The Wigner $3 n$-j Graphs up to 12 Vertices

Richard J. Mathar*
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands

(Dated: January 31, 2012)

Abstract

The 3-regular graphs representing sums over products of Wigner $3-j m$ symbols are drawn on up to 12 vertices (complete to $18 j$-symbols), and the irreducible graphs on up to 14 vertices (complete to $21 j$-symbols). The Lederer-Coxeter-Frucht notations of the Hamiltonian cycles in these graphs are tabulated to support search operations.

PACS numbers: 03.65.Fd, 31.10.+z
Keywords: Angular momentum, Wigner 3j symbol, recoupling coefficients

I. WIGNER SYMBOLS AND CUBIC GRAPHS

A. Wigner Sums

We consider sums of the form

$$
\sum_{m_{01}, m_{02}, \ldots}\left(\begin{array}{ccc}
j_{01} & j_{02} & j_{03} \tag{1}\\
m_{01} & m_{02} & m_{03}
\end{array}\right)\left(\begin{array}{ccc}
j_{01} & j_{. .} & j_{. .} \\
-m_{01} & m_{. .} & m_{. .}
\end{array}\right) \ldots
$$

over products of Wigner 3jm-symbols which are closed in the sense (i) that the sum is over all tupels of magnetic quantum numbers m.. admitted by the standard spectroscopic multiplicity of the factors, (ii) that for each column designed by j.. and $m_{\text {.. }}$ another column with sign-reversed m appears in another factor [17, 39, 40].

Each term contains n factors - each factor a $3 j m$ -symbol-and $3 n / 2$ independent variables j.. for which a pair of distinct indices in the interval 0 to $n-1$ will be used in this script. The numerical value of each factor, internal symmetries or selection rules are basically irrelevant for most of this work.

B. Yutsis Reduction

The Yutsis method maps the product structure of a Wigner $3 n$-j symbol onto a labeled 3 -regular (also known as cubic) digraph [3, 26, 31, 45]. Each factor is represented by a vertex. An edge is drawn between each pair of vertices which share one of the $j .$. ; an edge is a j value associated with a "bundle" of m-values. Since each factor comprises three j., the graph becomes 3 -regular, i.e., in-degree and out-degree are both 3 . The graphs are directed (i.e., digraphs) where head and tail of the edge denote which of the factors carries which of the two signs of the m-value. We shall enumerate vertices from 0 to $n-1$ further below; the two indices of the j.. and its associated m.. are just the two labels of the two vertices that are connected by the edge.

Once an undirected unlabeled connected graph is set up, adding a sign label and a direction to the edges (i.e.,

[^0]an order and sign of the three quantum numbers in the Wigner symbol) adds no information besides phase factors.

A related question is whether and which cuts through the edges exist that split any of these graphs into vertexinduced binary trees. The two trees generated by these means represent recoupling schemes [1, 4, 14, 19, 29, 41, 42 . The association generalizes the relation between Clebsch-Gordan coefficients (connection coefficients between sets of orthogonal polynomials [21, 27]) and the Wigner $3 j$ symbols to higher numbers of coupled angular momenta.

C. Connectivity

The rules of splitting the sum (11) into sums of lower vertex count depend on the edge-connectivity of the cubic graph, i.e., the minimum number of edges that must be removed to cut the graph into at least two disconnected parts. Cubic graphs are at most 3-connected because removal of the three edges that run into any vertex turns that vertex into a singleton.

Wigner sums can be hierarchically decomposed for 1connected, 2 -connected and those 3 -connected diagrams which are separated by cutting 3 lines into subgraphs with more than 1 vertex left [5, 45. These will be plotted subsequently with one to three red edges to illustrate this property. Focus is therefore shifted to the remaining, "irreducible" graphs. Every cycle (closed path along a set of edges) in those consists of at least 4 edges, because a cycle of 3 edges can clearly be disconnected cutting the external 3 edges. All of their edges are kept black; they define "classes" of j-symbols [34, 45].

D. LCF notation

In the majority of our cases, simple cubic graphs are Hamiltonian, which means they support at least one Hamiltonian cycle, a closed path along the edges which visits each vertex exactly once and uses each edge at most once [7]. (See A001186 and A164919 in the Encyclopedia of Integer Sequences for a statistics of this feature 38.)

