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INTERVALS OF BALANCED BINARY TREES

IN THE TAMARI LATTICE

SAMUELE GIRAUDO

Abstract. We show that the set of balanced binary trees is closed by interval in the Tamari
lattice. We establish that the intervals [T, T ′] where T and T ′ are balanced binary trees are
isomorphic as posets to a hypercube. We introduce synchronous grammars that allow to
generate tree-like structures and obtain fixed-point functional equations to enumerate these.
We also introduce imbalance tree patterns and show that they can be used to describe some
sets of balanced binary trees that play a particular role in the Tamari lattice. Finally, we
investigate other families of binary trees that are also closed by interval in the Tamari lattice.
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1. Introduction

Binary search trees are used as data structures to represent dynamic totally ordered sets
(see [AU94, Knu98, CLRS03]). The algorithms solving classical related problems such as the
insertion, the deletion or the search of a given element can be performed in linear time in terms
of the depth of the encoding binary tree, and, if the binary tree is balanced, these operations
can be made in logarithmic time in terms of the cardinality of the represented set. Recall that
a binary tree is balanced if for each node x, the heights of the left and the right subtrees of x
differ by at most one.

The algorithmic of balanced binary trees fundamentally relies on the so-called rotation op-
eration. An insertion or a deletion of an element in a dynamic ordered set modifies the binary
tree encoding it and can imbalance it. The efficiency of these algorithms comes from the fact
that binary search trees can be rebalanced very quickly after the insertion or the deletion, using
no more than two rotations [AVL62].

Surprisingly, this operation appears in a different context since it defines a partial order on
the set of binary trees of a given size. A binary tree T0 is smaller than a binary tree T1 if it
is possible to transform T0 into T1 by performing a succession of right rotations. This partial
order, known as the Tamari order [Tam62, Sta90, Knu04], defines a lattice structure on the set
of binary trees of a given size.

Since binary trees are naturally equipped by this order structure induced by rotations, and
the balance of balanced binary trees is maintained doing rotations, we would like to investigate
if balanced binary trees play a particular role in the Tamari lattice. Our goal is to combine the
two points of view of the rotation operation. Computer trials show that the intervals [T, T ′]
where T and T ′ are balanced binary trees are only made of balanced binary trees. The main
goal of this paper is to prove this property. As a consequence, we give a characterization on
the shape of these intervals and, using grammars allowing the generation of tree-like structures,
enumerate these ones.

This article is organized as follows. In Section 2, we set the essential notions about binary
trees and balanced binary trees, and we give the definition of the Tamari lattice in our setting.
Section 3 is devoted to establish the main result: The set of balanced binary trees is closed
by interval in the Tamari lattice. In Section 4, we define synchronous grammars. This new
sort of grammars allows to generate sets of tree-like structures and gives a way to obtain a
fixed-point functional equation for the generating series enumerating these. In Section 5, we
introduce a notion of binary tree pattern, namely the imbalance tree patterns, and a notion
of pattern avoidance. We also define subsets of balanced binary trees whose elements hold a
particular position in the Tamari lattice. These sets can also be defined as the balanced binary
trees avoiding some given imbalance tree patterns. In Section 6, we look at balanced binary
tree intervals and show that they are, as posets, isomorphic to hypercubes. Encoding balanced
binary tree intervals by kind of tree-like structures, and by constructing the synchronous gram-
mar generating these trees, we give a fixed-point functional equation satisfied by the generating
series enumerating balanced binary tree intervals. We do the same for maximal balanced binary
tree intervals. Finally, in Section 7, we investigate three other families of binary trees that are
closed by interval in the Tamari lattice: The weight balanced binary trees, the binary trees with
a given canopy and the k-Narayana binary trees. We also look at a generalization of balanced
binary trees and prove, among other, that the set of usual balanced binary trees is the only set
among this generalization that is both closed by interval in the Tamari lattice and the subposet
of the Tamari lattice induced by it has nontrivial intervals.

This paper is an extended version of [Gir10] where only Sections 2, 3, 5 and 6 were developed.
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2. Preliminaries

2.1. Complete rooted planar binary trees. In this article, we consider complete rooted
planar binary trees and we call these simply binary trees. Recall that a binary tree T is either a
leaf (also called empty tree) denoted by ⊥, or a node that is attached through two edges to two
binary trees, called respectively the left subtree and the right subtree of T . The (unique) binary
tree which has L as left subtree and R as right subtree is denoted by L∧R. Let also Tn be the
set of binary trees with n nodes and T be the set of all binary trees. We use in the sequel the
standard terminology (i.e., parent, child, ancestor, path, etc.) about binary trees [AU94].

In our graphical representations, nodes are represented by circles , leaves by squares ,
and edges by segments or . Besides, we shall represent arbitrary subtrees by big squares

like , and arbitrary paths by zigzag lines .

Recall that the infix reading order of the nodes of a binary tree T consists in recursively
visiting its left subtree, then its root, and finally its right subtree. We say that a node x of T
is the leftmost node if x is the first visited node in the infix order. We also say that a node y is
to the right w.r.t. a node x if x appears strictly before y in the infix order and we denote that
by x  T y. We extend this notation to subtrees, saying that a subtree S of T is to the right
w.r.t. a node x if for all nodes y of S we have x T y. For example, consider the binary tree T

a

b

c

d

e
f

g

h

T =

Figure 1. An example of binary tree.

depicted in Figure 1. The sequence (a, b, c, d, e, f, g, h) is the sequence of all nodes of T visited
in the infix order. Hence, a is the leftmost node of T and we have, among other, a  T b and
c T f . Consider the subtree S of root g. It contains the nodes e, f , g and h. Hence, we have
a T S, b T S, c T S and d T S. However, we neither have the relation e T S since S
contains e, nor the relation f  T S since S contains e and f  T e does not hold.

2.2. Balanced binary trees. If T is a binary tree, we shall denote by h(T ) its height, that is
the length of the longest path connecting its root to one of its leaves. More formally,

(2.1) h(T ) :=

{

1 + max{h(L), h(R)} if T = L ∧R,

0 otherwise (T =⊥).

For example, we have h(⊥) = 0, h
( )

= 1, and h
( )

= 2.

Let us define the imbalance mapping iT which associates an element of Z with a node x of T .
It is defined by

(2.2) iT (x) := h(R)− h(L),
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where L (resp. R) is the left (resp. right) subtree of x. For example, the imbalance values
of the nodes of the binary tree T shown in Figure 1 satisfy iT (a) = 2, iT (b) = 0, iT (c) = −1,
iT (d) = 0, iT (e) = 0, iT (f) = −1, iT (g) = −1 and iT (h) = 0.

A node x is balanced if

(2.3) iT (x) ∈ {−1, 0, 1}.

Balanced binary trees form a subset of T composed of binary trees which have the property of
being balanced:

Definition 2.1. A binary tree T is balanced if all nodes of T are balanced.

Let us denote by Bn the set of balanced binary trees with n nodes (see Figure 2 for the
first sets) and B the set of all balanced binary trees. The number of balanced binary trees
enumerated according to their number of nodes is Sequence A006265 of [Slo] and begins as

(2.4) 1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70, 184, 476, 872, 1553, 2720, 4288, 6312, 9004.

n Bn
0
1

2

3

4

5

6

Figure 2. The first balanced binary trees.

2.3. The Tamari lattice. The Tamari lattice can be defined in several ways depending on
which kind of Catalan object (i.e., objects in bijection with binary trees) the order relation is
defined. The most common definitions are made on integer vectors with some conditions [Sta90],
on forests and binary trees [Knu04], and on Dyck paths [BB09]. We give here the most conve-
nient definition for our use. First, let us recall the right rotation operation:

Definition 2.2. Let T0 be a binary tree and y be a node of T0 having a nonempty left subtree.
Let S0 := (A ∧ B) ∧ C be the subtree of root y of T0 and T1 be the binary tree obtained by
replacing S0 by A ∧ (B ∧ C) (see Figure 3). Then the right rotation of root y sends T0 to T1.

We write T0 ⋌ T1 if T1 can be obtained by a right rotation from T0. We call the relation ⋌
the partial Tamari relation. Note that the application of a right rotation to a binary tree does
not change the infix order of its nodes. In the sequel, we mainly talk about right rotations, so
we call these simply rotations. We are now in a position to give our definition of the Tamari
order.

http://oeis.org/A006265
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y

x

A B

C

T0 =

right

left y

x

A

B C

= T1

Figure 3. The right rotation of root y.

Definition 2.3. The Tamari relation ≤T is the reflexive and transitive closure of the partial
Tamari relation ⋌. In other words, we have T0 ≤T Tk if there exists a sequence T1, . . . , Tk−1

of binary trees such that

(2.5) T0 ⋌ T1 ⋌ · · ·⋌ Tk−1 ⋌ Tk.

The Tamari relation is an order relation. Indeed, ≤T is reflexive and transitive by definition.
To prove that ≤T is antisymmetric, consider the statistic φ : T → N where φ(T ) is the sum for
all nodes x of T of the number of the nodes constituting the right subtree of x. It is plain that
if T0 ⋌ T1 then φ(T0) < φ(T1), showing that ≤T is antisymmetric.

For n ≥ 0, the set Tn with the order relation ≤T defines a lattice, namely the Tamari lattice
(see [HT72]). We denote by Tn := (Tn,≤T) the Tamari lattice of order n (see Figure 4 for some
examples).

(a) T3 (b) T4

Figure 4. The Tamari lattices T3 and T4. The smallest elements are at the top.

3. Closure by interval of the set of balanced binary trees

3.1. Rotations and balance. Let us first consider the modifications of the imbalance values
of the nodes of a balanced binary tree T0 := (A∧B)∧C when a rotation at its root is applied.
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Let T1 be the binary tree obtained by this rotation, y be the root of T0 and x be the left child
of y in T0 (see again Figure 3, considering now that y is the root of T0 and x is the root of
T1). Note first that the imbalance values of the nodes of the subtrees A, B and C are not
modified by this rotation. Indeed, only the imbalance values of x and y are changed. Since T0

is balanced, we have iT0
(x) ∈ {−1, 0, 1} and iT0

(y) ∈ {−1, 0, 1}. Thus, the pair (iT0
(x), iT0

(y))
can take nine different values. Here follows the list of the imbalance values of x and y in T0

and T1 expressed as (iT0
(x), iT0

(y)) −→ (iT1
(x), iT1

(y)):

(R1) (−1,−1) −→ (1,1),

(R2) (0,−1) −→ (1,0),

(R3) (0, 0) −→ (2,1),

(R4) (1,−1) −→ (2,0),

(R5) (1, 0) −→ (3,1),

(R6) (−1, 0) −→ (2, 2),

(R7) (−1, 1) −→ (3, 3),

(R8) (0, 1) −→ (3, 2),

(R9) (1, 1) −→ (4, 2).

Let us gather these nine sorts of rotations into three different groups, taking into account if
the nodes x and y are balanced in T1.

• Cases (R1) and (R2), where x and y stay balanced are called conservative balancing
rotations ;
• Cases (R3), (R4) and (R5), where y stays balanced but x not are called simply unbal-
ancing rotations ;
• Cases (R6), (R7), (R8) and (R9) where x and y are both unbalanced are called fully
unbalancing rotations.

This leads to the following properties.

Proposition 3.1. Let T0 and T1 be two balanced binary trees such that T0⋌T1. Then, T0 and
T1 have the same height.

Proof. Since T0 and T1 are both balanced, the rotation modifies a subtree S0 of T0 such that
the imbalance values of the root y of S0, and of the left child x of y, satisfy (R1) or (R2). Let
S1 be the binary tree obtained by the rotation of root y from S0. Computing the height of S0

and S1, we have h(S0) = h(S1). Thus, since a rotation modifies a binary tree locally, we have
h(T0) = h(T1). �

Lemma 3.2. Let T0 be a balanced binary tree and T1 be an unbalanced binary tree such that
T0 ⋌ T1. Then, there exists a node z in T1 such that iT1

(z) ≥ 2 and the left subtree and the
right subtree of z are both balanced.

