
   AGOH’S CONJECTURE:  ITS     

  GENERALIZATIONS, ITS ANALOGUES 

 

      Andrei Vieru 
               
 
 
 
          Abstract 

 In this paper we formulate two generalizations of Agoh’s conjecture. We also 

formulate conjectures involving congruence modulo primes about hyperbolic 

secant, hyperbolic tangent, Nörlund numbers, as well as about coefficients of 

expansions in powers of other analytic functions. We formulate a thesis about 

combinatorial objects that do not produce fake primes. 

 
 
 0. INTRODUCTION  

 

 One of the reasons Agoh’s conjecture is said to be important lies in the fact 

that, if it is true – and it probably is – it permits to formulate a characterization of 

primes in terms of Bernoulli Numbers. It happens that Bernoulli Numbers are the 

best known, the most important and popular of a whole series of sequences of 

combinatorial objects – as they indeed may be thought of – that probably permit as 

well a characterization of primes in terms of these other combinatorial objects. 

Along with generalizations of Agoh’s Conjecture in terms of Poly-Bernoulli 

Numbers, we’ll try to provide a series of ‘Agoh-like’ conjectures involving other 

combinatorial objects than those aforementioned, which would be also liable – if 

they are true – to provide such characterizations of primes. 

 Our thesis is that the common features of these numbers – or objects – lie in 

the fact that they are all somehow related to e and π.  

 It has to be noted that some other types of combinatorics – including 

counting of graph subsets with given properties (e.g. Perrin Sequence, Lucas 

sequence, generalizations of such sequences, etc.) always yield pseudo-primes. By 

the way they are not related neither to e nor π, but they are indeed connected to 

algebraic integers, for example to some roots of characteristic polynomials in the 

case of linear recurrence sequences such as Perrin or Lucas or Fibonacci sequences. 



 

 1. BERNOULLI NUMBERS  

The Bernoulli numbers Bn are defined by the power series 
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where all numbers Bn are zero with odd index n > 1. 
 

CONJECTURE 1 (Generalized Agoh’s conjecture) 

For any q ≥ 1, for any odd p ≥ 3        

pBq(p – 1) ≡ –1 (mod p) ⇔ p is prime 

 

GENERALIZED GIUGA’S CONJECTURE (JOSÉ MARIA GRAU, ANTONIO 

M. OLLER-MARCÉN) 

For any q ≥ 1, for any odd p ≥ 1       

1q(p – 1) + 2q(p – 1) + … + (p – 1)q(p – 1) ≡ –1 (mod p) ⇔ p is prime 

 

 In the particular case when q = 1, these conjectures are known, respectively, 

as Agoh’s conjecture and Giuga’s conjecture. 

 In the original formulation of the Agoh’s conjecture there is no need to 

specify that p is supposed to be odd, because p – 1 is supposed to be even. 

 In the formulation of the Generalized Agoh’s Conjecture there is such a need, 

because otherwise p and q(p –1) might be both even and then the statement does 

not hold anymore. For q = 4 and p = 30, we find that 

 30 B4×29 = 30B116 ≡ –1 (mod 30)       (I) 

(and, as it will become obvious later in this article, this congruence has something 

to do with the equalities 30=2×3×5 and 2×3×5–(2×3+2×5+3×5) = –1) 

 When formulating the generalized Giuga’s conjecture, there also is such a 

need – i.e. to make it clear that p is supposed to be odd – otherwise we find the 

following  counterexample, with q = 4 and p = 30 
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4422074402433441180827700476601082176406650449557500228476355049066

9204193416663839965975095737376808666401306882991271227555373237253

485615431565431063369719529220349199 ≡ – 1 (mod 30) 

 In The Equivalence of Giuga's and Agoh's Conjectures, Bernd C. Kellner 

provided a proof of their equivalence. 

