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PERFECT CUBOIDS AND IRREDUCIBLE POLYNOMIALS.

Ruslan Sharipov

Abstract. The problem of constructing a perfect cuboid is related to a certain
class of univariate polynomials with three integer parameters a, b, and u. Their
irreducibility over the ring of integers under certain restrictions for a, b, and u would
mean the non-existence of perfect cuboids. This irreducibility is conjectured and
then verified numerically for approximately 10 000 instances of a, b, and u.

1. Introduction.

An Euler cuboid is a rectangular parallelepiped whose edges and face diagonals
all have integer lengths. A perfect cuboid is an Euler cuboid whose space diagonal is
also of an integer length. Cuboids with integer sides and face diagonals were known
before Euler (see [1] and [2]). However, they became famous due to Leonhard Euler
(see [3]) and were named after him.

As for perfect cuboids, none of them is known by now. The problem of finding
perfect cuboids or proving their non-existence is an open mathematical problem.
The search for perfect cuboids has the long history. It is reflected in [4–34].

In [35] the problem of finding a perfect cuboid was reduced to the following
Diophantine equation of the order 12 with four variables a, b, c, and u:

u4 a4 b4 + 6 a4 u2 b4 c2 − 2 u4 a4 b2 c2 − 2 u4 a2 b4 c2 + 4 u2 b4 a2 c4+

+4 a4 u2 b2 c4 − 12 u4 a2 b2 c4 + u4 a4 c4 + u4 b4 c4 + a4 b4 c4+

+6 a4 u2 c6 + 6 u2 b4 c6 − 8 a2 b2 u2 c6 − 2 u4 a2 c6 − 2 u4 b2 c6−

− 2 a4 b2 c6 − 2 b4 a2 c6 + u4 c8 + b4 c8 + a4 c8 + 4 a2 u2 c8+

+4 b2 u2 c8 − 12 b2 a2 c8 + 6 u2 c10 − 2 a2 c10 − 2 b2 c10 + c12 = 0.

(1.1)

The exact result of the paper [35] is formulated as follows.

Theorem 1.1. A perfect Euler cuboid does exist if and only if the Diophantine

equation (1.1) has a solution such that a, b, c, and u are positive integer numbers

obeying the inequalities and a < c, b < c, u < c, and (a+ c) (b+ c) > 2 c2.

A more simple equation associated with perfect cuboids was derived in [18] (see
also [27]). However, our goal in this paper is to study the equation (1.1) (because
it is new) and derive the results declared in the abstract.
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2. Rational cuboids.

A rational cuboid is a rectangular parallelepiped the lengths of whose edges are
rational numbers. If the lengths of face diagonals are also rational numbers, it is
called a rational Euler cuboid. Finally, if the length of the space diagonal is a
rational number too, we have a perfect rational cuboid. It is easy to see that each
rational Euler cuboid can be transformed to an Euler cuboid with integer sides
and diagonals. In the case of perfect cuboids (either integer or rational) each such
cuboid can be transformed to a perfect rational cuboid whose space diagonal is
equal to unity (see [35]). Conversely each perfect rational cuboid with unit space
diagonal yields some perfect cuboid with integer sides and diagonals. Therefore,
saying a perfect rational cuboid, we assume its space diagonal to be equal to unity.

3. Expressions for the sides and face diagonals.

Note that the equation (1.1) is homogeneous with respect to its variables a, b,
c, and u. Since c > 0 in the theorem 1.1, we can introduce the fractions

α =
a

c
, β =

b

c
, υ =

u

c
. (3.1)

In terms of the rational variables (3.1) the equation (1.1) is written as

υ4 α4 β4 + (6α4 υ2 β4 − 2 υ4 α4 β2 − 2 υ4 α2 β4) + (4 υ2 β4 α2+

+4α4 υ2 β2 − 12 υ4 α2 β2 + υ4 α4 + υ4 β4 + α4 β4) + (6α4 υ2 + 6 υ2 β4−

− 8α2 β2 υ2 − 2 υ4 α2 − 2 υ4 β2 − 2α4 β2 − 2 β4 α2) + (υ4 + β4+

+α4 + 4α2 υ2 + 4 β2 υ2 − 12 β2 α2) + (6 υ2 − 2α2 − 2 β2) + 1 = 0.