The structure of the graph is in essence caught by arranging the vertices of such a walk on a circle-which uses already two third of the edges to complete the cycle - and then specifying which chords need to be drawn to account for the remaining one third of the edges. The chords are potentially crossing. Whether the graph is planar or not (i.e., whether it could be drawn on a flat sheet of paper without crossing lines) is not an issue.

The Lederberg-Coxeter-Frucht (LCF) notation is an ASCII representation of these chords (diagonals) in cubic Hamiltonian graphs [12, 20. For each vertex visited, starting with the first, the distance to the vertex is noted where the chord originating there re-joins the cycle. The distance is an integer counting after how many additional steps along the cycle that opposite vertex of the chord will be visited, positive for a forward direction along the cycle, negative for a backward direction. The direction is chosen to minimize the absolute value of this distance, and to use the positive value if there is a draw. This generates a comma-separated list of n integers in the half-open interval $(-n / 2, n / 2]$, where n is the number of vertices. The values 0 or ± 1 do not appear because we are considering only simple graphs (loopless, without multiple edges).

Because the choice of the starting vertex of a Hamiltonian cycle is arbitrary, and because one may reverse the walking direction, two LCF strings may be trivially equivalent in two ways: (i) a cyclic permutation or (ii) reverting the order while flipping all signs (unless the entry is $n / 2$) is an irrelevant modification.

There are two notational contractions that are accompanied by some symmetry of the graph:

- If the vector of n distances is a repeated block of numbers of the form $[a, b, c, \ldots x, a, b, c, \ldots x, \ldots]$, the group is written down once with an exponent counting the frequency of occurrences, $[a, b, c, \ldots x]^{f}$.
- If the distance vector has an inverted palindromic symmetry of the form $[a, b, c, \ldots x,-x, \ldots-$ $c,-b,-a]$, the repeated part is replaced by a semicolon and dash $[a, b, c, \ldots x ;-]$.
If more than one Hamiltonian cycle exist in the graph, non-trivial but equivalent LCF notations appear. In the following chapters, lines

LCF . . . = . .
with one or more equal signs signal graphs which support more than one cycle.

The structure of the graph may also be visualized as a carbon or silicate molecule with some graphic viewers if this information is encoded as a SMILES string 43]. The Hamiltonian cycle defines the backbone of a ring, and the cords are enumerated and serve as indices to the atoms to recover the missing bonds.

The Wiener index of the undirected graph (sum of the distances of unordered pairs of vertices) will be reported

FIG. 1. The graph on $n=4$ vertices, defining the $6 j$-symbol.
as an integer number attached to a W 22 . The diameter of the undirected graph (largest distance between any two vertices) is written down attached to a d, and the girth of the undirected graph (length of the shortest cycle) is attached to a g. Finally, the Estrada index (sum of the exponentials of the eigenvalue spectrum of the adjacency matrix) follows after a EE [23]. (These numbers are rounded to 10^{-5}, the minimum precision to generate unique indices for the graphs on 14 nodes.)

II. 4 AND 6 VERTICES

The main part of the manuscript shows the nonequivalent (up to a permutation of the vertex labels) simple cubic graphs, sorted along increasing number of vertices and increasing edge-connectivity.

The labels are an indication of at least one Hamiltonian cycle through the graphs where one was found. In the applications, the labels are replaced by the two sign labels of the node's orientation, i.e., basically a phase label which relates to the ordering of the j-symbols in the Wigner 3 jm -symbol at that vertex [6, 28].

The directions of the edges are an almost arbitrary choice as well, pointing from the vertex labeled with the lower number to the vertex labeled with the higher number.

On 4 vertices we find the planar version of a tetrahedron, Figure 1 .

6 vertices support the two graphs in Figure 2 Their LCF notations are:

```
LCF [3,-2,2]^2 W21 d2 g3 EE25.07449
LCF [3]^6 W21 d2 g4 EE24.13532
```


FIG. 2. The 2 graphs on $n=6$ vertices. [3]~ 6 (called the utility graph if undirected, unlabeled) defines the $9 j$-symbol [25.

