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Abstract

We have derived the coefficients of the highest three 1/x-enhanced small-x logarithms of all time-
like splitting functions and the coefficient functions for the transverse fragmentation function in
one-particle inclusivee+e− annihilation at (in principle) all orders in massless perturbative QCD.
For the longitudinal fragmentation function we present therespective two highest contributions.
These results have been obtained from KLN-related decompositions of the unfactorized fragmenta-
tion functions in dimensional regularization and their structure imposed by the mass-factorization
theorem. The resummation is found to completely remove the huge small-x spikes present in the
fixed-order results, allowing for stable results down to very small values of the momentum fraction
and scaling variablex. Our calculations can be extended to (at least) the correspondingαn

s ln2n−ℓx
contributions to the above quantities and their counterparts in deep-inelastic scattering.
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1 Introduction

One-hadron inclusive electron-positron annihilation,e+e− → γ , Z → h+X whereh denotes the
observed hadron (or a sum over all charged hadron species) andX any inclusive hadronic final state,
is an important benchmark process in perturbative QCD whichhas been measured accurately over
a wide range of centre-of-mass (CM) energies

√
s [1]. The results provide crucial inputs for fit

determinations of the fragmentation distributions (or parton fragmentation functions)Dh
p(x,Q

2),
see Refs. [2–4], wherex represents the fraction of the momentum of the final-state parton p trans-
ferred to the outgoing hadronh andQ2 is a hard scale, for instance the squared four-momentumq
of the timelike virtual photon orZ-boson in the above semi-inclusive annihilation (SIA) process,
Q2 = q2 = s. SIA data have also provided constraints on the strong coupling constantαs [5].

The theoretical description of semi-inclusivee+e− annihilation is analogous to that of electron-
hadron deep-inelastic scattering (DIS),ep → e+ X, via the exchange of a (spacelike) virtual
photon orZ-boson. The SIA differential cross section can be written interms of transverse (T),
longitudinal (L) and asymmetric (A) fragmentation functions (timelike structure functions)[6],

1
σ0

d2σ
dxdcosθ

=
3
8
(1+cos2 θ) Fh

T (x,Q
2) +

3
4

sin2 θ Fh
L (x,Q

2) +
3
4

cosθ Fh
A (x,Q

2) . (1.1)

Herex = 2Eh/
√

s≤ 1 andθ are the scaled energy of the hadronh and its angle relative to the
electron beam, respectively, in the CM frame; and for photonexchangeσ0 = nc 4πα2/3s is the
total cross section for Bhabha scattering times the number of coloursnc . Disregarding corrections
suppressed by inverse powers ofQ, the fragmentation functions are related to the fragmentation
distributions by

Fh
a (x,Q

2) = ∑
p=q, q̄,g

∫ 1

x

dz
z

ca,p

(
z,αs(Q

2)
)

Dh
p

(x
z
, Q2

)
. (1.2)

The coefficient functionsca,p in Eq. (1.2) are known to orderα2
s [7–10], see also Ref. [11], i.e., to

the next-to-next-to-leading order (NNLO) forFT andFA and to the next-to-leading order (NLO)
for FL which vanishes forαs = 0. Here and throughout this article we identify, without loss of
information, theMS renormalization and mass factorization scales with the physical hard scaleQ2.

The scale dependence of the (process-independent) final-state fragmentation distributions is
analogous to that of the initial-state parton distributions and given by

d
d lnQ2 Dh

i (x,Q
2) = ∑

j=q, q̄,g

∫ 1

x

dz
z

PT
ji

(
z,αs(Q

2)
)

Dh
j

(x
z
, Q2

)
. (1.3)

The (timelike) splitting functionsPT
ji can be expanded in powers ofas ≡ αs(Q2)/(4π),

PT
ji

(
x,αs(Q

2)
)
= asP(0)T

ji (x) + a2
s P(1)T

ji (x) + a3
sP(2)T

ji (x) + . . . . (1.4)

The leading-order (LO) and NLO contributionsP(0)T andP(1)T to Eq. (1.4) have been known for
a long time [12–16]. A direct calculation of the NNLO correctionsP(2)T has not been performed
so far. However, an indirect determination [11,17], using non-trivial relations to the spacelike DIS
case [18] and the supersymmetric limit [13, 15, 19–23] has been completed recently [24] up to a
minor caveat, which is not relevant in the present context, concerning the quark-gluon splitting.
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Eq. (1.4) and the corresponding fixed-order approximationsto the coefficient functions (see
below) are adequate except for 1−x ≪ 1 andx ≪ 1, where higher-order corrections generally
include double logarithms which can spoil the perturbativeexpansions. Here we focus on the
small-x case, where the leading contributions to the NnLO splitting functions are of the form

P(n)T
ji (x) = δ jg a(n)i

1
x

ln2nx + . . . , a(n)
q =

CF

CA
a(n)

g (1.5)

whereδ i j is the Kronecker symbol, andCA andCF are the standard SU(N) colour factors, with

CA = nc = 3 andCF = 4/3 in QCD. The coefficientsa(n)
i and the corresponding subleading

contributions lead to corrections which are numerically far larger than the corresponding single-
logarithmic enhancement of the analogous spacelike NnLO splitting functions governing the DIS
case [25–29]; forn= 2 see Figs. 1 of Refs. [17] and [24]. On the other hand, the all-order Mellin-
space summation of the leading-logarithmic (LL) contributions (1.5) leads to [30]

CA

CF
PT

gq(N,αs) = PT
gg(N,αs) =

1
4
(N−1)

{(
1+

32CAas

(N−1)2

)1/2

−1

}
+ NLL terms (1.6)

which can be expanded to all orders inx-space via the standard Mellin transform

M

[
1
x

lnkx

]
(N) ≡

∫ 1

0
dxxN−1 1

x
lnkx =

(−1)kk!
(N−1)k+1 . (1.7)

Eq. (1.6) corresponds to a small and oscillating function inx-space, suggesting that the small-x

enhancement ofP(1)T
gi (x,αs) and P(2)T

gi (x,αs) – which is negative in the former and positive in
the latter case, see below – is unphysical and can be removed by extending Eq. (1.6) to the next-
to-leading logarithmic (NLL) and next-to-next-to-leading logarithmic (NNLL) small-x accuracy.
Even the former extension has not been performed in theMS scheme so far, as the results of
Ref. [31] are not given in this scheme (and consequently do not agree with the NNLO next-to-
leading logarithms of Refs. [17, 24]). For a detailed discussion see Ref. [32] where also the LL
result for theMS transverse coefficient functioncT,g corresponding to Eq. (1.6) has been derived.

In this article we employ constraints provided by the structure of the unfactorized fragmenta-
tion functions in dimensional regularization [33] and the all-order mass-factorization formula to
derive the coefficients of the respective highest three non-vanishing logarithms for all four timelike
splitting functionsPT

ji (x,αs), i, j = q, g, as well as the corresponding coefficients for both coeffi-
cient functions forFT , to all (in practice sixteen) orders inαs. The derivation of the second/third
logarithms is made possible by the NLO/NNLO fixed-order results; consequently only the highest
two logarithms can be resummed for the longitudinal fragmentation functionFL.

The remainder of this article is organized as follows: In Section 2 we describe the theoretical
framework used to perform the resummation and comment on thecalculations which were carried
out using the latest version of FORM and TFORM [34, 35]. The resummed splitting functions
are written down and discussed in Section 3. The corresponding results for the transverse and
longitudinal coefficient functions are presented in Sections 4 and 5, respectively. Our findings are
summarized in Section 6, which also provides a brief outlookto future applications and extensions.
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2 Method and calculation

The main quantities in our resummation are the unfactorizedflavour-singlet partonic fragmentation
functions inD = 4−2ε dimensions

F̂a,k(N,as,ε) = C̃a,i(N,as,ε) ZT
ik(N,as,ε) (2.1)

where the summation overi = q,g and theMS removal of(4π)ε andγe factors [36] are understood.
TheD-dimensional coefficient functions̃Ca,i include all non-negative powers ofε in Eq. (2.1),

C̃a,i(N,as,ε) = δaT δ iq + δaφ δ ig +
∞

∑
ℓ=1

aℓ
s

∞

∑
k=0

εkc(ℓ,k)a,i (N) . (2.2)

Besides the fragmentation functionsFT andFL of Eq. (1.1) –FA is a non-singlet quantity without
1/x terms – we consider SIA with an intermediate scalarφ coupling directly only to gluons via an
additional termφGµνGµν in the Lagrangian, whereGµν represents the gluon field strength tensor.
Such an interaction, suggested as a QCD trick in Ref. [37], does occur in the Standard Model for
the Higgs boson in the limit of a very heavy top quark [38]. TheNLO and NNLO quark and gluon
coefficient functions for the resulting fragmentation function Fφ have been presented in Ref. [24].

