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ABSTRACT. A natural partial ordering exists on all weighted games and, more broadly, on
all linear games. We describe several properties of the partially ordered sets formed by these
games and utilize this perspective to enumerate proper linear games with one generator. We
introduce a geometric approach to weighted voting by considering the convex polytope of
all possible realizations of a weighted game and connect this geometric perspective to the
weighted games poset in several ways. In particular, we prove that generic vertical lines in
Cn, the union of all weighted n-voter polytopes, correspond to maximal saturated chains in
the poset of weighted games, i.e., the poset is a blueprint for how the polytopes fit together
to form Cn. Finally, we describe the facets of each polytope, from which we develop a
method for determining the weightedness of any linear game that covers or is covered by a
weighted game.

1. INTRODUCTION

Weighted voting refers to the situation where n players, each with a certain weight, vote
on a yes or no motion. For one side to win, the weights of its voters must reach a certain
fixed quota q. A natural example is a corporation: each stockholder is a voter with weight
equal to the shares of stock he or she owns. The goal of this article is to describe certain
combinatorial and geometric structures of weighted voting and to detail the connections
between these viewpoints.

Weighted voting forms an important class of simple games (cf. Definition 2.1), whose frame-
work offers several different interpretations. Simple games may be viewed as a type of
hypergraphs [9, 12] and also as logic gates [19, 20]; in these situations, weighted voting
corresponds to threshold graphs and threshold functions, respectively. We suggest the
excellent book [24] as a first reference on simple games for the nonexpert reader.

When the voters in a simple game are totally ordered, the game is called linear [7] (or
directed [15] or complete [8]). All weighted games are linear (but not vice-versa), since the
voters’ weights provide a natural ordering. Taylor and Zwicker [23] have characterized
linear games via swap robustness and weighted games via trade robustness; we utilize
this trading approach in section 3.

A total ordering on the voters in a linear game naturally leads to a partial ordering on
coalitions. For n voters, the coalitions form the well-known poset M(n). Stanley has
shown [22] that this poset is rank-unimodal and exhibits the Sperner property and a gen-
eralized Sperner property. Linear games are in one-to-one correspondence with the filters
of M(n), which form the filtration poset, denoted J(M(n)) or Jn. The generators of the
filter corresponding to a game are its shift-minimal winning coalitions. Krohn and Sud-
hölter [15] introduce this partial ordering on simple linear games and weighted games and

2010 Mathematics Subject Classification. Primary: 91A65; Secondary: 52B05.
Key words and phrases. weighted voting, posets, filters, convex polytopes.

ar
X

iv
:1

10
9.

10
82

v1
  [

m
at

h.
C

O
] 

 6
 S

ep
 2

01
1



2 SARAH MASON AND JASON PARSLEY

investigate several consequences of the Sperner property. They then use linear program-
ming methods to obtain efficient algorithms which test whether or not a linear game is
weighted. As a subposet of Jn, we construct the posets Wn of all weighted games and
Πn of all proper linear games in the style of Krohn and Sudhölter. All of these posets are
symmetric, ranked lattices. Figure 1 depicts M(3), M(4), and the top half of J4.

We also introduce a geometric approach to weighted voting systems. By scaling the weights
to sum to 1, we define the simplex of normalized weights ∆n and the configuration re-
gion Cn = (0, 1]× ∆n, which depicts all realizations of n-player weighted games in quota-
weight space. Each coalition corresponds to a half-space intersecting Cn; weighted games
correspond to the polytopes constructed by the hyperplanes bounding these spaces. We
show in section 4.1 that each polytope is convex, n-dimensional, closed on the top and side
facets, and open on the bottom facets.

This geometric approach is quite different from the classical ‘separating hyperplanes’ ap-
proach, in which coalitions represent vertices of the n-dimensional unit cube. A linear
game is weighted if the sets of vertices which correspond to its winning coalitions may be
separated by appropriate hyperplanes from the remaining vertices (the losing coalitions)
of the cube. See [2, 20, 24] for details.

Each possible hierarchy of voters is associated to a subsimplex of ∆n. We show in The-
orem 4.7 that the hierarchy for a weighted game corresponds to the smallest subsimplex
onto which its polytope projects. As a corollary, we characterize symmetric games as the
only ones that project onto corners of ∆n.

The first of two main results of this article, Theorem 4.12, connects the above geometric
approach to the poset of weighted games. We show that for a generic choice of weights,
moving vertically through the configuration region traverses a maximal saturated chain inWn. In
other words, we may view the polytopes for n voters as building blocks, and the ordering
inWn provides instructions on how to stack them so as to construct Cn.

In Theorem 4.13, we describe the correlation between facets, hierarchies, and posets; fur-
thermore, we prove that a weighted game’s polytope has n− k + d facets, where k is the
number of nontrivial symmetry classes of voters in the game and d is the degree of the
game as a vertex inWn.

The second main result of this article, Theorem 4.17, provides a method for determining the
weightedness of a linear game covering or covered by a weighted game in Jn. This method
reduces to a linear programming problem which is different and possibly simpler than the
standard linear programming approaches (cf. [5, 15]) for determining weightedness.

This article is organized as follows. Section 2 describes the relevant background on weighted
and simple games and assumes little expertise with voting theory. Section 3 contains our
combinatorial approach via the partial orderings on coalitions, linear games, and weighted
games. In Section 4, we detail the geometry of weighted voting and its connections to the
aforementioned posets. We conclude by describing relevant open problems and future
work in Section 5.



A GEOMETRIC AND COMBINATORIAL VIEW OF WEIGHTED VOTING 3

2. BACKGROUND

2.1. Weighted voting systems. Weighted voting systems, also known as weighted games,
belong to a much larger class known as simple games. To understand them, we require
some preliminary definitions.

Throughout this paper we restrict to a finite set of n voters (or players), who vote yes or
no on a motion. The set of voters who vote the same on a given motion is known as a
coalition. The set N = {1, 2, . . . , n} of all voters is called the grand coalition. In weighted
voting, a coalition is winning if the sum of its weights is greater than or equal to the quota.
A minimal winning coalition is one possessing no winning coalition as a proper subset; if any
voter leaves such a coalition the resulting coalition will no longer be winning. A dictator
has weight greater than or equal to the quota. A dummy is a voter appearing in no minimal
winning coalitions.

A first, straightforward observation is that the weights of voters can be misleading in
understanding weighted voting. The winning coalitions determine everything about a
weighted voting system. For instance, the sets of weights w3 = w2 = 0.49, w1 = 0.02) and
w′3 = w′2 = w′1 = 1/3 are vastly different but at a quota of 0.51 produce the same winning
coalitions. Both of these represent a simple majority system in which any two voters can
win by voting together.

Definition 2.1. A simple game g is a pair (N, Wg) in which N = {1, 2, . . . , n} is a finite set
of players and Wg is a collection of subsets of N which represent the winning coalitions
for game g, that satisfies N ∈ Wg, ∅ /∈ Wg, and the monotonicity property: (S ∈ Wg and
S ⊆ R ⊆ N)⇒ R imply Wg.

Henceforth, we assume that all games considered are simple. Also, we note that many
authors choose to omit the requirement that N ∈Wg, ∅ /∈Wg. Our choice is advantageous
from a voting and a geometric perspective but not from a combinatorial perspective, as we
discuss in Remark 3.4.

Definition 2.2. A simple game is weighted if there exist weights wi ∈ [0, ∞) and a quota
q ∈ (0, ∑ wi] such that coalition A is winning if and only if the sum wA of its weights is
greater than or equal to the quota.

The vector (q : w) = (q : wn, . . . , w2, w1) is said to realize (or represent, we use these terms
synonymously) v as a weighted game.

Contrary to much of the voting literature, we enumerate voters by increasing weight, in
order to easily determine the rank of a coalition in the poset M(n) (cf. Section 3.1). We
shall refer to voters by the corresponding ordinals: the nth voter n has the greatest weight,
voter n− 1 has the next greatest, . . . , voter 1 has the lowest weight.

