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Abstract

We have derived the coefficients of the highest threednhanced smak-logarithms of all time-
like splitting functions and the coefficient functions ftvettransverse fragmentation function in
one-patrticle inclusivete~ annihilation at (in principle) all orders in massless pesaitive QCD.
For the longitudinal fragmentation function we present tgpective two highest contributions.
These results have been obtained from KLN-related decoitgasof the unfactorized fragmenta-
tion functions in dimensional regularization and theiusture imposed by the mass-factorization
theorem. The resummation is found to completely remove tlgesmalix spikes present in the
fixed-order results, allowing for stable results down topgmall values of the momentum fraction
and scaling variablg. Our calculations can be extended to (at least) the correipga [ In?"—‘x
contributions to the above quantities and their countéspardeep-inelastic scattering.
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1 Introduction

One-hadron inclusive electron-positron annihilatieng~ — y, Z — h+ X whereh denotes the
observed hadron (or a sum over all charged hadron speciéX) any inclusive hadronic final state,
is an important benchmark process in perturbative QCD whashbeen measured accurately over
a wide range of centre-of-mass (CM) energiés[1]. The results provide crucial inputs for fit
determinations of the fragmentation distributions (ortparfragmentation function@Q(x,Qz),
see Refs[[2-4], whererepresents the fraction of the momentum of the final-statepa trans-
ferred to the outgoing hadrdnandQ? is a hard scale, for instance the squared four-momeimtum
of the timelike virtual photon oZ-boson in the above semi-inclusive annihilation (SIA) @es,
Q? = ¢? = s. SIA data have also provided constraints on the strong dogipbnstantis [5].

The theoretical description of semi-inclusigee— annihilation is analogous to that of electron-
hadron deep-inelastic scattering (DI®p — e+ X, via the exchange of a (spacelike) virtual
photon orZ-boson. The SIA differential cross section can be writteterms of transverser(),
longitudinal L) and asymmetricA) fragmentation functions (timelike structure functiofi])

1 d% 3 3

— ——— = Z(1+coge) —sinZGth ) + S cosBFP(x,Q%). (1.1
Herex = 2En/\/s < 1 and® are the scaled energy of the hadiomand its angle relative to the
electron beam, respectively, in the CM frame; and for pha@xchangeo, = nc 4ma?/3s is the
total cross section for Bhabha scattering times the numioesloursn.. Disregarding corrections
suppressed by inverse powers@fthe fragmentation functions are related to the fragmenat

distributions by
X

Fhx Q%) — / & o p(20s(Q?) DQ(E,QZ) . (1.2)
p= q q9

The coefficient functions, ,, in Eq. (1.2) are known to order? [7-10], see also Ref. [11], i.e., to

the next-to-next-to-leading order (NNLO) féf andFa and to the next-to-leading order (NLO)

for i which vanishes fons = 0. Here and throughout this article we identify, withoutdasf

information, theMiS renormalization and mass factorization scales with thyesjzal hard scal®?.

The scale dependence of the (process-independent) fatalfshgmentation distributions is
analogous to that of the initial-state parton distribusi@md given by

ldz X
D(x,Q?) = — P (zos(Q?) DM'( =, Q?) . (1.3)
g S A e@) (5 )

The (timelike) splitting function®| can be expanded in powersaf= as(Q?)/(4m),

Rl (xas(Q?) = asP” T (x) +aZPMT () + 3PP T (x) + ... . (1.4)

The leading-order (LO) and NLO contributioR? T andPUT to Eq. [1.4) have been known for
a long time [12=16]. A direct calculation of the NNLO corriects P2 T has not been performed
so far. However, an indirect determination[11, 17], usiog4trivial relations to the spacelike DIS
case[[18] and the supersymmetric limit [1315,/19-23] hantmmpleted recently [24] up to a
minor caveat, which is not relevant in the present contexicerning the quark-gluon splitting.

1



Eq. (1.4) and the corresponding fixed-order approximationthe coefficient functions (see
below) are adequate except for-X < 1 andx < 1, where higher-order corrections generally
include double logarithms which can spoil the perturbagxpansions. Here we focus on the
smallx case, where the leading contributions to tH&.® splitting functions are of the form

m _ Cr

PVT(x) = 6jgai(n))—1(ln2”x+... o oay) =

| (m (1.5)

C, 2

wheredj; is the Kronecker symbol, anda andCr are the standard SU(N) colour factors, with

Ca=nc=3 andCg = 4/3 in QCD. The coefﬁcientai(”) and the corresponding subleading
contributions lead to corrections which are numericallyléager than the corresponding single-
logarithmic enhancement of the analogous spacelikeNsplitting functions governing the DIS
case [[25-29]; fon = 2 see Figs. 1 of Refs, [17] and [24]. On the other hand, therakr Mellin-
space summation of the leading-logarithmic (LL) contribns (1.5) leads ta [30]

Ca o T 1 32Cpas \ /2
@qu(Nﬂs) = Pyg(N,as) = Z(N_1>{<1+m) —13 + NLLterms (1.6)

which can be expanded to all orders<igpace via the standard Mellin transform

1 1o a1l —~1)kk!
M L—(In"x} (N) = /dexN 1)—(Inkx = W . (1.7)

Eq. (1.6) corresponds to a small and oscillating function-Bpace, suggesting that the small-

enhancement oPéil)T(x,ors) and Féiz)T(x,as) — which is negative in the former and positive in
the latter case, see below — is unphysical and can be remgvexténding Eq.[(116) to the next-
to-leading logarithmic (NLL) and next-to-next-to-leadifogarithmic (NNLL) smallx accuracy.
Even the former extension has not been performed inM&escheme so far, as the results of
Ref. [31] are not given in this scheme (and consequently dagree with the NNLO next-to-
leading logarithms of Refs| [17,24]). For a detailed distois see Ref![32] where also the LL

result for theMS transverse coefficient functiauchg corresponding to Eql_(1.6) has been derived.

In this article we employ constraints provided by the swoetof the unfactorized fragmenta-
tion functions in dimensional regularization [33] and tHlecader mass-factorization formula to
derive the coefficients of the respective highest threevamshing logarithms for all four timelike
splitting functionsF’jiT (x,0s), i, j =0, g, as well as the corresponding coefficients for both coeffi-
cient functions forr, to all (in practice sixteen) orders . The derivation of the secoyithird
logarithms is made possible by the NLRNLO fixed-order results; consequently only the highest
two logarithms can be resummed for the longitudinal fragtagon functionF .