Proof. Let y be the node of T0 which is the root of the rotation that transforms T0 into T1 and
x its left child in T0. If this rotation is a simply unbalancing rotation, it satisfies (R3), (R4)
or (R5), and the node z := x satisfies the lemma. If this rotation is a fully unbalancing rotation,
it satisfies (R6), (R7), (R8) or (R9), and the node z := y of T1 agrees with the conclusion of
the lemma. �

Lemma 3.3. Let T0 be a binary tree and y be a node of T0 such that all subtrees to the right
w.r.t. y are balanced. Then, if the binary tree T1 is obtained from T0 by a rotation of root y, all
subtrees of T1 to the right w.r.t. y are balanced.

Proof. Since the rotation operation does not modify the infix order of the nodes and by definition
of the relation , if a subtree S is to the right w.r.t. y in T1, then S is also to the right w.r.t. y
in T0. By hypothesis, S is balanced in T0, and therefore, it is also balanced in T1. �
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3.2. Construction of an imbalance invariant. Let T be a binary tree, x be a node of T and
y be the leftmost node of the subtree of root x in T . We say that x is a witness of imbalance
if the following three conditions hold (see Figure 5):

y

xℓ

xiT (x) ≥ 2

Sy ∈ B

Sxℓ ∈ B

Sx ∈ B

T =

Figure 5. The node x is a witness of imbalance of T . Note that the left
subtree of y is empty and thus Sy has 0 or 1 node.

(W1) The imbalance value of x is greater than or equal to 2;
(W2) The left subtree of x is balanced;
(W3) The subtrees of T which are to the right w.r.t. y are balanced.

Remark 3.4. If a binary tree T has a witness of imbalance, (W1) guarantees that T is unbal-
anced.

The aim of this section is to define an additional property that x and y must satisfy to ensure
that any binary tree T ′ such that T ≤T T ′ has still a witness of imbalance. In this way, by
showing that T ′ also satisfies this additional property, we will prove that it is impossible to
rebalance T through rotations.

Let us already give this property. In what follows, the concepts necessary to understand it
will be defined. If y satisfies condition

(CC) the height word of the node y is admissible,

then, we say that T satisfies the conservation condition. Besides, we say that T has an imbalance
invariant if T has a witness of imbalance satisfying the conservation condition.

3.2.1. Height words. Let T be a binary tree, x1 be a node of T , (x1, x2, . . . , xℓ) be the sequence
of all ancestors of x1 whose are to the right w.r.t. x1 and ordered from bottom to top, and
(Sxi

)1≤i≤ℓ be the sequence of the right subtrees of the xi (see Figure 6). The word u1 . . . uℓ

of N∗ defined by ui := h(Sxi
) is called the height word of x1 and denoted by hwT (x1). It is

convenient to set hwT (x) := ǫ whenever x is not a node of T . See Figure 7 for some examples
of height words associated with some nodes of a binary tree.

3.2.2. Admissible words. Let u := u1 . . . un be a word. Let us denote by ℓ(u) the length n of u.

Let Θ : N2 → N be the rewriting rule defined by

(3.1) Θ(a.b) :=

{

max{a, b}+ 1 if b− a ∈ {−1, 0, 1},

max{a, b} otherwise.

Note that if A ∧B is a balanced binary tree, then Θ(h(A). h(B)) = h(A ∧B). We shall use
this simple observation to establish the main result of this section.
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x1

xℓ

x2

Sx1

Sxℓ

Sx2

T =

Figure 6. The sequence (Sxi
)1≤i≤ℓ associated with the node x1.

x

y
z

T =

Figure 7. Examples of height words: hwT (x) = 221, hwT (y) = 0021, and
hwT (z) = 01.

This rewriting rule is extended to words of N∗ by Θ(u) := Θ(u1.u2).u3 . . . uℓ(u). If 0 ≤ i ≤

ℓ(u)− 1, denote by Θi(u) the iterated application of Θ defined by

(3.2) Θi(u) :=

{

u if i = 0,

Θ
(

Θi−1(u)
)

otherwise.

Definition 3.5. A word u ∈ N∗ is admissible if either ℓ(u) ≤ 1 or all words v of the set

(3.3)
{

Θi(u) : 0 ≤ i ≤ ℓ(u)− 2
}

satisfy v1 − 1 ≤ v2.

The set of admissible words is denoted by A. To check if a word u is admissible, iteratively
compute the elements of the set (3.3) following (3.2), and check for each of these the inequality

of the previous definition. For example, by denoting by
Θ
−→ the rewriting rule Θ, we can check

that u := 00122 is admissible. Indeed, we have

(3.4) 00122
Θ
−→ 1122

Θ
−→ 222

Θ
−→ 32,

and at each step, the condition u1 − 1 ≤ u2 holds. The word 1234488 is also admissible:

(3.5) 01233778
Θ
−→ 2233778

Θ
−→ 333778

Θ
−→ 43778

Θ
−→ 5778

Θ
−→ 778

Θ
−→ 88.

On the other hand, 3444 is not admissible since we have

(3.6) 3444
Θ
−→ 544

Θ
−→ 64,

and 6− 1 � 4.

If u is an nonempty word, let us denote by Ω(u) the height of u, that is the one-letter word
Θℓ(u)−1(u). For example, we have Ω(00122) = 4, Ω(01233778) = 9 and Ω(3444) = 6. Note that
one can deduce from Definition 3.5 that a word u ∈ N∗ of length greater than 1 is admissible
if and only if for each decomposition u = v.a.w where v ∈ N+, a ∈ N and w ∈ N∗, one has
Ω(v)− 1 ≤ a.
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3.2.3. Some properties of admissible words. Let us establish three lemmas on admissible words
that will be helpful later to prove our main result.

Lemma 3.6. If u is an admissible word, then, for all 1 ≤ i ≤ ℓ(u)− 1, one has ui − 1 ≤ ui+1.

Proof. Assume that u is of the form u = v.ui.ui+1.w with v, w ∈ N∗ and ui−1 > ui+1. Since Θ
changes a word a.b ∈ N2 into a letter c ∈ N no smaller than both a and b, we have Ω(v.ui) ≥ ui.
That implies that Ω(v.ui)−1 > ui+1, showing that u /∈ A and contradicting the hypothesis. �

Lemma 3.7. All prefixes and suffixes of an admissible word are admissible.

Proof. It is immediate, by definition, that all prefixes of an admissible word also are admissible.
Let u ∈ A such that ℓ(u) ≥ 2, and w be a nonempty suffix of u. Assume that w /∈ A. Hence,

w is of the form w = x.a.y where x ∈ N+, a ∈ N, y ∈ N∗ and Ω(x) − 1 > a. The word u is of
the form u = v.x.a.y where v ∈ N∗. Since Θ changes a word a.b ∈ N2 into a letter c ∈ N no
smaller than both a and b, we have Ω(v.x) ≥ Ω(x). Therefore, we have Ω(v.x)− 1 > a, showing
that u /∈ A and contradicting the hypothesis. �

Lemma 3.8. If u.v is an admissible word such that ℓ(v) ≥ 2, the word u.Θ(v) is still admissible.

Proof. If u is empty, the lemma follows immediately. Assume that u is nonempty. The word
u.v is of the form u.v = u.a.b.w where a, b ∈ N and w ∈ N∗. Set c := Θ(a.b) = Ω(a.b). The
word u.c.w = u.Θ(v) is admissible if the two inequalities Ω(u) − 1 ≤ c and Ω(u.c) ≤ Ω(u.a.b)
hold. Since u.a.b.w ∈ A, we have Ω(u) − 1 ≤ a, and since c = Θ(a.b), then c ≥ a and thus,
Ω(u) − 1 ≤ c, showing the first inequality. Set d := Ω(u). The second inequality amounts to
prove that Ω(d.c) ≤ Ω(d.a.b), which is equivalent to prove Ω(d.Ω(a.b)) ≤ Ω(d.a.b). This relation
holds in general for any letters a, b, d ∈ N, showing that u.Θ(v) ∈ A. �

3.2.4. Admissible height words. Let us prove two lemmas relating admissible words and height
words.

Lemma 3.9. Let T be a balanced binary tree, x be a node of T , and u be the height word of x.
Then u is admissible and Ω(u) ≤ h(T ).

Proof. We proceed by structural induction on the set of balanced binary trees. The lemma is
true for the single element T of the set B1 since by denoting x its node, we have u = hwT (x) = 0
which is admissible and satisfies 0 = Ω(u) ≤ h(T ) = 1.

Assume that T = L ∧ R. If x is a node of R, we have u = hwT (x) = hwR(x), and by
induction hypothesis, u ∈ A and Ω(u) ≤ h(R). Since h(R) < h(T ), the lemma is satisfied.

If x is a node of L, we have u = hwT (x) = hwL(x). h(R). Since T is balanced, h(R)−h(L) ∈
{−1, 0, 1}, and by induction hypothesis, Ω (hwL(x)) ≤ h(L). Hence, Ω (hwL(x)) − 1 ≤ h(R).
Moreover, again by induction hypothesis, hwL(x) ∈ A, and hence, u ∈ A. Finally, since
Ω(u) ≤ h(R) + 1 ≤ h(T ), the lemma is satisfied. �

Lemma 3.10. Let T be a binary tree and y be a node of T such that hwT (y) is admissible
and all subtrees of the sequence (Syi

)1≤i≤ℓ are balanced. Then, for all node x of T such that
y  T x, the word hwT (x) is admissible.

Proof. If x is an ancestor of y, since y  T x, y belongs to the left subtree of x. Hence, hwT (x)
is a suffix of hwT (y), and by Lemma 3.7, hwT (x) ∈ A.

Otherwise, let S be the subtree of T such that x is a node of S and the parent of the root
of S in T is an ancestor of y. The height word of y is of the form hwT (y) = u. h(S).v where
u, v ∈ N∗. Since y  T S, by hypothesis S is balanced and thus by Lemma 3.9, hwS(x) ∈ A.
Thanks to Lemma 3.7, h(S).v ∈ A, and since, by Lemma 3.9, Ω(hwS(x)) ≤ h(S), the word
hwT (x) = hwS(x).v is admissible too. �



10 SAMUELE GIRAUDO

3.3. The main result. We give and prove in this section the main result of this paper. For
that, we show through the next two Propositions, that the imbalance invariant defined in
Section 3.2 is appropriate to prove that all successors of a binary tree obtained from a balanced
binary tree by an unbalancing rotation cannot be rebalanced.

Before going further, let us give one example of a binary that satisfies the conservation
condition. Let us consider the following binary tree T :

y

Sy

x

Sx

Sx1

.(3.7)

One observes that the imbalance value of the node x is 2, that the left subtree of x is balanced,
and that the subtrees to the right w.r.t. y, namely Sy, Sx, and Sx1

are balanced. Hence,
x satisfies (W1), (W2), and (W3) and is a witness of imbalance of T . Moreover, one has
hwT (y) = 144. Since 144 is an admissible word, T satisfies the conservation condition (CC)
and hence, has an imbalance invariant.

Proposition 3.11. Let T0 be a balanced binary tree and T1 be an unbalanced binary tree such
that T0 ⋌ T1. Then, T1 has an imbalance invariant.

Proof. Let S0 := (A ∧ B) ∧ C be the subtree of T0 modified by the rotation transforming T0

into T1 and S1 := A ∧ (B ∧ C) be the resulting subtree in T1. Denote by r the root of this
rotation and by q the left child of r in S0 (see Figure 8). We shall exhibit, in the rest of this
proof, a witness of imbalance x of T1 that satisfies the conservation condition. By Lemma 3.2,

r

q

A B

C

T0 =
r

q

A

B C

= T1

Figure 8. The initial case, an unbalancing rotation at root r is performed
into the balanced binary tree T0.

q or r is unbalanced in T1 and has a positive imbalance value. Therefore, we have to consider
two cases, depending on the sort of unbalancing rotation which transforms T0 into T1.

Case 1: If it is a simply unbalancing rotation, set x := q and y as the leftmost node of the
subtree of root q in T1. Since iT1

(x) ≥ 2, (W1) checks out. Moreover, since T0 is balanced, by
Lemma 3.3, the subtrees to the right w.r.t. r are balanced in T1, and since A and B ∧ C are
balanced, (W2) and (W3) are established. Finally, since T0 is balanced, Lemma 3.9 shows that
hwT0

(y) is admissible. We have

(3.8) hwT0
(y) = hwA(y). h(B). h(C).v,

where v ∈ N∗. Besides, we have

(3.9) hwT1
(y) = hwA(y). h(B ∧ C).v = hwA(y).Θ(h(B). h(C)).v,



INTERVALS OF BALANCED BINARY TREES IN THE TAMARI LATTICE 11

since B ∧ C is balanced. Hence, we have hwT1
(y) = hwA(y).Θ(h(B). h(C).v), and since

hwA(y). h(B). h(C).v is admissible, by Lemma 3.8, hwT1
(y) also is. That shows that (CC)

is satisfied.