III. 8 VERTICES

All 5 cubic graphs on 8 vertices are shown in Figure 3. Their representations by LCF strings are:

```
LCF [2,-2,-2,2]^2 W50 d3 g3 EE33.73868
LCF [2,3,-2,3;-] = [4,-2,4,2]^2 W46 d3 g3 EE30.97135
LCF [3,3,4,-3,-3,2,4,-2] W44 d2 g3 EE30.03607
LCF [-3,3]^4 W48 d3 g4 EE29.39381
LCF [4]^8 = [4, -3,3,4]^2 W44 d2 g4 EE29.09522
```

The two Hamiltonian cycles indicated by the first two LCF representations for the graph [2, 3, -2, 3;-] in Figure 3 are: Walking along the vertices labeled $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0$ generates the LCF name [2,3,-2,3;-]. The alternative Hamiltonian cycle $0 \rightarrow 2 \rightarrow 3 \rightarrow 6 \rightarrow 7 \rightarrow 5 \rightarrow 4 \rightarrow 1 \rightarrow 0$ is described by the name [4, -2, 4, 2] ~2.
The last graph in Figure 3 is another example hosting two cycles, equivalent to switching between Figures 19.1a and 19.1b in the Yutsis-Levinson-Vanagas book [45]: The notation [4] ^8 describes a Hamiltonian Path along the vertices $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0$. The alternative $[4,-3,3,4]$ ~ 2 corresponds to the path $7 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 7$.

FIG. 3. Graphs on $n=8$ vertices. The two which are cyclically 4 -connected define the two $12 j$-symbols 2, 35. The undirected, unlabeled version of $[-3,3] \wedge 4$ is the cubical graph.

IV. 10 VERTICES

The 19 graphs with 10 vertices (15 edges) are shown in Figure 4 if 1- or 2-connected, Figure 5 if 3-connected reducible, and Figure 6 if irreducible [24].

Two of the 19 graphs, one in Figure 4 (W111 d5 g3 EE42.60094) and one in Figure 6 (W75 d2 g5 EE34.21829), are not Hamiltonian, so we are left with 17 lines of LCF strings of their Hamiltonian cycles:

Figure 4

```
LCF [3,-2, -4, -3, 2, 2, -2,-2,4,2] W91 d4 g3 EE39.41746
LCF [-2,-2,3,3,3;-] W90 d3 g3 EE38.90980
LCF [2,-3,-2,2,2;-] W90 d3 g3 EE40.39508
LCF [-2,5,2,2,-2]^2 W93 d4 g3 EE40.69426
```

Figure 5

```
LCF [3,-2,5,-3,2]^2 = [3, -2,4,-3,4,2,-4,-2,-4, 2] W85 d3 g3 EE37.44960
LCF [-3,5,2,5,-2,4,5,3,5, -4] = [-4,2,5,-2,4,4,4,5,-4,-4] = [-3,2,4,-2,4,4,-4,3,-4,-4] W82 d3 g3 EE36.0C
LCF [-4,3,3,5,-3,-3,4,2,5, -2] = [3,-4,-3,-3,2,3,-2,4,-3,3] W85 d3 g3 EE36.68162
LCF [3,-3,5,-3,2,4,-2,5,3,-4] W84 d3 g3 EE36.25442
LCF [-4,-2,5,2,4,-2,4,5,-4,2] W81 d3 g3 EE36.77120
LCF [2,3,-2,3,-3;-] = [-4,4,2,5,-2]^2 W87 d3 g3 EE37.69671
LCF [4,-2,5,2,-4,-2,2,5,-2,2] W84 d3 g3 EE38.01880
LCF [2,4,-2,3,4;-] = [2,5,-2,5,5]^2 W83 d3 g3 EE37.01785
LCF [-3,3,3,5,-3]^2 W85 d3 g4 EE35.83204
```

Figure 6

```
LCF [5,-4,4,-4,4]^2 = [5,-4,-3,3,4,5,-3,4,-4,3] W79 d3 g4 EE34.72233
LCF [5,5,-4,4,5]^2 = [-3,4,-3,3,4;-] = [4,-3,4,4,-4;-] = [-4,3,5,5,-3,4,4,5,5,-4] W81 d3 g4 EE34.97449
LCF [5]^10 = [-3,3]^5 = [5,5,-3,5,3]^2 W85 d3 g4 EE35.40679
LCF [3,-4,4,-3,5]^2 W85 d3 g4 EE35.47908
```

In terms of the standard nomenclature

- [5] 10 is the $15 j$-coefficient of the first kind (the Möbius ladder graph for that vertex count),
- $[3,-4,4,-3,5]$ is the second kind,
- $[5,-4,4,-4,4] \wedge 2$ the third,
- $[5,5,-4,4,5]^{\wedge} 2$ the fourth
- and the Petersen Graph (which has no Hamiltonian cycle [11, 37]) the fifth 45].