The final-state transition functionsZT
ik collecting all negative powers ofε are related to the

matrix of the splitting functions in Eq. (1.4) by

PT =
dZT

d lnQ2

(
ZT)−1

= βD(as)
dZT

das

(
ZT)−1

(2.3)

with

− γ ≡ PT =

(
PT

qq PT
gq

PT
qg PT

gg

)
and βD(as) = −εas−β0a2

s−β1a3
s − . . . . (2.4)

As we shall see from the next equation, only the leading coefficient of the four-dimensional beta
function of QCD,β0 = 11/3CA−2/3 nf [39] wherenf stands for the number of effectively mass-
less quark flavours, enters the resummation of the highest three small-x logarithms.

Eq. (2.3) can be solved forZ order by order inαs. Suppressing all functional dependences, as
already done for most quantities in the previous two equations, the first four orders read

ZT = 1 + as
1
ε

γ0 + a2
s

{ 1
2ε2 (γ0−β0)γ0 +

1
2ε

γ1

}

+ a3
s

{ 1
6ε3 (γ0−β0)(γ0−2β0)γ0 +

1
6ε2

[
(γ0−2β0)γ1+(γ1−β1)2γ0

]
+

1
3ε

γ2

}

+ a4
s

{ 1
24ε4 (γ0−β0)(γ0−2β0)(γ0−3β0)γ0

+
1

24ε3

[
(γ0−2β0)(γ0−3β0)γ1+(γ0−3β0)(γ1−β1)2γ0+(γ1−2β1)(γ0−β0)3γ0

]

+
1

24ε2

[
(γ0−3β0)2γ2+(γ1−2β1)3γ1+(γ2−β2)6γ0

]
+

1
4ε

γ3

}
+ . . . . (2.5)
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The corresponding higher-order contributions have been generated in FORM to orderα16
s . It is

clear from these results that the NnLO corrections, i.e., the splitting functions up toγn ≡ γ(n)
defined analogous to Eq. (1.4) together withβ0, . . . , βn, determine the highestn+1 powers of
1/ε in Eq. (2.5) at all orders inαs. Keeping in mindγn ∝ 1/(N−1)2n+1, one notices thatβ0 and
β2

0 enter at NLL and NNLL small-x accuracy only. Moreoverβ1 is suppressed by three powers in
1/(N−1) relative toγ1; hence this coefficient contributes only at the level of the fourth logarithms,
i.e., beyond our present accuracy.

The same considerations apply to the unfactorized structure functions (2.1), which at NnLO

require the coefficientsc(ℓ,k)a,i with ℓ+k ≤ n for FT andFφ, andℓ+k ≤ n+1 for FL in Eq. (2.2).
For the convenience of the reader we collect the coefficient function results which form the input
of the small-x resummation discussed below. The expansions aboutN̄ ≡ N−1= 0 for FT read

c(1,0)T,q = CF +O(N̄) , c(1,1)T,q = O(N̄0) ,

c(2,0)T,q
∼= 64

3 CFnf N̄−3 + 16
3 CFnf N̄−2 − 80

27CFnf N̄−1 (2.6)

and

c(1,0)T,g
∼= −8CF N̄−2 − 4CF N̄−1 + (27

2 −4ζ2)CF N̄0 ,

c(1,1)T,g
∼= −16CF N̄−3 − 8CF N̄−2 − (12−6ζ2)CF N̄−1 ,

c(2,0)T,g
∼= 160CFCA N̄−4 − 232

3 CFCAN̄−3 −
[(

248
3 +16ζ2

)
CFCA+8C2

F

]
N̄−2 . (2.7)

The corresponding results forFφ are given by

c(1,0)φ,q = − 14
3 nf + O(N̄) , c(1,1)φ,q = O(N̄0) ,

c(2,0)φ,q
∼= 64

3 CAnf N̄−3 − 16
3 CAnf N̄−2 − 296

27 CAnf N̄−1 (2.8)

and

c(1,0)φ,g
∼= −8CA N̄−2 +

[(
73
2 −4ζ2

)
CA− 7

3 nf

]
N̄0 ,

c(1,1)φ,g
∼= −16CA N̄−3 + 6ζ2CAN̄−1 ,

c(2,0)φ,g
∼= 160C2

A N̄−4 −
[

440
3 C2

A + 16
3 CAnf −

32
3 CFnf

]
N̄−3

−
[(

2092
9 +16ζ2

)
C2

A − 260
9 CAnf −

152
9 CFnf

]
N̄−2 . (2.9)

The coefficient functions forFL are, to the lesser accuracy required in the present context,

c(1,0)L,q = 2CF +O(N̄) , c(1,1)L,q = O(N̄0) ,

c(2,0)L,q
∼= − 32

3 CFnf N̄−2 − 8CFnf N̄−1 (2.10)

and

c(1,0)L,g
∼= 4CF N̄−1 − 4CF N̄0 , c(1,1)L,g

∼= 8CF N̄−2 + 8CF N̄−1 ,

c(2,0)L,g
∼= −64CFCAN̄−3 +

[
176
3 CFCA−16C2

F

]
N̄−2 . (2.11)
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Note that our normalizations ofcT,g andcL,g differ by a factor of 1/2 from those in Refs. [9,10].
Eqs. (2.6) – (2.11), and some contributions with a higherℓ+ k used to further overconstrain the
systems of equations discussed below Eq. (2.15), have been obtained from the fullx-space ex-
pressions in terms of harmonic polylogarithms (HPLs) as discussed in Ref. [40] and coded in the
HARMPOL package for FORM [34] together with Eq. (1.7).

The corresponding expressions for the NLO and NNLO splitting functions can be read off
directly from Eqs. (13) and (14) in Ref. [17] and Eqs. (20) – (23) in Ref. [24]. For completeness
we finally give the small-̄N expansions of the LO splitting functions which we need to order N̄1,

P(0)T
qq =

(
5
2 −4ζ2

)
CF N̄ + O(N̄2) , P(0)

qg = 4
3 nf −

13
9 nf N̄ + O(N̄2) ,

P(0)T
gq = 4CF N̄−1 − 3CF + 7

2 CF N̄ + O(N̄2) ,

P(0)T
gg = 4CA N̄−1 − 11

3 CA− 2
3 nf +

(
67
9 CA−4ζ2

)
CA N̄ + O(N̄2) . (2.12)

An easy way to obtain the coefficients of any desired positivepower of N̄ is to transform the
functions toN-space harmonic sums [41], multiply by a sufficiently large power of N̄−1, transform
back tox-space and proceed as above. Routines for the Mellin transform of the HPLs and its inverse
are also provided by the HARMPOL package.

Inserting theN-space small-x expansions (2.6) – (2.12) into Eqs. (2.1) – (2.5), we obtain the
highest three (two) logarithms for theαn

s ε−n+ℓ, ℓ = 0, 1, 2 (ℓ = 1, 2), contributions toF̂T,k and
F̂φ,k (F̂L,k) to all orders inαs for which the higher-order extension of Eq. (2.5) has been coded. It
turns out that thean

s contributions toF̂a,g for a= T, φ can be written as

F̂ (n)
a,g (N,ε) =

1
ε2n−1

n−1

∑
ℓ=0

1
N−1−2(n− ℓ)ε

(A(ℓ,n)
a,g + εB(ℓ,n)

a,g + ε2C(ℓ,n)
a,g + . . . ) (2.13)

or

F̂ (n)
a,g (x,ε) =

1
ε2n−1

n−1

∑
ℓ=0

x−1−2(n−ℓ)ε (A(ℓ,n)
a,g + εB(ℓ,n)

a,g + ε2C(ℓ,n)
a,g + . . . ) (2.14)

up to terms of order(N−1)0, i.e., non-x−1 contributions. Eqs. (2.13) and (2.14) and the corre-
sponding results for̂FT,q, F̂φ,q andF̂L,i given below form the crucial observation of this article.