(3.2)

Note that the variables a, b, c, and u in (1.1) are neither edges nor diagonals of
a perfect cuboid, they are just parameters. They yield the rational parameters α,
β, and υ in (3.2) according to the formulas (3.1). The edges and face diagonals of a
perfect rational cuboid are expressed through α, β, and υ. Let’s denote through x1,
x2, and x3 the edges of such a cuboid and through d1, d2, and d3 its side diagonals:

(x1)
2 + (x2)

2 = (d3)
2, (x2)

2 + (x3)
2 = (d1)

2, (x3)
2 + (x1)

2 = (d2)
2. (3.3)

Then x1 and d1 are expressed through the parameter υ:

x1 =
2 υ

1 + υ2
, d1 =

1− υ2

1 + υ2
. (3.4)

Let’s denote through z the following auxiliary parameter:

z =
(1 + υ2) (1− β2) (1 + α2)

2 (1 + β2) (1− α2 υ2)
. (3.5)

Then the edges x2 and x3 are expressed by the formulas

x2 =
2 z (1− υ2)

(1 + υ2) (1 + z2)
, x3 =

(1− υ2) (1− z2)

(1 + υ2) (1 + z2)
. (3.6)
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The side diagonals d2 and d3 are given by the following formulas:

d2 =
(1 + υ2) (1 + z2) + 2 z(1− υ2)

(1 + υ2) (1 + z2)
β,

d3 =
2 (υ2 z2 + 1)

(1 + υ2) (1 + z2)
α.

(3.7)

The formulas (3.4), (3.5), (3.6) and (3.7) are taken from [35]. They can be
verified by means of direct calculations. Indeed, the second equality (3.3) turns to
an identity due to the formulas (3.6). Apart from the equalities (3.3), a perfect
rational cuboid is characterized by the equalities

(x1)
2 + (d1)

2 = 1, (x2)
2 + (d2)

2 = 1, (x3)
2 + (d3)

2 = 1. (3.8)

They mean that the space diagonal of such a cuboid is equal to unity. The first
equality (3.8) turns to an identity due to the formulas (3.4).

Thus, the second equality (3.3) and the first equality (3.8) turn to identities.
Other four equalities in (3.3) and (3.8) also turn to identities due to (3.4), (3.5),
(3.6) and (3.7) modulo the equation (3.2).

4. Back to integer numbers.

The equation (1.1) is homogeneous with respect to its variables. Therefore due
to (3.1) and due to the theorem 1.1 the parameters a, b, c, and u in the equation
(1.1) can be treated as a quadruple of positive coprime integer numbers, i. e. their
greatest common divisor is equal to unity:

gcd(a, b, c, u) = 1. (4.1)

Let’s denote through m the greatest common divisor of a, b, and u:

gcd(a, b, u) = m. (4.2)

Then from (4.1) and (4.2) we derive the equality

gcd(m, c) = 1, (4.3)

i. e. m and c are coprime. Due to (4.2) and (4.3) the fractions a/m, b/m, and
u/m reduce to integer numbers, while c/m is an irreducible fraction if m 6= 1. The
formula (3.1) can be written in terms of these fractions:

α =
a/m

c/m
, β =

b/m

c/m
, υ =

u/m

c/m
. (4.4)

Relying on (4.4), we can change variables as follows:

a

m
→ a,

b

m
→ b,

u

m
→ u,

c

m
→ t. (4.5)
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In terms of the new variable t = c/m and in terms of the renewed variables a, b,
and u in (4.5) the formulas (4.4) are written as

α =
a

t
, β =

b

t
, υ =

u

t
, (4.6)

while the equation (1.1) turns to the following equation:

t12 + (6 u2 − 2 a2 − 2 b2) t10 + (u4 + b4 + a4 + 4 a2 u2+

+4 b2 u2 − 12 b2 a2) t8 + (6 a4 u2 + 6 u2 b4 − 8 a2 b2 u2−

− 2 u4 a2 − 2 u4 b2 − 2 a4 b2 − 2 b4 a2) t6 + (4 u2 b4 a2+

+4 a4 u2 b2 − 12 u4 a2 b2 + u4 a4 + u4 b4 + a4 b4) t4+

+(6 a4 u2 b4 − 2 u4 a4 b2 − 2 u4 a2 b4) t2 + u4 a4 b4 = 0.

