. This implies that other mixed columns(if any) in M should be 0 -dominant.
(iii) Any non-mixed column in M should be a 0 -column.
(iv) The location of 1's in M corresponds to a rook position in the $k \times n$ chessboard.

If we assume v is 1 -dominant in (ii) then the locations of 0 's again corresponds to a rook position. The summand of RHS in (13) is the number of rook positions in the $k \times n$ chessboard with m rooks. This completes the proof.

The generating function $\Phi(x, y ; T, L)$ is given by

$$
\begin{align*}
& \Phi(x, y ; T, L)=2 e^{x y+x+y}-\frac{(x y)^{2}}{2} \\
& \quad-2 x y+3-2 e^{x}-2 e^{y}+x\left(e^{y}-2 y-1\right)\left(e^{y}-1\right)+y\left(e^{x}-2 x-1\right)\left(e^{x}-1\right) . \tag{14}
\end{align*}
$$

Here the crucial part of the equation (14) can be obtained as follows:

$$
\begin{aligned}
\sum_{k, n \geq 0}\left(\sum_{m \geq 0}\binom{k}{m}\binom{n}{m} m!\right) \frac{x^{k}}{k!} \frac{y^{n}}{n!} & =\sum_{m \geq 0} m!\left(\sum_{k \geq 0}\binom{k}{m} \frac{x^{k}}{k!}\right)\left(\sum_{n \geq 0}\binom{n}{m} \frac{y^{n}}{n!}\right) \\
& =\sum_{m \geq 0} m!\left(\frac{x^{m}}{m!} e^{x}\right)\left(\frac{y^{m}}{m!} e^{y}\right)=\exp (x y+x+y)
\end{aligned}
$$

Note that if we use the symbol " $\stackrel{2}{ }$ " introduced in Section 2.1, then

$$
\Phi(x, y ; T, L) \stackrel{2}{=} 2 e^{x y+x+y}-\frac{(x y)^{2}}{2}
$$

For the $n \times n$ matrices we have

$$
\begin{gathered}
\phi(0,0 ; T, L)=1, \quad \phi(1,1 ; T, L)=2, \quad \phi(2,2 ; T, L)=12, \quad \text { and } \\
\phi(n, n ; T, L)=2 \sum_{m=0}^{n}\binom{n}{m}^{2} m!. \quad(n \geq 3)
\end{gathered}
$$

Thus the generating function $\Phi(z ; T, L)$ is given by

$$
\begin{equation*}
\Phi(z ; T, L)=\frac{2 e^{\frac{z}{1-z}}}{1-z}-1-2 z-z^{2} \tag{15}
\end{equation*}
$$

Note that we use the equation

$$
\sum_{n \geq 0}\left(\sum_{m=0}^{n}\binom{n}{m}^{2} m!\right) \frac{z^{n}}{n!}=\frac{e^{\frac{z}{1-z}}}{1-z}
$$

which appears in [4, pp. 597-598].

$3.5\{J, O\}$-avoiding matrices

Recall the equivalence relation \sim^{\prime} defined in subsection 3.2. With this relation, $\{J, O\}$ becomes a single equivalent class. Due to the symmetry of $\{J, O\}$ it is obvious that

$$
\phi(k, n ; J, O)=\phi(n, k ; J, O)
$$

The k-color bipartite Ramsey number $b r(G ; k)$ of a bipartite graph G is the minimum integer n such that in any k-coloring of the edges of $K_{n, n}$ there is a monochromatic subgraph isomorphic to G. Beineke and Schwenk [1] had shown that $\operatorname{br}\left(K_{2,2} ; 2\right)=5$. From this we can see that

$$
\phi(k, n ; J, O)=0 \quad(k, n \geq 5) .
$$

For $k=1$ and 2 , we have

$$
\phi(1, n ; J, O)=2^{n}, \quad \phi(2, n ; J, O)=\left(n^{2}+3 n+4\right) 2^{n-2} .
$$

Note that the sequence $\left(n^{2}+3 n+4\right) 2^{n-2}$ appears in [14, A007466] and its exponential generating function is $(1+x)^{2} e^{2 x}$.

