
ar
X

iv
:1

10
8.

11
08

v1
 [

cs
.S

C
]

 4
 A

ug
 2

01
1

On Two-generated Non-commutative Algebras

Subject to the Affine Relation⋆

Viktor Levandovskyy1 and Christoph Koutschan2 and Oleksandr Motsak3

1 Lehrstuhl D für Mathematik, RWTH Aachen, Germany,
viktor.levandovskyy@math.rwth-aachen.de

2 RISC, Johannes Kepler University, Linz, Austria,
Koutschan@risc.jku.at

3 TU Kaiserslautern, Germany,
motsak@mathematik.uni-kl.de

Abstract. We consider algebras over a field K, generated by two vari-
ables x and y subject to the single relation yx = qxy + αx + βy + γ for
q ∈ K

∗ and α, β, γ ∈ K. We prove, that among such algebras there are
precisely five isomorphism classes. The representatives of these classes,
which are ubiquitous operator algebras, are called model algebras. We
derive explicit multiplication formulas for ym

· xn in terms of standard
monomials xiyj for many algebras of the considered type. Such formulas
are used in e. g. establishing formulas of binomial type and in an im-
plementation of non-commutative multiplication in a computer algebra
system. By using the formulas we also study centers and ring-theoretic
properties of the non-commutative model algebras.

In this paper we study non-commutative algebras in two generators obeying
single affine relation. Many operator algebras, coming from different areas of
natural sciences, are built from algebras in two generators, see Sect. 2.1 for
examples. One of generators, say x, often corresponds to the operator of the
multiplication with the function x. Another operator, say y, corresponds to a
linear operator, acting on functions in the variable x.

In the main Theorem we identify precisely five types of non-isomorphic al-
gebras, which we call model algebras, among them. Despite the fact that many
such algebras have been studied in the literature (see e. g. [3,7,2,1], many aspects
and properties are too scattered in the existing literature. Another point of this
note is to search systematically for closed form of multiplication formulas on
monomials. Such closed forms are needed, among other, in computer algebra,
where many sophisticated algorithms heavily rely on basic multiplication among
monomials. It is not enough to have such formulas just for model algebras, since
isomorphisms do not preserve monomials but turn them into polynomials. It
turned out, that there are still several cases, where we were not able to derive

⋆ This paper is contained in the Proceedings of CASC 2011, by Vladimir Gerdt, Wol-
fram Koepf, Ernst W. Mayr, and Evgenii Vorozhtsov (eds.), Lecture Notes in Com-
puter Science, vol. 6885, ISBN 978-3-642-23567-2. The final publication is available
at www.springerlink.com.

http://arxiv.org/abs/1108.1108v1

closed formulas in terms of standard monomials. With our approach, however,
one is still able to derive formulas of certain type for them.

1 Preliminaries

Let K be a field. Moreover, let A be an associative K-algebra and q ∈ K
∗. We use

the following notations: [a, b]q := ab − q · ba is a q-commutator of a, b ∈ A. The
commutator or the Lie bracket is [a, b] := [a, b]1 = ab − ba. We also write [n] =

[n]q = qn−1
q−1 for the q-number, (a; q)n :=

∏n−1
k=0 (1 − aqk) for the q-Pochhammer

symbol, [n]k = (qn−k+1;q)k
(1−q)k

for the q-falling factorial and

[

n
k

]

=

[

n
k

]

q

= [n]!
[n−k]![k]!

for the q-binomial coefficient. Note, that

[

n
k

]

= 0 for k > n.

Lemma 1. ∀a, b, c ∈ A and λ, µ ∈ K the following identities hold.

– [a, b]q = −q(ba− 1
q
ab) = −q[b, a]q−1 , [a, a]q = (1− q)a2

– [a+ λ, b]q = [a, b]q + λ(1− q)b, [a, b+ µ]q = [a, b]q + µ(1− q)a
– [ab, c]q = a[b, c]q + q · [a, c]b = a[b, c] + [a, c]qb

In particular, [a, b] = −[b, a] and [ab, c] = a[b, c] + [a, c]b.

We study two-generated non-commutative K-algebras with affine relations

A(q, α, β, γ) := K〈x, y | yx = q · xy + αx+ βy + γ〉

for q ∈ K
∗ and α, β, γ ∈ K. The scalar q plays an important role and we distin-

guish two major cases. If q = 1, an algebra is of Lie type, that is it is isomorphic
to a factor-algebra of the universal enveloping algebra of a finite-dimensional Lie
algebra. If q 6= 1, in the research of quantum algebras one distinguishes two situ-
ations (which lead to different behaviour of algebras): either q is transcendental
over some subfield k ⊂ K or q is a root of unity in K. Without assumptions on
q we will write K(q) in general (thus encompassing the case q ∈ K

∗ as well),
while in the case q = 1 just K will be used. For (a, b) ∈ N

2
0 we call an element

xayb a (standard) monomial. If an algebra A possesses a K-basis, consisting
of monomials, the latter basis is often called a Poincaré-Birkhoff-Witt basis.
The following Lemma is well-known.