 Before we shall write a proof of the generalized Agoh’s Conjecture, let us 

give an example:  

B60 =  –1215233140483755572040304994079820246041491 / 56786730 

It is easy to check by direct computation that: 

61B60 ≡ –1 (mod 61)   7B60 ≡ –1 (mod 7) 

31B60 ≡ –1 (mod 31)   5B60 ≡ –1 (mod 5) 

13B60 ≡ –1 (mod 13)   3B60 ≡ –1 (mod 3) 

11B60 ≡ –1 (mod 11)    

 
 2. POLY-BERNOULLI NUMBERS 
 
Poly-Bernoulli numbers of order k, B(k)

n, are defined by Masanobu Kaneko using 
polylogarithms of order k in the following beautiful way. According to Kaneko: 
For  every  integer  k, a  sequence  of  rational   numbers is defined 
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Here, for any integer k > 0,  Lik(z) denotes the formal power series 
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When k =1, B
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CONJECTURE 2 
For any k ≥ 1, for any q ≥ 1 and for any odd p > 1  
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 3. CAUCHY NUMBERS OF THE FIRST KIND 
 
 The Cauchy numbers a0, a1, a2,… of the first kind are defined by 
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 The first few are a0 =1, a1 = 1/2,  a2 = –1/6,  a3 =1/4,  a4 = –19/30,  a5 =  9/4,  

a6 = –863/84,  a7 =1375/24,etc. 
 They obey the following nice formula: 
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where s(n, j) are the signed Stirling numbers of the first kind. 
 Let an designate the n-th Bernoulli number of the second kind. Let D(an) and 
N(an) designate, respectively, its numerator and its denominator. Let p(k) designate the 
k-th odd prime. 
 

CONJECTURE 3 

! 

 "P # 3, "m # 0, D(a
2m P

) $ N(a
2m P

)  (modP)% P is prime&'k > m such as P = p(k)[ ]  
CONJECTURE 4 

! 

For any odd primes p j  and pk,   D(ap j p k
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CONJECTURE 5 
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expansion, has at most one digit before the period. 
 
CONJECTURE 6 
For any q and for any odd p > 2,  paq(p  – 1) ≡ (–1)q–1 (mod p) ⇔ p is prime and q ≤ p 
 
CONJECTURE 7 
 If N2n+1 (n > 3) is the numerator of a Cauchy number of the first kind of the 
(not necessarily prime) odd rank 2n+1, then it is divided by (2n–1)3.  
         ∀n > 5  [(2n–1)3 divides N2n+1 ∧ (2n–1)4 do not divide N2n+1]  ⇔ 2n–1 is prime 
 
 
 



 4. BERNOULLI NUMBERS OF THE SECOND KIND  
 
The Bernoulli numbers of the second kind are defined in a slightly modified way: 
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So, the first few are : 
b0 = 1, b1 =1/2, b2 = –1/12, b3 =1/24, b4 = –19/720, b5 =3/160, b6 = –863/60480,  
b7 =275/24192, etc. 
bn obey the following beautiful formula: 

   
where  δn,0 = 1 or 0 according to whether n = 0 or not. 

 
CONJECTURE 8 
For any p > 2 pbp≡ –1  (mod p) ⇔ p is prime 
 
 
5. SIGNED TANGENT AND SECANT NUMBERS 
 
 Let us consider the coefficients of Taylor series of the sum of the hyperbolic 
tangent and hyperbolic secant, i. e. the numbers Sn defined by                  
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This yields, S0  = 1, S1 = 1, S2 = –1/2, S3 = –1/3, S4 = 5/24, S5 = 2/15, S6= –61/720, 
etc. 
 
CONJECTURE 9 
(1) For any p > 1,  pSp ≡ –1 (mod p) ⇔ p is prime    

(2) For any p > 2,  pSp+1 ≡ 1 (mod p) ⇔ p is prime  

(3) For any p > 2,  pS2p-1 ≡ 1 (mod p) ⇔ p is prime  
 
 Although it is well-known that the tangent and secant numbers are related to 
Bernoulli numbers (of the first kind) and to Euler numbers, it is rather surprising that 



they obey, in the same time, to the three statements of the conjecture. Some of the S 
numbers manage to show, at once, more than one congruence. For example, according 
to (1), 5S5 ≡ –1 (mod 5) and, according to (3), 3S5 ≡ 1 (mod 3). 

  According to (1), 13S13 ≡ –1 (mod 13) and, according to (3), 7S13 ≡ 1 (mod 7), 
etc., etc. 
 