Case 2: Assume that the rotation is fully unbalancing. Set x := r and y as the leftmost
node of the subtree of root r in T1. Since iT1

(x) ≥ 2, (W1) checks out. Moreover, since T0 is
balanced, by Lemma 3.3, the subtrees to the right w.r.t r are balanced in T1, and since B is
balanced, (W2) and (W3) are established. Finally, since T0 is balanced, Lemma 3.9 shows that
hwT0

(y) is admissible. We have

(3.10) hwT0
(y) = hwB(y). h(C).v,

where v ∈ N∗. Besides,

(3.11) hwT1
(y) = hwB(y). h(C).v,

and hence hwT1
(y) = hwT0

(y), so that (CC) checks out.

Thereby, we have shown that there exists a node x in T1 that is a witness of imbalance and
satisfies the conservation condition in all case. �

Proposition 3.12. Let T1 and T2 be two binary trees such that T1⋌T2 and T1 has an imbalance
invariant. Then, T2 has an imbalance invariant.

Proof. Let x be a witness of imbalance of T1 that satisfies the conservation condition, y be the
leftmost node of the subtree of root x in T1, r be the root of the rotation that transforms T1

into T2, and q be the left child of r in T1. For all relative position of r w.r.t. y in T1, we shall
exhibit a witness of imbalance x′ of T2 that satisfies the conservation condition. If necessary,
we shall also exhibit the node y′ of T2 that is the leftmost node of the subtree of root x′.

There are exactly three cases to consider. Note first that since one can perform a rotation
of root r, r has a left son, and since y has no left son, r 6= y. The first case occurs when r is
to the left w.r.t. y (Case 1). Otherwise, when r is to the right w.r.t. y, the second case occurs
when r is a strict ancestor of y (Case 2). In this case, y is in the left subtree of r. Otherwise,
when r is to the right w.r.t. y and r is not a strict ancestor of y, the third case occurs (Case 3).
In this last case, the subtree of root r is to the right w.r.t. y.

Case 1: If r is to the left w.r.t. y, the rotation of root r does not modify any of the subtrees to
the right w.r.t. y. Thus, x′ := x is a witness of imbalance of T2 and satisfies the conservation
condition.

Case 2: If r and q are both ancestors of y in T1, set C as the right subtree of r and B as the
right subtree of q in T1. In this case, T2 is obtained from T1 by replacing the subtrees B and
C by B ∧ C as shown in Figure 9. We have now three possibilities whether B ∧ C is balanced
and r is an ancestor of x in T1.

Case 2.1: If B ∧ C is unbalanced, set x′ := r and y′ as the leftmost node of B ∧ C. One has

(3.12) hwT1
(y) = u. h(B). h(C).v,

where u, v ∈ N∗. Since x satisfies the conservation condition in T1, hwT1
(y) ∈ A. Thus, by

Lemma 3.6, we have h(B) − 1 ≤ h(C) so that iT2
(x′) ≥ 2 and (W1) is satisfied. Moreover,

since B is balanced, and by Lemma 3.3, all subtrees to the right w.r.t. x′ are also balanced
in T2, (W2) and (W3) are established. Finally, by Lemma 3.10, hwT1

(y′) ∈ A, and since
hwT2

(y′) = hwT1
(y′), (CC) checks out.
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r

q

y

C

B

T1 =
r

y

q

CB

= T2

Figure 9. The second case, r is an ancestor of y and y  T1
r.

Case 2.2: If B ∧ C is balanced and r is an ancestor of x in T1, set x
′ := x and y′ := y. One

clearly has iT2
(x′) ≥ 2, so that (W1) is satisfied. Moreover, since the left subtree of x′ in T2

is not modified by the rotation and hence stays balanced, since B ∧ C is balanced, and since
by Lemma 3.3, all subtrees to the right w.r.t. r are balanced in T2, (W2) and (W3) check out.
Finally, since x satisfies the conservation condition in T1, hwT1

(y) ∈ A and we have

(3.13) hwT1
(y) = u. h(B). h(C).v,

where u, v ∈ N∗. Besides,

(3.14) hwT2
(y′) = u. h(B ∧ C).v = u.Θ(h(B). h(C)).v,

since B ∧ C is balanced. Thus, by Lemma 3.8, hwT2
(y′) ∈ A, so that (CC) is satisfied.

Case 2.3: If B ∧ C is balanced and r is a descendant of x in T1, we have two possibilities
whether q is balanced in T2. If it is, set x

′ := x. By Proposition 3.1, the left subtree of x′ stays
balanced in T2 and iT2

(x′) ≥ 2. Thus, (W1) and (W2) are satisfied. Moreover, by Lemma 3.3,
all subtrees to the right w.r.t. x′ stay balanced in T2 so that (W3) checks out. Otherwise, if
q is not balanced, set x′ := q. Since the left subtree of x is balanced in T1, by Lemma 3.2,
iT2

(x′) ≥ 2, and (W1) holds. Moreover, q belongs to the left subtree of x in T1 which is
balanced, and hence, the left subtree of q is balanced in T2, so that (W2) holds. Since B ∧C is
balanced and by Lemma 3.3, (W3) also holds. Set now for both cases y′ as the leftmost node
of the subtree of root x′ in T2. The word hwT2

(y′) satisfies exactly same conditions as in the
previous case, so that (CC) is satisfied.

Case 3: If the subtree S1 := (A ∧ B) ∧ C of root r in T1 is to the right w.r.t. y, set S2 :=
A ∧ (B ∧ C) as the subtree of T2 obtained by the rotation at root r which transforms T1 into
T2 (see Figure 10). We have now two cases to consider whether S2 is balanced or not.

Case 3.1: If S2 is balanced, by Proposition 3.1, h(S2) = h(S1), and by setting x′ := x and
y′ := y one has iT2

(x′) = iT1
(x) so that (W1) is satisfied. Moreover, the left subtree of x′

stays balanced, and by Lemma 3.3, the subtrees to the right w.r.t. x′ in T2 also, so that (W2)
and (W3) check out. Finally, x′ also satisfies (CC) in T2 since hwT2

(y′) = hwT1
(y).

Case 3.2: If S2 is not balanced, by Proposition 3.11, there exists a node x′ in S2 which
is a witness of imbalance satisfying the conservation condition, locally in S2. Therefore, x′

satisfies (W1) and (W2) in T2. It also satisfies (W3) in T2 since, by Lemma 3.3, the subtrees
of T2 to the right w.r.t. r stay balanced. It remains to prove that x′ satisfies the conservation
condition in the whole binary tree T2. Set y′ as the leftmost node of the subtree of root x′ in
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y

r

q

A B

C

T1 =

y

r

q

A

B C

= T2

Figure 10. The third case, r is a node of a subtree S1 of T1 satisfying y  T1
S1.

T2. By Proposition 3.11, w := hwS2
(y′) ∈ A, and by Lemma 3.9, w satisfies Ω(w) ≤ h(S1). By

hypothesis, hwT1
(y) ∈ A and one has

(3.15) hwT1
(y) = u. h(S1).v,

where u, v ∈ N∗. Besides, since

(3.16) hwT2
(y′) = w.v,

one has hwT2
(y′) ∈ A, establishing (CC).

Thereby, we have shown that there exists a node x′ in T2 that is a witness of imbalance and
satisfies the conservation condition in all case. �

Theorem 3.13. Let T and T ′ be two balanced binary trees such that T ≤T T ′. Then, the
interval [T, T ′] only contains balanced binary trees. In other words, all successors of a binary
tree obtained by an unbalancing rotation from a balanced binary tree are unbalanced.

Proof. Let T0 and T2 be two balanced binary trees and T1 be an unbalanced binary tree. Assume
that

(3.17) T0 ⋌ · · ·⋌ T1 ⋌ · · ·⋌ T2.

By Proposition 3.11, T1 satisfies the conservation condition. Moreover, by Proposition 3.12,
T2 also satisfies the conservation condition. Hence, T2 has a witness of imbalance and by
Remark 3.4, T2 is unbalanced. This is contradictory with our hypothesis.

Therefore, the notion of imbalance invariant defined in Section 3.2 is appropriate and hence
the set of balanced binary trees is closed by interval in the Tamari lattice. �

4. Synchronous grammars

In this section, we introduce synchronous grammars. These grammars allow to generate
planar rooted tree-like structures by allowing these to grow from the root to the leaves step
by step. Such trees grow from a single node, the root, and by simultaneously substituting its
nodes with no children by new tree-like structures following some fixed substitution rules.

As we shall see, synchronous grammars are convenient tools to enumerate some specified
families of planar rooted tree-like structures. Indeed, one can extract a fixed-point functional
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equation for the generating series enumerating the specified objects from a synchronous gram-
mar subject to two precise conditions that we shall expose. We also present an algorithm to
compute the coefficients of this generating series.

4.1. Definitions.

4.1.1. Bud trees.

Definition 4.1. Let B be a nonempty finite alphabet. A B-bud tree, or simply a bud tree if
B is fixed, is a nonempty incomplete rooted planar tree where the leaves, namely the buds, are
labeled on B.

Set for the sequel B := {b1, . . . , bk} as a nonempty finite alphabet. Denote by Dn the set of
B-bud trees with n buds and by D the set of all B-bud trees. The set of all buds of a bud tree
D is denoted by Buds(D) and the frontier of D is the sequence (b1, . . . , bn) of its buds, read
from left to right. If b is a bud, we shall denote by ev(b) the evaluation of b, that is the element
of B labeling b. Moreover, the evaluation ev(D) of D is the monomial of Z[B] defined by

(4.1) ev(D) :=
∏

b∈Buds(D)

ev(b).

For example,

(4.2) ev





z



 = z and ev









x

y x









= x2y.

4.1.2. Synchronous grammars.

Definition 4.2. A synchronous grammar S is a triple (B, a,R) where:

• B is a nonempty alphabet, the set of bud labels;
• a is a bud labeled on B, the axiom of S;
• R ⊆ B ×D is a finite set such that for all b ∈ B, there is at least one bud tree D such

that (b, D) ∈ R. This is the set of substitution rules of S.

Let S := (B, a,R) be a synchronous grammar. For the sake of readability, we will make
use of the following notation for substitution rules: If (b, D) is a substitution rule of S, we
shall denote it by b 7−→S D or by b 7−→ D if S is fixed. Moreover, we will abbreviate the
substitutions rules b 7−→S D1, . . . , b 7−→S Dn by

(4.3) b 7−→S D1 + · · ·+Dn.

Definition 4.3. Let S := (B, a,R) be a synchronous grammar and D0 be a bud tree with frontier
(b1, . . . , bn) where ev(bi) = bi for all 1 ≤ i ≤ n. We say that the bud tree D1 is derivable from

D0 in S, and we denote that by D0
S
−→ D1, if there exists a sequence of substitution rules

(b1 7−→ T1, . . . , bn 7−→ Tn) of Rn such that, by simultaneously substituting the bud bi of D0 by
the root of Ti for all 1 ≤ i ≤ n, one obtains D1.

Definition 4.4. A bud tree D is generated by a synchronous grammar S := (B, a,R) if there
exists a sequence (D1, . . . , Dℓ−1) of bud trees such that

(4.4) a
S
−→ D1

S
−→ · · ·

S
−→ Dℓ−1

S
−→ D.

Moreover, we say that D is generated by a ℓ-steps derivation.
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We denote by L
(ℓ)
S the set of the bud trees generated by ℓ-steps derivations and by LS the

language of S, that is the set of all bud trees generated by S. We also say that S is trim if
for all b ∈ B there exists at least one bud tree D generated by S that contains a bud labeled
by b. In the sequel, we shall only consider trim synchronous grammars without mentioning it
explicitly.

We will illustrate most of the next definitions through the synchronous grammar

(4.5) Sepl :=
(

{x, y}, x , R
)

,

where R contains the substitution rules

x 7−→ x

2

y + x

3

xy ,(4.6)

y 7−→ x .(4.7)

Figure 11 shows a derivation in Sepl.

x

3

xy

Sepl

−−→
2

3

x 3

x y x y x

Figure 11. A 1-step derivation in Sepl.