Lemma 2. A(q, α, β, γ) has {xayb | (a, b) ∈ N
2
0} as a K(q)-basis.

Indeed, this Lemma is a consequence of the more general statement, which
can be easily proved by using Gröbner bases in the free associative algebra
K〈x, y〉. The latter algebra has a K-basis, consisting of words, that is of elements
from the free monoid F = 〈x, y〉. The empty word from F is written as 1 in
K〈x, y〉. The free monoid F can be totally well-ordered with an ordering, which
is compatible with the bilateral multiplication on F . We call an ordering, having
such properties, a monomial ordering on K〈x, y〉. See e. g. [8,4,9] for the Gröbner
bases theory for K〈x, y〉.

Lemma 3. Let K〈x, y〉 be the free associative algebra and ≺ be a monomial
ordering. Consider a polynomial p = c · yx+ q(x, y), c ∈ K \ {0} such that every
word of q(x, y) is smaller than yx with respect to ≺. Then {p} is a two-sided
Gröbner basis of the two-sided ideal 〈p〉.

Proof. Since there are no words u, v ∈ F of degree less than 2, such that u ·yx =
yx ·v holds, there are no generalized s-polynomials in the free algebra [4]. Hence
the set {p} is already a two-sided Gröbner basis.

Writing A(q, α, β, γ) ∼= K〈x, y〉/〈−yx+ q ·xy+αx+ βy+ γ〉, we see that the
previous Lemma proves Lemma 2. Consider a monomial ordering, which satisfies
(a) w ≺ u implies degw ≤ deg u and (b) xy ≺ yx, for instance, degree right
lexicographical ordering. Then by the previous Lemma {−yx+q·xy+αx+βy+γ}
is a two-sided Gröbner basis, hence, the basis of the factor algebra A(q, α, β, γ)
is spanned by all words which do not contain yx as a subword. And such words
are precisely the standard monomials.

A product of two monomials is, in general, not a monomial, but a polynomial,
that is a sum of monomials.

2 Main Theorem and Applications

Theorem 1. A(q, α, β, γ) is isomorphic to one of the five model algebras:

1. the commutative algebra K[x, y],
2. the first Weyl algebra A1 = K〈x, d | dx = xd + 1〉 (the algebra of linear

differential operators with coefficients from K[x]),
3. the shift algebra S1 = K〈x, s | sx = xs+ s〉 (the universal enveloping algebra

of the non-abelian solvable two-dimensional Lie algebra; the algebra of linear
shift operators with coefficients from K[x]),

4. the q-commutative algebra Kq[x, y] := K(q)〈x, y | yx = q ·xy〉 (Manin’s quan-
tum plane; the algebra of linear q-shift operators with coeff’s from K(q)[x])

5. the first q-Weyl algebra A
(q)
1 = K(q)〈x, ∂ | ∂x = q · x∂ + 1〉 (the algebra of

linear q-differential operators with coefficients from K(q)[x]).

Moreover, the model algebras are pairwise non-isomorphic (see Prop. 3).

In Tables 1 and 2 we write isomorphisms to model algebras and write formulas
for the multiplication in every concrete class of algebras. In some cases we also
write down the recurrence formulas for the coefficients in the expansion of ymxn

in terms of standard monomials xayb. For some algebras we put simpler formulas
for ymx and yxn as well as a part of our proof.

By writing not known yet in the table we mean, that up to now, no explicit
formula in terms of of standard monomials is known to us. However, by applying
an isomorphism (for instance, the one we give explicitly in the table) to the ex-
plicit multiplication formula of the corresponding model algebra (Algebra Class
in the table), we obtain a non-expanded formula for any algebra in the table.

Table 1. Multiplication Formulas for Algebras of Lie Type

Algebra Type Relation Algebra Class

(1, 0, 0, 0) yx = xy Y X = XY

Isomorphism: X→ x , Y→ y

y
m
x
n = x

n
y
m

(1, α, 0, 0) yx = xy + αx Y X = XY + Y

Isomorphism: X→ −α−1y , Y→ x

y
m
x
n = x

n(y + nα)m =

m
∑

k=0

(

m

k

)

(nα)m−k
x
n
y
k,

Coeff. recurrence: Ck =
(k + 1)nα

m− k
Ck+1

(1, 0, β, 0) yx = xy + βy Y X = XY + Y

Isomorphism: X→ β−1x , Y→ y

y
m
x
n = (x+mβ)nym =

n
∑

k=0

(

n

k

)