Focusing for a moment on the leading logarithms, Eq. (2.14) decomposeŝF (n)
a,g , which includes

terms of the formx−1 lnn+δ−1x at all ordersε−n+δ with δ = 0, 1, 2, . . . , into n contributions of the
form

ε−2n+1 x−1−kε = ε−2n+1x−1[1 − kε lnx+ 1
2(kε)2 ln2x + . . .

]
(2.15)

with k= 2, 4, . . . , 2n. SinceF̂ (n)
a,g only starts at orderε−n, the coefficientsA(ℓ,n)

a,g in Eq. (2.14) have
to be such that the coefficients ofε0, . . . , εn−2 in the square bracket in Eq. (2.15) cancel in the sum
of thesen contributions. Together with the three non-vanishing coefficients coefficients ofε−n+ℓ,

ℓ= 0, 1, 2, in F̂ (n)
a,g known from the above NNLO results, we thus have an overconstrained system

of n+2 linear equations for then coefficientsA(ℓ,n)
a,g at each ordern of the strong coupling. It is

non-trivial that all these systems have solutions, e.g., there would be no solutions if the factor of
two in front of (n−ℓ) in Eqs. (2.13) and (2.14) was absent, or if the sign of this term was different.
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The situation is completely analogous for the second and third logarithms. The splitting func-
tions and coefficient functions up to NNLO lead ton+1 equations for the coefficientsBℓ,n, and to
n equations for the coefficientsCℓ,n in Eqs. (2.13) and (2.14). Also the latter system can be over-
constrained at all orders except forn= 3 andn= 4, from which the corresponding contributions

to the N3LO coefficient functionsc(3)a,i ≡ c(3,0)a,i and splitting functionsP(3)T
ji are determined.

The decomposition corresponding to Eq. (2.13) forF̂ (n)
a,q , a = T, φ, which are suppressed by

one power of(N−1)−1 or lnx relative to the gluonic quantities, is given by

F̂ (n)
a,q (N,ε) =

1
ε2n−2

n−2

∑
ℓ=0

1
N−1−2(n− ℓ)ε

(A(ℓ,n)
a,q + εB(ℓ,n)

a,q + ε2C(ℓ,n)
a,q + . . . ) (2.16)

for n> 1 (there are nox−1 terms at orderαs in these cases, see Eqs. (2.6), (2.8) and (2.12) above).
The missing equation, due to the lack of anε−2n+1 contribution, is compensated by the absence
of an x−1−2ε term in the decomposition. Consequently also the three coefficients written out in
Eq. (2.16) can be determined from the NNLO quantities given above.

We have solved the systems of equations for these coefficients and their gluonic counterparts in
Eq. (2.13) at all orders evaluated forZT in Eq. (2.5), i.e., to orderα16

s . Re-inserting the results into

these equations then determines the respective highest three logarithms inF̂ (n≤16)
a,k for a = T, φ

and k = q, g to all orders inε, after which the mass-factorization can be performed to this order
in αs. It is worthwhile to recall that, since the coefficients ofε−n, . . . , ε−2 at orderαn

s are given
in terms of lower-lower quantities, this process includes avery large number of automatic checks.
Also these steps have been carried out using FORM and, for the more involved last step, TFORM.
The resulting splitting functions and coefficient functions are presented in the next two sections.

Analogous to Eqs. (2.13) and (2.16) the unfactorized partonic longitudinal fragmentation func-
tions at all ordersn≥ 2 can be decomposed as

F̂ (n)
L,g (N,ε) =

1
ε2n−2

n−1

∑
ℓ=0

1
N−1−2(n− ℓ)ε

(A(ℓ,n)
L,g + εB(ℓ,n)

L,g + . . . ) , (2.17)

F̂ (n)
L,q (N,ε) =

1
ε2n−3

n−2

∑
ℓ=0

1
N−1−2(n− ℓ)ε

(A(ℓ,n)
L,q + εB(ℓ,n)

L,q + . . . ) (2.18)

up to terms of order(N− 1)0. Due to the additional factor ofε relative to the previous cases,

the determination of the third coefficientsC(ℓ,n)
L, i would require the presently unknown third-order

coefficient functions. The determination of the two highestlogarithms inc(n,0)L,i is performed in the
manner discussed in the previous paragraph, and provides additional checks of the splitting func-
tions determined fromFT andFL. The resulting coefficient functions are presented in Section 5.

Like their counterparts for the large-x limit in DIS in Ref. [42] (the publication of the corre-
sponding analysis of SIA is in preparation [43]), see also Refs. [44,45], the decompositions (2.13) –
(2.18) are inspired by and related (but not identical) to thedecomposition into purely real-emission
and the various mixed real-virtual contributions. The cancellations of, e.g., theε−2n+1, . . . , ε−n+1

terms between then contributions to Eq. (2.13) are thus related to the KLN theorem [46].
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3 Resummed timelike splitting functions

We are now ready to present our (mostly) new all-order small-x results. With the exception of
graphical illustrations, we will continue to work in Mellin-N space. Recall that the connection
to x-space is simple except for the coefficients of(N− 1)k with k ≥ 0 in the expansion of the
lowest order quantities aboutN = 1 which are required for the all-order mass factorization. These
coefficients are not included in the all-order formulae below.

In this section we present the resummed timelike splitting functions to next-to-next-to-leading
logarithmic (NNLL) accuracy,

PT
ij (N) =

∞

∑
n=0

an+1
s

(
δ ig P(n)T

ij ,LL(N) + P(n)T
ij ,NLL(N) + P(n)T

ij ,NNL(N) + . . .
)
. (3.1)

The leading log (LL) and next-to-leading log (NLL) contributions forPT
gg andPT

gq have the form

P(n)T
gg,LL (N) =

CA

CF
P(n)T

gq,LL (N) = −
(−8CA)

n+1

2(N−1)2n+1 A(n)
gi (3.2)

and

P(n)T
gg,NLL (N) = −

(−8)nCn−1
A

3(N−1)2n

[
(11C2

A +2CAnf )B(n)
gg,1 − 2CFnf B(n)

gg,2

]
, (3.3)

P(n)T
gq,NLL (N) = −

(−8)nCn−2
A CF

3(N−1)2n

[
C2

A B(n)
gq,1 + 2CAnf B(n)

gq,2 − 2CFnf B(n)
gq,3

]
. (3.4)

The coefficients in Eqs. (3.2) – (3.4) have been determined toorderα16
s (n= 15 in Eq. (3.1)), and

are given in Table 1 to the tenth order inαs – for the next six orders see the text below Eq. (3.13).
The the highest two contributions toPT

qg andPT
qq can be written as

P(n)T
qg,NLL (N) =

CA

CF
P(n)T

qq,NLL (N) =
(−8CA)

nnf

3(N−1)2n 2A(n)
qi (3.5)

and

P(n)T
qg,NNL(N) = −

(−8)nCn−2
A nf

9(N−1)2n−1

[
C2

A B(n)
qg,1 + CAnf B(n)

qg,2 − CFnf B(n)
qg,3

]
, (3.6)

P(n)T
qq,NNL(N) = −

(−8)nCn−3
A CFnf

9(N−1)2n−1

[
C2

A B(n)
qq,1 + CAnf B(n)

qq,2 − CFnf B(n)
qq,3

]
. (3.7)

The coefficients in Eqs. (3.5) – (3.7) are given in Table 2 to the sixteenth order inαs, for brevity
using a numerical form forn≥ 12.

The general form and generating function for these series are known at this point (to this author)
only for Eq. (3.2) and the non-CF terms in the square brackets in Eqs. (3.3) and (3.4), i.e., those

entries that do not involve factorial denominators.A(n)
gi are the Catalan numbers [47,48],

A(n)
gi =

(2n)!
n!(n+1)!