The remainder of this article is organized as follows: Int®er2 we describe the theoretical
framework used to perform the resummation and comment oodloelations which were carried
out using the latest version ofodRM and TFORM [34,[35]. The resummed splitting functions
are written down and discussed in Section 3. The correspgndisults for the transverse and
longitudinal coefficient functions are presented in Setwdid and 5, respectively. Our findings are
summarized in Section 6, which also provides a brief outkodigture applications and extensions.
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2 Method and calculation

The main quantities in our resummation are the unfactoritzedur-singlet partonic fragmentation
functions inD = 4 — 2¢ dimensions

Fak(N,as,€) = Cai(N,as,€) Zik(N, as,€) (2.1)

where the summation ovet g,g and thg\/l—S removal of(41)® andye factors [36] are understood.
TheD-dimensional coefficient functior®, include all non-negative powers efn Eq. (2.1),

Cai(N,as,€) = a7 8ig + dapdig + /z aﬁk% eV (N). (2.2)
=1 =

Besides the fragmentation functioRg andF_ of Eq. (1.1) —Fa is a non-singlet quantity without
1/x terms — we consider SIA with an intermediate scglapupling directly only to gluons via an
additional termpGHG,, in the Lagrangian, wher&" represents the gluon field strength tensor.
Such an interaction, suggested as a QCD trick in Ref. [3@&sdmcur in the Standard Model for
the Higgs boson in the limit of a very heavy top quark [38]. NeO and NNLO quark and gluon
coefficient functions for the resulting fragmentation ftion Fy, have been presented in Ref. [24].

The final-state transition functiorE,T( collecting all negative powers af are related to the
matrix of the splitting functions in Eql_(1.4) by

T T
T e @) = ol e (21 @23)
with
pT pT
—y =Pl = < o gTq> and Bp(as) = —eas—Poai—Pral— ... . (2.4)
Pag Fag

As we shall see from the next equation, only the leading aoefft of the four-dimensional beta
function of QCD,3p = 11/3Ca —2/3 n; [39] wheren; stands for the number of effectively mass-
less quark flavours, enters the resummation of the highesst gmalix logarithms.

Eq. (2.3) can be solved fa order by order imts. Suppressing all functional dependences, as
already done for most quantities in the previous two equatithe first four orders read

1 1 1
T 2
Z = 1+asgVo+as{@(Vo—BO)Vo+Eyl}

+ aS{ 6—13 (Yo Bo) (o~ 2B0)Yo + [(VO —2Bo)va+ (Y1~ Bl>2vO] + iv2}

62 3e
+a{ 271&.4 (Yo —Bo) (Yo — 2Bo) (Yo — 3Bo0) Yo
+ s o~ 280) (Yo~ 3B) Vs + (4o — 3B0) (v — B1) 2+ (va — 2B1) (Yo — Bo) 3
+ 2Tlez [(VO—3Bo) 25+ (Y1 —2B1) 3y1 + (Y2 — B2) GyO] + 4—1€y3} + . (2.5)
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The corresponding higher-order contributions have beereigeed in BRM to orderagﬁ. Itis
clear from these results that thé'ND corrections, i.e., the splitting functions up yp = y(
defined analogous to Ed. (1.4) together wd ..., Bn, determine the highesi+1 powers of
1/ in Eq. (2.5) at all orders ims. Keeping in mindy,, 0 1/(N —1)2"*, one notices thgdy and
[33 enter at NLL and NNLL smalk accuracy only. MoreoveB; is suppressed by three powers in
1/(N—1) relative toy,;; hence this coefficient contributes only at the level of therth logarithms,
i.e., beyond our present accuracy.

The same considerations apply to the unfactorized stredturctions [(2.11), which at NLO
require the coefficients;ﬁ’k) with /+k < n for Fr andFy, and/+k < n+1 for F_in Eq. (2.2).
For the convenience of the reader we collect the coefficiemttfon results which form the input
of the smallx resummation discussed below. The expansions aldetiN — 1 = O for Fy read

10 1 1,1 1
oty = Gr+O(N), cfy) = o(N%) |
C-g—?élo) = 6—?flc:F nf N__3 + %SCF nf N__2 — g—gCF nf N_l (26)

and
Cfy) = —8CeN2—4CeN+ (¥ -402)CeN°,
ot > _16CkN"3 —8CEN "2 - (12-6{5)Ce N *,
oy’ = 160CFCAN 4 — Z2CeCaN 3 — [(#841605) CECa+8CE| N2, (2.7)

The corresponding results féf, are given by

0 = _Ln o). clY = oY) .
Ca = $Cay N2 — Can N2 — ZPCun N2 2.8)
and
oy = ~BCAN 2+ [(B—422) Ca— S| N°,
ciht = —16CAN"3+6L,CAN "1,
cin) = 160CEN~ — [49CZ+ 1 Cany — ZCeny] N2
— [(2%2+162,) CZ — %°Can; — 152Cen | N 2. (2.9)
The coefficient functions fof. are, to the lesser accuracy required in the present context,
o2 = 2ce100N) . ¢t = o) .
o) = ~%2CenyN"2 - 8Cen N (2.10)
and
oy = 4CEN"!-4CeN°, oY = 8CEN24+8CENL,
oty = —64CECaN 3 + [128CrCa—16C2] N2, (2.11)
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Note that our normalizations @f , andc,_, differ by a factor of ¥2 from those in Refs.[]9,10].
Egs. [2.6) —-[(2.11), and some contrlbutlons with a higherk used to further overconstrain the
systems of equations discussed below Eq. {2.15), have bde#amed from the fullx-space ex-
pressions in terms of harmonic polylogarithms (HPLs) asulised in Ref/ [40] and coded in the
HARMPOL package for BRM [34] together with Eq.[(1]7).

The corresponding expressions for the NLO and NNLO spfjtfinnctions can be read off
directly from Egs. (13) and (14) in Ref. [17] and Egs. (20) 3)(ih Ref. [24]. For completeness
we finally give the smalN expansions of the LO splitting functions which we need tceohd?,

Pid’ = (5-40)CeN+0(N?) , Pig = 4n — BN+ O(N?),
Pég)T = 4Cg N1 3Ck + %CF N + O(N2> )
Pl = 4CaN"t—LCa—2n; + (8Ca—422)CaN + O(N?) . (2.12)

An easy way to obtain the coefficients of any desired posjieeer of N is to transform the
functions toN-space harmonic sunis [41], multiply by a sufficiently largever of N 1, transform
back tox-space and proceed as above. Routines for the Mellin trangibthe HPLs and its inverse
are also provided by the ARMPOL package.

Inserting theN-space smalk expansions (216) + (2.1.2) into Eqs. (2.1)=12.5), we obtaé t
highest three (two) logarithms for ttel'e "¢, ¢ =0,1,2 (¢ = 1, 2), contributions tdlrk and
F(p7k (F|_7k) to all orders inag for which the hlgher -order extension of EQ. (2.5) has beatedo It
turns out that the' contributions tdEa,g fora=T, @can be written as

n—1

_ (tn) | gl |, 20 (tn)
_ eZn ;ON — 2n fe (Aad” +eBag’ +°Cag” +..) (213)

P (N,€)

or

n—

Fag (X&) = 1; x 12008 (Al 4 el + e2clg) + .. (2.14)

up to terms of ordefN — 1)9, i.e., nonx~* contributions. Eqs[(2.13) and (2]14) and the corre-
sponding results foFr g, Fyq andF_; given below form the crucial observation of this article.