(mβ)n−k
x
k
y
m,

Coeff. recurrence: Ck =
(k + 1)mβ

n− k
Ck+1

(1, α, β, 0) yx = xy + αx+ βy Y X = XY + Y

Isomorphism: X→ −α−1y , Y→ αx+ βy

yx
n =

1

β

(

(x+ β)n(αx+ βy)− αx
n+1
)

, y
m
x =

1

α

(

(αx+ βy)(y + α)m − βy
m+1

)

,

y
m
x
n = not known yet

(1, 0, 0, γ) yx = xy + γ Y X = XY + 1

Isomorphism: X→ x , Y→ γ−1y

yx
n = x

n−1(xy + nγ), y
m
x = (xy +mγ)ym−1,

y
m
x
n =

n
∑

k=0

(

m

k

)

n
k
γ
k
x
n−k

y
m−k =

min{m,n}
∑

k=0

m!n!γkxn−kym−k

k!(m− k)!(n− k)!
,

Coeff. recurrence: Ck =
(m− k + 1)(n− k + 1)γ

k
Ck−1

(1, α, 0, γ) yx = xy + αx+ γ Y X = XY + Y

Isomorphism: X→ −α−1y , Y→ αx+ γ

yx
n = x

n
y + nx

n−1(αx+ γ), y
m
x =

1

α

(

(αx+ γ)(y + α)m − γy
m
)

,

y
m
x
n =

1

αn

n
∑

i=0

(

n

i

)

(−γ)n−i(αx+ γ)i(y + iα)m

(1, 0, β, γ) yx = xy + βy + γ Y X = XY + Y

Isomorphism: X→ β−1x , Y→ βy + γ

y
m
x = xy

m +my
m−1(βy + γ), yx

n =
1

β

(

(x+ β)n(βy + γ)− γx
n
)

,

y
m
x
n =

1

βm

m
∑

i=0

(

m

i

)

(−γ)m−i(x+ iβ)n(βy + γ)i

(1, α, β, γ) yx = xy + αx+ βy + γ Y X = XY + Y

Isomorphism: X→ −α−1y , Y→ αx+ βy + γ

y
m
x
n = not known yet

Table 2. Multiplication Formulas for Quantum Algebras

Algebra Type Commutation Algebra Class

(q, 0, 0, 0) yx = qxy Y X = qXY

Isomorphism: X→ x , Y→ y

y
m
x
n = q

mn
x
n
y
m

(q, α, 0, 0) yx = qxy + αx Y X = qXY

Isomorphism: X→ x , Y→ y − α(1− q)−1

y
m
x
n = x

n(qny + [n]α)m

(q, 0, β, 0) yx = qxy + βy Y X = qXY

Isomorphism: X→ x− β(1− q)−1 , Y→ y

y
m
x
n = (qmx+ [m]β)nym

(q, α, β, 0) yx = qxy + αx+ βy Y X = qXY

Isomorphism: X→ x− β(1− q)−1 , Y→ y − α(1− q)−1

y
m
x = x(qy + α)m + β

m
∑

k=1

y
k
α
m−k

k−1
∑

i=0

(

m− k + i

i

)

q
i,

y
m
x
n = not known yet

(q, 0, 0, γ) yx = qxy + γ Y X = qXY + 1

Isomorphism: X→ x , Y→ γ−1y

y
m
x
n =

n
∑

k=0

[

m

k

]

[n]kq(n−k)(m−k)
γ
k
x
n−k

y
m−k.

(q, α, 0, γ) yx = qxy + αx+ γ Y X = qXY + 1

Isomorphism: X→ γ−1x , Y→ y − α(1− q)−1

y
m
x
n =

n
∑

k=0

m−k
∑

j=0

[

n

k

]

γ
k

(

α

1− q

)m−j−k

cj,k,m,nx
n−k

y
j ,

where cj,k,m,n =

m−j−k
∑

i=0

(−1)i
(

m

i+ j + k

)(

i+ j

j

)

[i+ j + k]kq(i+j)(n−k)

(q, 0, β, γ) yx = qxy + βy + γ Y X = qXY + 1

Isomorphism: X→ x− β(1− q)−1 , Y→ γ−1y

y
m
x
n =

n
∑

k=0

n−k
∑

j=0

[

m

k

]

γ
k

(

β

1− q

)n−j−k

cj,k,m,nx
j
y
m−k,

where cj,k,m,n =

n−j−k
∑

i=0

(−1)i
(

n

i+ j + k

)(

i+ j

j

)

[i+ j + k]kq(i+j)(m−k)

(q, α, β, γ) yx = qxy + αx+ βy + γ Y X = qXY + 1

Isomorphism: X→ x− β(1− q)−1 , Y→ ((1− q)y − α)(γ(1− q) + αβ)−1

y
m
x
n = not known yet

Proof. While for some of the above cases the explicit formulas for ymxn are
rather simple (and therefore easily found), others are quite complicated and re-
quired some work. A good strategy for finding a general formula for ymxn is to
study the special cases yxn and ymx first. Once this is done, further multipli-
cations by y (and x, respectively) lead to the general formula. However, for the
most general commutation rules (e.g., yx = xy+αx+βy+γ), this strategy fails.