=
1

n+1

(
2n
n

)
. (3.8)
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n A(n)
gi B(n)

gg,1 B(n)
gg,2 B(n)

gq,1 B(n)
gq,2 B(n)

gq,3 A(n)
qi

0 1 1 – 9 – – –

1 1 1 2 9 – – –

2 2 3 5 29 1 1 1

3 5 10
49
3

100 5
19
3

11
3

4 14 35
347
6

357 21
179
6

73
6

5 42 126
6353
30

1302 84
3833
30

1207
30

6 132 462
11839

15
4818 330

7879
15

2021
15

7 429 1716
624557

210
18018 1287

444377
210

96163
210

8 1430 6435
316175

28
67925 5005

236095
28

44185
28

9 4862 24310
54324719

1260
257686 19448

42072479
1260

6936481
1260

Table 1: The coefficients of the LL and NLL small-x approximations inN-space (3.2) – (3.4) for
the timelike gluon-gluon and gluon-quark splitting functions for the first ten orders inαs. Also
shown (last column) are the related NLL quark-parton coefficients in Eq. (3.5).

B(n)
gg,1 andB(n)

gq,2 are given by [49]

B(n)
gg,1 =

(
2n−1

n

)
, B(n)

gq,2 =

(
2n−1
n−2

)
= B(n)

gg,1 − A(n)
gi , (3.9)

and the remaining coefficient in Eq. (3.4) is related to theseresults by

B(n)
gq,1 = 11B(n)

gg,1−2A(n)
gi . (3.10)

Furthermore it is interesting to note that the last entries in Eqs. (3.3) and (3.4) have a much simpler
difference,

B(n)
gg,2 − B(n)

gq,3 = 2A(n)
gi , (3.11)

and that the quark-parton coefficients in Eq. (3.5) are related to the above quantities by

A(n)
qi +B(n)

gg,2 = 2B(n)
gg,1 . (3.12)

Hence only one more complicated series is contained inB(n)
gg,2 , B(n)

gq,3 and A(n)
qi ; and an analytic

formula for any of these quantities would lead to closed expressions for allαn+1
s /(N− 1)2n−1

contributions to the timelike splitting functions. The coefficients in Eq. (3.5) forn= 10, . . . ,15 are

A(10)
qi =

12229277
630

, A(11)
qi =

136789507
1980

, A(12)
qi =

245398487
990

,

A(13)
qi =

16139182231
18018

, A(14)
qi =

6986603759
2145

, A(15)
qi =

102190158383
8580

. (3.13)
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n B(n)1
qg B(n)2

qg B(n)3
qg B(n)1

qq B(n)2
qq B(n)3

qq

2 2 1 2 1 – –

3
89
3

17
3

10 26 2
8
3

4
863
6

49
2

253
6

395
3

37
3

107
6

5
3028

5
997
10

5153
30

16961
30

892
15

913
10

6
219389

90
3574

9
20701

30
207263

90
11807

45
12617

30

7
6069467

630
197447

126
57770

21
412927

45
349373

315
64299

35

8
38066605

1008
2216267

360
9169289

840
36475945

1008
11537219

2520
6518189

840

9
35395649

240
8688247

360
7255001

168
143112541

1008
46944767

2520
81079091

2520

10
1449188057

2520
595482761

6300
537123949

3150
22226523

40
157729997

2100
59261597

450

11
41422167289

18480
17097960349

46200
93203672711

138600
120436395671

55440
41718615557

138600
8228126859

15400

12 8.7381596 106 1.4491517 106 2.6500373 106 8.4902823 106 1.2012745 106 2.1542828 106

13 3.4082509 107 5.6761999 106 1.0438829 107 3.3186784 107 4.7804744 106 8.6473779 106

14 1.3302661 108 2.2242725 107 4.1111839 107 1.2976945 108 1.8985567 107 3.4597524 107

15 5.1960779 108 8.7203656 107 1.6190693 108 5.0769752 108 7.5293381 107 1.3808638 108

Table 2: The corresponding coefficients in Eqs. (3.5) – (3.7)for the timelike quark-gluon and
quark-quark splitting functions to the sixteenth order in the strong coupling constant.

The corresponding expressions for Eqs. (3.2) – (3.4) can be inferred from Eqs. (3.8) – (3.12).

The results (3.8) – (3.10) lead to the closed NLL expressions

PT
gg(N)

∣∣∣
CF=0

=
{
(1−4ξ)1/2−1

}
1
4 (N−1)

−
{
(1−4ξ)−1/2+1

}
as

(
11
6 CA+

1
3 nf

)
+ P(n)T

gg,NNL(N) , (3.14)

and
[ CA

CF
PT

gq(N)
]NLL

CF=0
=
{
(1−4ξ)1/2−1

}
1
24 (N−1)2 (1+nf /CA

)

−
{
(1−4ξ)−1/2+1

} (
11
6 CA+

1
3 nf

)
as (3.15)

with

ξ = −
8CAas

(N−1)2 and as ≡
αs

4π
. (3.16)
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The first line of Eq. (3.14) and the directly related LL part ofPT
gq(N) agree, of course, with the

classical result (1.6) of Refs. [30]. Already at orderα3
s [17,24], the NLL second line of Eq. (3.14)

is not the same as the result in Ref. [31] which does not refer to theMS scheme, see Ref. [32].

The expressions for the third logarithms (NNLL forPgi and N3LL for Pqi) are far more lengthy.
We therefore confine ourselves here to the full analytic expressions at orderα4

s , and present the
higher-order coefficients only in numerical form for the case of QCD,CA = 3 andCF = 4/3. The

leadingN→1 behaviour ofP(3)T
gg andP(3)T

gq is given by

P(3)T
gg (N) = −

512
(N−1)7 20C4

A +
512

(N−1)6

{
110
3 C4

A + 20
3 C3

Anf −
98
9 C2

ACFnf

}

+
512

(N−1)5

{(
−899

18 +16ζ2
)

C4
A −15C3

Anf +
76
3 C2

ACFnf −
2
3 C2

An2
f

+ 14
9 CACFn2

f −
16
27C2

Fn2
f

}
+ . . . (3.17)

with ζ2 = π2/6 and

P(3)T
gq (N) = −

512
(N−1)7 20C3

ACF +
512

(N−1)6

{
100
3 C3

ACF + 10
3 C2

ACFnf −
38
9 C2

ACFnf

}

+
512

(N−1)5

{(
−110

3 + 26
3 ζ2

)
C3

ACF −
(55

12−
22
3 ζ2

)
C2

AC2
F − 793

108C2
ACFnf

+ 221
27 CAC2

Fnf −
1
9 CACFn2

f +
4
27C2

Fn2
f

}
+ . . . . (3.18)

The corresponding results forP(3)T
qg andP(3)T

qq read

P(3)T
qg (N) = −

512
(N−1)6

22
9 C3

Anf +
512

(N−1)5

{
89
27C3

Anf +
17
27C2

An2
f −

10
9 CACFn2

f

}

+
512

(N−1)4

{(
−187

72 + 4
3 ζ2
)

C3
Anf +

(1
9 +

2
9 ζ2
)

C2
ACFnf −

23
18C2

An2
f

+ 185
81 CACFn2

f −
1
27CAn3

f +
2
27CFn3

f

}
+ . . . (3.19)

and

P(3)T
qq (N) = −

512
(N−1)6

22
9 C2

ACFnf +
512

(N−1)5

{
26
9 C2

ACFnf +
2
9 CACFn2

f −
8
27C2

Fn2
f

}

+
512

(N−1)4

{(
−763

648+
4
9 ζ2
)

C2
ACFnf −

(4
9 −

10
9 ζ2

)
CAC2

Fnf

− 46
81CACFn2

f +
50
81C2

Fn2
f

}
+ . . . , (3.20)

where the dots indicate terms beyond the present accuracy ofthe expansion in powers of 1/(N−1).
The respective NNLL and N3LL higher-order expressions are written as

P(n)T
gi,NNL(N) =

(−1)n

(N−1)2n−1

(
96nC(n)

gi,0 + 96n−1C(n)
gi,1 nf + 96n−2C(n)

gi,2 n2
f

)
(3.21)
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and

P(n)T
qi,N3L(N) =

(−1)n

(N−1)2n−2

(
96n−1C(n)

qi,1 nf + 96n−2C(n)
qi,2 n2

f + 96n−3C(n)
qi,3 n3

f

)
. (3.22)

The coefficients for Eq. (3.21) and Eq. (3.22) are given in Table 3 and Table 4, respectively.
Here the relative normalization of the coefficients of different orders inαs is such that the ra-
tiosC(n)

ij ,l /C
(n−1)
ij ,l will tend to one forn→ ∞, if the NNLL correction have the same convergence

properties as the LL and NLL contributions in Eqs. (3.14) and(3.15). The present calculations
have not been carried out to an order sufficient to definitely decide whether this is indeed the case.