Focusing for a moment on the leading logarithms, EG_{2. &pthposebay , which includes
terms of the formx—In™%-1x at all orderss "3 with =0, 1, 2, ..., into n contributions of the
form

g2ty —ke — =2ty =111 — kelnx + 3(ke)?In?x + ... ] (2.15)

with k=2, 4, ..., 2n. SinceF.y only starts at ordeg ", the coefficients\lq" in Eq. (Z14) have

to be such that the coefficients %, ... , "2 in the square bracket in Eq.(2]15) cancel in the sum
of thesen contributions. Together with the three non-vanishing fiokeits coefficients of ~",
¢=0,1,2,inFy known from the above NNLO results, we thus have an overcaimgtd system

of n+ 2 linear equations for the coefficientsA;gfgn) at each orden of the strong coupling. Itis
non-trivial that all these systems have solutions, e.grethvould be no solutions if the factor of
two in front of (n—¢) in Egs. [2.18) and (2.14) was absent, or if the sign of thimtens different.
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The situation is completely analogous for the second amd tbgarithms. The splitting func-
tions and coefficient functions up to NNLO leadrtea- 1 equations for the coefficienB ,,, and to
n equations for the coefficien& , in Eqgs. [2.18) and (2.14). Also the latter system can be over-
constrained at all orders except for= 3 andn = 4, from which the corresponding contributions

to the NBLO coefficient functionsﬁ) = CS’O) and splitting functionsE’l-i(s)T are determined.

The decomposition corresponding to Eq. (2.13) I?é%) a=T, @, which are suppressed by
one power of N — 1) 1 or Inx relative to the gluonic quantities, is given by

-2
= (n) _ 1" 1 (e,n) (€n) | 2~(n)
aq (N,&) = 2n2 /;) N—1—2(n—£)s(Aa’q +€eBag +€°Cag +...) (2.16)

for n> 1 (there are na ! terms at ordens in these cases, see Eq4s.(2.6),1(2.8) and{2.12) above).
The missing equation, due to the lack of @1 contribution, is compensated by the absence
of anx 1% term in the decomposition. Consequently also the threeficimafts written out in

Eq. (2.16) can be determined from the NNLO quantities givsova.

We have solved the systems of equations for these coeffscaaat their gluonic counterparts in
Eq. (2.I3) at all orders evaluated @f in Eq. (2.5), i.e., to ordem2®. Re-inserting the results into
these equations then determines the respective highest lingarithms irfasﬂgm) fora=T,0q
and k = g, g to all orders irg, after which the mass-factorization can be performed te dinder
in as. It is worthwhile to recall that, since the coefficientssof”, ..., €2 at ordera are given
in terms of lower-lower quantities, this process include®gy large number of automatic checks.
Also these steps have been carried out usiogi¥ and, for the more involved last step, DRM.

The resulting splitting functions and coefficient funcsaare presented in the next two sections.

Analogous to Eqs[(2.13) and (2]116) the unfactorized partongitudinal fragmentation func-
tions at all orders > 2 can be decomposed as

1 n—1 1 (en)

£ (n) _ (€,n)
-2
= (n) _ 1" 1 (en) (en)
Fl_vq(N,e) = g2n3 /; N—1—2(n—€)£(AL7q + %:B|_7q +...) (2.18)

up to terms of orde(N — 1)°. Due to the additional factor of relative to the previous cases,

the determination of the third coeﬁicierﬁsgi’”) would require the presently unknown third-order

coefficient functions. The determination of the two higHegarithms incﬂ'i’o) is performed in the

manner discussed in the previous paragraph, and providtsal checks of the splitting func-
tions determined fronfrr andF_. The resulting coefficient functions are presented in $adji

Like their counterparts for the largelimit in DIS in Ref. [42] (the publication of the corre-
sponding analysis of SIA is in preparation [43]), see alstsHd4,45], the decompositioris (2]113) —
(2.18) are inspired by and related (but not identical) todbeomposition into purely real-emission
and the various mixed real-virtual contributions. The ediations of, e.g., the =21 . g—nt+l
terms between the contributions to Eq[(2.13) are thus related to the KLN tleen(46].
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3 Resummed timelike splitting functions

We are now ready to present our (mostly) new all-order smadisults. With the exception of
graphical illustrations, we will continue to work in MeliN space. Recall that the connection
to x-space is simple except for the coefficients(bf— 1)¢ with k > 0 in the expansion of the
lowest order quantities abol= 1 which are required for the all-order mass factorizatiohe3e
coefficients are not included in the all-order formulae lelo

In this section we present the resummed timelike splittimgcfions to next-to-next-to-leading
logarithmic (NNLL) accuracy,

T
Z)aSrHl( unLL( ) + PIJ( l)\lLL(N> + Pijg?l)\lNL(N> + > : (3-1)
The leading log (LL) and next-to-leading log (NLL) contriimns forPT andPgTq have the form
Ty — CABMT ) _ (—SCA)”+l
and
T ( 8)nCn 1
Pg(;)NLL(N) - 3(N 1)2n [(11CA +2CAnf> ég)l - 2CF N Bé;?Z} ) (33)
T (—8)"CA?Cr
Paanie (N) = — iAot N1 (CRBla: + 2Cans Byg, — 2CemiBlgs| . (3.4)

The coefficients in Eqsl (3.2) £(3.4) have been determineddera® (n = 15 in Eq. [3.1)), and
are given in Tablgll to the tenth orderag — for the next six orders see the text below Eq. (8.13).
The the highest two contributions Ry, andPy, can be written as

nT CA (_8CA)nnf n
Pq(g,)NLL(N) = @Pq(q,)NLL(N) = 3N_D™ (i) (3.5)
and
(T (=8)"Ca N [ 5 (n) (n)
qu,NNL<N) = - 9(N—1)2”—1 [CA quyl"f—CAnf qu2 Can qu73] ) (36)
T (—8)"CR3Cen
Paann (V) = = o(N—1)2n 1 CRByg: + CangBig, — CengBigs| . (37)

The coefficients in Eqsl(3.5) £(3.7) are given in Tdble 2 wgixteenth order i, for brevity
using a numerical form fom > 12.

The general form and generating function for these sereekrawwn at this point (to this author)
only for Eq. [3.2) and the no@x terms in the square brackets in Eds.|3.3) (3.4), i.eseth
entries that do not involve factorial denominato%é?) are the Catalan numbefs [47] 48],

2mr 1 2n
Ag' ni(in+1)! n+1< n) ' (3:8)




G (n) (n) (n) (n) (n)
n i Bgg1  Bggz Byar  Bggz  Bggs i
0 1 1 _ 9 _ _ _
1 1 1 2 9 _ _ _
2 2 3 5 29 1 1 1
49 19 11
3 5 10 5 100 5 = =
347 179 73
4| 14 B 357 21 = =
6353 3833 1207
5| 42 126 - - 1302 84 et
11839 7879 2021
6| 132 462 —— 4818 330 = T
624557 444377 | 96163
7| 420 1716 2o 18018 1287 — — o
316175 236095 | 44185
81430 6435 67925 5005 “—_ S
54324719 42072479| 6936481
0| 4862 24310 T — | 257686 19448 —— s

Table 1: The coefficients of the LL and NLL smallapproximations irfN-spacel[(3.2) {(314) for
the timelike gluon-gluon and gluon-quark splitting fureets for the first ten orders ios. Also
shown (last column) are the related NLL quark-parton coieffits in Eq.[(3.5).