Note that weighted voting is scale-invariant: multiplying each of the weights and the
quota by a positive constant does not change the winning coalitions. Therefore, we may
normalize the weights so that they sum to 1. Define a normalized weight to be a vector
w = (wn, . . . , w1) that satisfies

(1) wn ≥ wn−1 ≥ . . . ≥ w1 ≥ 0,
n

∑
i=1

wi = 1.
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We denote the set of normalized weights in Rn as ∆n, since it forms an (n− 1)-dimensional
simplex with vertices p1 = (1, 0, 0, 0, . . .), p2 = ( 1

2 , 1
2 , 0, 0, . . .), p3 = ( 1

3 , 1
3 , 1

3 , 0, 0, . . .), . . . ,
pn = ( 1

n , 1
n , . . . , 1

n ).

Remark 2.3. Geometrically, ordering the weights restricts their geometry from the orthant1

Rn
≥0 \ {0} to the closure (in the subspace topology) of one particular component of the

configuration space Cn ((0, ∞)). (The configuration space Cn(X) consists of all ordered n-
tuples of distinct xi ∈ X.) This closure produces an unbounded polytope of infinite rays,
diffeomorphic to ∆n × (0, ∞). Normalizing the weights deformation retracts this space
onto the compact simplex ∆n. 3

On ∆n, we use coordinates {wn, wn−1, . . . , w2} and view w1 as a dependent variable equal
to 1− wn − . . .− w2.

Definition 2.4. For n voters, the configuration region Cn is the space of all realizations (q : w)
of weighted games, that is,

(2) Cn := (0, 1]× ∆n ⊂ Rn+1.

In Section 4, we study the geometry of Cn as an approach toward understanding weighted
voting. We note here that weighted voting systems may be equivalently defined as the
nonempty equivalence classes of points in Cn where two points are equivalent if they pro-
duce the same winning coalitions.

2.2. Background on simple games. We will require a few definitions regarding simple
games, which we provide here. We begin with the desirability relation on voters, which
was introduced in [12] and generalized in [18]. (See also [20].)

Definition 2.5. Let (N, W) be a simple game. We say that voter i is more desirable than voter
j (denoted i � j) in (N, W) if

S ∪ {j} ∈W ⇒ S ∪ {i} ∈W, for all S ⊆ N \ {i, j}.
We say that voters i and j are equally desirable (denoted i ∼ j) in (N, W) if

S ∪ {j} ∈W ⇐⇒ S ∪ {i} ∈W, for all S ⊆ N \ {i, j}.
Any simple game with a totally ordered desirability relation is called linear (or directed or
complete.)

Each linear game breaks the voters into equivalence classes of equally desirable voters;
this decomposition is called a hierarchy. For example, suppose for a linear game v on 7
voters that 7 � 6 ∼ 5 � 4 � 3 ∼ 2 ∼ 1; then there are four classes of voters. We
may express its hierarchy either as the string (�∼��∼∼) or using its power composition
(1,2,1,3), frequently denoted in the literature by n. If a game has n0 dummies, n1 voters in
its strongest class, n2 in the next strongest, down to nk in its weakest nontrivial class, then
it has power composition (n1, n2, . . . , nk), which is a composition of n − n0 into k parts.
See Carreras and Freixas [1] or Freixas and Molinero [6] for several important uses of the
power composition as a vector. We note that any power index which is monotone, i.e.,
respects the desirability ordering, must distribute power according to this composition.

1An orthant is the n-dimensional analogue of a quadrant or octant.
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One may view any linear game for m players as inducing a linear game for n > m play-
ers by simply adding n − m dummies. The mth strongest voter remains in this position,
which means in our notation we add n−m to each voter’s number. For example, the game
〈321, 42〉 (generated by coalitions 321 and 42, see section 3.2 for notation) for m = 4 voters
induces the game 〈543, 64〉 (generated by coalitions 543 and 64) for n = 6 voters; the in-
duced game has two dummy voters. Both games have power composition (2, 2). Linear
games share most properties with their induced games, including power compositions,
weightedness and properness.

We will study partial orderings of both linear and weighted games in section 3. For now,
let us consider the ordering on voters in a weighted game.

For a weighted game v, the desirability ordering weakly respects the ordering by weights.
If wi = wj, then i ∼ j. If wi > wj, then i � j, since the weight of {j} ∪ S (i, j /∈ S) will be
strictly less than the weight of {i} ∪ S, and hence {j} ∪ S ∈Wv implies {i} ∪ S ∈Wv.

Thus, a weighted game possesses a total ordering on the voters, and hence all weighted
games are linear. Not all linear games are weighted though. The first examples occur for
n = 6 voters, where 60 of the 1171 linear games fail to be weighted; for reference, we list
these in Appendix A.

In many voting contexts, there is a restriction that at most one side may win, i.e., no coali-
tion and its complement are both winning. One rationale for this is that if opposing sides
(complementary coalitions) could both win, a decision would not be reachable and the
result of the process would be a stalemate.

Definition 2.6. A simple game is said to proper if for each complementary pair A, Ac of
coalitions, at most one is winning; otherwise it is improper. A simple game is said to be
strong if for each complementary pair A, Ac of coalitions, at least one is winning. A simple
game is said to be self-dual if for each complementary pair A, Ac of coalitions, precisely one
is winning, i.e., if it is both proper and strong.

Note that the terminology has changed somewhat substantially as the literature on this
subject has evolved from many different viewpoints; we largely follow [24]. For exam-
ple, self-dual games have been referred to as constant-sum games by von Neumann and
Morgenstern [25], strong games by Isbell [13], and zero-sum games by Krohn and Sudhöl-
ter [15]. The term self-dual is most descriptive in our context since the notion of duality
plays an important role in our approach.

Definition 2.7. For a simple game v, we define its dual game v∗ by specifying its winning
coalitions:

coalition A is winning in v∗ ⇔ coalition Ac is losing in v.

Thus our choice of terminology is intuitive: a linear game v is self-dual if and only if v
equals its dual game v∗.

3. WEIGHTED AND LINEAR GAMES AS PARTIALLY ORDERED SETS

A partially ordered set, or poset, P, is a set equipped with a binary ordering ≤ which is
reflexive, antisymmetric, and transitive. The ordering is partial (as opposed to total) since
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not all elements of the set must be comparable under the ordering. An element y ∈ P is
said to cover another element x ∈ P if y > x and there is no z such that y > z > x.

A poset P is said to be ranked (or graded) if there exists a rank function ρ : P→ N compatible
with the partial ordering such that ρ(y) = ρ(x) + 1 if y covers x. The value ρ(x) is called
the rank of the element x. The numbers of elements of each rank can be organized into a
rank-generating function given by

m

∑
r=0

arqr,

where m is the maximal rank and ar is the number of elements of rank r.

In this section, we describe four different posets associated to weighted voting and linear
games. We begin in section 3.1 with the well-known poset M(n) which represents the
ordering on coalitions within an ordered set of n voters. Then we argue that the linear
games on n voters are in bijection with the filters of M(n). These filters possess a partial
ordering, from which we form a poset of linear games Jn. We also construct subposets
representing all weighted games and all proper linear games.

3.1. An ordering on coalitions. We label a coalition of voters by listing the indices of the
voters represented in the coalition as a decreasing sequence. For example, the coalition
formed by voters 5, 4, and 2 is denoted {5, 4, 2} or merely 542 when clear.

Definition 3.1. The coalition B = {b1, b2, . . . , bj} is greater than or equal to the coalition
A = {a1, a2, . . . , ak} (written B ≥ A) if and only if k ≤ j and for each 1 ≤ i ≤ k there exists
a nonnegative integer xi such that bi = ai + xi.