4.1.3. Generating graph. The ℓ-generating graph G
(ℓ)
S := (V,E) of a synchronous grammar S is

the directed graph defined by

(4.8) V :=
⋃

0≤i≤ℓ

L
(i)
S ,

and

(4.9) E :=
{

(D0, D1) ∈ V 2 : D0
S
−→ D1

}

.

The generating graph of S is the possibly infinite graph GS defined as above where V := LS .
This graph is connected and has at most one source, the axiom a. Figure 12 shows an example
of a 2-generating graph.

4.1.4. Strict and unambiguous synchronous grammars.

Definition 4.5. A synchronous grammar S := (B, a,R) is strict if there exists a monomial
order ≤B on the set of monomials of Z[B] such that, for all bud tree D0 generated by S and all
bud tree D1 derivable from D0, we have ev(D0) <B ev(D1).

If S is strict, since its set of substitution rules is finite, S generates only finitely many bud
trees with a given evaluation, and since its set of buds is finite, S also generates only finitely
many bud trees with a given number of buds. Moreover, if S is strict, its generating graph GS
is acyclic.

Lemma 4.6. Let S := (B, a,R) be a synchronous grammar. If there exists a total order ≤B

on B such that, for all substitution rule b 7−→ D of R where D ∈ D1 we have b <B ev(D), then
S is strict.
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x

2

x y

x

3

xy

2

2 x

x y

2

3 x

x xy

2

3

x 2

x y x y

3

3

x 2

x x x yy

2

3

x 3

x y x y x

3

3

x 3

x y x y xx

Figure 12. The 2-generating graph of Sepl.

Proof. We extend the total order ≤B defined on B into a monomial order on the set of mono-
mials of Z[B] by considering the graded lexicographic order on monomials.

Consider now a bud tree D0 generated by S and a bud tree D1 derivable from D0. If there
exists at least one bud of D0 that is substituted by a bud tree with more than one bud, one has
ℓ (ev(D0)) < ℓ (ev(D1)) and hence ev(D0) <B ev(D1). Otherwise, D0 and D1 have the same
number of buds. By hypothesis, all buds of the frontier (b1, . . . , bn) of D0 are substituted by
n bud trees each containing the buds c1, . . . , cn such that ev(bi) <B ev(ci) for all 1 ≤ i ≤ n.
Hence, ev(D0) <B ev(D1), implying that S is strict. �

For instance, Sepl is strict since the order y ≤B x meets the assumptions of Lemma 4.6. This
order can be extended into the monomial order defined by

(4.10) xiyj ≤B xkyℓ if i+ j < k + l or i+ j = k + l and i ≤ k.

Definition 4.7. A synchronous grammar S is unambiguous if for all bud tree D, there exists
at most one integer ℓ ≥ 0 and one sequence (D1, . . . , Dℓ−1) such that (4.4) holds.

The generating graph GS is a tree if and only if S is unambiguous.

Lemma 4.8. Let S := (B, a,R) be a strict synchronous grammar. If for all b ∈ B and for all
substitution rules b 7−→ T0 and b 7−→ T1 of R where T0 6= T1 there are at the same location in
T0 and T1 two non-bud nodes that are different, then S is unambiguous.
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Proof. Let D be a bud tree generated by S and D0 and D1 be two different bud trees derivable
from D. Among other substitutions, the bud tree D0 (resp. D1) is obtained by replacing one
of its buds by a bud tree T0 (resp. T1), and by hypothesis, there are at the same location
in T0 and T1 two non-bud nodes that are different. Hence, there are at the same location in
D0 and D1 two non-bud nodes that are different. This shows that all bud trees obtained by
performing any sequence of derivations from D0 and from D1 are different since they differ by
a non-bud node. Moreover, since S is strict, its generating graph contains no cycle, and hence,
S is unambiguous. �

For instance, Lemma 4.8 shows that Sepl is unambiguous since it is strict and the bud x

can be substituted by two buds trees with different roots: One of these is of arity 2 while the
other one is of arity 3.

4.2. Synchronous grammars and generating series.

Definition 4.9. Let S := (B, a,R) be a synchronous grammar. The ℓ-generating series S
(ℓ)
S of

S is the polynomial of Z[B] defined by

(4.11) S
(ℓ)
S (b1, . . . , bk) :=

∑

a
S

−→D1

S

−→···
S

−→Dℓ

ev(Dℓ).

Moreover, if S is strict, the generating series SS of S is the element of Z[[B]] defined by

(4.12) SS(b1, . . . , bk) :=
∑

ℓ≥0

S
(ℓ)
S (b1, . . . , bk).

Let S := (B, a,R) be a strict synchronous grammar. The series SS is well-defined since S is
strict. Moreover, if S is also unambiguous, we have

(4.13) SS(b1, . . . , bk) =
∑

D ∈ LS

ev(D),

and for all monomial u := b
α1

1 . . .bαk

k , the coefficient [u]SS is the number of bud trees generated
by S that have u as evaluation, i.e., a frontier made of αi occurrences of buds labeled by bi,
for all 1 ≤ i ≤ k.

For example, the first ℓ-generating series of Sepl are

S
(0)
Sepl

(x, y) = x,(4.14)

S
(1)
Sepl

(x, y) = xy + x2y,(4.15)

S
(2)
Sepl

(x, y) = x2y + x3y + x3y2 + 2x4y2 + x5y2.(4.16)

and its generating series is of the form

(4.17) SSepl
(x, y) = x+ xy + 2x2y + x3y + x3y2 + 2x4y2 + x5y2 + · · ·

For all b ∈ B let us define the polynomials subs(b) of Z[B] by

(4.18) subs(b) :=
∑

(b,D) ∈ R

ev(D).

For instance, for Sepl one directly obtains from (4.6) and (4.7)

subs(x) = xy + x2y,(4.19)

subs(y) = x.(4.20)
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Lemma 4.10. Let S := (B, a,R) be a synchronous grammar. For all ℓ ≥ 0, S
(ℓ)
S satisfies

(4.21) S
(ℓ)
S (b1, . . . , bk) =

{

ev(a) if ℓ = 0,

S
(ℓ−1)
S (subs(b1), . . . , subs(bk)) otherwise.

Proof. If ℓ = 0, the only bud tree generated by 0-step derivations is the axiom a of S. Hence,
the lemma is satisfied.

Let ℓ ≥ 1. Assume that there exists the following sequence of derivations in S:

(4.22) a
S
−→ D1

S
−→ · · ·

S
−→ Dℓ−1

S
−→ Dℓ.

Then, by definition, Dℓ is obtained by substituting the buds bi of Dℓ−1 by some buds trees
Ti. From the polynomial point of view, the monomial ev(Dℓ) is obtained by the polynomial

substitutions ev(bi)←[ ev(Ti) in S
(ℓ−1)
S . Hence, S

(ℓ)
S is obtained from S

(ℓ−1)
S by performing the

polynomial substitution b← subs(b) for each b ∈ B, showing (4.21). �

Proposition 4.11. Let S := (B, a,R) be a strict synchronous grammar. The generating series
SS satisfies the fixed-point functional equation

(4.23) SS(b1, . . . , bk) = ev(a) + SS(subs(b1), . . . , subs(bk)).

Proof. Using Lemma 4.10, we obtain

SS(b1, . . . , bk) =
∑

ℓ≥0

S
(ℓ)
S (b1, . . . , bk)(4.24)

= S
(0)
S (b1, . . . , bk) +

∑

ℓ≥1

S
(ℓ)
S (b1, . . . , bk)(4.25)

= ev(a) +
∑

ℓ≥0

S
(ℓ+1)
S (b1, . . . , bk)(4.26)

= ev(a) +
∑

ℓ≥0

S
(ℓ)
S (subs(b1), . . . , subs(bk))(4.27)

= ev(a) + SS(subs(b1), . . . , subs(bk)). �

Proposition 4.11 gives a formula to extract a fixed-point functional equation for the gener-
ating series of a given strict synchronous grammar S := (B, a,R) and Lemma 4.10 gives an

algorithm to compute its coefficients by iteration, i.e., by computing the polynomials S
(ℓ)
S for

0 ≤ ℓ ≤ n where n is a desired order, and then, by summing its terms.

In our example, the generating series of Sepl satisfies the fixed-point functional equation

(4.28) SSepl
(x, y) = x+ SSepl

(xy + x2y, x).

Note that in some cases it is useful to specialize the generating series SS associated with S.
For example, the specialization of an element b of B to 0 allows to annihilate some terms of
SS corresponding to bud trees which have buds labeled by b. In this way, the enumeration
provided by SS with this specialization takes into account only bud trees generated by S that
have no bud labeled by b.

In the same way, it is possible to add some parameters to the substitution rules of S in order
to refine the generating series SS . For instance, to take into account the number of application
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of the substitution rule

(4.29) x 7−→ x

3

xy ,

in the bud trees generated by Sepl, one has just to set

(4.30) subs(x) := xy + x2yξ,

so that the parameter ξ counts the number of application of this substitution rule. In this way,
one can enumerate tree-like structures according to some statistics.

4.3. Examples. Let us consider three examples of synchronous grammars to illustrate the
concepts that we have presented. Let us start with a very simple example.

4.3.1. Perfect binary trees. Let the synchronous grammar Sperf :=
(

{x}, x , R
)

where R con-

tains the unique substitution rule

(4.31) x 7−→ x x .

By identifying the buds x with leaves, the language LSperf
is the set of perfect binary trees,

that are binary trees of the sequence (Ti)i≥0 defined by T0 :=⊥ and Ti+1 := Ti ∧ Ti.

This synchronous grammar is strict since the number of buds of all bud trees generated
by Sperf increases after each derivation. Besides, since Sperf is strict and R only contains one
substitution rule, the generating graph GSperf

only contains one maximal path and hence, Sperf

is unambiguous. Therefore, the series SSperf
is well-defined and by Proposition 4.11, it satisfies

the fixed-point functional equation

(4.32) SSperf
(x) = x+ SSperf

(x2),

and enumerate perfect binary trees according to their number of leaves. First S
(ℓ)
Sperf

polynomials
are

(4.33) S
(0)
Sperf

(x) = x, S
(1)
Sperf

(x) = x2, S
(2)
Sperf

(x) = x4, S
(3)
Sperf

(x) = x8,

so that

(4.34) SSperf
(x) =

∑

n≥0

x2n = x+ x2 + x4 + x8 + · · ·

4.3.2. Balanced 2-3 trees. Let the synchronous grammar S23 :=
(

{x}, x , R
)

where R contains

the substitution rules

(4.35) x 7−→ x

2

x + x

3

xx .

By identifying the buds x with leaves, the language of S23 is the set of balanced 2-3 trees,
that are complete rooted planar trees such that each internal node has 2 or 3 children and all
paths leading to their leaves have same length (see [Odl82, FS09]).

Since each step of derivation increases the number of buds of the generated bud tree, S23 is
strict. Moreover, S23 satisfies the hypothesis of Lemma 4.8 and hence is unambiguous. Indeed,
the two bud trees appearing in the two substitution rules have a different root: One is of arity
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2 and the other of arity 3. Thus, the series SS23
is well-defined and by Proposition 4.11, it

satisfies the fixed-point functional equation

(4.36) SS23
(x) = x+ SS23

(x2 + x3),

and enumerate balanced 2-3 trees according to their number of leaves. First polynomials S
(ℓ)
S23

are

S
(0)
S23

(x) = x,(4.37)

S
(1)
S23

(x) = x2 + x3,(4.38)

S
(2)
S23

(x) = x4 + 2x5 + 2x6 + 3x7 + 3x8 + x9.(4.39)

An interpretation of the polynomial S
(2)
S23

(x) is the following: By performing 2-steps derivations,
S23 generates one bud tree with 4 buds, two bud trees with 5 buds, two bud trees with 6 buds,
three bud trees with 7 buds, three bud trees with 8 buds and one bud tree with 9 buds.

4.3.3. Balanced binary trees. Consider now the synchronous grammar Sbal :=
(

{x, y}, x , R
)

where R contains the substitution rules

x 7−→ x

−1

y + x

0

x + y

1

x ,(4.40)

y 7−→ x .(4.41)

As we shall show, by annihilating the bud trees containing some buds y and by replacing

the buds x by leaves, the language of Sbal is the set of balanced binary trees.