For $k \geq 3$, we have

$$
\begin{aligned}
\phi(3, n ; J, O)=\phi(4, n ; J, O)=0 & \text { for } n \geq 7 \\
\phi(5, n ; J, O)=\phi(6, n ; J, O)=0 & \text { for } n \geq 5 \\
\phi(k, n ; J, O)=0 & \text { for } k \geq 7 \text { and } n \geq 3 .
\end{aligned}
$$

For exceptional cases, due to the symmetry of $\{J, O\}$, it is enough to consider the followings:

$$
\begin{gathered}
\phi(3,3 ; J, O)=156, \quad \phi(3,4 ; J, O)=408, \quad \phi(4,4 ; J, O)=840 \\
\phi(3,5 ; J, O)=\phi(3,6 ; J, O)=\phi(4,5, J, O)=\phi(4,6 ; J, O)=720
\end{gathered}
$$

The sequence $\phi(k, n ; J, O)$ is listed in Table 1. Note that Kitaev et al. have already calculated $\phi(k, n ; J, O)$ in [11, Proposition 5], but the numbers of $\phi(3,3 ; J, O)$ and $\phi(4,4 ; J, O)$ are different with ours.

$k \backslash n$	1	2	3	4	5	6	7	\cdots
1	2	4	8	16	32	64	128	\cdots
2	4	14	44	128	352	928	2368	\cdots
3	8	44	156	408	720	720	0	0
4	16	128	408	840	720	720	0	0
5	32	352	720	720	0	0	0	0
6	64	928	720	720	0	0	0	0
7	128	2368	0	0	0	0	0	0
\vdots	\vdots	\vdots	0	0	0	0	0	0

Table 1: The sequence $\phi(k, n ; J, O)$

The generating function $\Phi(x, y ; J, O)$ is given by

$$
\begin{align*}
& \Phi(x, y ; J, O)=1+x e^{2 y}+y e^{2 x}+x^{2}(1+y)^{2} e^{2 y}+y^{2}(1+x)^{2} e^{2 x} \\
& \quad-\left(x+y+\frac{x^{2}}{2!}+\frac{y^{2}}{2!}+2 x y+2 x^{2} y+2 x y^{2}+14 \frac{x^{2} y^{2}}{2!2!}\right)+156 \frac{x^{3} y^{3}}{3!3!}+840 \frac{x^{4} y^{4}}{4!4!} \\
& \quad+720\left(\frac{x^{3} y^{5}}{3!5!}+\frac{x^{5} y^{3}}{5!3!}+\frac{x^{3} y^{6}}{3!6!}+\frac{x^{6} y^{3}}{6!3!}+\frac{x^{4} y^{5}}{4!5!}+\frac{x^{5} y^{4}}{5!4!}+\frac{x^{4} y^{6}}{4!6!}+\frac{x^{6} y^{4}}{6!4!}\right) \tag{16}
\end{align*}
$$

In particular, the generating function $\Phi(z ; J, O)$ is given by

$$
\begin{equation*}
\Phi(z ; J, O)=1+2 z+7 z^{2}+26 z^{3}+35 z^{4} \tag{17}
\end{equation*}
$$

4 Concluding remarks

Table 2 summarizes our results (except the I-avoiding case). Due to the amount of difficulty, we are not able to enumerate the number $\phi(k, n ; J)$, hence $\phi(k, n ; O)$. Note that $\phi(k, n ; J)$ is equal to the following:
(a) The number of labeled (k, n)-bipartite graphs with girth of at least 6 , i.e., the number of C_{4}-free labeled (k, n)-bipartite graphs, where C_{4} is a cycle of length 4 .
(b) The cardinality of the set $\left\{\left(B_{1}, B_{2}, \ldots, B_{k}\right): B_{i} \subseteq[n] \forall i, \quad\left|B_{i} \cap B_{j}\right| \leq 1 \forall i \neq j\right\}$.

