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Abstract

Using the language of Riordan arrays, we look at two related iterative processes on

matrices and determine which matrices are invariant under these processes. In a special

case, the invariant sequences that arise are conjectured to have Hankel transforms that

obey Somos-4 recurrences. A notion of eigentriangle for a number triangle emerges and

examples are given, including a construction of the Takeuchi numbers.

1 Introduction

In this note, we shall define transformations on invertible lower-triangular matrices involv-
ing the down-shifting of elements and taking an inverse. The invariant matrices for these
transformations turn out to be simple Riordan arrays [9], with generating functions easily
described by continued fractions [4, 13]. These matrices have close links to the Catalan
numbers Cn = 1

n+1

(

2n
n

)

. In the case of a particular two-parameter transformation, special
sequences defined by this process appear to have Hankel transforms that satisfy Somos-4
type recurrences [3]. Again using Riordan arrays we can characterize these sequences.

We recall that the Riordan group [9, 11], is a set of infinite lower-triangular integer
matrices, where each matrix is defined by a pair of generating functions g(x) = 1 + g1x +
g2x

2 + . . . and f(x) = f1x + f2x
2 + . . . where f1 6= 0 [11]. The associated matrix is the

matrix whose i-th column is generated by g(x)f(x)i (the first column being indexed by 0).
The matrix corresponding to the pair f, g is denoted by (g, f). The group law is then given
by

(g, f) · (h, l) = (g(h ◦ f), l ◦ f).
The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f . This is also called the (series) reversion of f . A
Riordan array of the form (g(x), x), where g(x) is the generating function of the sequence an,
is called the sequence array of the sequence an. Its general term is an−k, or more accurately
[k ≤ n]an−k (where [P ] is the Iverson bracket [6], defined by [P] = 1 if the proposition P is
true, and [P] = 0 if P is false). Such arrays are also called Appell arrays as they form the
elements of the so called Appell subgroup.
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If M is the matrix (g, f), and a = (a0, a1, . . .)
′ is an integer sequence with ordinary gener-

ating function A (x), then the sequence Ma has ordinary generating function g(x)A(f(x)).
The (infinite) matrix (g, f) can thus be considered to act on the ring of integer sequences
ZN by multiplication, where a sequence is regarded as a (infinite) column vector. We can
extend this action to the ring of power series Z[[x]] by

(g, f) : A(x) −→ (g, f) · A(x) = g(x)A(f(x)).

Example 1. The binomial matrix B is the element ( 1
1−x

, x
1−x

) of the Riordan group. It

has general element
(

n

k

)

. More generally, Bm is the element ( 1
1−mx

, x
1−mx

) of the Riordan

group, with general term
(

n

k

)

mn−k. It is easy to show that the inverse B−m of Bm is given
by ( 1

1+mx
, x
1+mx

).

In the sequel, we shall assume that all matrices and sequences are integer valued.

2 The (a, b)-Process

We start by defining an operation on lower-triangular matrices which have 1’s on the diag-
onal. Thus let M be of the form

M =























1 0 0 0 0 0 . . .
m2,1 1 0 0 0 0 . . .
m3,1 m3,2 1 0 0 0 . . .
m4,1 m4,2 m4,3 1 0 0 . . .
m5,1 m5,2 m5,3 m5,4 1 0 . . .
m6,1 m6,2 m6,3 m6,4 m6,5 1 . . .
...

...
...

...
...

...
. . .























. (1)

Now form the matrix

M̃(a, b) =























1 0 0 0 0 0 . . .
−a 1 0 0 0 0 . . .
−b −a 1 0 0 0 . . .

−m2,1 −b −a 1 0 0 . . .
−m3,1 −m3,2 −b −a 1 0 . . .
−m4,1 −m4,2 −m4,3 −b −a 1 . . .

...
...

...
...

...
...

. . .























. (2)

Then we take the inverse M̃(a, b)−1 of this matrix. Let us call this process the (a, b)-process.
We have the following proposition.

Proposition 2. Let f(x) be the power series defined by

f(x) =
1

1− ax− (b− 1)x2 − x2f(x)
. (3)
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Then the Riordan array
(f(x), x)

is invariant under the (a, b)-operation.

Proof. By equation (3), we see that f(x) =
∑∞

i=0 aix
i where a0 = 1. Then

x2f(x) = x2a0 + x3
∑

i=0

ai+1x
i = x2 + x3

∑

i=0

ai+1x
i.

We obtain

1−ax−(b−1)x2−x2f(x) = 1−ax−bx2+x2−x2−x3
∑

i=0

ai+1x
i = 1−ax−bx2−x3

∑

i=0

ai+1x
i.