(4.7)

As for the formula (4.2), for the renewed variables a, b, and u in (4.5) it yields

gcd(a, b, u) = 1. (4.8)

The formula (4.8) means that a, b, and u in (4.6) and (4.7) are coprime.
Note that the equation (4.7) is the same as the initial equation (1.1), but c is

replaced by t and the terms are reordered like in a univariate polynomial of the
variable t. The theorem 1.1 now is reformulated as follows.

Theorem 4.1. A perfect Euler cuboid does exist if and only if for some positive

coprime integer numbers a, b, and u the polynomial equation (4.7) has a rational

solution t obeying the inequalities t > a, t > b, t > u, and (a+ t) (b + t) > 2 t2.

5. Factoring the polynomial equation.

Let’s denote through Pabu(t) the polynomial in the left hand side of the equation
(4.7). Denoting it in this way, we shall treat it as a univariate polynomial of t, while
the variables a, b, and u are treated as parameters:

Pabu(t) = t12 + (6 u2 − 2 a2 − 2 b2) t10 + (u4 + b4 + a4 + 4 a2 u2+

+4 b2 u2 − 12 b2 a2) t8 + (6 a4 u2 + 6 u2 b4 − 8 a2 b2 u2−

− 2 u4 a2 − 2 u4 b2 − 2 a4 b2 − 2 b4 a2) t6 + (4 u2 b4 a2+

+4 a4 u2 b2 − 12 u4 a2 b2 + u4 a4 + u4 b4 + a4 b4) t4+

+(6 a4 u2 b4 − 2 u4 a4 b2 − 2 u4 a2 b4) t2 + u4 a4 b4.

(5.1)

The polynomial (5.1) is symmetric with respect to the parameters a and b, i. e.

Pabu(t) = Pbau(t). (5.2)

In order to study the polynomial Pabu(t) we consider some special cases:

1) a = b; 3) b u = a2; 5) a = u;
(5.3)

2) a = b = u; 4) a u = b2; 6) b = u.
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The special case a = b. In this special case the polynomial Pabu(t) = Paau(t)
is given by the following formula:

Paau(t) = t12 + (6 u2 − 4 a2) t10 + (8 a2 u2 − 10 a4 + u4) t8+

+(4 a4 u2 − 4 a6 − 4 u4 a2) t6 + (8 a6 u2 + a8 − 10 u4 a4) t4+

+(6 a8 u2 − 4 u4 a6) t2 + u4 a8.

(5.4)

The polynomial (5.4) is reducible. It is factored as

Paau(t) = (t2 + a2)2 Pau(t), (5.5)

where the polynomial Pau(t) is given by the formula

Pau(t) = t8 + 6 (u2 − a2) t6 + (a4 − 4 a2 u2 + u4) t4−

− 6 a2 u2 (u2 − a2) t2 + u4 a4.
(5.6)

The formulas (5.5) and (5.6) are easily proved by direct calculations.

The special case a = b = u. This case corresponds to a = u in (5.6). If a = u,
the polynomial Pau(t) = Paa(t) is reducible:

Paa(t) = (t− a)2 (t+ a)2 (t2 + a2)2. (5.7)

Due to the coprimality (4.8) the special case a = b = u can fit the theorem 4.1 only
for a = b = u = 1. Then, due to (5.5) and (5.7), the equation (4.7) looks like

(t− 1)2 (t+ 1)2 (t2 + 1)4 = 0. (5.8)

The equation (5.8) has two real rational solutions t = −1 and t = 1. Both of them
do not fit the theorem 4.1. Indeed, both of them do not satisfy the inequality t > a,
where a = 1.

Thus, the subcase a = b = u of the special case a = b do not provide any perfect
cuboid. Other subcases of the case a = b are described by the following conjecture.

Conjecture 5.1. For any positive coprime integers a 6= u the polynomial Pau(t)
in (5.6) is irreducible in the ring Z[t].

The special case b u = a2. Combining b u = a2 with (4.8) one can easily derive
the following presentation for the integer numbers a, b, and u:

a = p q, b = p2, u = q2. (5.9)

Here p and q are two positive integers, satisfying the coprimality condition

gcd(p, q) = 1. (5.10)
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Substituting (5.9) into (5.1), we get the polynomial

Ppqp2q2(t) = t12 + (6 q4 − 2 p2 q2 − 2 p4) t10 + (q8 + 4 p2 q6+

+5 p4 q4 − 12 p6 q2 + p8) t8 − 2 p2 q2 (q8 − 2 p2 q6 + 4 p4 q4−

− 2 p6 q2 + p8) t6 + p4 q4 (q8 − 12 p2 q6 + 5 p4 q4 + 4 p6 q2 + p8) t4+

+ q8 p8 (−2 q4 − 2 p2 q2 + 6 p4) t2 + q12 p12.