Proposition 4.12. Let D be a bud tree generated by Sbal only containing buds x . Then, the
non-bud nodes of D are labeled by their imbalance value.

Proof. Each step of derivation leading to D substitutes each x by new bud trees of height

two, and each y by new bud trees of height one. Thus, each step of derivation increases by

one the height of the subtrees containing a x . Besides, the role of the y is to delay, during
one step of derivation, the growth of the branch containing these, to enable the creation of the

imbalance values −1 and 1. Since D does not have any y , every growing delay is respected,
so that imbalance values are its labels. �

Proposition 4.12 shows that the bud trees generated by Sbal only containing buds x are
balanced binary trees. Moreover, a simple structural induction on balanced binary trees shows
that every balanced binary tree can be generated by Sbal. Indeed, the empty tree can be
generated, and, if T is a balanced binary tree and z its root, by induction hypothesis, its left
subtree and its right subtree can be generated by Sbal. To generate T , one just have to make the
first derivation according to the imbalance value of z. Figure 13 shows an example of generation
of a balanced binary tree.

By setting y ≤B x, Sbal satisfies the hypothesis of Lemma 4.6 and hence, is strict. Moreover,
Lemma 4.8 shows that Sbal is unambiguous since all bud trees arising in a right member of the
substitution rules of Sbal have a different root since their labeling differ. Proposition 4.12 shows
that this labeling is consistent. Hence SSbal

is well-defined. By Proposition 4.11, the generating
series enumerating the elements of LSbal

satisfies the fixed-point functional equation

(4.42) SSbal
(x, y) = x+ SSbal

(x2 + 2xy, x).
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x Sbal−−→ y

1

x
Sbal−−→

x

1

x

−1

y
Sbal−−→ x

−1

y

1

y

1

x

−1

x

Sbal−−→
x

0

x

−1

x

1

x

1

x

0

x

−1

x

0

x
≈

Figure 13. Generation of a balanced binary tree by the synchronous grammar Sbal.

First S
(ℓ)
Sbal

polynomials are

S
(0)
Sbal

(x, y) = x,(4.43)

S
(1)
Sbal

(x, y) = 2xy + x2,(4.44)

S
(2)
Sbal

(x, y) = 4x2y + 2x3 + 4x2y2 + 4x3y + x4.(4.45)

As already mentioned, to enumerate balanced binary trees, we have to discard the elements of
LSbal

that contain a bud labelled by y. Thus, the generating series enumerating balanced binary
trees according to their number of leaves is given by the specialization SSbal

(x, 0). Note that
this fixed-point functional equation is obtained in [BLL88, BLL94, Knu98] by other methods.

5. Imbalance tree patterns and balanced binary trees

Word patterns and permutations patterns are usually used to describe languages or sets of
permutations by considering the set of elements avoiding these ones. We use the same idea
to describe sets of binary trees by introducing a notion of binary tree patterns and pattern
avoidance.

We show that we can describe in this way some interesting subsets of the set of balanced
binary trees according to their particular position in the Tamari lattice. Afterwards, we use the
methods developed in the previous section to construct synchronous grammar generating the
maximal balanced binary trees in the Tamari lattice and get fixed-point functional equation for
the generating series enumerating these.

5.1. Imbalance tree patterns.

Definition 5.1. An imbalance tree pattern is a nonempty incomplete rooted planar binary tree
with labels in Z.

Let T be a binary tree. We denote by T i the labeled binary tree of shape T whose nodes are
labeled by their imbalance value. We say that T admits an occurrence of the imbalance tree
pattern p if a connected component of T i has the same shape and same labels as p.

Now, given a set P of imbalance tree patterns, we can define the set composed of the binary
trees that avoid P , i.e., the binary trees that do not admit any occurrence of the elements of P .
For example, the set

(5.1)
{

i : i /∈ {−1, 0, 1}
}
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describes the set of balanced binary trees, the set

(5.2)
{

i : i 6= 0
}

describes the set of perfect binary trees and

(5.3)

{

i

j
: i, j ∈ Z

}

describes the set of right comb binary trees, that are binary trees such that each node has an
empty left subtree.

As exposed in Section 4.3, synchronous grammars allow to generate binary trees by control-
ling the imbalance values of their nodes. Hence, they allow to generate binary trees that avoid
some imbalance tree patterns.

5.2. Minimal and maximal balanced binary trees in the Tamari lattice.

5.2.1. Minimal and maximal balanced binary trees. Let us first describe a set of balanced binary
trees and its counterpart whose elements are, roughly speaking, at the end of the balanced binary
trees subposet of the Tamari lattice.

Definition 5.2. A balanced binary tree T0 (resp. T1) is maximal (resp. minimal) if, for all
binary tree T1 (resp. T0) such that T0 ⋌ T1, we have T1 (resp. T0) unbalanced.

By Theorem 3.13, if T0 (resp. T1) is a maximal (resp. minimal) balanced binary tree, then
there does not exist any balanced binary tree T1 (resp. T0) such that T0 ≤T T1. Maximal (resp.
minimal) balanced binary trees are thus maximal (resp. minimal) elements in the Tamari lattice
restricted to balanced binary trees.

Proposition 5.3. A balanced binary tree T is maximal if and only if it avoids the set of
imbalance tree patterns

(5.4) Pmax :=







−1

−1
, 0

−1






.

Similarly, a balanced binary tree T is minimal if and only if it avoids the set of imbalance tree
patterns

(5.5) Pmin :=

{

1

1 ,
1

0

}

.

Proof. Assume that T is maximal. Then, for all binary tree T1 such that T ⋌ T1 we have T1

unbalanced. Thus, it is impossible to do a conservative balancing rotation into T and, looking
at the different sorts of rotations studied in Section 3.1 it avoids the set Pmax.

Conversely, assume that T is a balanced binary tree that avoids the two patterns of Pmax,
then, for every binary tree T1 such that T ⋌T1, T1 is unbalanced since for all node y which has
a left child x in T , the imbalance values of x and y satisfy one of the seven cases (R3)–(R9) of
Section 3.1. Thus, we can only do unbalancing rotations into T , implying that T is maximal.

The second part of the proposition is done in an analogous way, considering left rotations
instead of right rotations. �

Proposition 5.4. The generating series enumerating maximal balanced binary trees according
to the number of leaves of the trees is Smax(x, 0, 0) where

(5.6) Smax(x, y, z) = x+ Smax(x
2 + xy + yz, x, xy).
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Proof. To obtain this fixed-point functional equation, let us consider the synchronous grammar

Smax :=
(

{x, y, z}, x , R
)

where R contains the substitution rules

x 7−→ x

0

x
+

y

1

x
+

z

−1

y ,(5.7)

y 7−→ x ,(5.8)

z 7−→ y

1

x .(5.9)

We can apply the same idea developed in the proof of Proposition 4.12 to show that the

bud trees generated by Smax that only contain buds x have non-bud nodes labeled by their

imbalance values. Hence, by identifying in such trees the x with leaves, Smax only generates
maximal balanced binary trees. Indeed, by Proposition 5.3, the generated trees must avoid

the two patterns of Pmax. To do that, we have to control the growth of the x when they are
substituted by bud trees D whose roots have imbalance values of −1. Indeed, if the root of
the left subtree of D grows with an imbalance value of −1 or 0, one of the two patterns is not
avoided. The idea is to force the imbalance value of the root of the left subtree of D to be 1,

role played by the bud z . The role of the bud y is to delay the growth of a branch of the
generated bud tree in order to create the imbalance values −1 and 1. Moreover, by structural
induction on maximal balanced binary trees, one can also prove that all maximal balanced
binary trees can be generated by Smax.

By setting y ≤B x, Smax satisfies the hypothesis of Lemma 4.6, and hence, is strict. This
synchronous grammar is also unambiguous since it satisfies the hypothesis of Lemma 4.8. In-
deed, the roots of all bud trees appearing in a right member of the substitution rules of R are
different to one other, due to their labeling.

Finally, since Smax is strict and unambiguous, by Proposition 4.11, we obtain the stated fixed-
point functional equation, and the generating series is obtained by the specialization y = 0 and
z = 0 in order to ignore bud trees containing a bud labelled by y or by z. �

The solution of this fixed-point functional equation gives us the following first values for the
number of maximal balanced binary trees in the Tamari lattice:

1, 1, 1, 1, 2, 2, 2, 4, 6, 9, 11, 13, 22, 38, 60, 89, 128, 183, 256, 353, 512, 805, 1336, 2221, 3594,

5665, 8774, 13433, 20359, 30550, 45437, 67086, 98491, 144492, 213876.
(5.10)

5.2.2. Interior balanced binary trees. Let us now describe a set of balanced binary trees and
its counterpart whose elements are, roughly speaking, in the heart of the balanced binary trees
subposet of the Tamari lattice.

Definition 5.5. A balanced binary tree T0 (resp. T1) is right interior (resp. left interior) if all
binary tree T1 (resp. T0) such that T0 ⋌ T1 is balanced.

Proposition 5.6. A balanced binary tree T is right interior if and only if it avoids the set of
imbalance tree patterns

(5.11) Print :=

{

−1

0
, −1

1
, 0

0
, 0

1
, 1

−1
, 1

0
, 1

1
}

.
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Similarly, a balanced binary tree T is left interior if and only if it avoids the set of imbalance
tree patterns

(5.12) Plint :=







0

1 ,
−1

1 ,
0

0 ,
−1

0 ,
1

−1 ,
0

−1 ,
−1

−1







.

Proof. Assume that T is right interior. Then, for all binary tree T1 such that T ⋌ T1, T1 is
balanced. Thus, for every node y and its left child x in T , the imbalance values of x and y
satisfy (R1) or (R2) of Section 3.1 since one can only do conservative balancing rotations in T .
Hence, T must avoid the seven given patterns.

Conversely, assume that T is a balanced binary tree that avoids the patterns of Print. For
every node y which has a left child x in T , the imbalance values of x and y satisfy (R1) or (R2).
Thus, the rotation of root y in T produces a balanced binary tree and implies that T is interior.

The second part of the proposition is done in an analogous way, considering left rotations
instead of right rotations. �

In the sequel, we shall only consider right interior balanced binary trees so we call these
interior balanced binary trees. This family of binary trees is easily enumerable according to
their height:

Proposition 5.7. The number ah of interior balanced binary trees of height h is

(5.13) ah =











1 if h ∈ {0, 1, 3},

2 if h = 2,

ah−1ah−2 otherwise.

Proof. The values of ah for 0 ≤ h ≤ 3 can easily be computed by hand.
Let us first observe that if T := L ∧ R is an interior balanced binary tree of height h ≥ 3,

then L and R also are interior balanced binary trees and the imbalance value of the root of T is
−1. Indeed, if L or R is not an interior balanced binary tree, then, by Proposition 5.6, L or R
would admit an occurrence of a pattern of Print and hence, would T . Moreover, if the imbalance
value of T is not −1, since T is balanced and h(T ) ≥ 3, its left subtree L is nonempty and T
would admit an occurrence of a pattern of Print.

Let us finally show that for all integer h ≥ 4 and all interior balanced binary trees L and R
such that h(L) = h − 1 and h(R) = h − 2, the binary tree T := L ∧ R is an interior balanced
binary tree. Since h(L) ≥ 3, according to what we have just shown, the imbalance value of the
root x of L is −1. The imbalance value of the root y of T also is −1 and thus, x and y do not
form a pattern of Print in T . Moreover, the root of R and the node x in T do neither form a
pattern of Print. Hence, T is an interior balanced binary tree. That proves (5.13). �

The first values of (ah)h≥0 are

(5.14) 1, 1, 2, 1, 2, 2, 4, 8, 32, 256, 8192, 2097152, 17179869184.

By forgetting the first three values, this is Sequence A000301 of [Slo]. Moreover, one has
ah = 2fh−3 for all h ≥ 3, where fi is the i-th Fibonacci number, defined by fi := i if i ∈ {0, 1},
and fi := fi−1 + fi−2 otherwise.

Recall that the set of Fibonacci binary trees [CLRS03] is formed of the elements of the
sequence (Ti)i≥0 where T0 := T1 :=⊥ and Ti+2 := Ti+1 ∧ Ti. One can prove by structural
induction on the set of Fibonacci binary trees that these also are interior balanced binary trees.

http://oeis.org/A000301
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5.2.3. Mixed balanced binary trees. Let us finally characterize balanced binary trees which are
neither maximal nor interior.

