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Abstract

The paper discusses logarithmic generating functions and their properties. The

theorem which is based on compositions of positive numbers and its conclusion are

proved. Examples are given.
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Introduction

Generating functions are a powerful tool for solving problems in number theory, combina-
torics, algebra, probability theory. One of the advantages of the generating function is that
infinite number sequence can be represented in the form of single expression. Generating
functions are divided into different classes: ordinary, exponential, Dirichlet, Poisson, etc. In
this paper one more class is considered - logarithmic generating functions.

1 Logarithmic generating functions

Definition 1. Power series
∞
∑

n=1

a(n)

n
xn, (1)

where a(n) – is integer sequence, is a logarithmic generating function.

Logarithmic generating function differs from an ordinary one because elements a(n) di-

vided by order number, i.e. a(n)
n

, are used as power series coefficients. In many cases elements
a(n) equal 1 and numbers like 1

n
are used as coefficients. One more difference is that there

is no constant term.
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2 Superposition of logarithmic generating functions

Superposition of logarithmic generating functions can be found in the same way as for ordi-
nary generating functions.

Let there be functions f(n), r(n) and their generating functions F (x) =
∑

n≥1 f(n)x
n,

R(x) =
∑

n≥0 r(n)x
n accordingly. Generating function Z(x) ) is a superposition of generating

functions F (x) and R(x):
Z(x) = R(F (x)), (2)

z(n) =

n
∑

k=1

∑

πk∈Cn

f(λ1)f(λ2) . . . f(λk)r(k) =

n
∑

k=1

F∆(n, k)r(k), (3)

where F∆(n, k) =
∑

πk∈Cn
f(λ1)f(λ2) . . . f(λk) – is a compositae of generating function

F (x) =
∑

n≥1 f(n)x
n [1].

Due to the source [1] estimation evaluation of F∆(n, k) is of paramount importance for
obtaining the superposition of generating functions because formula (3) can be used for the
calculation of superposition.

Superposition of logarithmic generating functions has several properties that distinguish
it from the others. They are expressed in the following statements.

Statement 2.1. The value of the derivative superposition of logarithmic generating func-
tions is integer for any n.

ź(n) = n
n
∑

k=1

F∆(n, k)r(k) =
n
∑

k=1

n

k
F∆(n, k)a(k), (4)

where r(k) – coefficients of logarithmic generating function R(x) =
∑

n≥0
a(n)
n
xn, F (x) –

generating function with integer coefficients.

Statement 2.2. The value of superposition of logarithmic generating functions without
n− th term for a prime integer n is integer. The converse is false.

z(n) =
n−1
∑

k=1

F∆(n, k)r(k) =
n−1
∑

k=1

a(k)

k
F∆(n, k). (5)

These properties are based on the following theorem and its corollary.

3 Theorem about the sum, which is based on the positive

number’s compositions

Theorem 2. The sum
n
∑

k=1

n

k

∑

λi>0

λ1+λ2+...+λk=n

aλ1
aλ2

. . . aλk
(6)

is integer for any integer sequence a1, a2, . . . , an.
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Proof. We prove the theorem in two ways.
1) Compositions of a positive number n with exactly k parts are the basis for formula (6).

Consider the properties of these compositions. Let there be a multiset of positive integers
L = {λ1, λ2, . . . , λk}, all greater than zero, and their sum equals n. Then, according to the
source [2], the number of compositions for n is equal to

b(L) =

(

k

j1, j2, . . . , jm

)

,

where ji – number of equal λl in the multiset L.
Consider the following options.

1. Let us assume that jz = 1, z = 1, m, and if j1 6= 1, then swap j1 and jz, and finally we
get

(

k

1

)(

k − 1

j2, . . . , jm

)

.

Therefore b(L) is divisible by k.
2. Let us assume that n and k are relatively prime. Then we can find jz such that k and jz
are relatively prime and

(

k

jz

)

is divisible by k. Hence b(L) is divisible by k.

3. Let us assume that NOD(n, k) > 1. Then according to the 2nd option b(L) is divisible
by k/NOD(n, k). Hence nb(L)/k is integer.

The theorem is proved.
2) Let us construct a generating function F (x) = a1x+ a2x

2 + . . .+ anx
n + . . .. Then

F∆(n, k) =
∑

λi>0

λ1+λ2+...+λk=n

aλ1
aλ2

. . . aλk
.

is the compositae of this generating function according to its definition.

Hence coefficients of superposition of generating functions G(x) = ln
(

1
1−F (x)

)

are given

by

g(n) =

n
∑

k=1

F∆(n, k)

k
,

G(x) =
∑

n>0

g(n)xn.

If consider derivative G′(x) =
[

ln
(

1
1−F (x)

)]′
we can obtain the following expression

(

F ′(x)

1− F (x)

)

= g1 + 2g2x
1 + . . .+ ngnx

n−1 + . . .