Definition 3.1 produces a partial ordering on the set of all coalitions formed by n voters
since it satisfies the reflexivity, antisymmetry, and transitivity conditions. Krohn and Sud-
hölter [15] use this ordering to count weighted and linear games. We call the resulting
partially ordered set the coalitions poset and denote it by M(n). Figure 1 depicts the coali-
tions posets M(3) and M(4).

We use the notation M(n) to emphasize the fact that this poset appears in several other set-
tings and has many interesting combinatorial properties. In particular, the rank-generating
function of M(n) is ∏n

i=1(1 + qi), which was proven to have unimodal coefficients by
Hughes [10]. The structure of M(n) was shown by Lindström [17] to be related to a con-
jecture of Erdös and Moser [3, 4, 21]. Stanley uses the Coxeter system structure of type
Bn to obtain a different construction of the poset M(n) and uses this new description to
show that the poset exhibits property S (which is a stronger property than the Sperner
property) and to give a new proof that the poset is rank-unimodal [22]. The poset M(n) is
also known to be a distributive lattice, a fact that will assist us herein.

3.2. A poset for linear games. Having defined a poset of coalitions, we now define posets
for linear, proper, and weighted games.

Consider two coalitions B ≥ A; if A is winning in simple game v, then B must also be
winning in v. This means that the set Wv of winning coalitions in game v extends down
from the top of M(n) to one or more lowest elements. The set Wv forms what is called a
filter of M(n); its lowest elements are the generators of this filter. Since each linear game
v is determined by its set of winning coalitions, each one can be described uniquely as a
filter of M(n).
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The shift-minimal winning coalitions (or generators) for a linear game are the generators of
the filter it represents in M(n). We observe that every shift-minimal winning coalition is
minimal, but not vice-versa. We will use the shift-minimal winning coalitions to denote a
linear game, e.g., if A and B are the generators for game v, we write v = 〈A, B〉. (For singly
generated systems, we often drop the brackets.)

Example 3.2. Consider the weighted game on 4 voters realized by (0.6 : 0.35, 0.25, 0.2, 0.2).
Its winning coalitions are 321, 421, 43, 431, 432, 4321; of these, the first three are minimal.
There are two shift-minimal winning coalitions, namely 321 and 43. We denote this game
as 〈321, 43〉. 3

Linear games on n voters are in one-to-one correspondence with filters of M(n). By choos-
ing any set of incomparable coalitions in M(n), we are specifying the shift-minimal win-
ning coalitions for some unique linear game, and we are uniquely specifying the genera-
tors of a filter of M(n). It is worth noting that not every filter of M(n) produces a weighted
voting system. We may thus construct a poset of linear games using the natural partial
ordering (containment) on filters as follows.

Definition 3.3. A linear game v is stronger than another linear game u, denoted v � u, if
every winning coalition in v also wins in u, i.e., if Wv ⊂ Wu. This is a partial ordering on
the set of linear games with n players. We refer to it as the linear games poset and denote it
by J(M(n)) or Jn.

The linear games poset is a distributive lattice – for any finite poset P, the poset J(P) of
filters of P under the containment ordering is known to be a distributive lattice. Also, Jn
is ranked by the number of losing coalitions in each game. For example, the linear game
〈653, 5432〉 in J6 has rank 48 since there are 16 winning coalitions in this linear game, 64
total coalitions in M(6), and therefore 64− 16 = 48 losing coalitions.

Remark 3.4. Formally, the linear games poset is only a subposet of a ranked lattice, since
we have excluded games of rank 0 (where every coalition is winning) and rank 2n (where
every coalition is losing) from our Definition 2.1 of simple games. (A ranked poset must
have minimal rank 0.) Many authors choose to include these games. Were we to extend Jn
to include them, then it would have minimal rank 0 and maximal rank 2n. From a voting
perspective, these two games are somewhat unnatural as they represent situations where
the voters have no control over the outcome. Worse, some of our results in section 4 are
not valid for these two games. 3

Let us now consider three subposets of Jn. Denote by J+n the ‘top half’ of Jn, that is all
games of rank exceeding or equal to half the maximal rank 2n. We frequently consider
proper linear games; these also form an induced subposet of Jn, which we denote as Πn.
Recall that in a proper linear game, if a coalition A is winning then its complement Ac

cannot be winning. Therefore at most 2n−1 coalitions can be winning in a proper linear
game. This means that the elements of Πn must contain at least 2n−1 losing coalitions and
therefore must have rank at least 2n−1; thus Πn lies in J+n . However, there do exist improper
linear games of rank greater than 2n−1, as we discuss in Theorem 3.8.

In poset Jn (and Πn), game v covers game u if Wu = Wv ∪ {A} for some coalition A /∈Wv.

Definition 3.5. The weighted games posetWn is the set of all weighted voting systems on n
voters along with the partial ordering that arises from this covering relation.
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It is important to note that as definedWn forms a subposet of the linear games poset Jn, but
we do not know whether it is an induced subposet. This question of inducement can be
rephrased as follows: if v � u in Jn for two weighted games, must there exist a saturated
chain in Jn from u to v comprised only of weighted games? We conjecture that yes, there
must be.

Conjecture 3.6. The weighted games posetWn is an induced subposet of Jn.

We at times refer to the induced subposet of proper weighted games, denoted W+
n . Just

as Wn is a (not necessarily induced) subposet of Jn, the poset W+
n is a (not necessarily

induced) subposet of J+n . Figure 1 shows the poset J+4 , which equalsW+
4 and Π4.
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FIGURE 1. Poset examples for 3 and 4 voters

3.3. Comparing posets. In this section, we ask when the posetsWn, Πn, and J+n are equal.
We prove that all weighted games inW+

n are proper, some proper games are unweighted,
and some linear games in J+n are improper.

In general, determining if a linear game is weighted can be difficult. One characterization
of weighted games that will be useful below was given by Taylor and Zwicker [23] in terms
of general trading. In the following, a trade is not restricted to a one-for-one exchange of
voters. Any number of voters can be moved among coalitions arbitrarily, provided none
of the resulting coalitions contains more than one copy of any voter. A simple game G
is said to be trade robust if for every collection X = {X1, X2, . . . , Xj} of (not necessarily
disjoint) winning coalitions in G, it is not possible to trade members among the coalitions
to produce a collection Y = {Y1, Y2, . . . , Yj} such that the coalitions in Y are all losing.

Theorem 3.7. [23] A game G is weighted if and only if it is trade robust.

Consider the linear game on 9 voters generated by the single shift-minimal coalition 8741,
denoted 〈8741〉. Let X = {9741, 8752} and trade 8 for 41 to form Y = {987, 75421}. The
coalitions in X are all winning coalitions in 〈8741〉 and the coalitions in Y are all losing in
〈8741〉. Therefore the linear game 〈8741〉 is unweighted since it fails to be trade robust.
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Theorem 3.8. The following inclusions hold

(3) W+
n ⊂ Πn ⊂ J+n .

The first inclusion is strict precisely for n ≥ 7 voters and the second is strict precisely for n ≥ 6.

Proof. The second inclusion, Πn ⊂ J+n , is immediate since every proper linear game has at
least half of the coalitions losing. Thus its rank is at least 2n−1, and it lies in the top half of
Jn. We use the following lemma to prove the first inclusion.

Lemma 3.9. Let v ∈ Jn be an improper weighted game. Then Wv, the set of winning coalitions for
v, must include at least one coalition from each complement pair.

Proof of Lemma 3.9. We assume v is weighted and improper, so it includes a pair of com-
plementary winning coalitions, A and Ac. We may trade voters between these coalitions
to form any desired complement pair of coalitions, B and Bc. Trade robustness guarantees
that at least one of these coalitions is winning. �

Now we show the first inclusion in (3). Suppose the weighted game v is improper. By
the above lemma, Wv includes at least one coalition from each complement pair. As v is
improper, Wv also includes both coalitions of some complement pair, so the rank of v is
less than 2n−1, i.e., v /∈ W+

n . Hence,W+
n ⊂ Πn.