The number of classes of $3 n-j$ symbols for even $n=4,6,8, \ldots$ grows as $1,1,2,5,18,84,607,6100,78824,1195280$, 20297600, $376940415, \ldots$ [10]. (An apparently erroneous 576 is sometimes quoted instead of 607 [16, 44]).

The volume of such lists grows with the number of vertices, which leads to the main objective of this work. Starting from a Wigner product of the form (1), its cubic graph is quickly drawn, but whether the graph is the same as (in our geometric mathematical framework isomorphic to) another one needs a kind of signature or classification. One might build a frequency statistics of the number of shortest cycles in the spirit of finding faces of the the polytope of a 3-dimensional ball-and-stick model of the graph, or count the number of cut sets and compare these.

Another approach is supported here: find at least one Hamiltonian cycle, generate the LCF string, and use a reverse lookup in the LCF table to see whether any two strings occur in the same line. The common idea is to replace strenuous visual recognition of graphs by a comparison of ASCII representations.

The ancillary files contain the source code of a small Java program which supports the detection of Hamiltonian cycles. Its input is an edge list of a simple cubic Hamiltonian graph. The cycles are computed by walking from the first node of the first edge in all three directions and generating a tree of non-interfering walks recursively 30 . The output is a LCF string and a vertex chain along each cycle found, and optionally a representation in dot format which can be plotted by the graphviz commands.

The ancilliary files contain also cage-type graphs detailed as sets of gnuplot commands and molfiles [13]. These graphs can be rotated interactively which helps to decipher the cycle structure and symmetries.

FIG. 4. Graphs on $n=10$ vertices which disconnect on 1 or 2 edges.

FIG. 5. The 3-connected reducible graphs on $n=10$ vertices.

FIG. 6. Graphs on $n=10$ vertices which define the $15 j$-symbols. Four are cyclically 4 -connected, one is cyclically 5 -connected. The one without a LCF name is the Petersen graph.

V. 12 VERTICES

The 85 graphs with 12 vertices (18 edges) are 1-connected (Figure 7), 2-connected (Figures 88) 3-connected reducible (Figures 1013) and cyclically 4 - or 5 -connected (Figures 1415).

The four graphs in Figure 7 and one graph in Figure 13 are not Hamiltonian, which leaves us with 80 lines of LCF notations:

Figure 8

```
    LCF [3,-2,-4,-3,4, 2]^2 = [4,2,3,-2,-4,-3;-] W150 d5 g3 EE45.12486
    LCF [3,-2, -4, -3,3,3,3,-3,-3,-3,4,2] W149 d4 g3 EE44.63116
    LCF [-3,2,3,-2,2,-3,-2,4,2,3,-2,-4] W149 d4 g3 EE46.12066
    LCF [3,3,-3,-3,-3,3] 2 W152 d4 g4 EE44.14446
    LCF [2,-3,-2,3,3,3;-] W152 d4 g3 EE45.63732
    LCF [3,-2,2,-3,-2,2] ^2 W152 d4 g3 EE47.13249
    LCF [-2,3,6,3,-3,2,-3,-2,6,2,2,-2] = [4,2,-4,-2,-4,6,2,2,-2,-2,4,6] W149 d4
g3 EE45.89062
    LCF [3,4,-3,-3,6,-4,2,2,-2,-2,6,3] W146 d4 g3 EE44.94265
    LCF [3,-2,-4,-3,5,2,2,-2,-2,-5,4,2] W154 d5 g3 EE46.30261
    LCF [-3,-3,-3,5,2,2;-] W153 d4 g3 EE45.76519
    LCF [2,-3,-2,5,2,2;-] W153 d4 g3 EE47.22986
    LCF [2,4,-2,3,-5,-4,-3,2,2,-2,-2,5] = [5,2,-4,-2,-5,-5, 2, 2, -2, -2,4,5] W143
d4 g3 EE45.58501
```