All the formulas for ymx, yxn, and ymxn have in common that they are easily
proved by induction. As an example, consider the algebra (1, 0, β, γ). We have
stated above that ymx = xym + mym−1(βy + γ). For m = 1 this reduces just
to the given commutation relation yx = xy + βy + γ. Now consider ym+1x =
y · (ymx) which by induction hypothesis is yxym +mym(βy + γ) = (xy + βy +
γ)ym + mym(βy + γ) which after collecting powers gives the desired formula
xym+1 + (m+ 1)ym(βy + γ). Similarly, the general formula

ymxn =
1

βm

m
∑

i=0

(

m

i

)

(−γ)m−i(x+ iβ)n(βy + γ)i

can be shown (now we use induction on n). A straightforward calculation shows
that this formula for n = 1 reduces to the one given above for ymx. Thus it has
to be investigated what happens after multiplying another x from the right:

(βy + γ)ix =

i
∑

j=0

(

i

j

)

(βy)jγi−jx =

i
∑

j=0

(

i

j

)

βj
(

xyj + jyj−1(βy + γ)
)

γi−j

= x

i
∑

j=0

(

i

j

)

βjyjγi−j + β





i
∑

j=0

(

i− 1

j − 1

)

i(βy)j−1γi−j



 (βy + γ)

= x(βy + γ)i + βi(βy + γ)i−1(βy + γ)

= (x+ βi)(βy + γ)i

We have additionally checked the validity of the formulas above with our
respective implementations in computer algebra systems Singular:Plural [6]
and Mathematica [5].

2.1 Operator Algebras and Model Algebras

Fix a constant c ∈ K
∗. Then the c-shift operator acts as sc(f(x)) = f(x − c).

The corresponding c-shift algebra is K〈x, sc | sc ·x = x · sc− csc〉. For c = 1 one
recovers discrete shift operator. If c < 0 (resp. c > 0), sc is called an advance
operator (resp. a time-delay operator) in both discrete and continuous settings.
The corresponding algebras are of the type (1, 0, β = −c, 0) and thus they are
isomorphic to K〈X,Y | Y X = XY + Y 〉, the model shift algebra.

Let c = (c1, c2) for ci ∈ K
∗. The c-difference operator acts as ∆c(f(x)) =

f(x+c1)−f(x)
c2

. The corresponding c-difference algebra is

K〈x,∆c | ∆c · x = x ·∆c + c1∆+ c1
c2
〉.

For c = (1, 1) one recovers discrete difference operator; for c = (△x,△x) the
first-order divided difference operator. The corresponding algebras are of the
type (1, 0, β = c1, γ = c1c

−1
2) and hence they are isomorphic to K〈X,Y | Y X =

XY + Y 〉, the model shift algebra.
Following Chyzak and Salvy [2], the q-dilation and q-shift operators give

rise to the same operator algebra, the q-commutative model algebra Kq[x, y].
Both continuous and discrete q-difference operators [2] give rise to the algebra
K(q)〈x, y | yx = qxy + (q − 1)x〉 of the type (q, α = q − 1, 0, 0). Hence it is
isomorphic to the q-commutative model algebra Kq[x, y].

Let c = (c1, c2) for ci ∈ K(q)∗ with qci 6= 0. The c-q-differential operator acts

as ∆
(q)
c (f(x)) = f(qc1x)−f(x)

(qc2−1)x . The corresponding c-q-differential algebra is

K(q)〈x,∆(q)
c | ∆c · x = qc1x ·∆c + (qc1 − 1) · (qc2 − 1)−1〉.

For c = (1, 1) one recovers the q-differential operator Dq(f(x)) = f(qx)−f(x)
qx−x

.

Otherwise, we use Table 2 and by sending x → X,∆
(q)
c → Y := (qc2 − 1)(qc1 −

1)−1∆
(q)
c we obtain the isomorphic algebra K(q)〈X,Y | Y X = qc1XY + 1〉. Let

q̃ = qc1 , then the subalgebra K(q̃)〈X,Y | Y X = q̃XY +1〉 of the previous algebra
is the first q̃-Weyl model algebra.

Consider the differentiation y = d
dt

and the operator x(f(t)) := eλt · f(t) for
λ ∈ K

∗. Then the algebra, generated by x, y has the relation yx = xy + λx and
it is isomorphic to the model shift algebra.