The following examples establish when these inclusions are strict. Note that for n ≤ 5
players, all linear games are weighted, so both inclusions above are equalities. For 6 voters,
there are 60 unweighted games: 20 have rank less than 32, while 20 have rank equal to 32,
and 20 have rank greater than 32; we list these in Appendix A. None of them are proper.

(1) The game 〈6531〉 ∈ Π7 is not weighted since it fails trade robustness.
(2) Of the 40 improper games in J+6 , the one with the highest rank, 37, is 〈65, 4321〉. It

is generated by two complementary coalitions and is thus improper.

To obtain examples for larger n values, simply add dummy voters to these games; the
induced games share the weightedness and properness of the original game. Thus we
have established the strictness criteria above. �

3.4. Poset properties. We now consider various properties of our posets of games, includ-
ing their ranks, covers, and inclusions.

Recall that the filters in the poset Jn are ranked by the cardinality of their losing coalitions,
and since the cardinalities vary from zero to 2n, the poset Jn has rank 2n.

Proposition 3.10. The weighted games posetWn achieves each rank from 1 to 2n − 1. The posets
W+

n , Πn, and J+n achieve each rank from 2n−1 to 2n − 1.

Proof. By constructionWn ⊂ Jn; Theorem 3.8 showed thatW+
n ⊂ Πn ⊂ J+n . So, it suffices

to construct a weighted game for each rank.

Let voter i have unnormalized weight 2i−1. Under these weights, the coalitions are to-
tally ordered in the sense that no two coalitions have the same weight. Choosing a quota
of 1 produces the weighted game 〈1〉 which has rank 1; choosing a quota of 3 produces
the weighted game 〈21〉 which has rank 3. In general, choosing a quota of r produces
a weighted game of rank r. Quotas of 0 and 2n correspond to the situations where all
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coalitions and no coalitions, respectively, are winning; we exclude these cases from our
definition of simple games (cf. Remark 3.4). �

Corollary 3.11. A proper linear game v has minimal rank 2n−1 in Πn if and only if v is self-dual.

Proof. First note that a game v is self-dual if and only if for each winning coalition A in v,
Ac must be losing in v. Therefore every self-dual game has rank 2n−1 and in particular, a
proper self-dual linear game has rank 2n−1.

Conversely, let v be a proper linear game with minimal rank 2n−1 in Πn. Then precisely
one coalition from each complement pair A, Ac is winning in v, since at most one of A, Ac

can be winning in v. Therefore v is self-dual. �

This statement is false for linear games in general; of the 41 games with rank 32 in J6, only
21 are self-dual.

Proposition 3.12. A (proper) linear game with k shift-minimal winning coalitions is covered by
precisely k elements in Jn (repectively, in Πn).

Proof. Let v be a linear game with k shift-minimal winning coalitions. The linear games
covering v in Jn are the filters of M(n) obtained by removing exactly one of the shift-
minimal winning coalitions from Wv. Since there are k generators which can be removed,
there are k different filters covering v in Jn.

If v is proper, removing a winning coalition will retain properness, so proper games are
only covered by proper games. Thus our result holds in Πn as well. �

We observe that Proposition 3.12 is not true for weighted voting systems. For example, the
weighted voting system 〈987, 8741〉 in W+

9 is weighted with two shift-minimal winning
coalitions. It is covered only by 〈987, 9741, 8751, 8742〉 and not by 〈8741〉 since 〈8741〉 is not
weighted.

We now describe a useful inclusion of Jn into Jn+1. Recall from the end of section 2 that the
game v = 〈A1, A2, . . .〉 on n voters induces the game ṽ by adding a dummy voter. So we
have a map Jn ↪→ Jn+1 that sends v to ṽ. The rank of ṽ is twice that of v. Thus, we may
conclude that if a game has k dummies, its rank must be a multiple of 2k.

Since induced games preserve weightedness and properness, this map also produces the
inclusionsWn ↪→Wn+1 and Πn ↪→ Πn+1.

3.5. Enumerating linear games. The tasks of counting linear and weighted games are dif-
ficult since the number of each grows rapidly as the number of voters increases; full results
are known only for n ≤ 9 voters [15, 19]. The enumeration of simple games has been stud-
ied by mathematicians for over a century, beginning with Dedekind’s 1897 work in which
he determined the number of simple games with four or fewer voters. Recently Freixas
and Puente [8] investigated linear simple games with one shift-minimal winning coalition,
Kurz and Tautenhahn [16] have enumerated linear simple games with two shift-minimal
winning coalitions, and Freixas and Kurz [5] have provided a formula for the number
of weighted games with one shift-minimal winning coalition and two types of voters. We
extend this research to proper linear games by counting those with one shift-minimal coali-
tion.
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Posets provide a natural tool for ensuring that we have enumerated all linear games for n
voters. For a linear game v, its set of winning coalitions Wv is the filter in M(n) generated
by the shift-minimal winning coalitions in v. A new linear game can be obtained by either
removing a generator from Wv or adding a new coalition to Wv which is covered only by
elements of Wv but is not in Wv, i.e., a shift-maximal losing coalition. This procedure either
adds one or subtracts one, respectively, to the rank of the linear game. To obtain a new
linear game with the same rank as v, perform both operations: remove a winning coalition
A from Wv and add a new winning coalition which is not in Wv \ {A} but is covered only
by elements of Wv \ {A}.

Theorem 3.13. For n voters, the number of proper linear games generated by exactly one shift-
minimal winning coalition is

(4) 2n −
(

n
bn/2c

)
.

The coalitions A for which 〈A〉 is a proper game are precisely the subsets of N which contain k of
the largest 2k− 1 numbers in [n] for some k ≤ n.

Proof. We consider the 2n different games 〈A〉, where A ⊂ N. Such a game is proper if and
only if Ac ≯ A, i.e., if the complement of A does not lie in the filter 〈A〉. By Definition 3.1,
Ac ≯ A is equivalent to having the kth element of A be greater than the kth element of
Ac for some k ≤ n. Thus, 〈A〉 is proper if and only if A contains k of the largest 2k − 1
numbers in N (for some k ≤ n).

This is equivalent to the number of ways to flip a fair coin n times so that a majority of
heads had occurred at some point. This is sequence A045621 in the Online Encyclopedia
of Integer Sequences [11] and is given by formula (4) above. �

4. THE GEOMETRY OF WEIGHTED VOTING REPRESENTATIONS

We now study the geometry of realizations of weighted games. Recall from Section 2 that
since weighted voting is scale invariant, we may normalize the weights so that they sum to
1. Also, ∆n denotes the (n− 1)-dimensional simplex of normalized weights for weighted,
n-voter games and Cn = (0, 1]×∆n denotes the space of all realizations of such games. We
envision Cn ⊂ Rn depicted with coordinate q pointing upwards (in the vertical direction)
and will refer to ‘top’ and ‘bottom’ features based on appropriate q values.

Consider all of the realizations in Cn for a weighted game v ∈ Wn; these points define a
polytope Pv in Cn. The polytopes Pv encode a rich amount of information about weighted
games; the goal of this section is to describe the geometry of weighted voting and its con-
nections with posets and hierarchies.

By a polytope, we mean the generalization of a polygon or polyhedron to bounded k-
dimensional objects. In Rk, each polytope is bounded by a finite number of hyperplanes;
these define (k − 1)-dimensional subpolytopes called facets. We do not assume that all
polytopes are convex; convex polytopes may be viewed as the convex hull of a finite set of
points. Each Pv is in fact convex, as we demonstrate in Proposition 4.2.

Let us begin by examining the geometry of the configuration regions: C1 is a line segment
of quotas above the point p1 (where w1 = 1); C2 is the rectangle (0, 1]× p2 p1. Notice that
C1 embeds naturally into C2. Figure 2 depicts C3, which is a triangular prism. Notice that
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C2 embeds into C3 as the back facet, and C1 embeds as the rightmost edge. This is true in
general: every Ck naturally embeds into Cn for k < n.
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FIGURE 2. For 3 voters, ∆3, the region of normalized weights, and C3, the
configuration region of quotas and weights

For a weighted game w on m players induced from a game v on n < m players, the poly-
tope Pv is the projection of Pw under the natural projection Cm → Cn. Thus the geometry
of Cm completely determines the geometry of Cn.