 
 6. NÖRLUND NUMBERS (CAUCHY NUMBERS OF THE SECOND 
KIND) 
 
The Nörlund numbers an  are defined by 
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The first few, for n = 0, 1, 2…, are:  
1, –1/2, 5/6, –9/4, 251/30, –475/12, 19087/84, –36799/24, 1070017/90, 
 
CONJECTURE 10 
For any q and for any odd p > 2,  pNq(p – 1) ≡ (–1)q – 1 (mod p) ⇔ p is prime and q ≤ p 
 
CONJECTURE 11 
The numerator of any Nörlund number of odd rank (not necessarily prime) is divided 
by the square power of its rank. 
It is also divided by the cube power (or higher) of its own rank if and only if this rank 
is not prime. 
 If the odd rank of a Nörlund number  has  only  two prime factors,  
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p1 and p2 (p1 < p2),  then (p1p2)
p1 +1

 divides its numerator. 
 
 8.  ERRATUM 

 
The proof of Agoh-Giuga Conjecture seems to be a desperate case. 
In a previous version of this paper we made an erroneous attempt of a proof, that 
contained an mistake (pointed out by Professor Robin Chapman to  whom we express 
our deepest gratitude). 
 
 
 
 



 9. ON A PROPERTY OF THE THIRTEEN KNOWN GIUGA 
NUMBERS 
 
 I wonder if the following remark might be useful:  

 Among the two biggest prime divisors of all thirteen already known Giuga 

numbers there is exactly one prime of the form 4k+1, while all other odd prime 

divisors of the aforementioned numbers are of the form 4k+3. Moreover, if P is an 

odd prime divisor of some already discovered Giuga number G, then either 

1) P is of the form 4k+3 and then (G/P–1)/P is also of the form 4k+3 

(although not necessarily prime) 

or 

2) P is of the form 4k+1 and then (G/P–1)/P is also of the form 4k+1 

(although not necessarily prime) 

  Should we conjecture that all (even) Giuga numbers display the same 

feature? 

 Lava’s Conjecture has recently given raise to scepticism and criticism, 

because thirteen examples are usually considered as being not enough.  

 

 Probably, searching new Giuga numbers in this direction would soon lead to 

discoveries of yet unknown numbers of this kind. However, they wouldn’t underpin 

any conjecture because the very method of search would contain a petitio principii. 
 
 
 10. OTHER AGOH-LIKE CONJECTURES 
  
Many integer sequences that are coefficients of analytic functions expansions 
(conjecturally) show congruence (mod p) to ±1 for terms of rank p or p – 1 ⇔ p is 
prime.  Examples of conjectures involving congruence modulo primes: 
In the sequence OEIS  A002105     (Reduced tangent numbers)  
∀p > 0    Ap ≡ 1 (mod p) ⇔ p is prime    (3°) 
 
In A064062      Generalized Catalan numbers 
 Ap  ≡ 1 (mod p) ⇔ p is prime     (4°) 
 
 
 



In A000587    Rao Uppuluri-Carpenter numbers 
 Ap + 2 ≡ 1 (mod p) ⇔ p is prime    (5°) 
 
In A001586   Generalized Euler Numbers (or Springer Numbers) 
 Ap ≡1 (mod p) ⇔ p is a prime of the form 4n+1  
      or p is a power of 2  (6°a) 
 Ap ≡ –1 (mod p) ⇔ p is a prime of the form 4n–1       (6°b) 
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In A000111 Euler  up/down numbers 
 Ap ≡1 (mod p) ⇔ p is a prime of the form 4n+1  
      or p is a power of 2  (7°a) 
 Ap ≡ –1 (mod p) ⇔ p is prime of the form 4n–1        (7°b) 
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In A007836  Springer numbers associated with symplectic group 
 Ap ≡1 (mod p) ⇔ p is a prime of the form 4n+1          (8°a) 
 Ap ≡ –1 (mod p) ⇔ p is a prime of the form 4n–1       (8°b) 
 or p is a power of 2 
 
In A001006 Motzkin numbers  
 For any p > 1   Mp  ≡ 1 (mod p) ⇔ p is a prime or the square of a prime 
 
In A000108 Catalan numbers 
 For an enough large value of p, C(p–1) ≡  –1 (mod p) ⇔ p is a prime or the 
square of a prime. 
 
 
 CONCLUSION 
  
 Surely, there are lots of such sequences of numbers – we prefer saying 
“combinatorial objects” –  for whom Agoh-like Conjectures might be formulated.  
The question is whether the thesis according to which combinatorial objects related to 
e or/and π do not produce fake primes holds or not. In particular we strongly 
“believe” in the converse of the Wolstenholme's Theorem, as far as Harmonic 
Numbers satisfy the criteria our thesis. 
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