Of course, there are operators obeying relations, which are not affine. Con-
sider the integration operator I(f(x)) :=

∫ x

0
f(t)dt. Its relation with x reads as

Ix = xI−I2. Similarly, let x = t−1 and y = d
dt
. Then the relation is yx = xy−x2.

Both algebras can be realized as G-algebras. It is interesting to study model al-
gebras for non-affine relations.

Remark 1. Note, that isomorphy of q-shift and q-commutative algebras does
not have an analogue in the classical situation, since for q = 1 the model shift
algebra is not isomorphic to the model commutative algebra. Thus the following
question arises: is there a quantum algebra (clearly, with non-affine relation),
which becomes shift model algebra in the limit q → 1?

2.2 Binomial Theorems

Notation: in a noncommutative algebraA, for two elements a, b ∈ A\K, we define

[a+ b]n :=
∑n

i=0

(

n
i

)

aibn−i. Respectively, we define [a+ b]nq :=
n
∑

i=0

[

n
i

]

q

aibn−i.

Then, if x, y commute, one expresses the binomial theorem as (x+y)n = [x+y]n.
Respectively, if yx = qxy, we obtain (x+ y)n = [x+ y]nq .

Using the formulas obtained above, we can provide formulas of binomial type,
which are important in applications. Among the variety of possible presentations
in such formulas we aim at those, which express (x + y)n in terms of standard
monomials xiyj.

In the free associative algebra K〈a, b〉, we can write (a+ b)n =
∑

w∈〈a,b〉n
w,

that is w run through all words of length n in the free monoid 〈a, b〉. One defines
a misordering index [1] of w to be the number of operations, each of them
exchanges two neighbour non-equal letters, needed to move all a’s to the left
(thus finishing when a standard monomial has been achieved), starting from the
last letter in w. For example, the misordering index of a standard monomial
is 0, while the misordering index of bbbab is 3, since the sequence of exchange
operations is bbbab, bbabb, babbb, abbbb. We say also that bbbab converges to abbbb
here. It is known, that in any algebra A(q, α, β, γ) the leading monomial of a
polynomial ym ·xn is xnym. Hence, the coefficients of a standard monomial xayb

of degree a+b will appear from the multiplication, applied on every word, which
converges to xayb. And closed formulas for multiplication allow to perform this
task symbolically.

Lemma 4. Let A = A1 be the first Weyl algebra, where ∂x = x∂ + 1 holds.
Then the following binomial theorem takes place:

(x+ d)n − [x+ d]n =
n−2
∑

k=0

n−k−2
∑

j=0

(

n

j

)(

n− j

k

)

g(n− j − k)xkdj

where g(n) := (n− 1)!!, if n is even and 0 otherwise. Alternatively we can write

(x+ d)n − [x+ d]n =
∑

0≤k≤n−2

∑

0≤j≤n−k−2

n−j−k even

(

n

j

)(

n− j

k

)

(n− j − k − 1)!!xkdj

=
∑

0≤k≤n−2

∑

0≤j≤n−k−2

n−j−k even

n!

j!k!(n−j−k
2)!

(

1

2

)
n−j−k

2

xkdj.

Lemma 5. For the shift algebra S1, where xs = sx + s holds, we obtain the
following binomial theorem:

(x+ s)n = [x+ s]n +

n−1
∑

k=0

n−k−1
∑

j=0

(

n

k

)

S(n− k, j)xksj

where S(n, k) denote the Stirling numbers of the second kind.

We omit the technical proofs for both Lemmas. They can be done by induc-
tion, using the multiplication formulas.

3 Application in Computer Algebra Implementation

As described in [6], a general multiplication in a non-commutative G-algebra
boils down to the multiplication of ym · xn for a couple of variables x, y such
that xayb is a standard word. In general, the polynomial ym · xn involves other
variables as well, but the case, when x, y generate a subalgebra of the type

A(q, α, β, γ), appears often enough. Suppose from now on we are in such situa-
tion.

In [6] it has been proposed to address each pair of non-commuting and non-
q-commuting variables separately. To each such pair a matrix M is assigned,
such that Mij = yi ·xj is a polynomial, written in terms of standard monomials.
There is a general multiplication algorithm, which uses matrix entries of lower
degree in order to compute the higher degrees on demand.

There are several different strategies on the usage of the formulas for en-
hancing the polynomial multiplication. Of course, this problem barely has an
analogue in the commutative case. Initialization of non-commutative relation
between y and x saves the relation yx = q · xy + αx + βy + γ as a part of data
structure on the algebra, where the computations take place.

1. Faster computation, considerable memory usage: As proposed in
[6], the results of all required multiplications yi · xj and the intermediate multi-
plications in lower degree will be saved. Due to the same principles applied for
the search of previously computed elements of lower degree, the multiplication
matrix will be filled with many elements. On the other hand, the intermedi-
ate elements will be reused intensively and this leads to fast arithmetics in the
algebra.