The fixed-order and resummed timelike splitting functions are illustrated and compared in
Figs. 1 – 4 at a standard reference scale,Q2 ≃ M2

Z , for nf = 5 effectively massless flavours. For

the corresponding valueαs≃ 0.12 of the strong coupling constant, the expansions to orderα16
s are

sufficient, and for some of the NNLL results required, for an accuracy of 0.1% or better down to
the lowestx-values shown,x= 10−4. An extension of the maximal order to cover one more order
of magnitude inx is definitely feasible, but does not appear to be warranted for any foreseeable
analyses of experimental data.

It is clear from Figs. 1 and 2 that the available fixed-order approximations to the splitting
functions are not reliable atx <∼ 10−3 for the gluon-parton cases – recall Eq. (1.3) and the form
(2.4) of the timelike splitting function matrix, which is transposed relative to the spacelike case of
the initial-state parton distributions – andx <∼ 10−2 for the quark-parton cases. Obviously it is also
insufficient to only add the previously known leading-logarithmic resummation [30] from order
α4

s to the NNLO gluon-quark and gluon-gluon splitting functions in Fig. 1. On the other hand, a
near-perfect cancellation of the strongx-dependences is exhibited by the NNLO+NNLL results
for xPT

ji especially in these cases. The situation is somewhat less clear-cut for the quark-parton
splitting functions in Fig. 2 where, as already at orderα3

s but unlike the gluon-parton cases, the
effects of the second and third logarithms have the same sign. Within the present uncertainties all
results appear to be consistent withxPT

ji ≈ 0 atx< 10−2.

In Figs. 3 and 4 the known three fixed-order approximations are compared by their resummed
counterparts obtained by adding the ‘appropriate’ higher-order resummations to the respective
fixed-order results, i.e., forming the LO+LL (for the gluon-parton cases), NLO+NLL and NNLO
+NNLL combinations. The differences between the two expansions atx < 10−2 are striking.
Some questions remain due to the relatively large NNLO+NNLL corrections in Fig. 3 and the
corresponding behaviour atx < 10−3 in Fig. 4. Their answer will require the calculation of the
fourth-order (N3LO) splitting functions (from which the N3LL resummations forPT

gq andPT
gg can

be inferred analogously to the present calculations) which, unfortunately, is not expected in the
near future. In the meantime the NNLO+NNLL results, and their comparison with the previous
NLO+NLL resummed order, should be sufficient for practical data analysis including estimates
of the effect of the presently unknown higher orders.

11



n C(n)
gg,0 C(n)

gg,1 C(n)
gg,2 C(n)

gq,0 C(n)
gq,1 C(n)

gq,2

1 0 3.4074074 – −0.3148148 – –

2 0.7923411 5.4814815 2.3703704 0.2174233 2.2469136 –

3 1.1074453 5.6111111 4.4334705 0.3976321 2.4698217 0.9657064

4 1.3336401 5.6790123 5.0809328 0.5129934 2.5064300 1.3924707

5 1.5204469 5.7204475 5.2181070 0.6035361 2.5046339 1.5768328

6 1.6839029 5.7522248 5.1713306 0.6809114 2.4969915 1.6546258

7 1.8313932 5.7823077 5.0603175 0.7498896 2.4920010 1.6831461

8 1.9670281 5.8140519 4.9316765 0.8128873 2.4915980 1.6880472

9 2.0933792 5.8486686 4.8040710 0.8713173 2.4957684 1.6815451

10 2.2121870 5.8864117 4.6847584 0.9260927 2.5039523 1.6697449

11 2.3246982 5.9271265 4.5761405 0.9778468 2.5154984 1.6558008

12 2.4318435 5.9705020 4.4785239 1.0270426 2.5298070 1.6413704

13 2.5343410 6.0161860 4.3913363 1.0740322 2.5463666 1.6273227

14 2.6327593 6.0638358 4.3136775 1.1190916 2.5647543 1.6140995

15 2.7275579 6.1131386 4.2445696 1.1624423 2.5846246 1.6019061

Table 3: The numerical coefficients of the NNLL small-x approximations (3.21) inN-space for the
timelike gluon-gluon and gluon-quark splitting functionsin QCD to the sixteenth order inαs.

n C(n)
qg,1 C(n)

qg,2 C(n)
qg,3 C(n)

qq,1 C(n)
qq,2 C(n)

qq,3

2 −7.0398681 3.1604938 –−3.3757439 – –

3 0.2881972 12.609054 6.3209877−0.1122633 6.2624600 –

4 3.8811194 19.180041 12.349337 1.4382426 9.0594422 2.2240512

5 6.2663008 23.451903 16.193141 2.4695470 10.673136 3.9805314

6 8.1028556 26.382647 18.550343 3.2699679 11.725549 5.2086911

7 9.6308924 28.524947 20.014717 3.9411132 12.479542 6.0662810

8 10.960497 30.185034 20.944287 4.5288220 13.063470 6.6786404

9 12.150652 31.537321 21.546983 5.0574954 13.545017 7.1280203

10 13.236613 32.685054 21.945288 5.5417090 13.961930 7.4670190

11 14.241194 33.691738 22.213216 5.9909234 14.336239 7.7296206

12 15.180069 34.597838 22.396683 6.4116708 14.681305 7.9382263

13 16.064511 35.429968 22.524875 6.8086793 15.005512 8.1079291

14 16.902933 36.206143 22.616740 7.1854997 15.314277 8.2491157

15 17.701801 36.938872 22.684797 7.5448791 15.611200 8.3690760

Table 4: The corresponding N3LL coefficients in (3.22) for the timelike quark-gluon and quark-
quark splitting functions in QCD to the sixteenth order in the strong coupling constant.
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Figure 1: The timelike gluon-quark and gluon-gluon splitting functions at a typical value of the
strong coupling constantαs, multiplied byx for display purposes. Shown are the NLO and NNLO
approximations, and the consequences of adding the leading(αn−1

s ln2nx), next-to-leading and
next-to-next-to-leading small-x logarithms to the latter at all higher orders inαs.
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Figure 2: As Fig. 1, but for the timelike quark-quark and quark-gluon splitting functions, where
the highest logarithms are of the next-to-leading logarithmic form αn−1

s ln2n−1x.
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Figure 3: The timelike gluon-quark and gluon-gluon splitting functions at a typical value ofαs,
multiplied by x for display purposes. The LO, NLO and NNLO fixed-order approximations are
compared with the small-x resummed results obtained by respectively adding the LL, NLL and
NNLL contributions at all numerically relevant higher orders in αs.
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Figure 4: As Fig. 3, but for the timelike quark-quark and quark-gluon splitting functions which do
not receive leading logarithmic (LL) corrections. Hence only two resummed curves are shown.
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4 Resummed coefficient functions forFT

We now turn to the coefficient functions. For brevity, we willnot discuss theφ-exchange case here
(beyond the respective highest logarithms which are directly related to those forFT), as it will be
of only theoretical interest in the near future. The corresponding results are included, however, in
the FORM file of results distributed with the arXiv version of this article.

The moments of the small-x resummed terms of the transverse coefficient functions are

cT, i(N) =
∞

∑
n=1

an
s

(
δ ig c(n)T i,LL (N) + c(n)T i,NLL (N) + c(n)T i,NNL(N) + . . .