4.1. Polytope structure. Let us now describe how the polytopes in the configuration re-
gion Cn are formed. First, let wA equal the sum of the weights of voters in coalition A.
Consider the set of points in Cn where q = wA, i.e., where A has precisely enough weight
to win; the set of these points lies in a hyperplane hA. Unless A is empty or equal to the
grand coalition N, the hyperplane hA intersects Cn in a codimension one subset that slants
– its normal vector is neither horizontal nor vertical. Observe that hN forms the top facet
of Cn and h∅ the bottom facet; the latter is not actually contained in Cn.

Remark 4.1. These hyperplanes respect the ordering on coalitions in M(n); we have A > B
if and only if hA lies strictly above hB on the interior of Cn. Equivalently, A and B are
incomparable coalitions if and only if their hyperplanes intersect on the interior of Cn.

Coalition A is winning at a realization (q : w) if q ≤ wA, so we may visualize the points
which have A winning as the closed subset XA of Cn bounded above by hyperplane hA.
Similarly the points which have coalition B losing form the open subset (XB)

c = Cn \ XB
which is bounded below by hB. Thus, for a weighted game v, we may view its polytope
Pv as the intersection of all ‘winning subsets’ such as XA and all ‘losing subsets’ such as
(XB)

c:

Pv =

( ⋂
A∈Wv

XA

)⋂( ⋂
B/∈Wv

(XB)
c

)
.

This formulation demonstrates that each polytope Pv is closed on top and open on bottom
and is convex.

Proposition 4.2. Each polytope Pv associated to a weighted voting system v is convex.

We will be interested in what occurs by moving along a vertical line in Cn from a realization
Q = (q : w) in Pv. These motions are equivalent to changing the quota while fixing the
weights.
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• Moving upwards from Q (increasing the quota) guarantees that each losing coali-
tion will remain losing. A coalition A winning at Q remains winning until after the
line crosses the hyperplane hA.
• Moving downwards from Q (decreasing the quota) guarantees that each winning

coalition will remain winning. A coalition B losing at Q remains losing until the
line intersects the hyperplane hB.

Proposition 4.3. Each polytope Pv is n-dimensional.

Proof. Since v is weighted, there exists some representation Q0 = (q0, w) for the game, so
each polytope Pv includes at least one point. Move ’upwards’ by fixing the weight vector w
and increasing the quota until reaching the top boundary of Pv at some point Q = (q1, w);
n.b., Q might equal Q0.

We first show that Q itself lies in the polytope Pv. Points in polytope Pv all satisfy the same
inequalities: q ≤ wA for any winning coalition A and q > wB for any losing coalition B.
Moving upwards from Q0, we first encounter the boundary of Pv at the lowest point where
one or more of the winning inequalities becomes an equality q = wA. The point Q satisfies
the same inequalities as Q0 does (if Q0 6= Q, all inequalities at Q0 are strict, whereas if
Q0 = Q then at least one at Q is weakly satisfied). Thus, Q is a realization of v.

Assume at Q there are k inequalities that are weakly satisfied, corresponding to coalitions
A1, . . . , Ak, with weight equal to quota q1. The remaining 2n − k hyperplanes lie either
above or below point Q; let δ be the minimum distance down to the next highest hyper-
plane(s) and let R = (q1 − δ : w). As we travel downwards from Q, no coalition will ever
change from winning to losing; only when we encounter the next hyperplane does some
coalition(s) change from losing to winning. Hence, all points moving down from Q are in
Pv until we reach a quota of q1 − δ at R.

Recall that we are using coordinates {wn, . . . , w2} on ∆n with w1 = 1 − wn − · · · − w2.
Writing out the hyperplane equation q = wA, we see that its slope in direction wi, for i > 1,
is one of {+1, 0,−1}:

• +1 if i ∈ A, but 1 /∈ A,
• −1 if i /∈ A, but 1 ∈ A,
• 0 if both i and 1 are in A or neither is in A.

Thus we know that the interior of the diamond depicted below formed by points Q, R, and
Q±i = (q, wn, . . . , wi ± δ/2, wi−1, . . .) lies in Pv.

d
td d
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-wi

Thus, the convexity of Pv implies that it contains the interior of the n-dimensional polytope
spanned by points Q, R, Q±2 , . . . , Q±n . So we have shown Pv is n-dimensional. �

The boundary of polytope Pv is comprised of three different types of facets. We count these
in Theorem 4.13 using the posetWn and the hierarchy of v.
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(1) top facets – each is associated to a hyperplane hA for some winning coalition A; its
interior is contained in Pv;

(2) bottom facets – each is associated to a hyperplane hA for some losing coalition A; it
is disjoint from Pv;

(3) vertical facets – each lies above a codimension one subsimplex of ∆n; its interior is
contained in Pv.

Higher codimension elements of Pv are formed by the intersection of two or more facets.
They are included in Pv if and only if no bottom facets are part of the intersection.

Now we turn our attention back to dual games. A game and its dual share many prop-
erties, including power compositions, weightedness, properness, and congruent polytope
interiors.

Theorem 4.4. The interior of Pv, the polytope associated to the weighted game v, is the reflection
of the interior of Pv∗ in Cn about the hyperplane q = 0.5.

Proof. Let (q : w) be a point in the interior of Pv. We prove that (1− q : w) lies in the
interior of Pv∗ . Consider a coalition A for game v. Then A is winning in v if and only if
Ac is losing in v∗, so the weight of A satisfies wA > q if and only if wAc < 1− q. (This
establishes the well-known fact that v∗ is weighted if and only if v is.) �

As an immediate corollary, we gain another characterization of self-dual weighted games,
which we showed in Corollary 3.11 are precisely the ones that lie in the middle rank 2n−1

inWn.

Corollary 4.5. The weighted game v ∈ Wn is self-dual (i.e., v = v∗) if and only if its polytope Pv
is symmetric about the hyperplane q = 0.5.

4.2. Polytopes and hierarchies. In this section, we describe how the hierarchy of voters in
a weighted game v is related to the polytope Pv. We begin with several lemmas which will
be useful in future proofs and then specify a one-to-one correspondence between (k− 1)-
dimensional subsimplices of ∆n and compositions into k parts of natural numbers less than
or equal to n. Let π(Pv) be the vertical projection of the polytope Pv onto ∆n, which we call
the footprint of v. It is comprised of all weights that are part of some realization of v.

Lemma 4.6. There exists a realization of v in which all voters in the same symmetry class have the
same weight.

Proof. Given a realization (q : w) of v, our strategy is to replace the weight wi by the
average ai of the weights of all voters in the same symmetry class [i] as voter i. We claim
this operation preserves the set of winning coalitions Wv. Assuming the claim, we perform
this operation for each symmetry class and thereby constructively prove the lemma.

Consider a coalition B ∈ Wv which contains m voters from class [i]. By the definition of
voter symmetry, B will remain winning if we replace these voters by the weakest m voters
in class [i]. Furthermore, B will remain winning if we reassign weights to the voters in
class [i], so long as the new weights do not cause the total weight of the weakest m voters
in [i] to decrease. The new weights must also respect the ordering on voters. Replacing
each weight by the average ai accomplishes both conditions, and thus causes B to remain
winning.
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A similar argument shows that losing coalition C will remain losing if we average weights
within a symmetry class. Thus, Wv is preserved by the averaging operation and the claim
is proven. �

We note that we can average the weights of any two (or more) consecutive voters in the
same symmetry class and still obtain a realization of v using the same quota.