2. Saving memory, slower computation: All required multiplications
yi · xj will be done according to the formulas, the results will not be saved for
the future use. Thus this way uses the least amount of memory, but can take
much longer, especially if many multiplications are requested repeatedly.

3. Mixing 1 and 2 and using formulas: Computing, by utilizing formulas,
the requested elements and storing them into the multiplication matrix elimi-
nates the need to compute and store intermediate elements from the approach
1. Storing the demanded elements increases the chances for the future reuse of
matrix entries. Still, there are more possibilities to develop strategies by mix-
ing both approaches and working with multiplication matrices dynamically, like
keeping (e. g. by periodic cleaning) higher degree part of the matrix sparse while
being as dense as possible in the lower degree part. But the question, how to de-
termine the value, which distinguishes high degree from low degree, is open. At
last, but not at least, we have experimented with counting the requests to each
matrix entry, thus having a metric for the usability of every single entry. This is
useful while following the strategy, which uses periodic cleaning of multiplication
matrices.

Experiments. Let us do experiments with the most general case: A =
A(q, α, β, γ), where q, α, β, γ are transcendental over the base field. As described
above, in general the product ya · xb is computed (inductively) either as y ·
(ya−1 · xb) or as (ya · xb−1) · x. Let us consider the products yi · x and y · xi.
The determination of the computational method for these products can be made
during run-time by analyzing given q, α, β, γ. Both yi · x and y · xi are of the
same length (with 2(i+ 1) terms), with the same leading term and of the same
internal byte-size. Counting the byte-size of both expressions for i = 1..10, 15, 20
we obtain 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 736, 1281. Indeed this sequence

coincides with octagonal numbers4 shifted by 1. Hence the byte-size s(i) of yi ·x
is 3i2 + 5i+ 2.

Further on we look for some computation-specific patterns, for instance, dur-
ing the computation of a left Gröbner basis. We use the implementation of
slim Gröbner basis algorithm in Singular for highly resource-demanding and
tasks like the computation of Bernstein-Sato polynomials with two different algo-
rithms. With the latter algorithms one computes in the tensor product of model
algebras (Weyl and shift algebras), what suggests using formulas. By cashing
below we mean the use of the multiplication table for saving once computed
elements.

We experiment with the following strategies: 1. Using formulas and caching
2. Using formulas without caching the results 3. Caching the results, obtained
without formulas. The timings and maximal memory usage are collected in the
Table 3. Since we are interested in the efficiency of the caching, we count the
requests to compute every needed elementary product ya · xb as above in a sep-
arate computation. In the process of computation of Bernstein-Sato polynomial
of various Reiffen curves f(x, y) ∈ K[x, y], there is a complicated computation in
the tensor product of two Weyl algebras and K[s]. We count requests to compute
ymxn = xnym in Table 4 and the number of requests to compute ∂m

x xn in the first
Weyl algebra, where [∂x, x] = 1 holds, in Table 5. All the data is available online
from http://www.mathematik.uni-kl.de/∼motsak/ncSAtests. Timings and
memory are given in seconds resp. in Kb. The tests were run on a PC running
64 bit Arch Linux 2.6.38, having 16 GB RAM and Intel Core i7 CPU 860 at
2.80GHz (4 Cores/8 Threads).

We gain some speedup by using both caching and formulas. It can be en-
hanced by optimizing the way of caching, especially for algebras with many
variables.

Table 3. Time and Memory Comparison for Different Multiplication Strategies

Name Cache + Formulas Formulas only Cache only
time memory time memory time memory

reiffen11-mod 8.04 9.912 8.14 11.999 7.97 9.912
reiffen45-3-ann 8525.40 518.262 8517.73 523.502 8547.37 518.261
reiffen45-6-ann 158.25 46.509 160.20 46.506 160.54 46.509
reiffen57-mod 36.16 11.422 39.28 11.415 36.41 11.422
reiffen59-mod 80.03 15.759 87.90 15.746 81.03 15.759
reiffen67-mod 216.81 45.369 261.30 45.361 222.15 45.369
reiffen68-mod 117.58 142.254 141.97 138.494 118.31 142.254
reiffen76-mod 389.54 99.026 630.48 99.026 389.42 99.026
reiffen86-mod 298.83 69.610 453.93 69.610 297.81 69.610