Definition 5.8. A balanced binary tree T0 is right mixed (resp. left mixed) if there exists a
balanced binary tree T1 and an unbalanced binary tree T ′

1 such that T0 ⋌ T1 and T0 ⋌ T ′
1 (resp.

T1 ⋌ T0 and T ′
1 ⋌ T0).

Proposition 5.9. A balanced binary tree T is right mixed (resp. left mixed) if and only if it
admits at least one occurrence of an imbalance tree pattern of the set Pmax (resp. Pmin) and at
least one occurrence of an imbalance tree pattern of the set Print (resp. Plint).

Proof. Assume that T is a mixed balanced binary tree. By definition, it is possible to perform a
conservative balancing rotation into T . Hence, there are two nodes x and y in T satisfying (R1)
or (R2) of Section 3.1 and form an occurrence of a pattern of Pmax. Moreover, again by
definition, it is possible to perform an unbalancing rotation into T . Hence, there are two nodes
x′ and y′ in T satisfying one of the seven cases (R3)–(R9) of Section 3.1 and form an occurrence
of a pattern of Print.

Conversely, if T admits some occurrences of patterns of both Pmax and Print, considering the
nine cases of rotation in a balanced binary tree studied in Section 3.1, we see that it is possible
to make both a conservative and an unbalancing rotation into T , and hence T is a right mixed
balanced binary tree.

The second part of the proposition is done in an analogous way, considering left rotations
instead of right rotations. �

In the sequel, we shall only consider right mixed balanced binary trees, so we call these mixed
balanced binary trees.

Note that, for n ≥ 3, the set Bn is a disjoint union of the set M of maximal balanced binary
trees, the set N of interior balanced binary trees and the set X of mixed balanced binary trees
with n nodes. Indeed, by definition, M and X are disjoint, and in the same way, N and X also
are. Consider now a balanced binary tree T which is both maximal and interior. That implies
that T is the maximal element of its Tamari lattice, and hence, T is a right comb binary tree.
Since T is also balanced, it cannot have more than two nodes.

6. The subposet of the Tamari lattice of balanced binary trees

6.1. Isomorphism between balanced binary tree intervals and hypercubes.

Lemma 6.1. Let T0 and T1 be two balanced binary trees such that T0 ≤T T1 and y be a node
of T0. Then:

(i) If the rotation of root y in T0 is an unbalancing rotation, then, if it exists, the rotation
of root y in T1 is still an unbalancing rotation;

(ii) If y has no left child in T0, then y has no left child in T1.

Proof. (i): If the rotation of root y in T0 is an unbalancing rotation, it is because the imbalance
values of y and its left child x do not satisfy (R1) or (R2) of Section 3.1. Thus, to change
these imbalance values, one has to perform rotations to change the height of some subtrees of
x and y. By Proposition 3.1, these rotations necessarily unbalance the obtained binary tree.
Moreover, by Theorem 3.13, it is impossible to make rotations to balance it again. This shows
that if y has a left child in T1, it is necessarily a root of an unbalancing rotation.

(ii): This is immediate from the definition of the rotation operation and by the fact that the
rotation operation does not change the infix order of the nodes of a binary tree. �
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Lemma 6.1 shows that for all balanced binary trees T0 and T1 such that T0 ≤T T1, a node
y cannot become a root of a conservative balancing rotation in T1 if it is not a root of a
conservative balancing rotation in T0.

Lemma 6.2. Let T0 and T1 be two balanced binary trees and y be a node of T0 such that T1 is
obtained from T0 by a rotation of root y. Then, denoting by x the left child of y in T0, for all
balanced binary tree T2 such that T1 ≤T T2, x and y cannot be roots of conservative balancing
rotations in T2.

Proof. Since T1 is obtained by performing a conservative balancing rotation of root y into T0,
we have two cases to consider, following the imbalance values of x and y in T0. If iT0

(x) =
iT0

(y) = −1, then iT1
(x) = iT1

(y) = 1 and x and y are not roots of conservative balancing
rotations in T1, so that, by Lemma 6.1, x and y cannot be roots of conservative balancing
rotations in T2. If iT0

(x) = 0 and iT0
(y) − 1, then iT1

(x) = 1 and iT1
(y) = 0. For the same

reason, x and y cannot be roots of conservative balancing rotations in T2. �

A hypercube of dimension k can be seen as a poset whose elements are subsets of a set
{e1, . . . , ek}, and ordered by the relation of inclusion. Let us denote by Hk the hypercube poset
of dimension k.

We have the following characterization of the shape of balanced binary tree intervals:

Theorem 6.3. Let T0 and T1 be two balanced binary trees such that T0 ≤T T1. Then, the poset
([T0, T1],≤T) is isomorphic to the hypercube Hk, where k is the number of rotations needed to
transform T0 into T1.

Proof. First, note by Theorem 3.13, that the interval I := [T0, T1] only contains balanced binary
trees. Hence, all covering relations in I are conservative balancing rotations.

Denote by R the set of nodes y of T0 such that y is a root of a rotation needed to transform
T0 into T1. By Lemma 6.2, R is well defined — it is not a multiset — and if y ∈ R then,
denoting by x the left child of y in T0, we have x /∈ R. That implies that T1 can be obtained
from T0 by performing, for all y ∈ R, a rotation of root y, independently of the order.

Let us now define a bijection between the elements of I and the set of the subsets of R. Let
T ∈ I. By definition, it is possible to obtain T by performing some rotations from T0. Let
R0 be the set of nodes which are roots of these rotations. Besides, it is possible to obtain T1

by performing some rotations from T . Let R1 be the set of nodes which are roots of these
rotations. By Lemma 6.1, we have R = R0 ⊎ R1 and thus R0 ⊂ R. The set R0 characterizes
T . Conversely, for each subset R0 ⊆ R we can construct a unique binary tree T ∈ I. Indeed,
T is obtained by doing the rotations of root y for all y ∈ R0 into T0, in any order. This is
well-defined, by definition of R.

This shows that the interval I is isomorphic to the poset Hk where k is the number of
rotations needed to transform T0 into T1. �

The first subposets of the Tamari lattice of balanced binary trees are depicted in Figure 14.

6.2. Enumeration of balanced binary tree intervals. Let us make use again of the syn-
chronous grammars to enumerate balanced binary trees intervals.

Proposition 6.4. The generating series enumerating balanced binary tree intervals in the
Tamari lattice according to the number of leaves of the trees is Sbi(x, 0, 0) where

(6.1) Sbi(x, y, z) = x+ Sbi(x
2 + 2xy + yz, x, x2 + xy).
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(a) (B0,≤T) (b) (B1,≤T) (c) (B2,≤T) (d) (B3,≤T) (e) (B4,≤T) (f) (B5,≤T)

(g) (B6,≤T) (h) (B7,≤T) (i) (B8,≤T) (j) (B9,≤T)

(k) (B10,≤T) (l) (B11,≤T)

Figure 14. Hasse diagrams of the first (Bn,≤T) posets.

Proof. Let I := [T0, T1] be a balanced binary tree interval and R be the set of nodes defined
as in the proof of Theorem 6.3 associated with I. The proof of this theorem also shows that
I can be encoded by T0 in which the nodes of R are marked. To generate these objects, we

consider a synchronous grammar which generates bud trees where (non-marked) nodes are

and marked nodes are . Let us consider the synchronous grammar Sbi :=
(

{x, y, z}, x , L
)

where L contains the substitution rules

x 7−→ x

−1

y + x

0

x + y

1

x + z

−1

y ,(6.2)

y 7−→ x ,(6.3)

z 7−→ x

0

x + x

−1

y .(6.4)

We can apply the same idea developed in the proof of Proposition 4.12 to show that the bud

trees generated by Sbi that only contain buds x have non-bud nodes labeled by their imbalance

values. Hence, identifying in such trees the x with leaves, Sbi only generates balanced binary
trees such that each of its node r with −1 as imbalance value can be marked provided that its
left child has −1 or 0 as imbalance value and is not marked (recall that in this way, r is a root

of a conservative balancing rotation). Indeed, if a x is substituted by a marked node, this

marked node has a bud z as left child and z can only be substituted by a non-marked node

with −1 or 0 as imbalance value. The role of the bud y is to delay the growth of a branch of
the generated bud tree in order to create the imbalance values −1 and 1.

By setting y ≤B z ≤B x, Sbi satisfies the hypothesis of Lemma 4.6, and hence, is strict.
This synchronous grammar also is unambiguous since it satisfies the hypothesis of Lemma 4.8.
Indeed, the roots of the bud trees arising in a right member of the substitution rules of L are
pairwise different, due to their labeling and their marking.
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Finally, since Sbi is strict and unambiguous, by Proposition 4.11, we obtain the stated fixed-
point functional equation, and the generating series is obtained by the specialization y = 0 and
z = 0 in order to ignore bud trees that contain a bud labelled by y or by z. �

The solution of this fixed-point functional equation gives us the following first values for the
number of balanced binary tree intervals in the Tamari lattice:

1, 1, 3, 1, 7, 12, 6, 52, 119, 137, 195, 231, 1019, 3503, 6593, 12616, 26178, 43500, 64157, 94688,

232560, 817757, 2233757, 5179734, 11676838, 24867480.

(6.5)

The interval [T0, T1] is a maximal balanced binary tree interval if T0 (resp. T1) is a minimal
(resp. maximal) balanced binary tree.

Proposition 6.5. The generating series enumerating maximal balanced binary tree intervals
in the Tamari lattice according to the number of leaves of the trees is Smbi(x, 0, 0, 0) where

(6.6) Smbi(x, y, z, t) = x+ Smbi(x
2 + 2yt+ yz, x, x2 + xy, yt+ yz).

Proof. Let I := [T0, T1] be a maximal balanced binary tree interval. This interval can be
encoded by the minimal balanced binary tree T0 in which the nodes that are roots of the
conservative balancing rotations needed to transform T0 into T1 are marked. Moreover, since T1

is a maximal balanced binary tree, by Proposition 5.3, it avoids the patterns of Pmax. Hence, the
tree-like structure that encodes I must avoid the patterns of Pmin and not have a node which is
root of a conservative balancing rotation not marked if its parent or its left child is not marked.

To generate these objects, we use the synchronous grammar Smbi :=
(

{x, y, z, u, v}, x , R
)

where R contains the substitution rules

x 7−→ v

−1

y + x

0

x + y

1

u + z

−1

y ,(6.7)

y 7−→ x ,(6.8)

z 7−→ x

−1

y + x

0

x ,(6.9)

u 7−→ v

−1

y + z

−1

y ,(6.10)

v 7−→
y

1

u
+

z

−1

y
.(6.11)

We can apply the same idea developed in the proof of Proposition 4.12 to show that the

bud trees generated by Smbi that only contain buds x have non-bud nodes labeled by their

imbalance values. Hence, identifying in such trees the x with leaves, Smbi only generates
minimal balanced binary trees that are maximally marked. Indeed, by Proposition 5.3, the
generated tree-like structures must avoid the two patterns of Pmin. To do that, we have to

control the growth of the x when they are substituted by bud trees D whose roots are not
marked and have an imbalance value of 1. Indeed, if the root of the right subtree of D grows
with an imbalance value of 1 or 0, one of the two patterns is not avoided. The idea is to force
the imbalance value of the root of the right subtree of D to be −1, role played by the bud
u . Moreover, if the x are substituted by non-marked nodes a labeled by −1, to generate
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trees that are maximally marked, the left child of a has to be marked, or labeled by 1 (in this

case, a is not root of a conservative balancing rotation). This is the role played by the bud v .

The bud z appears in these substitution rules only as a left child of a marked node and it is
substituted only by nodes with −1 or 0 as imbalance value, that are the only ones authorized

for a left child of a root of a conservative balancing rotation. As usual, the role of the bud y

is to delay the growth of a branch of the generated bud tree in order to create the imbalance
values −1 and 1.

By setting y ≤B v ≤B u ≤B z ≤B x, Smbi satisfies the hypothesis of Lemma 4.6, and hence,
is strict. This synchronous grammar also is unambiguous since it satisfies the hypothesis of
Lemma 4.8. Indeed, the roots of each bud trees arising in a right member of the substitution
rules of R are different to one other, due to their labeling and their marking.