Thus we wish to prove that

(f(x), x) = (1− ax− (b− 1)x2 − x2f(x), x)−1,

or equivalently that

(f(x), x)−1 = (1− ax− (b− 1)x2 − x2f(x), x).

Now

(f(x), x)−1 =

(

1

f(x)
, x

)

and hence we wish to establish that

1

f(x)
= 1− ax− (b− 1)x2 − x2f(x).

But this follows immediately from the definition of f .

Let an denote the n-th element of the first column of (f(x), x). Then the (n, k)-th element
of (f(x), x) is given by

[k ≤ n]an−k.

Thus we need only a knowledge of an to describe all elements of the matrix.

Proposition 3. Let

g(x) =
1

1− ax− bx2 − x2g(x)
.

Then

[xn]g(x) =

⌊n
2
⌋

∑

k=0

(

n− k

k

)

bk
n−2k
∑

j=0

(

n− 2k

j

)

an−2k−jC j

2

1 + (−1)j

2
,

where Cn = 1
n+1

(

2n
n

)

is the n-th Catalan number A000108.
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Proof. Solving the equation

g(x) =
1

1− ax− bx2 − x2g(x)

gives us

g(x) = ga,b(x) =
1− ax− bx2 −

√

1− 2ax+ (a2 − 2b− 4)x2 + 2abx3 + b2x4

2x2
.

With this value, we then have the Riordan array factorization

(ga,b(x), x) =

(

1

1− ax− bx2
,

x

1− ax− bx2

)

·
(

c(x2),
ga,b(x)

x

)

=

(

1

1− bx2
,

x

1− bx2

)

·
(

1

1− ax
,

x

1− ax

)

·
(

c(x2),
ga,b(x)

x

)

,

where

c(x) =
1−

√
1− 4x

2x

is the g.f. of the Catalan numbers, and c(x2) is the g.f. of the aerated Catalan numbers
1, 0, 1, 0, 2, 0, 5, 0, . . .. Thus

[xn]g(x) = [xn]

(

1

1− bx2
,

x

1− bx2

)

·
(

1

1− ax
,

x

1− ax

)

· c(x2).

The result follows from this.

Corollary 4.

an =

⌊n
2
⌋

∑

k=0

(

n− k

k

)

(b− 1)k
n−2k
∑

j=0

(

n− 2k

j

)

an−2k−jC j

2

1 + (−1)j

2
.

We note that if we start with any matrix of the form (1), and iterate the (a, b)-process
on it, then the limit matrix is (f(x), x). Thus the element of the Appell subgroup of the
Riordan group (f(x), x) where

f(x) =
1

1− ax− (b− 1)x2 − x2

1− ax− (b− 1)x2 − x2

1− · · ·

,

is a “universal element” for the (a, b)-process.
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3 A Somos-4 conjecture

We have the following Somos-4 conjecture.

Conjecture 5. The Hankel transform of the sequence an is a (a2, b2−a2) Somos-4 sequence.

By this we mean that the sequence hn of Hankel determinants

hn = |ai+j|0≤i,j≤n

satisfies an (α, β) Somos-4 relation

hn =
αhn−1hn−3 + βh2

n−2

hn−4
, n > 3,

where α = a2 and β = b2 − a2.
Equivalently the Hankel transform of the sequence with general term

⌊n
2
⌋

∑

k=0

(

n− k

k

)

bk
n−2k
∑

j=0

(

n− 2k

j

)

an−2k−jC j

2

1 + (−1)j

2

is (conjectured to be) a (a2, (b+ 1)2 − a2) Somos-4 sequence.

Example 6. We let a = b = 1. Then an is the sequence A128720

1, 1, 3, 6, 16, 40, 109, 297, 836, 2377, 6869 . . .

which counts the number of skew Dyck paths of semi-length n with no UUU ’s. The Hankel
transform of this sequence is the (1, 3) Somos-4 sequence A174168 which begins

1, 2, 5, 17, 109, 706, 9529, 149057, 3464585, 141172802, 5987285341, . . . .

Example 7. We take a = 1, b = 2 to get the sequence A174171 which begins

1, 1, 4, 8, 25, 65, 197, 571, 1753, 5351, 16746 . . . ,

with (1, 8) Somos-4 Hankel transform

1, 3, 11, 83, 1217, 22833, 1249441, 68570323, 11548470571, 2279343327171, . . . .

This is A097495, or the even-indexed terms of the Somos-5 sequence.

Example 8. We let a = 2, and b = −1. Then an is the sequence A187256 which begins

1, 2, 4, 10, 28, 82, 248, 770, 2440, 7858, 25644, . . . .