4 http://oeis.org/A000567

http://oeis.org/A000567

Table 4. Number of Requests for ymxn = xnym

n 1 2 3 4 5 6 7 8 9 10
m

1 23711 18629 17628 14796 8368 2899 2444 1315 296 186 32
2 8264 4952 4806 4947 2952 728 715 549 47 26 0
3 4900 3002 3233 3202 1577 286 277 237 18 9 0
4 2084 1230 1268 1189 585 104 82 60 6 3 0
5 215 155 118 131 127 59 48 37 2 1 0
6 62 45 30 30 26 6 3 0 0 0 0
7 19 14 9 9 8 2 1 0 0 0 0
8 3 2 1 1 1 0 0 0 0 0 0

Table 5. Number of Requests for ∂m
x xn = xn∂m

x + . . .

n 1 2 3 4 5 6 7 8 9 10 11
m

1 27345 22324 21914 20484 14636 5702 4076 3104 1515 1005 563 164
2 12627 10267 9799 9219 6910 2592 1888 1523 718 455 246 72
3 4271 3319 2904 2895 2544 942 763 691 300 181 90 26
4 1149 872 604 659 780 277 273 275 105 58 24 6
5 247 203 50 79 224 54 65 83 26 11 0 0

4 Centers and Ring-Theoretic Properties of Model

Algebras

By using the formulas, we compute explicitly the centers of non-commutative
model algebras, depending on the ground field K. Recall, that for some f ∈ A
one defines the centralizer subalgebra C(f) = {a ∈ A | fa = af} ⊇ K[f].

Proposition 1. For the algebras of Lie type one has

• If charK = 0, Z(A1) = K and Z(S1) = K.
• If charK = p, Z(A1) = K[xp, ∂p] and Z(S1) = K[xp − x, sp].

For the quantum algebras one has

• If q is not a root of unity, Z(Kq[x, y]) = K(q) and Z(A
(q)
1) = K(q).

• If q is a primitive root of unity of order p over K, Z(Kq[x, y]) = K(q)[xp, yp]

and Z(A
(q)
1) = K(q)[xp, ∂p].

Proof. Since all the proofs are similar, let us consider the q-Weyl algebraA
(q)
1 . We

compute the center as the intersection of two centralizers Z(A) = C(x) ∩ C(∂).
Since A is a Z-graded algebra (e. g. with deg x = −1, deg d = 1), C(x), C(∂)
and Z(A) are Z-graded subalgebras. The 0-th graded part of A is K(q)[x∂]. For
k ∈ Z+, the k-th graded part of A is Ak = K(q)[x∂]∂k and A−k = K(q)[x∂]xk.

By Thm. 1, we see that ∂mx = qmx∂m + [m]q∂
m−1 ∈ Am−1 is homogeneous of

degree m−1. Thus for f =
∑

α cα(x)∂
α one has 0 = fx−xf =

∑

α cα(x)(∂
αx−

x∂α). Note, that ∂αx − x∂α = (qα − 1)x∂α + [α]q∂
α−1 is graded. So, for all α

(qα − 1)x∂α + [α]q∂
α−1 = 0 , that is qα = 1 for all α. Hence qp = 1 implies

C(x) = K(q)[x, ∂p], C(∂) = K(q)[xp, ∂] and thus Z(A) = K(q)[xp, ∂p].

It is known, that over any field A(q, α, β, γ) is aG-algebra (or a PBW algebra)
[6,1]. Thus it is a Noetherian domain of Gel’fand-Kirillov dimension 2, which
is Cohen-Macaulay and Auslander-regular [1]. However, the global homological
dimension is between 1 and 2.

Proposition 2. gl. dimA(q, α, β, γ) = 1 if and only if charK = 0 and A(q, α, β, γ)
is isomorphic to the Weyl algebra.

Proof. Let A = A(q, α, β, γ). Because of Cohen-Macaulay property, gl. dimA = 2
if and only if there exist a module M of finite dimension over K(q). We look for
M = A/L for an ideal L ⊂ A. Over K[x, y] and Kq[x, y] all 1-dimensional mod-
ules are described by ideals 〈x − a, y − b〉 for a, b ∈ K(q). In the shift algebra
there are ideals 〈x− a, s〉 for a ∈ K while in the q-Weyl algebra these ideals are
〈x− a, y − ((1 − q)a)−1〉 for a ∈ K(q)∗.
Consider the case when A is the Weyl algebra. If charK = p > 0, from Prop. 1
follows, that Ip = 〈xp, ∂p〉 is a proper two-sided ideal and A/Ip is finite dimen-
sional, thus gl. dimA = 2. Now let charK = 0. A module of Gel’fand-Kirillov
dimension 0 is finite-dimensional over K and hence can be considered as a rep-
resentation of an algebra. Assume there exists some m ∈ N and two matrices
X,D ∈ Mat(m,K) such that x 7→ X, ∂ 7→ D is a representation, in other words
a homomorphism of left A1-modules. Thus DX − XD = Idm holds and also
0 = tr(DX − XD) = m, what is a contradiction, showing that there are no
finite dimensional modules and the minimal Gel’fand-Kirillov dimension of a
module over A1 is thus 1 (which encompasses for instance holonomic left mod-
ules A1/〈x〉 and A1/〈∂〉).