)
. (4.1)

The leading and next-to-leading logarithmic contributions forcT,g can be written as

c(n)Tg,LL (N) =
(−4)nCF Cn−1

A

(N−1)2n A(n)
T,g (4.2)

and

c(n)Tg,NL(N) =
(−4)nCF Cn−3

A

9(N−1)2n−1

[
−C2

A B(n)
Tg,1 + CAnf B(n)

Tg,2 + 8CFnf B(n)
Tg,3

]
. (4.3)

The coefficients in Eqs. (3.2) and (3.4) are given in Table 5 analytically to the twelfth order inαs

(see the FORM file for the remaining four orders) and numerically forn= 13, . . . 16. In this case the
general form and the generating function is obvious only forthe leading-logarithmic coefficients
in Eq. (4.2) with [50]

A(n)
T,g =

2n

n!

n−1

∏
k=0

(4k+1) (4.4)

and

cLL
T,g(N) =

CF

CA

(
cT,LL

φ,g (N)−1
)

=
CF

CA

{(
1+

32CAas

(N−1)2

)−1/4

−1

}
. (4.5)

Eq. (4.5) agrees with the corresponding result of Ref. [32] for cT,g up to a factor of two arising
from the different normalization of this coefficient function already mentioned below Eq. (2.11).

The relations for the quark coefficient functions corresponding to Eqs. (4.2) and (4.3) can be
cast in the form

c(n)Tq,NLL (N) =
CF

CA
cT (n)

φq,NLL (N) =
(−4)nCFnf Cn−2

A

3(N−1)2n−1 4A(n)
T,q (4.6)

and

c(n)Tq,NNL(N) =
(−4)nCFnfC

n−4
A

3(N−1)2n−2

[
−C2

A B(n)
Tq,1 +

8
3 CAnf B(n)

Tq,2 +
8
3 CFnf B(n)

Tq,3

]
(4.7)

with n≥ 2. The first sixteen coefficients in Eqs. (4.6) and (4.7) can befound in Table 6. Note the
the faster growth of these coefficients withn, as compared to the corresponding splitting function
results in Tables 1 and 2, is largely (but only only) due to thedifferent normalization in Eqs. (4.2)
and Eqs. (4.6), which was employed to have mainly integer coefficient in Table 1.
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n A(n)
T,g B(n)

Tg,1 B(n)
Tg,2 B(n)

Tg,3

1 2 −9 – –

2 10 87/2 – –

3 60 779 2 8

4 390 8620 67 115

5 2652 84224 1100
6193

5

6 18564 778449 14028
59811

5

7 132600 6974466 157500
765402

7

8 961350 61261449 1639437
13548231

14

9 7049900 530773430 16238552
176155814

21

10 52169260 4552643821 155338216
1505191630

21

11 388898120 38750254946 1448362604
140014436692

231

12 2916735900 327823740972 13242606390
391609950056

77

13 2.1987701 1010 2.7596825 1012 1.1922955 1011 4.2417307 1010

14 1.6647831 1011 2.3136533 1013 1.0602610 1012 3.5208088 1011

15 1.2652351 1012 1.9330232 1014 9.3330885 1012 2.9110969 1012

16 9.6474181 1012 1.6102477 1015 8.1461913 1013 2.3992885 1013

Table 5: The first sixteenN-space coefficients in Eqs. (4.2) – (4.3) for the LL and NLL small-x
approximations to the gluon coefficient function for the transverse fragmentation function.

As for the splitting functions, the next contributions to both transverse coefficient functions
are considerably more complex. Since the third-order SIA coefficients functions have not been
published so far, we give the third- and fourth-order quantities analytically. The higher orders are
presented numerically forCA = 3 andCF = 4/3 below. The third-order results are given by

c(3)T,g(N) = −
64

(N−1)6 60C2
ACF +

64
(N−1)5

{
779
9 C2

ACF − 2
9 CACFnf −

64
9 CFn2

f

}
(4.8)

−
64

(N−1)4

{(395
12 − 68

3 ζ2
)

C2
ACF −

(5
3 +

4
3 ζ2
)

CAC2
F + 67

27CACFnf −
47
9 CFn2

f

}
+ . . .

c(3)T,q(N) = −
64

(N−1)5
92
9 CACFnf +

64
(N−1)4

{
340
27 CACFnf −

8
9 CFn2

f

}
(4.9)

+
64

(N−1)3

{(169
324−

2
9 ζ2
)

CACFnf −
(1

3 −
8
3 ζ2
)

C2
Fnf −

2
9 CFn2

f

}
+ . . . .
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n A(n)
T,q B(n)

Tq,1 B(n)
Tq,2 B(n)

Tq,3

2 1 −1 – –

3
23
3

340
9

1 –

4
329
6

4790
9

133
12

26
3

5
5884
15

50917
9

1604
15

4211
30

6
14166

5
2454268

45
29869

30
16313

10

7
144694

7
157792304

315
319122

35
1743793

105

8
2130333

14
156504164

35
34659563

420
13254173

84

9
71114144

63
7404527591

189
93174769

126
7191782

5

10
530983954

63
45735067426

135
10344355237

1575
20099736449

1575

11
43854388318

693
861656350072

297
111399799846

1925
1925137106758

17325

12
110281846025

231
769021780130564

31185
10525291437281

20790
3306988478369

3465

13 3.6165904 109 2.0836819 1011 4.4007722 109 8.1132902 109

14 2.7496227 1010 1.7521629 1012 3.8036176 1010 6.8422246 1010

15 2.0971243 1011 1.4675034 1013 3.2707410 1011 5.7338592 1011

16 1.6039639 1012 1.2249474 1014 2.7996798 1012 4.7804829 1012

Table 6: As Table 5, but for the NLL and NNLL quark coefficient function in Eqs. (4.6) – (4.7).

The expansions of the fourth-order transverse coefficient functions aboutN = 1 read

c(4)T,g(N) =
256

(N−1)8 390C3
ACF −

256
(N−1)7

{
8620

9 C3
ACF − 67

9 C2
ACFnf −

920
9 CACFn2

f

}

+
256

(N−1)6

{(
219007

216 −244ζ2
)

C3
ACF −

(
15
4 +18ζ2

)
C2

AC2
F + 451

36 C2
ACFnf

− 5308
27 CAC2

Fnf +
31
27CACFn2

f +
44
9 C2

Fn2
f

}
+ . . . (4.10)

and

c(4)T,q(N) =
256

(N−1)7
658
9 CACFnf −

256
(N−1)6

{
4790
27 C2

ACFnf −
266
27 CACFn2

f −
208
27 C2

Fn2
f

}

+
256

(N−1)5

{(
32423
216 − 80

9 ζ2
)

C2
ACFnf +

(
71
9 − 262

9 ζ2
)

CAC2
Fnf −

958
36 C2

ACFnf

− 838
81 C2

Fn2
f +

8
9 CFn3

f

}
+ . . . . (4.11)

17



For the coefficients of the third logarithms in Table 7 we use the notation

c(n)Tg,NNL(N) =
(−1)n

(N−1)2n−2

(
96nC(n)

Tg,0 − 96n−1C(n)
Tg,1 nf + 96n−2C(n)

Tg,2 n2
f

)
, (4.12)

c(n)Tq,N3L(N) =
(−1)n

(N−1)2n−3

(
96n−1C(n)

Tq,1 nf − 96n−1C(n)
Tq,2 n2

f + 96n−2C(n)
Tq,3 n3

f

)
. (4.13)

These results are illustrated in Fig. 5 for the same reference point andx-range as in the previous
section. The situation forxcT,g andxcT,q is largely analogous to that for the corresponding splitting
functionsxPT

gq andxPT
qq in Figs. 3 and 4. The NLO and NNLO fixed-order approximations (the LO

coefficient functioncT,q = δ(1−x) is obviously not visible in this figure) are unreliable here from
even largerx-values than above. The small-x rise of the NNLO coefficient functions is removed
by adding the NLL and NNLL resummations from orderα3

s, leaving us with functions oscillating
aboutxcT,k ≈ 0. The same behaviour, if with a considerably smaller amplitude, can be established
down to extremely small values ofx for the exactly known LL gluon coefficient function (4.5)
already determined in Ref. [32]. Also here it would be very interesting to known one more order in
αs and the N3LL resummation ofxcT,g. The latter, however, again requires (at least in the present
framework) the calculation of the fourth-order contribution to the splitting functionPT

gq.