Let σ be a (k − 1)-dimensional subsimplex whose vertices are pi1 , pi2 , . . . , pik , where i1 <

i2 < . . . < ik. Recall that pi =
( 1

i , . . . , 1
i , 0, . . . , 0

)
∈ ∆n has i nonzero coordinates. This

implies that for any point w in σ, the first i1 coordinates of w are equal, as are the next
i2 − i1 coordinates, and so forth. Thus, the coordinates of any point w in σ can be grouped
into k different classes of equal values; if ik 6= n, there is one additional class of n − ik
coordinates, which are all 0. Let m1 = i1 and mj = ij − ij−1 for j > 1. We refer to the
composition m := (m1, m2, . . . , mk) as the composition associated to σ. This establishes a
bijection between (k− 1)-dimensional subsimplices of ∆n and compositions of n−m0 into
k parts. By appending m0 to m, we form the extended composition associated to σ, denoted m′.

We observe that simplex σ ⊂ ∆n contains simplex τ ⊂ ∆n if and only if composition m′σ
refines m′τ.

The following theorem establishes a relation between polytopes and power compositions.

Theorem 4.7. For weighted game v, let σ ⊂ ∆n be the smallest dimensional subsimplex that
intersects the footprint of v. The power composition of v is the composition associated to σ.

The theorem implies that the power composition of a weighted game v can be obtained
directly from its polytope Pv. While the converse is untrue, the power composition does tell
us precisely which subsimplices of ∆n intersect the polytope, namely those which contain
σ.

To prove Theorem 4.7, we first need a definition and a lemma. We obtain the extended power
composition n′ = (n1, n2, . . . , nk, no) of n for v by appending n0, the number of dummies in
v, to the power composition.

Lemma 4.8. Let v be a weighted game. A subsimplex τ ⊂ ∆n intersects the footprint of v if and
only if the extended composition associated to τ is a refinement of the extended power composition
n′. Furthermore, if τ intersects the footprint, then the horizontal projection of polytope Pv onto the
element ετ := (0, 1]× τ ⊂ Cn is contained in Pv, i.e., it equals Pv ∩ ετ.

Proof. Let v be a weighted game on n voters and let τ be an arbitrary subsimplex of ∆n (of
any dimension) given by vertices pi1 , pi2 , . . . , pij . We first assume that τ intersects π(Pv)

and show that the extended composition m′ associated to τ refines n′. If τ intersects π(Pv),
then there is a realization (q : w) ∈ Pv such that w ∈ τ. In this realization, the first m1 := i1
voters have the same weights, the next m2 := i2 − i1 voters have the same weights, and so
forth. Voters with equal weights must lie in the same symmetry class. This means the first
m1 voters must lie in the same symmetry class in v, the next m2 voters must lie in the same
symmetry class, which is possibly the same symmetry class as the first m1 voters, and so
forth. Therefore the extended composition m′ = (m1, m2, . . . mj, m0) associated to τ refines
the extended power composition.

Now we prove the reverse implication. We assume m′ refines n′ and show that τ must
intersect π(Pv). First, there exists a realization Q = (q : w) of v for which all voters



16 SARAH MASON AND JASON PARSLEY

in the same symmetry class have the same weight by Lemma 4.6. Since the polytope is
n-dimensional, we may travel a short distance away from Q (remaining inside Pv) along
some vector which changes the weights of voters from different parts of m while fixing the
weights of the voters in the same part of m. We arrive at a point Q′ ∈ Pv lying above τ.
Hence τ intersects the footprint of v, which establishes the first statement of the lemma.

Now we prove the second statement. From the proof of Lemma 4.6, we concluded that
if we replace the weights of any number of consecutive voters in the same class by their
average, we stay within Pv. Since the quota remains fixed, this operation corresponds to a
horizontal motion within polytope Pv from an arbitrary realization of v to a point on some
element ετ in the boundary of Cn. Thus the horizontal projection of Pv onto ετ is already
inside Pv. �

Proof of Theorem 4.7. We first prove that the statement of the theorem is well-defined, that
is, that there exists a unique smallest-dimensional subsimplex σ ⊂ ∆n which intersects the
footprint of v. Consider two subsimplices σ1 and σ2 that both intersect π(Pv). The vertices
pi which lie in both σ1 and σ2 determine the subsimplex σ1 ∩ σ2; note that this intersection
is necessarily nonempty, else all voters become dummies. Furthermore, the composition
associated to σ1 ∩ σ2 is the common refinement of the compositions associated to σ1 and σ2
and respects the symmetry classes of the voters in v. By Lemma 4.8, σ1 ∩ σ2 must intersect
π(Pv) as well. Thus, there must exist a unique smallest subsimplex σ which intersects
π(Pv). Furthermore, σ is contained in every subsimplex that intersects π(Pv).

From Lemma 4.8 we know that the extended composition m′ associated to σ refines the
extended power composition n′ of v. We will prove that m = n. Note that n′ is associated
to some subsimplex τ. Lemma 4.8 implies that τ intersects Pv. Thus σ ⊆ τ, which implies
that the vertices of σ are a subset of the vertices of τ. Thus, the extended composition n′

associated to τ refines the extended composition m′ associated to σ. Therefore n′ refines m′

and m′ refines n′. So m′ = n′ and the proof is complete. �

This theorem leads to several interesting results. Some concerning power distributions are
described in our upcoming work [14]. Others are more immediate, such as the following
result about symmetric games.

A symmetric game (or collegium) is one for which the winning coalitions are precisely those
containing at least k out of the n − n0 nondummy voters; it is symmetric in that each
nondummy voter has the same role. For n voters, there are (n+1

2 ) symmetric games, all
weighted. Of these, n2+2n

4 are proper if n is even, and n2+2n+1
4 are proper if n is odd.

Corollary 4.9. The only weighted systems that lie above the corners of ∆n are the symmetric games.
Above point pj lie j different symmetric games: 〈n− j + 1〉, 〈(n− j + 2)(n− j + 1)〉, . . . , 〈(n−
1) · · · (n− j + 1)〉, 〈n(n− 1) · · · (n− j + 1)〉. Each, in order, occupies quotas of length 1/j above
pj.

Example 4.10. Let us consider the 8 weighted games for n = 3 voters. Of these, 6 are
symmetric games. Games 〈1〉, 〈21〉, 〈321〉 each have power composition (3). These are the
only games which lie above the 0-dimensional subsimplex {p3}. Representations (q : p3)
lie in 〈1〉 for q ∈ (0, 1/3], lie in 〈21〉 for q ∈ (1/3, 2/3], and lie in 〈321〉 for q ∈ (2/3, 1].

Systems 〈2〉 and 〈32〉 each have power composition (2). These are the only systems which
lie above the 0-dimensional subsimplex {p2}. Representations (q : p2) lie in 〈2〉 for q ∈
(0, 1/2] and lie in 〈32〉 for q ∈ (1/2, 1].
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FIGURE 3. From Example 4.10, the face p1 p3 of C3 is shown along with all
polytopes which intersect it (labeled by their corresponding game). Notice
(cf. Theorem 4.4) that the interiors of dual systems are reflected about the
hyperplane q = 1/2.

The only game in any Cn that lies above point p1 is the dictator system 〈n〉.
The simplest nonsymmetric games occur for 3 voters; they are 〈31〉 and its dual 〈3, 21〉.
Each has power composition (1, 2), which is the composition associated with the one-
dimensional subsimplex p1 p3 ⊂ ∆3. We depict the face p1 p3 of C3 and the polytopes which
intersect it in Figure 3.

4.3. A geometric view of weighted voting posets. Our last results demonstrate that the
geometric viewpoint of weighted games via their polytope is highly correlated to both
hierarchies and the poset of weighted games. In this section we prove that the polytopes
in Cn are situated according to poset Wn. Furthermore, we show that the facets of Pv
correspond to covering relations inWn and to the hierarchy of voters in v.

Definition 4.11. A weight vector is called generic if the sums wA are distinct for each coali-
tion A.