Lemma 6. For any field K, there are no nonzero K-algebra homomorphisms
from A1(K) to Kq[x, y] or to K[x, y].

Proof. Assume there is a homomorphism of K-algebras φ : A1(K) → Kq[x, y].
Thus there exists X = φ(x), D = φ(∂) ∈ Kq[x, y], such that DX − XD = 1.
Write D =

∑

α cαx
α1yα2 for cα ∈ K and N

2
0 ∋ α = (α1, α2). Analogously

X =
∑

β dβx
β1yβ2 . Then in Kq[x, y] one has DX − XD =

∑

α,β cαdβ(q
β1α2 −

qβ2α1)xα1+β1yα2+β2 and the coefficient by 1 = x0y0 vanishes. In the limit q → 1,
that is in K[x, y] we obtain DX−XD = 0. Hence the only homomorphism from
A1(K) to K[x, y] or to Kq[x, y] is 0.

Proposition 3. Five model algebras are pairwise non-isomorphic over any field.

Proof. Let charK = 0. From Prop. 1 we see that A1(K), S1(K), A
(q)
1 (K) 6∼=

K[x, y]. By Prop. 2 and Lemma 6 we conclude S1(K),Kq[x, y], A
(q)
1 (K) 6∼= A1(K).

For any field K, A
(q)
1 (K) 6∼= Kq[x, y]: let U, V be affine subspaces of K2 of all 1-

dimensional (thus irreducible) representations of both algebras in K. Then U, V
are zero sets of corresponding ideals I = 〈(1 − q)ab + 1〉 and J = 〈(1 − q)cd〉 =
〈c〉 ∩ 〈d〉, what implies K[U] 6∼= K[V]. Since the variety W ⊂ K

2 of 1-dimensional
representations of S1 is W = {(a, b) | ba = ab+ b} = {(a, 0) | a ∈ K} cannot be

in bijection with either U or V , S1 is not isomorphic to A
(q)
1 (K) or Kq[x, y]. Also

K[x, y] with K
2 as the variety of 1-dimensional representations is not isomorphic

to other model algebras for any K. Now, let charK = p. Then A1(K) has finite
dimensional representations since m = tr(1m×m) = tr(DX − XD) = 0 for a
m×m representation X,D of A1(K). Hence p | m and the smallest irreducible
representation is in dimension p. Thus A1(K) cannot be isomorphic to other
model algebras. The remaining cases can be proved analogously.

Future work includes the study of Ore localizations of model algebras, for
which no analog of the ”five models” theorem is not known yet. Groups of linear
endomorphisms and sets of linear antiendomorphisms of model algebras are of
interest as well.
By performing Ore localization on model algebras one gets interesting and ubiq-
uitous algebras, for which the ”five models” theorem is not known yet.
Acknowledgments. The authors are grateful to Hans Schönemann and Olek-
sandr Yena for discussions on the subject. We would like to thank anonymous
referees for valuable suggestions. The second author was supported by the Aus-
trian Science Fund (FWF): P20162-N18. The first and third authors are grateful
to the SCIEnce project (Transnational access) at RISC for supporting their visits
to RISC and the usage of computational infrastructure at RISC.

References

1. J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic methods in non-

commutative algebra. Applications to quantum groups. Kluwer Acad. Publ., 2003.
2. F. Chyzak and B. Salvy. Non–commutative elimination in Ore algebras proves

multivariate identities. J. Symbolic Computation, 26(2):187–227, 1998.
3. J. Dixmier. Enveloping Algebras. AMS, 1996.
4. E. Green. Multiplicative Bases, Gröbner Bases, and Right Gröbner Bases. J.

Symbolic Computation, 29(4-5):601–623, 2000.
5. C. Koutschan. HolonomicFunctions (User’s Guide). Technical Report 10-01, RISC

Report Series, University of Linz, Austria, 2010.
6. V. Levandovskyy and H. Schönemann. Plural — a computer algebra system for

noncommutative polynomial algebras. In Proc. ISSAC, 176–183. ACM Press, 2003.
7. J. McConnell and J. Robson. Noncommutative Noetherian rings. AMS, 2001.
8. T. Mora An introduction to commutative and non-commutative Gröbner bases.

Theor. Comp. Sci., 134:131–173, 1994.
9. V. Ufnarovski Introduction to noncommutative Gröbner bases theory. In B. Buch-

berger and F. Winkler (eds.) Gröbner bases and applications, 259–280, 1998.

	On Two-generated Non-commutative Algebras Subject to the Affine Relation
	Viktor Levandovskyy, Christoph Koutschan, Oleksandr Motsak