By Proposition 4.11, the fixed-point functional equation F associated with Smbi is

(6.12) F (x, y, z, u, v) = x+ F (x2 + yu+ yv + yz, x, x2 + xy, yv + yz, yu+ yz),

and, since the variables u and v play the same role, we obtain the stated fixed-point functional
equation. The generating series is obtained by the specialization y = 0, z = 0 and t = 0 in
order to ignore bud trees that contain a bud labelled by y, z, u, or by v. �

The solution of this fixed-point functional equation gives us the following first values for the
number of maximal balanced binary tree intervals in the Tamari lattice:

1, 1, 1, 1, 3, 2, 2, 6, 9, 15, 15, 17, 41, 77, 125, 178, 252, 376, 531, 740, 1192, 2179, 4273, 7738,

13012, 20776, 32389, 49841, 75457, 113011, 168888, 252881, 379348.
(6.13)

We can slightly modify Smbi to take into consideration the dimensions of the hypercubes
isomorphic to the enumerated maximal balanced binary tree intervals. For that, we have to
count the number of applications of substitution rules that generate a marked node. Let us
use for that a parameter ξ. Whence we obtain the generating series defined by the fixed-point
functional equation

(6.14) Smbi(x, y, z, t, ξ) = x+ Smbi(x
2 + 2yt+ yzξ, x, x2 + xy, yt+ yzξ, ξ).

First coefficients of xi in P := Smbi(x, 0, 0, 0, ξ) are

(6.15)
[

x
1
]

P = 1,

(6.16)
[

x
2
]

P = 1,

(6.17)
[

x
3
]

P = ξ,

(6.18)
[

x
4
]

P = 1,

(6.19)
[

x
5
]

P = 3ξ,

(6.20)
[

x
6
]

P = ξ + ξ
2
,

(6.21)
[

x
7
]

P = 2ξ,

(6.22)
[

x
8
]

P = 1 + 4ξ2 + ξ
3
,

(6.23)
[

x
9
]

P = 4ξ + 4ξ2 + ξ
4
,

(6.24)
[

x
10
]

P = 3ξ + 9ξ2 + 3ξ3,

(6.25)
[

x
11
]

P = 9ξ2 + 6ξ3,

(6.26)
[

x
12
]

P = ξ + 13ξ2 + 2ξ3 + ξ
4
,

(6.27)
[

x
13
]

P = 6ξ + 4ξ2 + 16ξ3 + 15ξ4,

(6.28)
[

x
14
]

P = 2ξ+18ξ2 +31ξ3 +12ξ4 +14ξ5.

As example, the coefficient of x12 of Smbi(x, 0, 0, 0, ξ) says that in the poset (B11,≤T), there is
one maximal 1-dimensional hypercube, thirteen maximal 2-dimensional hypercubes, two max-
imal 3-dimensional hypercubes and one maximal 4-dimensional hypercube (see Figure 14).
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Note that Proposition 3.1 implies that all binary trees of the connected components of the
posets (Bn,≤T) have same height. However, the converse is false: There is two connected
components in the poset (B5,≤T) and each binary tree of B5 has same height.

7. Intervals of other binary trees families in the Tamari lattice

7.1. Generalized balanced binary trees.

7.1.1. Definitions. Let V be a subset of Z. We say that a binary tree T is V -balanced if for all
node x of T , iT (x) ∈ V . Let us denote by BV the set of V -balanced binary trees. Note that the
set of balanced binary trees is B[−1,1]. It is clear that 0 must always belongs to V since a binary
tree necessarily has a node with both empty left and right subtrees; Otherwise, BV would be
empty. A natural question about V -balanced binary trees demands to characterize the sets V
such that BV is closed by interval in the Tamari lattice.

Let T be a binary tree. Denote by T∼ the binary tree obtained by exchanging the right and
left subtrees of each of its nodes. More formally,

(7.1) T∼ :=

{

R∼ ∧ L∼ if T = L ∧R,

⊥ otherwise (T =⊥).

For instance, one has

(7.2)
∼
←→ .

If V is a subset of Z, let us also denote by V ∼ the set {−v : v ∈ V }.

7.1.2. A symmetry.

Lemma 7.1. Let T0 and T1 be two binary trees such that T0 ≤T T1. Then, T∼
1 ≤T T∼

0 .

Proof. Assume that S0 ⋌ S1 where S0 = (A ∧ B) ∧ C and S1 = A ∧ (B ∧ C). Hence, we have
S∼
1 = (C∼ ∧B∼)∧A∼ and S∼

0 = C∼ ∧ (B∼ ∧A∼). Thus, S∼
1 ⋌S∼

0 , and the result follows from
the fact that ≤T is the reflexive and transitive closure of ⋌. �

Lemma 7.2. For all V ⊆ Z, the application ∼ yields a bijection between the sets BV and BV ∼

.

Proof. It is immediate, from the definition of ∼, that the application ∼ is an involution. It
then remains to show that if T ∈ BV , then T∼ ∈ BV ∼

. Let x be a node of T and L (resp. R)
be the left (resp. right) subtree of x. We have v := iT (x) = h(R)− h(L) ∈ V . In T∼, one has
iT∼(x) = h(L∼)− h(R∼) = h(L)− h(R) = −v ∈ V ∼. Hence, T∼ ∈ BV ∼

. �

Proposition 7.3. For all V ⊆ Z, the set BV is closed by interval in the Tamari lattice if and
only if the set BV ∼

also is.

Proof. Assume that BV ∼

is closed by interval in the Tamari lattice. By contradiction, assume
that there exist T0, T2 ∈ B

V and T1 /∈ BV such that T0 ≤T T1 ≤T T2. By Lemma 7.1, we have
T∼
2 ≤T T∼

1 ≤T T∼
0 , and by Lemma 7.2, T∼

0 , T∼
2 ∈ B

V ∼

and T∼
1 /∈ BV ∼

. That implies that BV ∼

is not closed by interval in the Tamari lattice, which is contradictory with our hypothesis. �
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7.1.3. {0, 1}-balanced binary trees. Using the methods developed in Section 4, one can enumer-
ate {0, 1}-balanced binary trees according to their number of leaves, and obtain the fixed-point
functional equation

(7.3) S01(x, y) = x+ S01(x
2 + xy, x),

where the generating series of {0, 1}-balanced binary trees is the specialization S01(x, 0). First
values are

(7.4) 1, 1, 1, 1, 1, 2, 2, 2, 3, 5, 7, 9, 11, 13, 17, 26, 42, 66, 97, 134, 180, 241, 321, 424, 564, 774, 1111.

Proposition 7.4. The set of {0, 1}-balanced binary trees is closed by interval in The Tamari
lattice.

Proof. Let T0 ∈ B
{0,1}. Since T0 is only composed of nodes with 0 or 1 as imbalance value, one

can only perform into T0 rotations of the kind (R3), (R5), (R8) or (R9) studied in Section 3.1.
Since these rotations are unbalancing rotations, for all binary tree T1 such that T0 ⋌ T1, T1

is not balanced and hence, T1 /∈ B{0,1}. By Theorem 3.13, for all binary tree T2 such that
T1 ≤T T2, T2 is not balanced, and with greater reason, T2 /∈ B{0,1}. Therefore, B{0,1} is closed
by interval in the Tamari lattice. �

The proof of Proposition 7.4 also shows that every rotation performed into a {0, 1}-balanced
binary tree gives a {0, 1}-unbalanced binary tree. That implies that any pair of elements of
B{0,1} is incomparable.

Computer trials suggest that for all β ∈ Z, any pair of elements of B{0,β} is incomparable.
Hence, the sets B{0,β} seem to be closed by interval in the Tamari lattice.

7.1.4. [−α, β]-balanced binary trees.

Lemma 7.5. For all α ≥ 2, the sets B[−α,0] and B]−∞,0] are not closed by interval in the
Tamari lattice.

Proof. It is enough to exhibit a chain of the sort T0 ⋌ T1 ⋌ T2 where T0, T2 ∈ B
[−α,0] ∩ B]−∞,0]

and T1 /∈ B[−α,0] ∪ B]−∞,0]. The following chain, where nodes are labeled by their imbalance
values, is the case:

(7.5)
0

−1

−2

0

0

−1

−2

⋌ 0

0

0

1

0

−1

−2

⋌ 0

0

0

0

0

0

0 .

�

Lemma 7.6. For all α ≥ 2, the sets B[−α,1] and B]−∞,1] are not closed by interval in the
Tamari lattice.

Proof. It is enough to exhibit a chain of the sort T0 ⋌ T1 ⋌ T2 where T0, T2 ∈ B
[−α,1] ∩ B]−∞,1]

and T1 /∈ B[−α,1] ∪ B]−∞,1]. The following chain, where nodes are labeled by their imbalance
values, is the case:
(7.6)

0

−1

−1

0

0

0

−1

−2

⋌
0

−1

2

0

2

0

−1

−2

⋌
0

−1

1

0

1

0

0

0 .

�

Lemma 7.7. For all α ≥ 2, the sets B[−α,2] and B]−∞,2] are not closed by interval in the
Tamari lattice.
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Proof. It is enough to exhibit a chain of the sort T0 ⋌ T1 ⋌ T2 where T0, T2 ∈ B
[−α,2] ∩ B]−∞,2]

and T1 /∈ B[−α,2] ∪ B]−∞,2]. The following chain, where nodes are labeled by their imbalance
values, is the case:

(7.7)
0

−1

1

0

−1

−2

⋌

0

3

3

0

−1

−2

⋌

0

2

2

0

0

0 .

�

Lemma 7.8. For all α ≥ 2 and β ≥ 3, the sets B[−α,β] and B]−∞,β] are not closed by interval
in the Tamari lattice.

Proof. It is enough to exhibit a chain of the sort T0 ⋌ T1 ⋌ T2 where T0, T2 ∈ B
[−α,β] ∩B]−∞,β]

and T1 /∈ B[−α,β]∪B]−∞,β]. By setting β′ := β− 1 and β′′ := β+1, the following generic chain,
where nodes are labeled by their imbalance values, and where the edges depicted by denote
a right comb binary tree with β − 3 nodes, is the case:

(7.8)

0

β′

0

−1

−2

⋌

β′′

β

0

−1

−2

⋌

β

β′

0

0

0 .

�

Theorem 7.9. Let V be an interval of Z containing 0. The set BV is closed by interval in the
Tamari lattice if and only if V ∈ {{0}, {−1, 0}, {0, 1}, {−1, 0, 1},Z}.

Proof. Since B{0} only contains perfect binary trees and there is at most one such element with
a given number of nodes, B{0} is closed by interval. Moreover, by Proposition 7.4, B{0,1} is
closed by interval, and by Proposition 7.3, B{−1,0} also is. By Theorem 3.13, B{−1,0,1} is closed
by interval. Finally, since BZ = T , BZ is obviously closed by interval.

If V is an interval of Z containing 0 and that does not fit into the previous cases, necessarily
V or V ∼ satisfies the assumptions of Lemma 7.5, 7.6, 7.7, or 7.8. Thus, by Proposition 7.3, BV

is not closed by interval. �

Theorem 7.9 emphasizes the special role played by balanced binary trees in the Tamari
lattice. Indeed, the interval V := [−1, 1] of Z is the only interval different from Z such that
BV is closed by interval in the Tamari lattice and such that the subposet of the Tamari lattice
induced by BV contains nontrivial intervals (see Theorem 6.3 and Figure 14).

7.2. Weight balanced binary trees. Denote by n(T ) the number of nodes of the binary tree
T . Let us define the weight imbalance mapping wiT which associates an element of Z with a
node x of T . It is defined by

(7.9) wiT (x) := n(R)− n(L),

where L (resp. R) is the left (resp. right) subtree of x. A node x is weight balanced if

(7.10) wiT (x) ∈ {−1, 0, 1}.

Definition 7.10. A binary tree T is weight balanced if all nodes of T are weight balanced.
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The sequence (wn)n≥0 of the number of weight balanced binary trees with n nodes satisfies
straightforwardly the recurrence relation

(7.11) wn =











1 if n ∈ {0, 1},

2wkwk−1 if n = 2k,

w2
k where n = 2k + 1, otherwise.

This is Sequence A110316 of [Slo]. First values are

(7.12) 1, 1, 2, 1, 4, 4, 4, 1, 8, 16, 32, 16, 32, 16, 8, 1, 16, 64, 256, 256, 1024, 1024.