This sequence counts peakless Motzkin paths where the level steps come in two colours
(Deutsch). The Hankel transform of this sequence is the Somos-4 variant A162547 that
begins

1, 0,−4,−16,−64, 0, 4096, 65536, 1048576, 0,−1073741824, . . . .

5

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A128720
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A174168
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A174171
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A097495
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A187256
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A162547


4 The “(a)-process” and Narayana numbers

We now look at the simpler “(a)-process”, whereby we send the matrix

M =























1 0 0 0 0 0 . . .
m2,1 1 0 0 0 0 . . .
m3,1 m3,2 1 0 0 0 . . .
m4,1 m4,2 m4,3 1 0 0 . . .
m5,1 m5,2 m5,3 m5,4 1 0 . . .
m6,1 m6,2 m6,3 m6,4 m6,5 1 . . .
...

...
...

...
...

...
. . .























(4)

to the matrix

M̃a =























1 0 0 0 0 0 . . .
−a 1 0 0 0 0 . . .

−m2,1 −a 1 0 0 0 . . .
−m3,1 −m3,2 −a 1 0 0 . . .
−m4,1 −m4,2 −m4,3 −a 1 0 . . .
−m5,1 −m5,2 −m5,3 −m5,4 −a 1 . . .

...
...

...
...

...
...

. . .























,

and then take the inverse to obtain M̃−1
a . We have the following result.

Proposition 9. Let f(x) be the power series defined by

f(x) =
1

1− (a− 1)x− xf(x)
.

Then the Riordan array
(f(x), x)

is invariant under the (a)-process.

Proof. We wish to show that

(f(x), x) = (1− (a− 1)x− xf(x), x)−1,

or equivalently that

(f(x), x)−1 =

(

1

f(x)
, x

)

= (1− (a− 1)x− xf, x).

But this follows immediately since by definition

f(x) =
1

1− (a− 1)x− xf(x)
.

6



We now remark that the continued fraction

f(x) =
1

1− (a− 1)x− x

1− (a− 1)x− x

1− · · ·
is the generating function of the Narayana polynomials Nn(a) =

∑n

k=0Nn,ka
k [1, 2, 12] where

the matrix (Nn,k) is the matrix of Narayana numbers A090181






















1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 6 6 1 0 . . .
0 1 10 20 10 1 . . .
...

...
...

...
...

...
. . .























.

Hence the terms of the first column of (f(x), x) are precisely the Narayana polynomials in
a:

an = Nn(a) =
n
∑

k=0

Nn,ka
k.

In particular, for a = 1, we get
an = Cn,

the Catalan numbers.
As before, we note that if we start from an arbitrary matrix of the form Eq. (4), and

iterate the (a)-process, then the limit matrix is (f(x), x). In particular, if a = 1, the limit
matrix is the Catalan numbers sequence array (Cn−k):























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
5 2 1 1 0 0 . . .
14 5 2 1 1 0 . . .
42 14 5 2 1 1 . . .
...

...
...

...
...

...
. . .























.

This is the Riordan array (c(x), x).
By solving the equation

f(x) =
1

1− (a− 1)x− xf(x)

we see that

(f(x), x) =

(

1− (a− 1)x−
√

1− 2(a+ 1)x+ (a− 1)2x2

2x
, x

)

,

7
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which by the above is the matrix with (n, k)-th term

[k ≤ n]Nn−k(a).

5 Eigentriangles

We also have the following result.

Proposition 10. Let M be a matrix as in Eq. (1). Then M̃−1
1 is an eigentriangle of M .

By this we mean that if

M̃−1
1 =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
r3,1 1 1 0 0 0 . . .
r4,1 r4,2 1 1 0 0 . . .
r5,1 r5,2 r5,3 1 1 0 . . .
r6,1 r6,2 r6,3 r6,4 1 1 . . .
...

...
...

...
...

...
. . .























(5)

then

MM̃−1
1 =























1 0 0 0 0 0 . . .
r3,1 1 0 0 0 0 . . .
r4,1 r4,2 1 0 0 0 . . .
r5,1 r5,2 r5,3 1 0 0 . . .
r6,1 r6,2 r6,3 r6,4 1 0 . . .
r7,1 r7,2 r7,3 r7,4 r7,5 1 . . .
...

...
...

...
...

...
. . .























.

Note that the first column of M̃−1
1 is then an eigensequence of M .

Proof. We have
M̃M̃−1

1 = I

and hence

−
k−1
∑

j=1

mk−1,jrj,l + rk,l = 0 for k 6= l.

Then for k 6= l, we have

rk,l =

k−1
∑

j=0

mk−1,jrj,l.

Thus the (k − 1, l)-th element of MM̃−1
1 is rk,l.

8



Example 11. The eigentriangle of the binomial matrix (
(

n

k

)

) is given by

E =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
5 3 1 1 0 0 . . .
15 9 4 1 1 0 . . .
52 31 14 5 1 1 . . .
...