(5.11)

The polynomial Ppqp2q2(t) in (5.11) is reducible. Indeed, we have

Ppqp2q2 (t) = (t− a) (t+ a)Qpq(t), (5.12)

where Qpq(t) is the following polynomial:

Qpq(t) = t10 + (2 q2 + p2) (3 q2 − 2 p2) t8 + (q8 + 10 p2 q6+

+4 p4 q4 − 14 p6 q2 + p8) t6 − p2 q2 (q8 − 14 p2 q6 + 4 p4 q4+

+10 p6 q2 + p8) t4 − p6 q6 (q2 + 2 p2) (−2 q2 + 3 p2) t2 − q10 p10.

(5.13)

Due to (5.12) the polynomial (5.11) has two rational roots t = a and t = −a. Both
of them do not fit the theorem 4.1 since they do not satisfy the inequality t > a.

Other roots of the polynomial (5.11) coincide with the roots of the polynomial
Qpq(t) in (5.13). The polynomial (5.13) is reducible if q = p. In this case we have

Qpp(t) = (t− a) (t+ a) (t2 + a2)4. (5.14)

The formula (5.14) is not surprising. For q = p from (5.9) we derive a = b = u.
This case was already considered (see (5.7) and (5.8)). From q = p and (5.10) we
derive p = q = 1 and a = b = u = 1.

In the case p 6= q the polynomial (5.13) is described by the following conjecture.

Conjecture 5.2. For any positive coprime integers p 6= q the polynomial Qpq(t)
in (5.13) is irreducible in the ring Z[t].

The special case a u = b2. This special case reduces to the previous one.
Indeed, from a u = b2 and (4.8) we derive

a = p2, b = p q, u = q2, (5.15)

where p and q are two positive integer numbers obeying the coprimality condition
(5.10). When substituted into (5.1), the formulas (5.15) are equivalent to (5.9)
due to the symmetry (5.2). They lead to the polynomial Pp2pqq2 (t) coinciding with
the polynomial (5.11) and then lead to the polynomial (5.13), which was already
considered.

The special case a = u. This special case is rather trivial. In this case the
polynomial Pabu(t) = Pubu(t) in (5.1) is reducible and we have the formula

Pubu(t) = (t2 + u2)4 (t− b)2 (t+ b)2. (5.16)

The polynomial (5.16) has two real rational roots t = b and t = −b. Both of them
do not fit the theorem 4.1 since they do not satisfy the inequality t > b.
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The special case b = u. This case is equivalent to the previous one due to the
symmetry (5.2).

The general case not covered by the special cases listed in (5.3) is described by
the following conjecture.

Conjecture 5.3. For any three positive coprime integer numbers a, b, and u such

that none of the conditions (5.3) is satisfied the polynomial (5.1) is irreducible in

the ring Z[t].

6. Numeric study of the conjectures.

There are no proofs for the conjectures 5.1, 5.2, and 5.3 at present time. There-
fore I explored them numerically. For this purpose I used the Maxima package
version 5.21.1 with the graphic interface wxMaxima 0.85 on the platform of Ubuntu
10.10 with Linux 2.5.35-24.

The conjecture 5.1 was verified and confirmed for 1 6 a 6 100 and 1 6 u 6 100.
The conjecture 5.2 was confirmed for 1 6 p 6 100 and 1 6 q 6 100. And the third
conjecture 5.3 was confirmed for 1 6 a 6 22, 1 6 b 6 22, and 1 6 u 6 22. The
number 22 was chosen intentionally since

223 = 10 648 ≈ 10 000 = 1002.

This equality means that each conjecture was tested and confirmed for approxi-
mately 10 000 instances of the numeric parameters in it. The overall result obtained
can be formulated as follows: the equation (4.7) has no solutions providing perfect
cuboids for a, b, and u less than or equal to 22.

7. Conclusions.

The conjectures 5.1, 5.2, and 5.3 are not equivalent to the non-existence of perfect
cuboids. However, if they are valid, this would be sufficient to prove that perfect
cuboids do not exist. The results of the numeric computations reported in the
previous section support these conjectures.
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