Figure 9

```
    LCF [-2,-2,4,4,4,4;-] = [3,-4,-4,-3,2,2;-] =
[5,3,4,4,-3,-5,-4,-4,2,2,-2,-2] W145 d4 g3 EE44.90052
    LCF [4,-2,4,2,-4,-2,-4,2,2,-2,-2,2] = [5,-2,2,3,-2,-5,-3,2,2,-2,-2,2] W148
d4 g3 EE46.95537
    LCF [2,2,-2,-2,-5,5]^2 W160 d5 g3 EE47.72073
    LCF [-2,-2,4,5,3,4;-] W141 d4 g3 EE44.63910
    LCF [5,2,-3,-2,6,-5,2,2,-2,-2,6,3] W146 d4 g3 EE45.63214
    LCF [4,-2,3,3,-4,-3,-3,2,2,-2,-2,2] W150 d4 g3 EE46.28096
    LCF [-2, -2,5,3,5,3;-] = [-2,-2,3,5,3,-3;-] W147 d4 g3 EE45.05416
    LCF [2,2,-2,-2,6,6]^2 W158 d5 g3 EE47.35563
    LCF [-3,2,-3,-2,2,2;-] W152 d4 g3 EE47.39504
    LCF [-2,-2,5,2,5,-2;-] W143 d4 g3 EE46.51523
    LCF [6,-2,2,2,-2,-2,6,2,2,-2,-2,2] W153 d4 g3 EE48.40271
    LCF [-2,2,2,-2]^3 W162 d4 g3 EE50.42874
```

Figure 10

```
    LCF [2,3,-2,3,-3,3;-] = [-4,6,4,2,6,-2]^2 W144 d4 g3 EE44.66589
    LCF [-4,6,3,3,6,-3,-3,6,4,2,6,-2] = [-2,3,-3,4,-3,3,3,-4,-3,-3,2,3] W140 d4
g3 EE43.61888
    LCF [-5, 2, -3,-2,6,4,2,5,-2,-4,6,3] = [-2,3,-3,4,-3,4,2,-4,-2,-4,2,3] =
[3,-2,3,-3,5,-3,2,3,-2,-5,-3,2] W142 d4 g3 EE44.32053
    LCF [-5,-5,4,2,6,-2,-4,5,5,2,6,-2] = [4,-2,3,4,-4,-3,3,-4, 2,-3,-2, 2] W136
d3 g3 EE44.01162
    LCF [-5,-5,3,3,6,-3,-3,5,5,2,6,-2] = [2,4,-2,3,5,-4,-3,3,3,-5,-3,-3] W136
d3 g3 EE43.11500
    LCF [2,4,-2,3,6,-4,-3,2,3,-2,6,-3] = [2,4,-2,3,5,-4,-3,4,2,-5,-2,-4] =
[-5,2,-3, -2,5,5,2,5,-2,-5,-5,3] W138 d4 g3 EE43.87324
    LCF [-5,2,-3,-2,6,3,3,5,-3,-3,6,3] = [4,-2,-4,4,-4,3,3,-4,-3,-3,4,2] =
[-3,3,3,4,-3,-3,5,-4,2,3,-2, -5] W139 d4 g3 EE43.30141
    LCF [2,3,-2,4,-3,6,3,-4,2,-3,-2,6] = [-4,5,-4,2,3,-2,-5,-3,4,2,4,-2] W139
d4 g3 EE44.05952
    LCF [6,3,-4, -4, -3,3,6,2,-3,-2,4,4] = [-5,-4,4,2,6,-2,-4,5,3,4,6,-3]=
[3,4,4,-3,4,-4,-4,3,-4,2,-3,-2] = [4,5,-4, -4,-4,3,-5,2,-3,-2,4,4] =
```

```
[4,5,-3,-5,-4,3,-5,2,-3,-2,5,3] W136 d4 g3 EE42.91096
    LCF [4,6,-4,-4,-4,3,3,6,-3,-3,4,4]=[-5,-4,3,3,6,-3,-3,5,3,4,6,-3]=
[4,-3,5,-4,-4,3,3,-5,-3,-3,3,4] W135 d3 g4 EE42.08576
    LCF [3,3,4,-3,-3,4;-] = [3,6,-3,-3,6,3]^2 W136 d3 g4 EE42.58760
    LCF [4,-2,5,2,-4,-2,3,-5,2,-3,-2,2] = [5,-2,2,4,-2,-5,3,-4,2,-3,-2,2] =
[2,-5,-2,-4,2,5,-2,2,5,-2,-5,4] W139 d4 g3 EE44.95991
```