...
...

...
...

...
. . .























,

where the first column entries are the Bell numbers. We note in passing that the production
matrix [5] of the matrix E is equal to























1 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
2 1 0 1 0 0 . . .
5 3 1 0 1 0 . . .
15 9 4 1 0 1 . . .
52 31 14 5 1 0 . . .
...

...
...

...
...

...
. . .























.

In this case, we have

an =
n−1
∑

k=0

(

n− 1

k

)

ak, n > 0, a0 = 1,

or
an = Bell(n),

the Bell numbers A000110.

Example 12. The eigentriangle of the skew binomial matrix (
(

k

n−k

)

) is given by

E =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
2 2 1 1 0 0 . . .
4 4 3 1 1 0 . . .
11 11 7 4 1 1 . . .
...

...
...

...
...

...
. . .























,

where the first column

1, 1, 1, 2, 4, 11, 33, 114, 438, 1845, 8458, . . .

or A127782 is thus an eigensequence of (
(

k

n−k

)

) (remark by Gary W. Adamson). We have

an =

n−1
∑

k=0

(

k

n− k − 1

)

ak, n > 0, a0 = 1.

9
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Example 13. The eigentriangle of the sequence array for the Motzkin numbers Mn (i.e.,

the matrix with (n, k)-th term [k ≤ n]Mn−k where Mn =
∑⌊n

2
⌋

k=0

(

n

2k

)

Ck) is the sequence array
for the sequence A005773 of directed animals An of size n. Thus

An =

n−1
∑

k=0

Mn−k−1Ak.

We can characterize the eigentriangle E = (E(n, k)) corresponding to a matrix A = (A(n, k))
as follows. We define

Ẽ(n, j) =
n−1
∑

k=0

A(n− 1 + j, k + j)Ẽ(k, j), with Ẽ(0, j) = 1. (6)

Then
E(n, k) = [k ≤ n]Ẽ(n− k, k).

6 The Takeuchi numbers

The Takeuchi numbers tn A000651 are an example of a sequence that can be defined with
the aid of the eigentriangle of the Catalan triangle (c(x), xc(x)) A033184. We let T (x) be
the generating function of the Takeuchi numbers. Our point of departure is (4) in [8]:

T (x) =
c(x)− 1

1− x
+

x(2− c(x))√
1− 4x

T (xc(x)).

We now note that
(2− c(x))√

1− 4x
= c(x),

so that [8](4) becomes

T (x) =
c(x)− 1

1− x
+ xc(x)T (xc(x)).

In terms of Riordan arrays, we may write this as

((1, x)− (xc(x), xc(x))).T (x) =
c(x)− 1

1− x
.

Now while the matrix
(1, x)− (xc(x), xc(x))

is not a Riordan array, it is a special type of invertible matrix. The theory of eigentriangles
tells us that its inverse is the eigentriangle of the Catalan matrix

(c(x), xc(x)).

10
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This eigentriangle begins

E =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
6 3 1 1 0 0 . . .
22 11 4 1 1 0 . . .
92 46 17 5 1 1 . . .
...

...
...

...
...

...
. . .























.

We then have






















1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
5 5 3 1 0 0 . . .
14 14 9 4 1 0 . . .
42 42 28 14 5 1 . . .
...

...
...

...
...

...
. . .













































1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
6 3 1 1 0 0 . . .
22 11 4 1 1 0 . . .
92 46 17 5 1 1 . . .
...

...
...

...
...

...
. . .























=























1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
6 3 1 0 0 0 . . .
22 11 4 1 0 0 . . .
92 46 17 5 1 0 . . .
426 213 79 24 6 1 . . .
...

...
...

...
...

...
. . .























.

The sequence with g.f. c(x)−1
1−x

is the sequence A014138 with general term

n−1
∑

k=0

Ck+1,

and thus the Takeuchi numbers are the image of this sequence by E. Now in this case A of
Eq. (6) is the matrix (c(x), xc(x)) with (n, k)-th term

A(n, k) =

(

2n− k

n− k

)

k + 1

n+ 1
.

Thus we get

Ẽ(n, j) =
n−1
∑

k=0

(

2(n− 1) + j − k

n− 1− k

)

k + j + 1

n+ j
Ẽ(k, j), with Ẽ(0, j) = 1,

and so

tn =

n
∑

k=0

Ẽ(n− k, k)

k−1
∑

j=0

Cj+1.

We note that the first column of E is essentially A091768.
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D. Hanna or Gary W. Adamson. One can find a different but related notion of eigentriangle
therein (see A144218, for example). An alternative iterative construction of eigensequences
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