(M

Byg1 andB( )2 are given by([49]

m _ (2n—1 m _ (2n—=1Y\
Bog1 = ( n ) » Byge = (n—2 ngl Ag| ; (3.9)
and the remaining coefficient in EQ. (B.4) is related to threselts by
(n  _
Byq1 = 11ng7 2Agl (3.10)

Furthermore it is interesting to note that the last entmeSqs. [(3.8) and (314) have a much simpler
difference,

Bin, — Bins = 2A1 . (3.11)
and that the quark-parton coefficients in Eq.|3.5) are edlé&d the above quantities by
A 1Bl = 281 (3.12)

Hence only one more complicated series is containeﬁég)b, Bég)s and Aéri'); and an analytic

formula for any of these quantities would lead to closed esgions for allaf*1/(N — 1)1
contributions to the timelike splitting functions. The €ft@ents in Eq.[(3.5) fon = 10,...,15 are

10 12229277 ay _ 136789507 (12 _ 245398487
T 630 71080 7 990

A 16139182231 (1) _ 6986603759 (15 _ 102190158383 (3.13)
i 18018 ’ i 2145 i 8580 '
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n Big ' Big Big Bio ' Bio” Bia

2 2 1 2 1 - -
89 17 8

3 = = 10 26 2 3

4| 862 49 253 395 37 107
6 2 6 3 3 6

5| 3028 907 5153 16961 892 013
5 10 30 30 15 10

5 219389 3574 20701 207263 11807 12617
90 9 30 90 45 30

. 6069467 197447 57770 412927 349373 64299
630 126 21 45 315 35

8 38066605 2216267 9169289 36475945 11537219 6518189
1008 360 840 1008 2520 840

9 35395649 8688247 7255001 143112541 46944767 81079091
240 360 168 1008 2520 2520

10| 1449188057 595482761 537123949 22226523 157729997 59261597
2520 6300 3150 40 2100 450

1q | 41422167289 17097960349 93203672711| 120436395671 41718615557 8228126859
18480 46200 138600 55440 138600 15400

12 | 8.7381596 19 1.4491517 10 2.6500373 10| 8.490282319 1.201274510 2.1542828 19

13 | 3.4082509 10 5.676199910 1.0438829 10| 3.3186784 10 4.7804744 10 8.6473779 19

14 | 1.3302661 19 2.224272510 4.111183910| 1.297694519 1.8985567 10 3.4597524 10

15 | 5.196077919 8.720365610 1.6190693 18| 5.0769752 19 7.529338110 1.3808638 19

Table 2: The corresponding coefficients in Eqs.](3.5) =I (&7)the timelike quark-gluon and
quark-quark splitting functions to the sixteenth ordertia strong coupling constant.

The corresponding expressions for Egs.1(3.2) 5 (3.4) canfeered from Eqs[(318) +(3.12).
The results[(3]8) +(3.10) lead to the closed NLL expressions

PN, = {a-40-1} iy
—{a-4e 1 as(dcating) + PN, (B14)
and
(2ram)l = {a- 49721} N1 e/
—{(1—4E 2y } (Bca+3in)as (3.15)
with e .
E:—m d a = .2 (3.16)



The first line of Eq.[(3.14) and the directly related LL parth;fq(N) agree, of course, with the

classical resul{{1]6) of Refs. [30]. Already at ordef [17,24], the NLL second line of Eq._(3.14)
is not the same as the result in Ref.][31] which does not reférgMS scheme, see Ref. [32].

The expressions for the third logarithms (NNLL fey; and NPLL for Pgi) are far more lengthy.
We therefore confine ourselves here to the full analytic esgions at ordem?, and present the
higher-order coefficients only in numerical form for the eas QCD,Ca = 3 andCr = 4/3. The

leadingN — 1 behaviour oPg(g)T and Pg(S)T is given by

3T 512 512
PN = - (N-1)7 2008 + (N—1)6 {1710(:;\1“' FCan; - %SCAZCan}

512 899 2 oo ) s

" (N—1)5 {( 5 +1602) CA — 15C3n; + B CXCen; — 5CAN;
+%CACan %gCan } + ... (3.17)

with {; = 2/6 and
3)T 512 512
512

110, 26 3 55 _ 22 2~2 793
(N—1)5 {(_T + ?ZZ) CACF — (1_2 - @ZZ) CACE — 155CA C,:nf

+ 2227chCan CACan + 27C,:nf} + . (3.18)

The corresponding results féﬁg)T anqu((:;’)T read

ngm::‘@%%ﬁ%ﬁm+ﬁé%ﬁ{(%m+ ICRn? — mqgmﬂ
+%{( Y7+ 482) Ciny + (§+ §L2) CACeny — 3CAn?
+ 85CCen? — L Can? -l-z%CanS} . (3.19)
and
P (N) = — (N5_1i)6 FCACe; + (Ns_li)s {ckcen + §Cucen? - CAnf |
¢ (s e el o

$8CaCen + CEPL + ..., (3.20)

where the dots indicate terms beyond the present accuralg ekpansion in powers of (N —1).
The respective NNLL and RLL higher-order expressions are written as

T -1)"
P (N) = = (eeCl)

1~ 2~(n)
(EEE i+ 96" 1c n + 96" 2¢ Y n ) (3.21)
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and

(="

(nT
A

i, NL (96”*105{?1 ne + 96"2¢ " n? + 963N nf’) . (3.22)

gi,2 gi,3

The coefficients for Eq.[(3.21) and Ed. (3.22) are given inl@e and Table 4, respectively.
Here the relative normalization of the coefficients of dfiet orders inas is such that the ra-
tios G, /C{'1 " will tend to one fom — o, if the NNLL correction have the same convergence
properties as the LL and NLL contributions in Eds. (3.14) £8d5). The present calculations
have not been carried out to an order sufficient to definitelyide whether this is indeed the case.

The fixed-order and resummed timelike splitting functioms glustrated and compared in
Figs.[1 {4 at a standard reference scqlé~ MZZ, for n; = 5 effectively massless flavours. For

the corresponding values ~ 0.12 of the strong coupling constant, the expansions to argleare
sufficient, and for some of the NNLL results required, for aswacy of 0.1% or better down to
the lowestx-values shownx = 10~4. An extension of the maximal order to cover one more order
of magnitude inx is definitely feasible, but does not appear to be warrantedriy foreseeable
analyses of experimental data.