Lemma 7.11. For all nonempty weight balanced binary tree T , the following relation between
its height and its number of nodes holds

(7.13) h(T ) = ⌊log2(n(T ))⌋+ 1.

Proof. We proceed by structural induction on the set of nonempty weight balanced binary trees.
The lemma is true for the one-node binary tree. Assume now that (7.13) holds for both the
weight balanced binary trees L and R such that T := L ∧ R is weight balanced. We have
now two cases to consider, depending if L and R have the same number of nodes or not. If
n(L) = n(R), set k := n(L). We have

⌊log2(n(T ))⌋+ 1 = ⌊log2(2k + 1)⌋+ 1(7.14)

= ⌊log2(2) + log2 (k + 1/2)⌋+ 1(7.15)

= ⌊log2 (k + 1/2)⌋+ 2(7.16)

= ⌊log2(k)⌋+ 2(7.17)

= h(L) + 1(7.18)

= h(R) + 1(7.19)

= h(T ).(7.20)

The equality between (7.16) and (7.17) is provided by the fact that k is an integer. The equality
between (7.17) and (7.18) follows by induction hypothesis.

If n(L) 6= n(R), assume without lost of generality that n(L) = n(R) + 1 and set k := n(L).
An analog computation as above implies (7.13). �

Proposition 7.12. The set of weight balanced binary trees is a subset of the set of the (height)
balanced binary trees.

Proof. We proceed by structural induction on the set of weight balanced binary trees to show
that each weight balanced binary tree is also (height) balanced. This property is true for both
the empty tree and the one-node binary tree. Assume now that this property holds for two
weight balanced binary trees L and R such that T := L∧R is weight balanced. By Lemma 7.11,
we have

(7.21) h(R)− h(L) = ⌊log2(n(R))⌋ − ⌊log2(n(L))⌋,

and since T is weight balanced, we have | n(R) − n(L)| ≤ 1 so that | h(R) − h(L)| ≤ 1. By
induction hypothesis, L and R are (height) balanced, proving that T also is. �

Proposition 7.13. Let T0 and T1 be two weight balanced binary trees such that T0 ≤T T1.
Then, the interval [T0, T1] only contains weight balanced binary trees.

http://oeis.org/A110316
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Proof. Let us show that for all binary tree T , any rotation operation performed into T does
not decrease the weight imbalance values of any node of T . Let y be a node in T and x its left
child. Let (A∧B)∧C be the subtree of root y in T . Let T ′ be the binary tree obtained by the
rotation of root y from T . We have the following weight imbalance values:

(7.22)

{

wiT (x) = n(B)− n(A),

wiT (y) = n(C)− n(B)− n(A)− 1,

and

(7.23)

{

wiT ′(x) = n(B) + n(C) + 1− n(A),

wiT ′(y) = n(C) − n(B),

showing that wiT ′(x) > wiT (x) and wiT ′(y) > wiT (y). Besides, note that the rotation does not
change the weight imbalance values of the other nodes of T .

This shows that the set of weight balanced binary trees is closed by interval in the Tamari
lattice since, by starting from a weight balanced binary tree T and by performing a rotation
that gives a weight unbalanced binary tree T ′, there exists a node z of T ′ such that wiT ′(z) ≥ 2
and it is impossible to decrease this value so that each binary tree greater than T ′ is not weight
balanced. �

Note that the proof of Proposition 7.13 also proves that for all k ≥ 0, the sets of k-weight
balanced binary trees, that are the sets of binary trees T such that for all node x of T , the
relation |wiT (x)| ≤ k holds, are closed by interval in the Tamari lattice.

Since by Proposition 7.12, weight balanced binary trees are also (height) balanced, by Propo-
sition 7.13 and Theorem 6.3, the intervals of weight balanced binary trees are isomorphic to a
hypercube. However, the set of weight balanced binary trees has an additional property:

Proposition 7.14. The restriction of the Tamari order on the set of weight balanced binary
trees is a graded poset.

Proof. Let us characterize the conservative weight balancing rotations. Let T0 := (A ∧B) ∧ C
and T1 := A ∧ (B ∧ C) be two weight balanced binary trees such that T1 is obtained by a
rotation at the root y of T0. Denote by x the left child of y in T0. Note that the rotation
that transforms T0 into T1 cannot be a conservative weight balancing rotation if wiT0

(x) = 1
or wiT0

(y) = 1 since, following the proof of Proposition 7.13, the imbalance values of x and y
both increase after a rotation. Here follows the list of the weight imbalance values of the nodes
x and y in T0 and T1 expressed as (wiT0

(x),wiT0
(y)) −→ (wiT1

(x),wiT1
(y)):

(R’1) (−1,−1) −→ (2 n(A) − 1, n(A)),

(R’2) (0,−1) −→ (2 n(A) + 1, n(A)),

(R’3) (−1, 0) −→ (2 n(A), n(A) + 1),

(R’4) (0, 0) −→ (2 n(A) + 2, n(A) + 1).

Hence, we have four kind of rotations to explore:

Case 1: Regarding (R’1), we necessarily have n(A) = 1. Indeed, if n(A) ≥ 2, y would not be
weight balanced in T1, and if n(A) = 0, since wiT0

(x) = −1, that would imply that n(B) = −1,
which is absurd. Hence, since n(A) = 1, we have n(B) = 0 and n(C) = 1. Thus, there is only
one pair (T0, T1) satisfying this kind of conservative weight balancing rotation:

(7.24) T0 = −→ = T1.
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Case 2: Concerning (R’2), we necessarily have n(A) = 0. Indeed, if n(A) ≥ 1, x would not be
weight balanced in T1. Hence, since n(A) = 0, we have n(B) = 0 and n(C) = 0. Thus, there is
only one pair (S0, S1) that satisfies this kind of conservative weight balancing rotation:

(7.25) S0 = −→ = S1.

Case 3: Regarding (R’3), we necessarily have n(A) = 0. That implies h(B) = −1, which is
absurd. Hence, (R’3) cannot be a conservative weight balancing rotation.
Case 4: Concerning (R’4), x satisfies wiT1

(x) ≥ 2, and thus (R’4) is not a case of a conservative
weight balancing rotation.

Hence, we only have two sorts of conservative weight balancing rotations. They are the ones
depicted in (7.24) and (7.25).

Since each such rotation suppresses exactly one subtree of the form S0 and adds exactly one
subtree of the form S1, we can define a map φ : T → N where φ(T ) is the number of subtrees of
the form S1 in T . Hence, since by Proposition 7.13 the covering relations of the Tamari lattice
restricted to the weight balanced binary trees are only conservative weight balancing rotations,
the statistic φ is a ranking function of the Tamari lattice restricted to these elements, and shows
that this poset is graded. �

7.3. Binary trees with fixed canopy. The canopy cnp(T ) (see [LR98] and [Vie04]) of a
binary tree T is the word on the alphabet {0, 1} obtained by browsing the leaves of T from left
to right except the first and the last one, writing 0 if the considered leaf is oriented to the right,
1 otherwise (see Figure 15).

0
1 0

0 1 0 1

Figure 15. The canopy of this binary tree is 0100101.

For all u ∈ {0, 1}∗, define the set Cu by

(7.26) Cu := {T ∈ T : cnp(T ) = u} .

Note that the sets of binary trees with a given canopy play a role in a injective Hopf morphism
relating the Hopf algebra of noncommutative symmetric functions Sym [GKL+94] and the Hopf
algebra of binary trees PBT [LR98, HNT05]. Recall that the fundamental basis of PBT is
{PT }T∈T and is indexed by binary trees. One can see the fundamental basis of Sym as a basis
{Pu}u∈{0,1}∗ indexed by binary words. The injective Hopf morphism β : Sym →֒ PBT also

satisfies (see [Gir11])

(7.27) β(Pu) =
∑

T ∈ Cu

PT .

Proposition 7.15. For all u ∈ {0, 1}∗, the set Cu is an interval of the Tamari lattice.

Proof. Let us prove first that Cu is closed by interval in the Tamari lattice. Consider a binary
tree T0 and y one of its nodes. Let (A∧B)∧C the subtree of T0 of root y and T1 be the binary
tree obtained by the rotation of root y from T0. Regardless A and C, if B is not empty, we
have cnp(T0) = cnp(T1); Otherwise, B is a leaf and its orientation changes from right to left.
Thus, cnp(T1) is lexicographically not smaller than cnp(T0), which proves that Cu is closed by
interval.



36 SAMUELE GIRAUDO

We give now a counting argument to prove that Cu also is an interval of the Tamari lattice.
Let T be a maximal element among Cu. Thus, each rotation changes the canopy of T , and hence,
for every node y which has a left child x in T , x has no right child. The set of such maximal
binary trees, denotedM, is characterized by the following regular specification (see [FS09] for
a general survey on regular specifications):

(7.28) M = L×
{ }

×M + {⊥},

where L is the set of left comb binary trees. It admits the following generating series M(x),
which enumerates the elements ofM according to their number of nodes:

(7.29) M(x) =
1− x

1− 2x
= 1 +

∑

n≥1

2n−1xn.

Moreover, for all n ≥ 1 there are exactly 2n−1 sets Cu where ℓ(u) = n − 1, and there are the
same number of such maximal binary trees. That implies that there is exactly one maximal
element in each Cu. By the same reasoning, we can show that there is exactly one minimal tree
in each Cu, proving the result. �

The statement of Proposition 7.15 is already known [LR02], only our proof is new.

7.4. Narayana binary trees. Let T be a binary tree. Denote by nar(T ) the number of nodes
of T that have a nonempty right child. We say that T is a k-Narayana binary tree if nar(T ) = k.
These binary trees are enumerated by the Narayana numbers [Nar55] (see Sequence A001263

of [Slo]). First values are

n #{T ∈ Tn : nar(T ) = k}, k = 0, . . . , n−1
1 1
2 1 1
3 1 3 1
4 1 6 6 1
5 1 10 20 10 1
6 1 15 50 50 15 1
7 1 21 105 175 105 21 1
8 1 28 196 490 490 196 28 1

Proposition 7.16. For all k ≥ 0 and T0 and T1 two k-Narayana binary trees such that T0 ≤T

T1, the interval [T0, T1] only contains k-Narayana binary trees.

Proof. Consider a node y of T0 and let (A ∧ B) ∧ C the subtree of T0 of root y and T1 be the
binary tree obtained by the rotation of root y from T0. Regardless A and C, if B is not empty,
T0 and T1 have the same number of nodes that have a right child; Otherwise, the number of
right children increases by one in T1. Hence, in every chain T0 ≤T T1 ≤T . . . ≤T Tℓ, we have
nar(T0) ≤ nar(T1) ≤ · · · ≤ nar(Tℓ). That proves that the set of k-Narayana binary trees is
closed by interval in the Tamari lattice. �

Proposition 7.17. For all k ≥ 0, the set of k-Narayana binary trees with n nodes is the
disjoint union of the sets Cu where ℓ(u) = n− 1 and u contains k occurrences of 1.

Proof. It is enough to show that for all binary tree T of canopy u, the number of 1 in u is
nar(u). Let us show this property by structural induction on the set of binary trees. If T is
empty, this property is clearly satisfied. Assume now that T := L∧R, and set v := cnp(L) and
w := cnp(R). We have now to deal four cases whether L and R are empty or not.

Case 1: If L and R are empty, T is the one-node binary tree and the property is satisfied.

http://oeis.org/A001263
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Case 2: If L and R are both not empty, then cnp(T ) = v.0.1.w. Since nar(T ) = nar(L) +
nar(R) + 1, by induction hypothesis, the property is satisfied.
Case 3: If L is empty and R not, then cnp(T ) = 1.w. Since nar(T ) = nar(R)+1, by induction
hypothesis, the property is satisfied.
Case 4: If R is empty and L not, then cnp(T ) = v.0. Since nar(T ) = nar(L), by induction
hypothesis, the property is satisfied.

�

Corollary 7.18. For all k ≥ 0, the set of k-Narayana binary trees with n nodes is a disjoint
union of intervals in the Tamari lattice.

Proof. The property follows from the fact that the set of k-Narayana binary trees with n nodes
is the union of some binary trees with a given canopy (Proposition 7.17) and that the sets of
binary trees with a given canopy are intervals of the Tamari lattice (Proposition 7.15). �
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