Figure 11

```
    LCF [-2,6,2,-4,-2,3,3,6,-3,-3,2,4] = [-2,2,5,-2,-5,3,3,-5,-3,-3,2,5] W139
d4 g3 EE44.12975
    LCF [2,4,-2,6,2,-4,-2,4,2,6,-2,-4] = [2,5,-2,2,6,-2,-5,2,3,-2,6,-3] W139 d4
g3 EE44.87532
    LCF [6,3,-3,-5,-3,3,6,2,-3,-2,5,3] = [3,5,3,-3,4,-3,-5,3,-4,2,-3,-2] =
[-5,-3,4,2,5,-2,-4,5,3,-5,3,-3] W140 d4 g3 EE43.12097
    LCF [3,-3,5,-3,-5,3,3,-5,-3,-3,3,5] W142 d4 g4 EE42.31141
    LCF [4,2,4,-2,-4,4;-] = [3,5,2,-3,-2,5;-] = [6,2,-3,-2,6,3]^2 W141 d4 g3
EE44.00528
    LCF [3,6,4,-3,6,3,-4,6,-3,2,6,-2] = [4,-4,5,3,-4,6,-3,-5,2,4,-2,6] =
[-5,5,3,-5,4,-3,-5,5,-4,2,5,-2] W137 d4 g3 EE42.72638
    LCF [6,-5,2,6,-2,6,6,3,5,6,-3,6] = [6,2,-5,-2,4,6,6,3,-4,5,-3,6] =
[5,5,6,4,6,-5,-5,-4,6,2,6,-2] = [-4,4,-3,3,6,-4,-3,2,4,-2,6,3] =
[6,2,-4,-2,4,4,6,4,-4,-4,4,-4] = [-3,2,5,-2,-5,3,4,-5,-3,3,-4,5] =
[-5,2,-4, -2,4,4,5,5,-4,-4,4, -5] W133 d3 g3 EE42.37675
    LCF [2,6,-2,5,6,4,5,6,-5,-4,6,-5] = [5,6,-4,-4,5,-5,2,6,-2,-5,4,4] =
[2,4,-2,-5,4,-4,3,4,-4,-3,5,-4] = [2,-5,-2,4,-5,4,4,-4,5,-4,-4,5] W131 d3 g3
EE42.19745
    LCF [2,4,-2,-5,5,-4]^2 = [-5,2,4,-2,6,3,-4,5,-3,2,6,-2] W135 d4 g3
EE43.48153
    LCF [-4, -4, 4, 2, 6, -2,-4,4,4,4,6,-4] = [-4, -3,4,2,5,-2,-4,4,4,-5,3,-4] =
[-3,5,3,4,-5,-3,-5,-4,2,3, -2,5] W137 d4 g3 EE42.85630
    LCF [2,5,-2,4,4,5;-] = [2,4,-2,4,4,-4;-] = [-5,5,6,2,6,-2]^2 =
[5,-2,4,6,3,-5,-4,-3,2,6,-2,2] W134 d3 g3 EE43.48061
    LCF [3,6,-4,-3,5,6,2,6,-2,-5,4,6] = [2,-5,-2,4,5,6,4,-4,5,-5,-4,6] =
[5,-4,4,-4,3,-5,-4,-3,2,4, -2,4] W131 d3 g3 EE42.11275
```

Figure 12

```
    LCF [6,-5,2,4,-2,5,6,-4,5,2,-5,-2] = [-2,4,5,6,-5,-4,2,-5,-2,6,2,5] =
[5,-2,4,-5,4,-5,-4,2,-4, -2,5,2] W133 d4 g3 EE43.16541
    LCF [2,-5,-2,6,3,6,4,-3,5,6,-4,6] = [6,3,-3,4,-3,4,6,-4,2,-4,-2,3] =
[5,-4,6,-4,2,-5,-2,3,6,4,-3,4] = [5,-3,5,6,2,-5,-2,-5,3,6,3,-3] =
[-5,2,-5,-2,6,3,5,5,-3,5,6,-5] = [-3,4,5,-5,-5,-4,2,-5,-2,3,5,5] =
[5,5,5,-5,4,-5,-5,-5,-4,2,5, -2] W134 d4 g3 EE42.32276
    LCF [5,-3,6,3,-5,-5,-3,2,6,-2,3,5] = [2,6,-2,-5,5,3,5,6,-3,-5,5,-5] =
[5,5,5,6,-5,-5,-5,-5,2,6,-2,5] = [4,-3,5,2,-4,-2,3,-5,3,-3,3,-3] =
[5,5,-3,-5,4,-5,-5,2,-4,-2,5,3] W135 d3 g3 EE42.67156
    LCF [2,4,-2,5,3,-4;-] = [5,-3,2,5,-2,-5;-] = [3,6,3,-3,6,-3,2,6,-2,2,6,-2]
W138 d4 g3 EE43.74286
    LCF [6,2,-4,-2,-5,3,6,2,-3,-2,4,5] = [2,3,-2,4,-3,4,5,-4,2,-4,-2,-5] =
[-5,2,-4,-2,-5,4,2,5,-2,-4,4,5] W136 d4 g3 EE43.61258
    LCF [5, 2, 5,-2,5,-5;-] = [6,2,-4,-2,4,6]^2 = [2,-5,-2,6,2,6,-2,3,5,6,-3,6] =
[-5,-2,6,6,2,5,-2,5,6,6,-5,2] W134 d3 g3 EE43.34214
    LCF [-3,4,5, -5, 2, -4 ,-2, -5, 3, 3, 5, -3] W134 d3 g3 EE42.79794
    LCF [6,-4,3,4,-5,-3,6,-4,2,4,-2,5] = [-4,6,-4,2,5,-2,5,6,4,-5,4,-5] =
[5,-5,4,-5,3,-5,-4,-3,5,2,5,-2] W131 d3 g3 EE42.05815
    LCF [-5,2,4,-2,-5,4;-] W135 d4 g3 EE43.25057
    LCF [2,5,-2,5,3,5;-]=[6,-2,6,6,6,2]^2 = [5,-2,6,6,2,-5,-2,3,6,6,-3,2]
W136 d3 g3 EE43.60342
```