It is clear from Figs[1lL an@]2 that the available fixed-ordepragimations to the splitting
functions are not reliable at < 103 for the gluon-parton cases — recall Elg. {1.3) and the form
(2.4) of the timelike splitting function matrix, which isansposed relative to the spacelike case of
the initial-state parton distributions — ards 102 for the quark-parton cases. Obviously it is also
insufficient to only add the previously known leading-laganic resummation [30] from order
a2 to the NNLO gluon-quark and gluon-gluon splitting functsoin Fig.[1. On the other hand, a
near-perfect cancellation of the strorglependences is exhibited by the NNEDINLL results
for xF}iT especially in these cases. The situation is somewhat leas-clit for the quark-parton

splitting functions in Fig[2 where, as already at ordérbut unlike the gluon-parton cases, the
effects of the second and third logarithms have the same ®¥fhin the present uncertainties all
results appear to be consistent WKF],T ~ 0 atx <1072,

In Figs.[3 and 4 the known three fixed-order approximatioescampared by their resummed
counterparts obtained by adding the ‘appropriate’ higireler resummations to the respective
fixed-order results, i.e., forming the LOLL (for the gluon-parton cases), NLONLL and NNLO
+NNLL combinations. The differences between the two exparsiatx < 1072 are striking.
Some questions remain due to the relatively large NNLEONLL corrections in FigLB and the
corresponding behaviour at< 10~2 in Fig.[4. Their answer will require the calculation of the
fourth-order (WLO) splitting functions (from which the RLL resummations foPgTq and Png can
be inferred analogously to the present calculations) whiktiortunately, is not expected in the
near future. In the meantime the NNILENNLL results, and their comparison with the previous
NLO + NLL resummed order, should be sufficient for practical datalgsis including estimates
of the effect of the presently unknown higher orders.
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(n)
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()
Cg1

(n)
Cqo

(n)
Coq1

(n)
Coq2

© 00 N O ol WN P
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(&)

0 3.4074074

0.7923411
1.1074453
1.3336401
1.5204469
1.6839029
1.8313932
1.9670281
2.0933792
2.2121870
2.3246982
2.4318435
2.5343410
2.6327593
2.7275579

5.4814815
5.6111111
5.6790123
5.7204475
5.7522248
5.7823077
5.8140519
5.8486686
5.8864117
5.9271265
5.9705020
6.0161860
6.0638358
6.1131386

2.3703704
4.4334705
5.0809328
5.2181070
5.1713306
5.0603175
4.9316765
4.8040710
4.6847584
4.5761405
4.4785239
4.3913363
4.3136775
4.2445696

0.3148148
0.2174233
0.3976321
0.5129934
0.6035361
0.6809114
0.7498896
0.8128873
0.8713173
0.9260927
0.9778468
1.0270426
1.0740322
1.1190916
1.1624423

2.2469136
2.4698217
2.5064300
2.5046339
2.4969915
2.4920010
2.4915980
2.4957684
2.5039523
2.5154984
2.5298070
2.5463666
2.5647543
2.5846246

0.9657064
1.3924707
1.5768328
1.6546258
1.6831461
1.6880472
1.6815451
1.6697449
1.6558008
1.6413704
1.6273227
1.6140995
1.6019061

Table 3: The numerical coefficients of the NNLL smakypproximationd(3.21) iN-space for the

timelike gluon-gluon and gluon-quark splitting functiongQCD to the sixteenth order ims.

(n)
Cag1

(n)
Cag2
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Caq1

(n)
Caq2
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—7.0398681

0.2881972
3.8811194
6.2663008
8.1028556
9.6308924
10.960497
12.150652
13.236613
14.241194
15.180069
16.064511
16.902933
17.701801

3.1604938
12.609054
19.180041
23.451903
26.382647
28.524947
30.185034
31.537321
32.685054
33.691738
34.597838
35.429968
36.206143
36.938872

6.32098]
12.3493]
16.19314
18.55034
20.01471
20.9442%
21.5469¢%
21.9452%
22.2132]
22.3966¢
22.5248]
22.61674

37
11
13
17
37
33
38
16
83
5
10

22.6847¢

D7

-—3.3757439
(7-0.1122633

1.4382426
2.4695470
3.2699679
3.9411132
4.5288220
5.0574954
5.5417090
5.9909234
6.4116708
6.8086793
7.1854997
7.5448791

6.2624600
9.0594422
10.673136
11.725549
12.479542
13.063470
13.545017
13.961930
14.336239
14.681305
15.005512
15.314277
15.611200

2.22405]
3.98053]
5.20869]
6.06628]
6.67864(
7.12802(
7.46701¢
7.72962(
7.93822¢
8.107924
8.24911%

12
14
11
10
D4
D3
D0
D6
b3
D1
b7

8.36907¢

Table 4: The corresponding®NL coefficients in [3.2R) for the timelike quark-gluon andayk-

guark splitting functions in QCD to the sixteenth order ie 8trong coupling constant.
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Figure 1: The timelike gluon-quark and gluon-gluon spiitifunctions at a typical value of the
strong coupling constaiots, multiplied byx for display purposes. Shown are the NLO and NNLO
approximations, and the consequences of adding the legdihg In2"x), next-to-leading and
next-to-next-to-leading smak{ogarithms to the latter at all higher ordersas.
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Figure 2: As Fig[lL, but for the timelike quark-quark and dugluon splitting functions, where
the highest logarithms are of the next-to-leading logamithform ag‘*llnz”‘lx.
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Figure 3: The timelike gluon-quark and gluon-gluon spiigtifunctions at a typical value ofs,

multiplied by x for display purposes. The LO, NLO and NNLO fixed-order appmations are
compared with the smak-resummed results obtained by respectively adding the LLl, Hhd

NNLL contributions at all numerically relevant higher orden a.
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Figure 4: As FigLB, but for the timelike quark-quark and daghluon splitting functions which do
not receive leading logarithmic (LL) corrections. Hencéydwo resummed curves are shown.
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4 Resummed coefficient functions fok~

We now turn to the coefficient functions. For brevity, we witit discuss the-exchange case here
(beyond the respective highest logarithms which are dyeetated to those foFy), as it will be
of only theoretical interest in the near future. The cormegping results are included, however, in
the FORM file of results distributed with the arXiv version of thisiate.

The moments of the small¥fesummed terms of the transverse coefficient functions are
WL (N) + et (N 4.1
cr,i(N Zas |gCT| L (N) + e (N) + e (N) + 1) (4.1)
The leading and next-to-leading logarithmic contribuidor c; , can be written as

(=4)"CeC "

n
CroL(N) = TINCDz AT (4.2)
and
(_4)nCFCn—3
C'E'ng{NL(N) = 9(N . 1)2:\_1 [_CAZ B‘g'ng{l + CAnf B'E'rgz + 8CF nf B—E—ng)73i| . (43)

The coefficients in Eqsl(3.2) and (B.4) are given in Table &yditally to the twelfth order irog
(see the BRM file for the remaining four orders) and numerically foe 13, ... 16. In this case the
general form and the generating function is obvious onlytier leading-logarithmic coefficients

in Eq. (4.2) with [50]

m on n-1 ‘
Al = 5 T (4k+D) (4.4)
" k=0
and
LL Ce /T.LL Cr 32Cpas ) V*
otyN) = & <c7 (N)—l) Rl G (4.5)

Eq. (4.5) agrees with the corresponding result of Ref. [3)2]cfr7g up to a factor of two arising
from the different normalization of this coefficient furmti already mentioned below Eq. (2111).