It is instructive to briefly address the impact of the (scheme-independent) LL splitting functions
(1.6) and (scheme-dependent) LL coefficient functions, given in MS by Eq. (4.5), on the scale
dependence of the fragmentation functionFT and its ‘gluonic’ counterpartFφ. This is best done by
considering the ‘timelike’ physical evolution kernelsKab in Mellin space,

d
d lnQ2

(
FT

Fφ

)
=

(
KTT KTφ

KφT Kφφ

)(
FT

Fφ

)
, (4.14)

which are given by the matrix elements of

K = CPTC−1 + β(as)
dC
das

C−1 with C =

(
cT,q cT,g

cφ,q cφ,g

)
, (4.15)

and the splitting function matrix (2.4). In terms of powers of (N− 1)−1, the first term could
be different fromPT already at leading logarithmic (αn

s (N−1)−2n+2) accuracy. However, the
relations (1.6) and Eq. (4.5) imply

PT
LL =

(
0 CF

CA
PT

gg,LL

0 PT
gg,LL

)
and CLL =

(
1 CF

CA
cLL

0 1+cLL

)
(4.16)

with cLL given by the curly bracket in Eq. (4.5). Due to Eq. (4.16) all such contributions to the
matrixK cancel, and the factorization-scheme independent physical kernels are correctly given by

KTT,LL = KφT,LL = 0 , KTφ,LL = PT
gq,LL , Kφφ,LL = PT

gg,LL . (4.17)

A study of the physical kernels (4.14) beyond the leading logarithmic accuracy could be interesting,
but is beyond the scope of the present article.
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n C(n)
Tg,0 C(n)

Tg,1 C(n)
Tg,2 C(n)

Tq,1 C(n)
Tq,2 C(n)

Tq,3

2 −0.0488460 – – −0.0411523 – –

3 −0.0052813 −0.0044582 – −0.0543741 −0.0020576 –

4 0.0648580 0.2598844 0.3689986 0.4087098 0.0190107 0.0329218

5 0.1603366 0.7502113 1.1226934 1.1073150 0.0595507 0.0993878

6 0.2804175 1.4552223 2.2807323 2.0085092 0.1178470 0.1996540

7 0.4247389 2.3722220 3.8617425 3.1012694 0.1933078 0.3345043

8 0.5931376 3.5017009 5.8830239 4.3806502 0.2857698 0.5048923

9 0.7855611 4.8454857 8.3606018 5.8442114 0.3952535 0.7118052

10 1.0020223 6.4059897 11.309349 7.4907736 0.5218662 0.9562145

11 1.2425739 8.1858750 14.743115 9.3198698 0.6657575 1.2390556

12 1.5072942 10.187889 18.674852 11.331466 8.2709784 1.5612246

13 1.7962784 12.414785 23.116717 13.525807 1.0060672 1.9235757

14 2.1096323 14.869274 28.080167 15.903318 1.2028488 2.3269235

15 2.4474687 17.554012 33.576041 18.464554 1.4176262 2.7720455

16 2.8099054 20.471582 39.614620 21.210152 1.6505807 3.2596851

Table 7: The numerical coefficients of the third small-x contributions (4.12) and (4.13) to the
N-space gluon and quark coefficient functions for the fragmentation functionFT to orderα16

s .
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Figure 5: The quark and gluon coefficient functions forFT at a typical value ofαs. Shown are
the NLO and NNLO fixed-order approximations, and the matchedLL, NLL and NNLL resummed
results obtained (beyond LL) by adding the respective small-x terms at all relevant higher orders.
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5 Resummed coefficient functions forFL

Finally we briefly present the resummed results for the longitudinal fragmentation functionFL.
Since the NNLO (third-order) coefficient functions for thisobservable are not yet known, only
the respective two highest logarithms can be resummed for both the gluon and quark coefficient
functions. The correspondingN-space expressions can be written as

cL, i(N) = ∑
n=1

an
s

(
δ ig c(n)Li,LL(N) + c(n)Li,NLL(N) + c(n)Li,NNL(N) + . . .

)
, (5.1)

with the gluon case given by

c(n)Lg,LL (N) = −
(−4)nCFCn−1

A

(N−1)2n−1 A(n)
L,g (5.2)

and

c(n)Lg,NLL (N) =
(−4)nCFCn−3

A

9(N−1)2n−2

[
C2

A B(n)
Lg,1 − 9CACF B(n)

Lg,2 − CAnf B(n)
Lg,3 − CFnf B(n)

Lg,4

]
. (5.3)

As in the transverse case, the quark coefficient functions for FL are suppressed by one power of
lnx or (N−1)−1, but for n> 1 take the otherwise analogous forms

c(n)Lq,NLL(N) = −
(−4)nCFnf Cn−2

A

3(N−1)2n−2 A(n)
L,q (5.4)

and

c(n)Lq,NNL(N) =
(−4)nCFnf Cn−4

A

9(N−1)2n−2

[
C2

A B(n)
Lq,1 − CACF B(n)

Lq,2 − CAnf B(n)
Lq,3 − CFnf B(n)

Lq,4

]
. (5.5)

The coefficients in Eqs. (5.2) – (5.5) are given in Tables 8 and9, as before giving the thirteenth to
sixteenth order in a numerical form for brevity (the exact expressions can be found in the FORM

file distributed with this article). In this case the generalformula is not even known for the LL
coefficients which, like all other ‘unsolved’ series above,involve unpleasantly large prime numbers

early in the expansion. For instance, the prime-factor decomposition ofA(7)
L,g reads 4·10691.

These results are illustrated in Fig. 6 in the same manner as those forFT in Fig. 5 above.
While neither of the first-order (LO) coefficient functions includes anyx−1 lnx terms in the present
case, also here the (now negative) small-x spike of both second-order (NLO) coefficient functions
is completely removed by adding the corresponding all-order resummations of the small-x loga-
rithms, leaving small oscillating functions withxcL,p ≈ 0 atx <

∼ 10−2.

One may expect that the small-x resummation of the longitudinal fragmentation function will
be the first to be extended to a higher accuracy as, in contrastto the timelike splitting functions
and the transverse fragmentation function in the previous sections, ‘only’ a third-order calculation
is required for deriving the NNLO+NNLL resummation. Note, however, that already the present
results are sufficient for the corresponding resummation ofthe total fragmentation function, ob-

tained by integrating Eq. (1.1) overθ, as the coefficient functionsc(n)L,p are suppressed by one power

of lnx or (N−1)−1 with respect to their transverse counterparts.
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n A(n)
L,g B(n)

Lg,1 B(n)
Lg,2 B(n)

Lg,3 B(n)
Lg,4

1 1 9 – – –

2 4 33 1 – –

3 22 723/2 5 3 30

4 136 3530 30 56 376

5 894 32447 195 722 3754

6 6104 288590 1326 8000
172544

5

7 42764 2515565 9282 81722
1522436

5

8 305232 21633684 66300 793968
91820496

35

9 2209526 184263400 480675 7457476
779145058

35

10 16171672 1558144566 3524950 68371776
19627939136

105

11 119414516 13101831041 26084630 615603170
163580958068

105

12 888212208 109672261452 194449060 5465590416
14911681259824

1155

13 6.6468218109 9.14647281011 1.4583680109 4.79876501010 1.06523721011

14 4.99973951011 7.60440891012 1.09938511010 4.17524771011 8.75875081011

15 3.77746111011 6.30571191013 8.32391551010 3.60555421012 7.18156601012

16 2.86495481012 5.21696771014 6.32617581011 3.09398141013 5.87478641013

n A(n)
L,q B(n)

Lq,1 B(n)
Lq,2 B(n)

Lq,3 B(n)
Lq,4

2 2 −9/2 – – –

3 12 51 6 4 –

4
236
3

1976
3

46
122
3

92
3

5
1610

3
19777

3
329 379 446

6
56356

15
915601

15
11768

5
17228

5
14560

3

Table 8: Upper part: the first sixteenN-space coefficients in Eqs. (5.2) and (5.3) for the LL and
NLL small-x resummed the gluon coefficient function for the longitudinal fragmentation function.
Lower part: the first five (NLL and NNLL) coefficients for the corresponding quark coefficient
function defined in Eqs. (5.4) and (5.5).
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n A(n)
L,q B(n)