Theorem 4.12. Given a generic weight vector w, consider the vertical line in Cn above w. As the
quota increases, the voting systems traversed form a saturated chain inWn, the poset of weighted
voting systems. Moreover, the chains
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(1) are maximal: each one begins with system 〈1〉 (of unique minimal rank 1) and finishes with
consensus rule 〈N〉 (of unique maximal rank 2n − 1);

(2) are self-dual: if system v is in the chain, so too is v∗.

We note that not every saturated chain corresponds to a vertical line segment above a
generic point. Obstructions beyond self-duality exist, but these are not well understood.
Every saturated chain does correspond to some piecewise-linear motion through poly-
topes, as we see in Corollary 4.14. In section 5, we discuss some approaches for studying
saturated chains in posetsWn and Jn.

Proof. Given a generic weight vector w, all representations (q : w) lie in system 〈1〉 for
q ∈ (0, w1]. Similarly for q ∈ (1 − w1, 1], the representations lie in the consensus rule
system.

Suppose we are at a representation Q in system v. Moving upwards from Q, we remain in v
until we encounter the next lowest hyperplane hA at q = wA. As we cross this hyperplane,
coalition A changes from winning to losing, which means we move into a system u with
winning coalitions Wu = Wv \ {A}. This is precisely what it means to say that u covers v
inWn.

Since the weight vector w is generic, we will never encounter two hyperplanes at once
(else q = wA = wB). Thus, as we cross each of the 2n − 1 hyperplanes hA corresponding to
nonempty coalitions, one coalition switches from winning to losing and the rank increases
by one, until finally we arrive in the consensus rule system. Thus our vertical line corre-
sponds to a maximal saturated chain. The duality of the chain follows immediately from
Theorem 4.4. �

The hierarchy of v and its position within posetWn determine which facets occur for poly-
tope Pv.

Theorem 4.13. Let v be a weighted game whose n voters form k nontrivial symmetry classes. Let
d represent the degree of v in the (Hasse diagram of) poset Wn. Then, its polytope has n− k + d
facets.

1. The top facets of polytope Pv are in one-to-one correspondence with the weighted games ui
that cover v in Wn, unless v = 〈N〉, which has one top facet {q = 1}. The facet is a
subset of hyperplane hA, where A is the one coalition winning in v but not ui. Coalition A is
shift-minimal for v.

2. The bottom facets of polytope Pv are in one-to-one correspondence with the weighted games gi
that are covered by v inWn, unless v = 〈1〉, which has one bottom facet {q = 0}. The facet
is a subset of hyperplane hB, where B is the one coalition winning in gi but not v. Set B is a
shift-maximal losing coalition for v, i.e., it is a generator of the order ideal of losing coalitions
for v in M(n).

3. There exist n− k vertical facets in polytope Pv. Each lies above a subsimplex of ∆n given by
wi+1 = wi or w1 = 0.

Proof. We begin with the first statement. The case when v = 〈N〉 is immediate, so assume
v 6= 〈N〉. Let F be a top facet of Pv; we will describe the unique game corresponding to
F. There is a hyperplane hA which contains F; it is unique since hyperplanes arising from
distinct coalitions have distinct normal vectors. Consider a point Q in the interior of F;
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without loss of generality we may assume the weights in Q are generic. Moving vertically
from below Q to above Q changes coalition A from winning to losing. If we travel upwards
by a small enough amount so as to not cross any other hyperplane, we ensure that no other
coalition changes its status. Thus the points immediately above Q lie in the game whose
winning coalitions are Wv \ {A}; such a game covers v inWn.

Now suppose we have a weighted game u which covers v in Wn, i.e., Wu = Wv \ {A}.
The corresponding polytopes Pu and Pv lie on the same side of all other hyperplanes hB
(B 6= A). These polytopes are top-dimensional and distinct, so they must be separated by
the hyperplane hA. We are guaranteed that hA intersects Pv in a facet by the existence of
generic points in their intersection. Thus, the game u corresponds to a unique facet of Pv.

Observe that the second statement in the theorem is merely the corresponding restatement
of the first one from the point of view of the greater coalition rather than the lesser coalition.
The arguments above prove this statement as well.

Now we consider the third statement. The region of allowable weights ∆n is an (n− 1)-
dimensional simplex, so it has n facets, which are given by equations wi+1 = wi (1 ≤
i ≤ n − 1) and w1 = 0. In proving Lemma 4.6 we concluded that polytope Pv contains
points where any two consecutive voters i and i + 1 in the same symmetry class have
equal weights. Further, these points may be chosen so that the weights are otherwise
generic. Indeed we get an (n − 1)-dimensional set of such points, all of which lie in the
interior of the corresponding vertical facet of Pv.

Thus, if voters i and i + 1 lie in the same symmetry class, then Pv contains a vertical facet
over wi = wi+1; the converse is clearly also true. Similarly, voter 1 is a dummy if and only
if Pv contains points over w1 = 0. For k different nontrivial symmetry classes, there are
n− k of these voters and hence n− k vertical facets.

The degree d of v inWn is equal to the number of covers of v plus the number of weighted
games covered by v. Therefore d is equal to the number of top facets plus the number of
bottom facets. These facets together with the n− k vertical facets comprise the n− k + d
facets of the polytope Pv. �

This theorem tells us a great deal about how the structure ofWn arises in Cn.

Corollary 4.14. Every saturated chain of games inWn may be achieved by some piecewise linear
motion through Cn.

Remark 4.15. Since every n-dimensional polytope has at least n + 1 facets, we may im-
mediately conclude that the degree d of v ∈ Wn is greater than the number of symmetry
classes k. When d = k + 1, polytope Pv is a simplex. We note that all games of 4 or fewer
voters have a simplex as their polytope; so too do 101 out of 117 games with 5 voters.
The exceptions are the following 8 proper games and their duals: 〈541, 5321〉, 〈541, 4321〉,
〈541, 532, 4321〉, 〈531, 4321〉, 〈54, 531, 4321〉, 〈521, 4321〉, 〈54, 521, 4321〉, 〈53, 521, 4321〉. 3

An n-dimensional polytope is simple if it has n facets meeting at every vertex, e.g., a cube
is simple; an octahedron is not. Every simplex is simple. However, not all polytopes Pv are
simple. As an example, the polytope for game v = 〈521, 4321〉 has seven facets (two top,
two bottom, three vertical); six of them meet at the vertex

( 3
5 : 2

5 , 1
5 , 1

5 , 1
5 , 0
)
.
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4.4. When unweighted games cover weighted games. From Theorem 4.13, we obtain a
geometric understanding of the distinction between weighted and unweighted games. Af-
ter considering another corollary of this theorem, we detail a method for determining the
weightedness of linear games which either cover or are covered by a weighted game in Jn.

Corollary 4.16. If a weighted game v has k more shift-minimal winning coalitions than top facets
in its polytope, then k of the games covering v in Jn are unweighted. Similarly, if v covers ` more
games in Jn than it has bottom facets in its polytope, then ` of the covered games are unweighted.

Proof. Theorem 4.13 states that every weighted game which covers a weighted game v
corresponds to a unique top facet of Pv. Each cover of v in Jn is obtained by removing a
shift-minimal winning coalition; see Proposition 3.12. Therefore, shift-minimal winning
coalitions can be partitioned into two classes; those which correspond to a top facet and
those which do not. The k shift-minimal winning coalitions which do not correspond to a
top facet correspond to the k unweighted games which cover v.

Similarly, the shift-maximal losing coalitions are in one-to-one correspondence with games
in Jn covered by v. Thus, they can be partitioned into two classes; those which correspond
to a bottom facet and those which do not. Therefore the ` shift-maximal losing coalitions
which do not correspond to a bottom facet correspond to the ` unweighted games covered
by v. �

Geometrically, an unweighted game u covers a weighted game v in Jn precisely when one
generator fails to be an active constraint in defining the polytope.