For the other subsets α of \mathcal{S} which is not listed in Table 2, we have calculated $\phi(k, n ; \alpha)$ in [6]. Note that if the size of α increases then enumeration of $M(\alpha)$ becomes easier.

For further research, we suggest the following problems.

1. In addition to $(0,1)$-matrices, one can consider $(0,1, \ldots, r)$-matrices with $r \geq 2$.
2. Consideration of the results of adding the line sum condition to each individual case given in the first column of Table 2.

α	$\phi(k, n ; \alpha)$	$\Phi(x, y ; \alpha)$	$\Phi(z ; \alpha)$
I	(1)	(2)	(3)
$\Gamma($ or $C)$	(4)	(6)	complicated
$\{\Gamma, C\}$	(7)	(8)	(9)
T (or L)	(10)	(11)	(12)
$\{T, L\}$	(13)	(14)	(15)
J (or O)	unknown	unknown	unknown
$\{J, O\}$	Table 1	(16)	(17)

Table 2: Formulas and generating functions avoiding α.

Acknowledgement

The Authors are thankful to Sergey Kitaev in the University of Strathclyde for his helpful comments and suggestions.

References

[1] L. W. Beineke and A. J. Schwenk, On a bipartite form of the Ramsey problem, Proceedings of the 5th British Combinatorial Conference, 1975, Congr. Numer. XV (1975).
[2] C. Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, Integers, 8, A02 (2008).
[3] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert Function, Adv. Comput. Math., 5, 329-359 (1996).
[4] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press (2009).
[5] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed., AddisonWesley (1994).
[6] H.-K. Ju and S. Seo, Counting (0,1)-matrices avoiding α of size greater than 1, Preprint, available at: http://shseo.info/.
[7] M. Kaneko, Poly-Bernoulli numbers, Journal de Theórie des Nombres de Bordeaux, 9, 221-228 (1997).
[8] H.-K. Kim, D. Krotov, and J.-Y. Lee, Poly-Bernoulli numbers and lonesum matrices, availabe at: arXiv:1103.4884v1
[9] J.-R. Kim, U. Peled, I. Perepelitsa, V. Pless, and S. Friedland, Explicit construction of families of LDPC codes with no 4-cycles, IEEE Transactions on Information Theory, 50(10), 2378-2388 (2004).
[10] S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers, 4, A21,(2004).
[11] S. Kitaev, T. Mansour, and A. Vella, Pattern Avoidance in Matrices, Journal of Integer Sequences, 8 (2), Article 05.2.2, (2005).
[12] S. Kitaev, J. R. Robbins, On multi-dimensional patterns, Pure Mathematics and Applications.(PU.M.A.) 18 (3-4), 291-299 (2007).
[13] B. Klinz, R. Rudolf, and G. J. Woeginger, Permuting matrices to avoid forbidden submatrices, Discrete Applied mathematics, 60, 223-248, (1995).
[14] Online Encyclopedia of Integer Sequence, available at: http://oeis.org/
[15] R. Sanchez-Peregrino, Closed formula for poly-Bernoulli numbers, Fibonacci Quarterly, 40 (4), 362-364, (2002).
[16] J. P. Spinrad, Nonredundant 1's in Γ-free matrices, SIAM J. Disc. Math., 8(2), 251-257, (1995).
[17] J. P. Spinrad, Efficient Graph Representations, in: Fields Institute Monographs, vol. 19, American Mathematical Society, (2003).

[^0]: *This study was financially supported by Chonnam National University, 2008-2329.
 ${ }^{\dagger}$ This study was supported by 2008 Research Grant from Kangwon National University.