Consider the left part as product of generating functions F ′(x) and
(

1
1−F (x)

)

. Coefficients

of F ′(x) are integers. Coefficients of superposition of generating functions H(x) =
(

1
1−F (x)

)
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are also integers by virtue of the fact that

h(n) =

n
∑

k=1

F∆(n, k).

Product of functions with integer coefficients also has integer coefficients. Hence the expres-
sion for the coefficients

ng(n) = n

n
∑

k=1

F∆(n, k)

k

are integers.
The theorem is proved.

Consider some simple examples.

Example 3.1. Let an be prime integers and a1 = 1. Then for n = 6 we have:

n

n
∑

k=1

1

k

∑

λi>0

λ1+λ2+...+λk=n

aλ1
aλ2

. . . aλk
= 6

(

11 +
14 + 20 + 9

2
+

15 + 36 + 8

3
+

12 + 24

4
+

10

5
+

1

6

)

= 380

Example 3.2. ai = 1, i = 1, n then

∑

λi>0

λ1+λ2+...+λk=n

aλ1
aλ2

. . . aλk
=

(

n− 1

k − 1

)

.

because it accounts the number of n compositions that have k parts, n– positive number.
Hence

n
∑

k=1

n

k

(

n− 1

k − 1

)

= 2n − 1.

4 Corollary of theorem 2

Corollary 3. For any integer sequence a1, a2, . . . , an, where n is a prime number, sum

n−1
∑

k=1

1

k

∑

λi>0

λ1+λ2+...+λk=n

aλ1
aλ2

. . . aλk
(7)

is integer.

Proof. Refer to proof 1) of theorem 2. By virtue of the fact that k and n are relatively prime
for any k (with exception of k = n), then b(L) is divisible by k.
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Hence the value of expression
n−1
∑

k=1

F∆(n, k)

k
(8)

is integer for any n, that are prime numbers. The converse is false, i.e. if n is not prime,
then proper value (8) may be either integer or not.

Consider example in the general case. Let us take for simplicity not large prime n = 5.

n−1
∑

k=1

1

k

∑

λi>0

λ1+λ2+...+λk=n

aλ1
aλ2

. . . aλk
=

=

(

a5 +
b(1, 4)a1a4 + b(2, 3)a2a3

2
+

b(1, 1, 3)a1a1a3 + b(1, 2, 2)a2a2a1
3

+
b(1, 1, 1, 2)a1a1a1a2

4

)

=

=

(

a5 +
2a1a4 + 2a2a3

2
+

3a1a1a3 + 3a2a2a1
3

+
4a1a1a1a2

4

)

=

= (a5 + a1a4 + a2a3 + a1a1a3 + a2a2a1 + a1a1a1a2) .

The result is integer because the sum of integer numbers’ product is integer.
It is obvious from the above that corollary of the theorem is a special case of the statement

2.2, if an = 1. Statement 2.2 is also realized in the general case because divisibility comes
about from the multinomial coefficient and doesn’t depend on integer sequence an.

Consider some specific examples.

Example 4.1. Refer to the example above.

n
∑

k=1

n

k

(

n− 1

k − 1

)

= 2n − 1.

Hence the value of expression

n−1
∑

k=1

1

k

(

n− 1

k − 1

)

=
2n − 2

n

is integer for prime n.

Example 4.2. Let us have a generating function F (x) = x+x2 and its compositae,according
to the source [1],F∆(n, k) =

(

k

n−k

)

, then coefficients of superposition ln
(

1
1−x−x2

)

are given
by

gn =
n
∑

k=1

(

k

n− k

)

1

k
,

ngn = [1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571].
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This formula generates Lukas numbers (А000032)[3]. Hence the value of expression

Ln − 1

n

is integer for prime numbers, where Ln - Lukas numbers.

L(n) =

(

1 +
√
5

2

)n

+

(

1−
√
5

2

)n

or
L(n) = Fib(n) + 2Fib(n− 1) = Fib(n + 1) + Fib(n− 1).

Example 4.3. Let us have the generating function for Catalan numbers F (x) = 1−
√
1−4x
2x

and

its compositae, due to the source [1], F∆(n, k) = k
n

(

2n−k−1
n−1

)

, then coefficients of superposition

ln
(

1
1−F (x))

)

are given by

gn =
n
∑

k=1

k

n

(

2n− k − 1

n− 1

)

1

k
=

1

n

n
∑

k=1

(

2n− k − 1

n− 1

)

,

ngn = [1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378].

This formula induces sequence of integers А001700[3], wherefrom

ngn =

(

2n− 1

n− 1

)

.

Hence value of expression
1

n

((

2n− 1

n− 1

)

− 1

)

is integer for prime numbers.

Conclusion

Based on Theorem 2 and its corollary some of the superposition’s properties of the logarith-
mic generating functions are obtained. They are expressed in statements 2.1 and 2.2. This
result allows us to construct algorithms which are based on superposition of the logarithmic
generating functions for verification of the positive numbers’ simplicity.
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