Theorem 4.17. Let u be a linear game covering a weighted game v in Jn and assume Wu =
Wv \ {A}. Then u is weighted if and only if there exists a weight w in the footprint π(Pv) such
that wA < wB at w for all other winning coalitions B of v.

Similarly, if a weighted game u covers a linear game v in Jn in such a way that Wu = Wv \ A, then
v is weighted if and only if there exists a weight w in the footprint π(Pu) such that wA > wC at w
for all other losing coalitions C of u.

We note that it suffices to check only the shift-minimal winning coalitions in the first state-
ment and only the shift-maximal losing coalitions in the second.

Proof. Assume u is weighted. This means u covers v in Wn, so by Theorem 4.13, hyper-
plane hA forms a top facet of the polytope Pv. We claim that for any point Q = (q : w)
on the interior of this top facet, the weight wA must be less than the weight of all other
winning coalitions in v. Note that point Q is a realization of v. If wB < wA at Q, where
q = wA, then the weight of B is less than the quota, so B is losing in v. If wB = wA at Q,
then the point Q is not actually on the interior of the facet; rather, Q lies on the face where
Pv intersects hA ∩ hB. Thus, the claim holds and we have proven one direction of the first
statement.

To prove the other direction, assume there exists a weight w ∈ π(Pv) where wA < wB
for all other winning coalitions B of v. Since w lies under Pv, there exists some realization
(q : w) of v. Choosing a quota q′ greater than wA and less than the minimum of all weights
wB for B ∈Wv \ {A} guarantees that we have realized the game whose winning coalitions
are precisely Wv \ {A}, namely game u. Thus we have shown u is weighted, which finishes
the proof of the first statement.
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The proof of the second statement in the theorem is directly analogous. �

Example 4.18. Consider the weighted game v = 〈987, 8741〉 mentioned in section 3.4. It
has two generators, but if 987 becomes a losing coalition, then the unweighted game u =
〈8741〉 results. By Theorem 4.13, its polytope Pv has only one top facet. Though we know
(by trade robustness) that 〈8741〉 is unweighted, we reprove it here using Theorem 4.17.

We argue that if the voters’ weights are restricted to lie in the footprint of v, then the
generators of v are actually comparable there: coalition 987 is stronger than 8741 among
all weights in π(Pv). The weights of these two coalitions are equal along the set S =
{w |w9 = w4 + w1 }. Our strategy is to show S is disjoint from π(Pv). For any choice
of weights w in S, coalitions 9752 and 75421 must have the same weight. The former is
winning in v, while the latter is losing, so no weights from S can form a represention of
v. Thus, 987 and 8741 are comparable above the footprint π(Pv) of v; the representation
(22 : 9, 9, 9, 3, 3, 3, 1, 1, 1) of v shows that 987 is stronger than 8741 there.

Had we no a priori knowledge of the weightedness of 〈8741〉, observe that the preceding
paragraph would be sufficient to determine that it is unweighted. 3

We might ask, is Theorem 4.17 a useful method for determining weightedness? Quite
possibly, for the relevant games. Understanding relevancy raises the question of deter-
mining how many games in Jn either cover or are covered by a weighted game. Though
this footprint method still results in a linear programming (LP) problem, it is one that
is different and possibly easier than the traditional LP problem of determining the exis-
tence of weights so that all generators are greater than all shift-maximal losing coalitions.
One slight drawback is the reliance upon knowledge of the poset Jn; while outputting this
poset is computationally infeasible for more than a small number of voters, obtaining local
knowledge of how game v sits inside Jn is more straightforward. A challenge for future
work is to efficiently implement this as an algorithm for computation.

5. FUTURE DIRECTIONS

Our hope is that the combinatorial (poset) and geometric (polytope) approaches to linear
games that we describe herein will lead to a greater understanding of linear games and
weighted voting. Many natural questions remain to be answered about these structures,
some of which we have already mentioned (e.g., Conjecture 3.6, saturated chains, imple-
menting the method of Theorem 4.17).

One direction for further study is the connection between the geometry of Cn and power
distributions for weighted games. In our upcoming paper [14], we define a geometrically-
based, monotonic power index on all weighted games which has several useful properties.

Another avenue for further investigation is the classification of the maximal saturated
chains. Every saturated chain γ in poset Jn produces an ordering on all shift-minimal win-
ning coalitions for the games in γ. This is a linear ordering, except for the generators of the
highest game g in γ; these are strictly greater than all other generators but incomparable
to each other.

For example, consider the following chain in the linear games poset J+5 :

〈54, 531〉 < 〈54, 532〉 < 〈541, 532〉 < 〈532〉 < 〈542, 5321〉 < 〈543, 5321〉.
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This chain places the following linear ordering on the generators that it contains:

531 < 54 < 541 < 532 < 542 < 5321.

This ordering is inconsistent, as the first inequality implies 31 < 4 whereas the last one
implies 4 < 31; no set of weights could possibly accomplish this. Thus, this particular
chain does not correspond to a vertical line within the weighted voting polygon.

Definition 5.1. A chain γ in Jn is inconsistent if its ordering on shift-minimal winning coali-
tions reduces to an inconsistent set of inequalities. Otherwise, γ is consistent.

Determining the consistency of a saturated chain is a linear programming exercise. Let
us note a necessary condition for consistency. Each poset M(n) has 2n−k copies of M(k)
(k < n) naturally embedded into it. Traveling up a maximal saturated chain γ in Jn imparts
a total order on the coalitions in M(n). For γ to be consistent, the order endowed on the
coalitions in the first copy of M(k) must be preserved in all other embedded copies of
M(k). As an example, if the saturated chain γ in J5 declares 3 < 21 in M(3), then the
following must hold: 43 < 421, 53 < 521, and 543 < 5421. This is not a sufficient condition
for consistency however.

We would like to understand which saturated chains in Wn correspond to vertical line
segments in Cn. Clearly, such a chain must be consistent and self-dual. We conjecture that
this is also a sufficient condition.

Conjecture 5.2. Every maximal saturated chain that is both consistent and self-dual is associated
to some vertical line segment in Cn lying above a generic weight vector.

In addition, among proper games, inconsistency first arises with 5 voters. For Π4 (which
equals J+4 andW+

4 ), there are 14 distinct maximal saturated chains, all of which are consis-
tent and correspond to vertical line segments in C4.
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APPENDIX A. UNWEIGHTED LINEAR GAMES WITH 6 VOTERS

Table 1 lists all unweighted linear games with 6 voters in J+6 . The left-hand side lists 20
games with minimal rank 32 in J+6 , while the right-hand-side lists 20 games with rank
greater than 32. The remainder of the unweighted linear games with 6 voters are obtained
by taking the duals of the unweighted linear games on the right-hand-side. We note that
all 60 unweighted games in J6 are improper.
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Rank 32 games Higher rank games Rank

621, 542 621, 543, 5421 33

621, 543, 5321 631, 542 33

63, 5421 632, 541 33

631, 541 64, 4321 33

631, 542, 5321 64, 543, 5321 33

632, 541, 5321 65, 542, 4321 33

64, 542, 5321 65, 621, 543 33

64, 543, 4321 65, 632, 5321 33

64, 621, 543 65, 632, 543, 4321 33

64, 631, 5321 65, 641, 543, 4321 33

64, 632, 4321 65, 641, 632, 4321 33

64, 632, 543, 5321 621, 543 34

641, 532 64, 5321 34

65, 621, 543, 5421 65, 632, 4321 34

65, 631, 4321 65, 641, 4321 34

65, 631, 542 65, 642, 543, 4321 34

65, 632, 541 65, 543, 4321 35

65, 632, 542, 4321 65, 642, 4321 35

65, 641, 542, 4321 65, 643, 4321 36

65, 641, 632, 543, 4321 65, 4321 37

TABLE 1. This table lists, in terms of their generators, 40 of the 60 un-
weighted linear games with 6 voters. The remaining 20 are the dual games
of the ones in the second column.
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