The relations for the quark coefficient functions corregfing to Egs.[(4.2) and(4.3) can be
cast in the form

Ce T (—4)"Crny CR 2

(n) _ (n)
CraniL(N) = C—Ac(pq,NLL(N) = TN_D)E I Aty (4.6)

and
(—=4)"Cen,CRt
Cg'rg?NNL(N) - 3(N—1)2-2 [_Cﬁzx B%),l + %CAnf B%),z + %CF Nt B‘E’Tq),s] 4.7)

with n > 2. The first sixteen coefficients in Eqs._(4.6) and](4.7) cafobed in Tablé 6. Note the
the faster growth of these coefficients withas compared to the corresponding splitting function
results in Tablek]1 arid 2, is largely (but only only) due todHferent normalization in Eqsl_(4.2)
and Eqgs.[(4)6), which was employed to have mainly integefficant in Table[ 1.
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n Ag.])g B‘?’Z}{l B%),z B%)s

1 2 -9 - -

2 10 87/2 - -

3 60 779 2 8

4 390 8620 67 115

5 2652 84224 1100 %93

6 18564 778449 14028 59211

7 132600 6974466 157500 7657402

8 961350 61261449 1639437 %1

9 7049900 530773430 16238552 %‘1
10 52169260 4552643821 155338216 %0
11 388898120 38750254946 144836260 400;:‘;36692
12 2916735900 327823740972 132426063 9160797950056
13| 2.1987701 18 2.7596825 1% 1.192295518 4.2417307 1¥
14 | 1.6647831 18 2.3136533 18 1.0602610 1% 3.5208088 18
15| 1.2652351 1% 1.9330232 18 9.3330885 1 2.9110969 1¥
16 | 9.6474181 18 1.6102477 1% 8.146191318 2.3992885 18

Table 5: The first sixteelN-space coefficients in Eq$.(#.2)[=(4.3) for the LL and NLL 8ma
approximations to the gluon coefficient function for thenBaerse fragmentation function.

As for the splitting functions, the next contributions totlvdransverse coefficient functions
are considerably more complex. Since the third-order SlAffaents functions have not been
published so far, we give the third- and fourth-order quaagianalytically. The higher orders are
presented numerically f@@a = 3 andCg = 4/3 below. The third-order results are given by

T ﬁ 60CACr + (Nfi41)5 {7_5799CAZ\CF — §CaCrny — %CanZ} (4.8)

- ﬁ {<31%5_ % {2) CACF — (5 +302) CaCE + 37 CaCr 1y — %Canz} + ...

(Né41)5 %ZCACan + ﬁ {%)CACan — gCanz} (4.9)
o { (8- 3% CuCen — (§- §%2) G~ Cenf) + ..
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| oA 6% Bl Bl
2 1 -1 - -
23 340
3 3 5 1 -
4 329 4790 133 26
6 9 12 3
5| 5884 50917 1604 4211
15 9 15 30
5 14166 2454268 29869 16313
5 45 30 10
. 144694 157792304 319122 1743793
7 315 35 105
8 2130333 156504164 34659563 13254173
14 35 420 84
9 71114144 7404527591 93174769 7191782
63 189 126 5
10| 530983954 45735067426 10344355237 20099736449
63 135 1575 1575
1| 43854388318 861656350072 111399799846 1925137106758
693 297 1925 17325
1, | 110281846025 769021780130564 10525291437281 3306988478369
231 31185 20790 3465
13| 3.6165904 19 2.0836819 188  4.400772219 8.1132902 19
14 | 2.7496227 18  1.7521629 18  3.8036176 18 6.8422246 18
15 | 2.0971243 188  1.4675034 18  3.270741018 5.7338592 18
16 | 1.6039639 18  1.2249474 18  2.7996798 18 4.7804829 1¥

Table 6: As Tablé€l5, but for the NLL and NNLL quark coefficiennttion in Eqs.[(416) 1{417).

The expansions of the fourth-order transverse coefficiamttions abouN = 1 read

N = gys 390K — gy { PCACk - § A - BoCacen?]
s { (0~ 20400) e - (5+18%) CRc + BCicen
— 8308, Cn; + 3L CaCEN? + HCen; }
and
cih(N) = (stiy 658CaCENy — (szi)G{MgoC Crny — 276CACan2_208Can}

256 32423
TIN5 {(

216

—897,) CCen; + (&4 -

2827,) CaCEN; — HBCECEN,

— 838C2n2 4 8Cen } + . (4.11)
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For the coefficients of the third logarithms in Table 7 we Userotation

_1)n 5 _
cranni(N) = m (96”@3{0 ~ 96" Cyg g + 96" ZCQZn'°2> ’ (4.12)

M oy = DY gen1c® b gen1c™ n2 4 g2 n3) | (413
CTq,N3L( ) = (N_]_)Zn—s c"I'q,lnl‘ CTq72nf + CTq73nf . (4.13)

These results are illustrated in Fig. 5 for the same refer@oint andk-range as in the previous
section. The situation forcT7g andch7q is largely analogous to that for the corresponding sphttin

functionsngTq andeOIq in Figs[3 and¥. The NLO and NNLO fixed-order approximatichs (O
coefficient function:m = 0(1—X) is obviously not visible in this figure) are unreliable herem
even largex-values than above. The smalkise of the NNLO coefficient functions is removed
by adding the NLL and NNLL resummations from ordet, leaving us with functions oscillating
aboutxc;  ~ 0. The same behaviour, if with a considerably smaller amgét can be established
down to extremely small values affor the exactly known LL gluon coefficient function (4.5)
already determined in Ref. [32]. Also here it would be vegnasting to known one more order in
as and the NLL resummation ofchyg. The latter, however, again requires (at least in the ptesen

framework) the calculation of the fourth-order contrilmutito the splitting functiorPgTq.