LCF $[6,-2,6,4,6,4,6,-4,6,-4,6,2]=[5,6,-3,3,5,-5,-3,6,2,-5,-2,3]$ W133 d3 g3 EE42. 23739
$\operatorname{LCF}[4,-2,4,6,-4,2,-4,-2,2,6,-2,2]=[5,-2,5,6,2,-5,-2,-5,2,6,-2,2] \mathrm{W} 135 \mathrm{~d} 3$ g3 EE44. 43130

Figure 13
LCF [6,-2,2]^4 W138 d3 g3 EE45.76235
LCF $[2,6,-2,6]$ ^3 W135 d3 g3 EE44. 26200
Figure 14 .

```
    LCF [-3,3]^6 = [3,-5,5,-3,-5,5]^2 W144 d4 g4 EE42.27027
    LCF [6,-3,6,6,3,6]^2 = [6,6,-5,5,6,6]^2 = [3,-3,4,-3,3,4;-] =
[5,-3,6,6,3,-5]^2 = [5,-3,-5,4,4,-5;-] = [6,6,-3,-5,4,4,6,6,-4,-4,5,3] W134 d3
g4 EE41.69366
    LCF [-4,4,4,6,6,-4]^2 = [6,-5,5,-5,5,6]^2 = [4,-3,3,5,-4,-3;-] =
[-4,-4,4,4,-5,5]^2 W132 d3 g4 EE41.28733
    LCF [-4,6,3,6,6,-3,5,6,4,6,6,-5] = [-5,4,6,6,6,-4,5,5,6,6,6,-5] =
[5,-3,4,6,3,-5,-4,-3,3,6,3,-3] = [4,-4,6,4,-4,5,5,-4,6,4,-5,-5] =
[4,-5,-3,4,-4,5,3,-4,5,-3,-5,3] W132 d3 g4 EE41.34305
    LCF [3,4,5,-3,5,-4;-] = [3,6,-4,-3,4,6]^2 = [-4,5,5,-4,5,5;-] =
[3,6,-4, -3,4,4,5,6,-4,-4,4,-5] = [4,-5,5,6,-4,5,5,-5,5,6,-5,-5] =
[4,-4,5,-4,-4,3,4,-5,-3,4,-4,4] W130 d3 g4 EE41.02128
    LCF [4,-4,6]^4 = [3,6,3,-3,6,-3]^2 = [-3,6,4,-4,6,3,-4,6,-3,3,6,4] W134 d3
g4 EE41.66461
    LCF [6,-5,5]^4 = [3,4,-4,-3,4,-4]^2 W130 d3 g4 EE41.16056
    LCF [-3,5,-3,4,4,5;-] = [4,-5,5,6,-4,6] 2 = [-3,4,-3,4,4,-4;-] =
[5,6,-3,-5,4,-5,3,6,-4,-3,5,3] = [5,6,4,-5,5,-5,-4,6,3,-5,5,-3] W132 d3 g4
EE41.28805
    LCF [4,-3,4,5,-4,4;-] = [4,5,-5,5,-4,5;-] = [-5,-3,4,5,-5,4;-] W128 d3 g4
EE40.61559
    LCF [6,-4,6,-4,3,5,6,-3,6,4,-5,4] = [6,-4,3,-4,4,-3,6,3,-4,4,-3,4] =
[5,6,-4,3,5,-5,-3,6,3,-5,4,-3] = [5,-5,4,6,-5,-5,-4,3,5,6,-3,5] =
[5,5,-4,4,5,-5,-5,-4,3,-5,4,-3] W130 d3 g4 EE40.93704
    LCF [6, -3,5,6,-5,3,6,-5,-3,6,3,5] = [3,-4,5,-3,4,6,4,-5,-4,4,-4,6] W130 d3
g4 EE40.99207
    LCF [6, -4,5,-5,4,6,6,-5,-4,4,5,6] W128 d3 g4 EE40.72559
```