Lq,1 B(n)
Lq,2 B(n)

Lq,3 B(n)
Lq,4

7
401944

15
8167748

15
84996

5
154428

5
236236

5

8
6784088

35
499053868

105
868164

7
28758068

105
45616904

105

9
148855862

105
4294474801

105
6390999

7
84243073

35
135167864

35

10
3295405924

315
36585726017

105
142228288

21
734599784

35
2115778496

63

11
24496904632

315
103121715842

35
1061967908

21
286309749296

1575
151010702344

525

12
2015422894136

3465
85829821660568

3465
87708776636

231
9038620655308

5775
6030487800584

2475

13 4.3730248109 2.07295261011 2.8644635109 1.34053111010 2.04693921010

14 3.30247061010 1.72826911012 2.16995431010 1.14287891011 1.70862281011

15 2.50367491011 1.43639311013 1.64977361011 9.70389441011 1.41899171012

16 1.90453981012 1.19064801014 1.25827461012 8.20933431012 1.17362621013

Table 9: Continuation of the part Table 8 for the quark coefficient function forFL to orderα16
s .

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

10
-4

10
-3

10
-2

10
-1

1x

xcL,q(x)

LO

NLO

αS = 0.12,  Nf = 5

x

xcL,g(x)

LO + LL

NLO + NLL

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

10
-4

10
-3

10
-2

10
-1

1

Figure 6: The quark and gluon coefficient functions forFL at a typical value ofαs. Shown are
the LO and NLO fixed-order approximations, and the matched LL(for cL,g) and NLL resummed
results obtained by adding the respective small-x terms at all relevant higher orders.
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6 Summary and Outlook

We have derived the all-order resummation of the highest three small-x double logarithms,

αn
s x−1 ln2n−ℓ0−ℓx with ℓ = 0, 1, 2 , (6.1)

for all four flavour-singlet timelike splitting functions –with ℓ0 = 2 for PT
gq andPT

gg andℓ0 = 3 for
PT

qq andPT
qg – and for both singlet coefficient functions for the transverse fragmentation functionFT

in semi-inclusive electron-positron annihilation (SIA) –with ℓ0 = 2 for cT,q andℓ0 = 1 for cT,g –
together with the corresponding results for SIA via an intermediate scalarφ like the Higgs boson
in the heavy top-quark limit. For the longitudinal fragmentation functionFL present fixed-order
results, which serve as input quantities for the resummation, allow only the determination of the
highest two logarithms, i.e.,ℓ= 0, 1 in Eq. (6.1) withℓ0 = 3 for cL,q andℓ0 = 2 for cL,g.

The coefficients of the above logarithms have been calculated explicitly to orderα16
s which is

not the highest computationally feasible order, but sufficient for numerically accurate results down
to x= 10−4, a range inx that should be more than sufficient for all foreseeable analyses of data.
These calculations have been performed in Mellin-N space, using the latest versions of FORM

and TFORM [34, 35] at all stages. The results agree with the leading logarithmic (LL) result of
Refs. [30] for the splitting functionsPT

gq andPT
gg, and with the only additional result so far derived

in theMS scheme, the recent LL contributions to the coefficient functioncT,g [32].

The resummation has been derived by decomposing the unfactorized partonic fragmentation
functionsF̂a,p(x,αs,ε) in dimensional regularization at any orderαn

s into n (or n−1 in the quark
cases) contributions of the form

ε−2n+n0 x−1−2kε (A + Bε + Cε2 + . . .) with k = 1, 2, . . . , n (6.2)

andn0 = 1 for a= T, φ andp= g, n0 = 2 for a= T, φ andp= q and fora, p= L,g, andn0 = 3
for a, p= L, q, with thek= 1 contributions missing in the quark cases. The KLN-relatedcancel-
lations between the contributions in Eq. (6.2), together with the powers ofε fixed by fixed-order
calculations [7–17, 24], lead to overconstrained systems of equations for the leading logarithmic,
next-to-leading logarithmic (NLL) [and next-to-next-to-leading logarithmic (NNLL)] expansion
parametersA, B [andC] in the decomposition (6.2) which can be solved to (in principle) any or-
dern. Given the large number of extra constraints and checks – including the correct predictions of
the respective highest two small-x logarithms in the third-order timelike splitting functions [17,24]
and the non-trivial all-order agreement with the known LL results [30, 32] – there is no need for
an additional derivation of the decomposition (6.2) from the structure of higher-order Feynman
diagrams and phase-space integrations.

Whilst the setup of the resummation is elegant and simple, most of the new results are not, as
we have not succeeded to find the general expressions and generating functions for the resulting
series of coefficients, with the exception of the NLL corrections to the splitting functionsC−1

F PT
gq

andPT
gg in the limitCF = 0. The results have therefore been presented via detailedN-space tables

which, hopefully, will be used for finding some of the now unknown general expressions. The
most interesting target in this respect are the non-integercoefficients in Table 1, as the solution
of any one of these three series would be sufficient to clarifythe analytic structure of all NLL
(αn

s x−1 ln2n−3x) contribution to the matrix of the timelike splitting functions.
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The small-x resummation has a striking effect on the numerical behaviour of the splitting func-
tions and coefficient functions in the regionx <∼ 10−2. All fixed-order spikes forx → 0, which
dwarf their single-logarithmic counterparts in the spacelike splitting functions and deep-inelastic
scattering (DIS) [25–29], are removed by forming the NnLO+NnLL combinations of fixed-order
and higher-order resummed results, mostly leaving small and apparently oscillating functions. This
behaviour is qualitatively similar to the LL results of Ref.[30, 32] which are known in a closed
form and thus can be evaluated down to extremely small valuesof x. While some theoretical ques-
tions remain that can only be clarified by future third- and fourth-order calculations, the present
resummation should prove sufficient for analyses of SIA datain the foreseeable future.

We have verified that the present approach can be extended to the non-x−1 double logarithms in
the (even-N based) DIS structure functionsF2 andFL (recall that there are no ‘genuine’x−1 double
logarithms in DIS; those encountered in theφ-exchange coefficient functions in Refs. [51, 52] are
artifacts of using the heavy-top approximation outside itsdomain of validity). These double-
logarithmic terms form the leading small-x contributions in the non-singlet cases, see Refs. [53]
for the LL resummation of the spacelike non-singlet splitting functions; they can be relevant at
intermediate values ofx also in flavour-singlet quantities, see Ref. [54]. The corresponding NNLL
resummations will be presented in a subsequent publication.

One may expect that, analogous to the large-x cases in Refs. [51, 55], the resummation of the
small-x double logarithms can be extended to (all) higher powers of the prefactorx in Eq. (6.1) for
the quantities considered here (and their even-N spacelike counterparts) – but not for the asymmet-
ric fragmentation functionFA which is related to the odd-N structure functionF3 known to receive
additional contributions with 1/nc and higher group factors [53, 56]. We have explicitly checked
the direct generalization of our approach to the LL and NLLxa contributions in singlet SIA for
a= 0, . . . ,6. It works, but only fora= 0 and even values, and with the form (6.2) replaced by

ε−2n+1 xa−kε (A+ Bε + Cε2 + . . .) with k = 2, . . . , n+1 (6.3)

which, in fact, is what one may have ‘naively’ expected from Refs. [9] also for thex−1 terms.
The predictions resulting from Eq. (6.3) should be useful inthe context of future third- and fourth-
order calculations. Conceivably also all small-x double logarithms in the timelike and spacelike
higher-order singlet splitting functions (and the corresponding SIA and DIS coefficient functions)
could turn out to be ‘inherited’ from lower-order quantities. This issue deserves further studies
including the case ofN =4 Super Yang-Mills theory addressed, for example, in Ref. [23,57].

A FORM file of our results presented in Sections 3 – 5 can be obtained by downloading the
source of this article from thearXiv servers or from the author upon request.
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