Itis instructive to briefly address the impact of the (schentependent) LL splitting functions
(L8) and (scheme-dependent) LL coefficient functionsemiin MS by Eq. [4.5), on the scale
dependence of the fragmentation functignand its ‘gluonic’ counterpaify. This is best done by
considering the ‘timelike’ physical evolution kernédg, in Mellin space,

d Fr\ [ Kmm Kig\ (Fr
d|nQ2<F¢>) a (chT chcp) (Fcp) ’ #14)

which are given by the matrix elements of

Crq C
K = CPTC1+B(as)g—Ccl with C = ( Ta T’9> , (4.15)
8 Coa Cog
and the splitting function matriXx (2.4). In terms of powerfs (& — 1) %, the first term could

be different fromPT already at leading logarithmia@ (N — 1) ~2"*2) accuracy. However, the
relations[(1.6) and Eq.(4.5) imply

0 &pl 1 &
Pl = ( Ca ng’LL> and C, = < Ca "L (4.16)
0 Ry 0 14cy

with ¢, given by the curly bracket in Eq._(4.5). Due to Elg. (4.16) altls contributions to the
matrix K cancel, and the factorization-scheme independent pHy®aaels are correctly given by

Krrie = Kgrie =0 o Krpw = Rgie - Kepl = Pgit - (4.17)

A study of the physical kernels (4.14) beyond the leadingiilgmic accuracy could be interesting,
but is beyond the scope of the present article.
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oo o o] o ch o
2 | —0.0488460 - - —0.0411523 - —

3 | —0.0052813 —0.0044582 — —0.0543741 —0.0020576 —

4 0.0648580 0.2598844 0.3689986 0.4087098  0.0190107 0.0329218
5 0.1603366  0.7502113 1.12269341.1073150 0.0595507 0.0993878
6 0.2804175  1.4552223 2.28073232.0085092  0.1178470 0.1996540
7 0.4247389  2.3722220 3.86174253.1012694  0.1933078 0.3345043
8 0.5931376  3.5017009 5.88302394.3806502  0.2857698 0.5048923
9 0.7855611  4.8454857 8.3606018 5.8442114  0.3952535 0.711805%2
10| 1.0020223  6.4059897 11.309349 7.4907736  0.5218662 0.9562145
11| 1.2425739  8.1858750 14.7431159.3198698 0.6657575 1.23905%6
12| 1.5072942  10.187889 18.674852 11.331466  8.2709784 1.5612246
13| 1.7962784  12.414785 23.116717 13.525807  1.0060672 1.92357%7
14| 2.1096323  14.869274 28.080167 15.903318  1.2028488 2.3269235
15| 2.4474687 17.554012 33.576041 18.464554 1.4176262 2.772045%5
16 | 2.8099054  20.471582 39.61462021.210152  1.6505807 3.259685%1

Table 7: The numerical coefficients of the third smaltontributions [(4.12) and_(4.13) to the

N-space gluon and quark coefficient functions for the fragiatéon functionFr to ordera 2.
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[ XCr (%) 1 sF % XCro(X) -
\ - \ b
- \. .
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Figure 5: The quark and gluon coefficient functions Fgrat a typical value oftis. Shown are
the NLO and NNLO fixed-order approximations, and the matdiedNLL and NNLL resummed
results obtained (beyond LL) by adding the respective smidims at all relevant higher orders.
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5 Resummed coefficient functions foF_

Finally we briefly present the resummed results for the lamdinal fragmentation functiof .
Since the NNLO (third-order) coefficient functions for trobservable are not yet known, only
the respective two highest logarithms can be resummed fitr the gluon and quark coefficient
functions. The corresponding-space expressions can be written as

cLilN) = 5 a8 (BigclTLe (N) + ¢y (N) + e (N) + ) (5.1)
n=1

with the gluon case given by

(—4)”C|:Cn71
CIES),LL(N) = - WA'(‘% (5.2)
and
(—4)"CeCR3
clgni (N) = ON_1)Z 2 1)2:\72 [CA% By1 — 9CaCr By, — Cany Blg5 — e By, [ . (5.3)

As in the transverse case, the quark coefficient functiongifaare suppressed by one power of
Inx or (N—1)~1, but for n > 1 take the otherwise analogous forms

(n) (—4)"Cen;Ca 2
Clgn (N) = — 3(N_1)2n-2

AE]L (5.4)
and

(n) (=4)"Cem C 1 o (n) n) )
CLCLNNL(N) - 9(N—1)2n—2 Ca Blg1— CaCr Blgz2— Cany Blgs — Crny BLqA] . (5.9)

The coefficients in Eqs_(5.2) £E(5.5) are given in Tables 8%rak before giving the thirteenth to
sixteenth order in a numerical form for brevity (the exacpessions can be found in th@®Rm
file distributed with this article). In this case the gendmmula is not even known for the LL
coefficients which, like all other ‘unsolved’ series abaweplve unpleasantly large prime numbers

early in the expansion. For instance, the prime-factor ogmusition 01‘A(|_77)g reads 410691.

These results are illustrated in F[d. 6 in the same manneha@setforFr in Fig.[5 above.
While neither of the first-order (LO) coefficient functiomeludes anyi~1Inx terms in the present
case, also here the (now negative) smadpike of both second-order (NLO) coefficient functions
is completely removed by adding the corresponding all-ordeummations of the smallioga-
rithms, leaving small oscillating functions with:]_?p ~0atx <1072

One may expect that the smalkesummation of the longitudinal fragmentation functionl wi
be the first to be extended to a higher accuracy as, in contrdbee timelike splitting functions
and the transverse fragmentation function in the previegens, ‘only’ a third-order calculation
is required for deriving the NNLA-NNLL resummation. Note, however, that already the present
results are sufficient for the corresponding resummatiotheftotal fragmentation function, ob-
tained by integrating Eq.(1.1) ovér as the coefficient functior[{f% are suppressed by one power

of Inx or (N —1)~1 with respect to their transverse counterparts.
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n n n n n
n AL(c_)q BIEg>,1 BIEg?Z BIEg?3 BIEg?4
1 1 9 - - -
2 4 33 _ _
3 22 7232 5 3 30
4 136 3530 30 56 376
5 894 32447 195 722 3754
6 6104 288590 1326 8000 172544
7 42764 2515565 9282 81722 1522436
8 305232 21633684 66300 793968 %6
9 2209526 184263400 480675 7457476 wg
10 16171672 1558144566 3524950 68371776 %0953913 6
11 119414516 13101831041 26084630 61560317 635?8258068
12 888212208 109672261452 194449060 54655904 49111618515259824
13| 6.64682181% 9.146472818" 1.45836801® 4.798765018  1.065237218
14 | 4.999739518" 7.604408918 1.099385118 4.175247718  8.7587508 18
15 | 3.777461118 6.305711918 8.323915518 3.605554218  7.1815660 18
16 | 2.86495481% 5.216967718 6.326175818 3.093981418 5.874786418
n n n n n
n Aégl BIEq>,l Biq),Z Biq),S BIEq>,4
2 2 —-9/2 - - -
3 12 51 6 4 _
236 1976 122 92
4 3 3 46 3 3
5 1610 1977 329 379 446
3 3
6 56356 915601 11768 17228 14560
15 15 5 5 3

Table 8: Upper part: the first sixtedrspace coefficients in Eq$.(5.2) and (5.3) for the LL and
NLL small-x resummed the gluon coefficient function for the longitudiiregmentation function.

Lower part: the first five (NLL and NNLL) coefficients for the mwesponding quark coefficient
function defined in Eqs[(5.4) and (5.5).
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n n n n n
n AIE,E} BIEq),l BIEq>,2 BIEq),3 BIE q),4
; 401944 8167748 84996 154428 236236
15 15 5 5 5
g 6784088 499053868 868164 28758068 45616904
35 105 7 105 105
9 148855862 4294474801 6390999 84243073 135167864
105 105 7 35 35
10 3295405924 36585726017 142228288 734599784 2115778496
315 105 21 35 63
1 24496904632 103121715842 1061967908 286309749296 151010702344
315 35 21 1575 525
12 2015422894136 85829821660568 87708776636 9038620655308 6030487800584
3465 3465 231 5775 2475
13| 4.373024819 2.072952618  2.86446351%  1.340531118%  2.0469392 1¥
14 | 3.302470618  1.728269118% 2.169954318 1.142878918  1.70862281H
15| 2.503674918 1.436393118 1.649773618" 0.703894418'  1.4189917 1%
16 | 1.9045398 1% 1.190648018* 1.25827461¢ 8.209334318  1.1736262 1%

Table 9: Continuation of the part Talile 8 for the quark cogfitfunction forF_ to ordera®.
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Figure 6: The quark and gluon coefficient functions Fprat a typical value ofis. Shown are
the LO and NLO fixed-order approximations, and the matchedfbt.c, ;) and NLL resummed

results obtained by adding the respective smadirms at all relevant higher orders.
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6 Summary and Outlook

We have derived the all-order resummation of the highesitsmallx double logarithms,

alx tin?=f=fx with ¢ =0,1,2, (6.1)
for all four flavour-singlet timelike splitting functionswith /o = 2 for PgTq andPgTg and/g = 3 for
POL anquTg —and for both singlet coefficient functions for the transedragmentation functiofr
in semi-inclusive electron-positron annihilation (SIAyith /g = 2 for Cr q and/g =1 for Crg—
together with the corresponding results for SIA via an imediate scalag like the Higgs boson
in the heavy top-quark limit. For the longitudinal fragmatidn functionF_ present fixed-order
results, which serve as input quantities for the resummattiow only the determination of the

highest two logarithms, i.e(,= 0, 1 in Eq. [6.1) withéo = 3 forc_, andlo =2 forc_ .

The coefficients of the above logarithms have been calalkatplicitly to orderad® which is
not the highest computationally feasible order, but su#fitfor numerically accurate results down
to x = 1074, a range irx that should be more than sufficient for all foreseeable amaf data.
These calculations have been performed in Melispace, using the latest versions abrM
and TFORM [34,,35] at all stages. The results agree with the leadingritlgmic (LL) result of
Refs. [30] for the splitting functionE’gTq and Png, and with the only additional result so far derived
in theMS scheme, the recent LL contributions to the coefficientfiam Crg [32].

The resummation has been derived by decomposing the urifatgartonic fragmentation
functionsF, p(x, as,€) in dimensional regularization at any ordef into n (or n—1 in the quark
cases) contributions of the form

g 2MMox1-2k¢ (A4 Be+Ce?+...) with k=1,2....n (6.2)

andny=1fora=T,pandp=g,n,=2 fora=T,pandp=q and fora,p=L,g, andny =3
for a,p=L, q, with thek = 1 contributions missing in the quark cases. The KLN-relaimucel-
lations between the contributions in EQ. (6.2), togethehwhe powers ot fixed by fixed-order
calculations[[7=17, 24], lead to overconstrained systehegjoations for the leading logarithmic,
next-to-leading logarithmic (NLL) [and next-to-next-teading logarithmic (NNLL)] expansion
parameterd\, B [andC] in the decompositiori (612) which can be solved to (in pite) any or-
dern. Given the large number of extra constraints and checksladimg the correct predictions of
the respective highest two smallegarithms in the third-order timelike splitting functisf17,24]
and the non-trivial all-order agreement with the known Lkutlts [30| 32] — there is no need for
an additional derivation of the decomposition {6.2) frore 8tructure of higher-order Feynman
diagrams and phase-space integrations.

Whilst the setup of the resummation is elegant and simplest wicthe new results are not, as
we have not succeeded to find the general expressions andagiegdunctions for the resulting
series of coefficients, with the exception of the NLL corieas to the splitting functioné:F‘ngTq
and Png in the limitCg = 0. The results have therefore been presented via defsdiguhce tables
which, hopefully, will be used for finding some of the now upnkim general expressions. The
most interesting target in this respect are the non-integefficients in Tabl&]1, as the solution
of any one of these three series would be sufficient to clahé/ analytic structure of all NLL
(alx~1In?"=3x) contribution to the matrix of the timelike splitting funotis.
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The smallx resummation has a striking effect on the numerical behawbthe splitting func-
tions and coefficient functions in the regiarg 10~2. All fixed-order spikes foix — 0, which
dwarf their single-logarithmic counterparts in the spaaekplitting functions and deep-inelastic
scattering (DIS)[[25=29], are removed by forming th&L® + N"LL combinations of fixed-order
and higher-order resummed results, mostly leaving smdlbgparently oscillating functions. This
behaviour is qualitatively similar to the LL results of R§0,/32] which are known in a closed
form and thus can be evaluated down to extremely small valfreswWhile some theoretical ques-
tions remain that can only be clarified by future third- andrfb-order calculations, the present
resummation should prove sufficient for analyses of SIA dathe foreseeable future.

We have verified that the present approach can be extendee nohx ~—* double logarithms in
the (evenN based) DIS structure functiois andF_ (recall that there are no ‘genuine™* double
logarithms in DIS; those encountered in thexchange coefficient functions in Refs. [51, 52] are
artifacts of using the heavy-top approximation outsidedidsnain of validity). These double-
logarithmic terms form the leading smadleontributions in the non-singlet cases, see Réfs. [53]
for the LL resummation of the spacelike non-singlet spigtfunctions; they can be relevant at
intermediate values ofalso in flavour-singlet quantities, see Ref./[54]. The cgpmnding NNLL
resummations will be presented in a subsequent publication

One may expect that, analogous to the laxgmses in Refs| [51, 55], the resummation of the
smallx double logarithms can be extended to (all) higher powerb®ptrefactox in Eq. (6.1) for
the quantities considered here (and their edespacelike counterparts) — but not for the asymmet-
ric fragmentation functiofira which is related to the oddd structure functioris known to receive
additional contributions with An; and higher group factors [53,56]. We have explicitly chetke
the direct generalization of our approach to the LL and N{8_contributions in singlet SIA for
a=0,...,6. It works, but only fora= 0 and even values, and with the forim (6.2) replaced by

g 2Mixake(A L Be+Ce?+...) with k=2 ..n+1 (6.3)

which, in fact, is what one may have ‘naively’ expected fromf® [9] also for thex~! terms.
The predictions resulting from Ed. (6.3) should be usefthmcontext of future third- and fourth-
order calculations. Conceivably also all smalifouble logarithms in the timelike and spacelike
higher-order singlet splitting functions (and the cor@s@ing SIA and DIS coefficient functions)
could turn out to be ‘inherited’ from lower-order quantgie This issue deserves further studies
including the case af\' =4 Super Yang-Mills theory addressed, for example, in Re&3,%2].

A Forw file of our results presented in Sections 3 — 5 can be obtaigetbtynloading the
source of this article from thar Xi v servers or from the author upon request.
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