Figure 15

```
    LCF [4,-5, 4, -5, -4,4;-] W126 d3 g5 EE40.34891
    LCF [6,4,6,6,6,-4]^2 = [-3,4,-3,5,3,-4;-] = [-5,3,6,6,-3,5,5,5,6,6,-5,-5] =
[-3,3,6,4,-3,5,5,-4,6,3,-5,-5] W134 d3 g4 EE41.55455
    LCF [3,5,5,-3,5,5;-] = [-3,5,-3,5,3,5;-] = [5,-3,5,5,5,-5;-] W136 d4 g4
EE41.45861
    LCF [-5,5]^6 = [5,-5, -3,3]^3 W132 d3 g4 EE41.05212
    LCF [6]^12 = [6,6,-3,-5,5,3]^2 W138 d3 g4 EE42.25614
    LCF [6,-5,-4,4,-5,4,6,-4,5,-4,4,5] W126 d3 g5 EE40.40388
```


A. 1-connected

FIG. 7. 1-connected graphs on $n=12$ vertices. W184 d6 g3 EE49.84524, W172 d5 g3 EE48.45339, W178 d6 g3 EE47.78916, and W172 d5 g3 EE47. 10611 in that order.
B. 2-connected

FIG. 8. 2-connected graphs on $n=12$ vertices (start).

FIG. 9. 2-connected graphs on $n=12$ vertices (end).
C. 3-connected reducible

FIG. 10. 3-connected graphs on $n=12$ vertices (start).

$[-2,6,2,-4,-2,3,3,6,-3,-3,2,4]$

[3,-3,5,-3,-5,3,3,-5,-3,-3,3,5]

[6,-5,2,6,-2,6,6,3,5,6,-3,6]

$[6,2,-3,-2,6,3]^{\wedge} 2$

[2,6,-2,5,6,4,5,6,-5,-4,6,-5]

[6,3,-3,-5,-3,3,6,2,-3,-2,5,3]

[3,6,4,-3,6,3,-4,6,-3,2,6,-2]
[-4,-4,4,2,6,-2,-4,4,4,4,6,-4]

[2,5,-2,4,4,5;-]

[2,4,-2,-5,5,-4]^2

[3,6,-4,-3,5,6,2,6,-2,-5,4,6]

FIG. 11. 3-connected graphs on $n=12$ vertices (continued).

FIG. 12. 3-connected graphs on $n=12$ vertices (continued).

FIG. 13. 3-connected graphs on $n=12$ vertices (end). Tietze's graph (W129 d3 g3 EE41.70908) does not have a Hamiltonian cycle.

D. Irreducible

The 18 graphs on $n=12$ vertices, which are cyclically 4 -connected or 5 -connected and define classes of $18 j$-symbols, follow in Figures 14 . 15 . The translation to the enumeration by 18 capital letters in the reference work [45, App. 3] is:

- A [6] 12
- $\mathrm{B}[-3,3]^{\wedge} 6$
- $C[-5,5] \sim 6$
- $\mathrm{D}[4,-4,6] \wedge 4$. This representation is found by walking $j_{1}, s_{1}, j_{2}, j_{2}^{\prime} s_{1}^{\prime}, j_{1}^{\prime}, j_{4}^{\prime}, s_{2}, j_{3}^{\prime}, j_{3}, s_{2}, j_{4}$ in 45, Fig. A 3.4].
- $\mathrm{E}[3,5,5,-3,5,5 ;-]$ This connection is found by walking $j_{3}, l_{2}, j_{3}^{\prime}, k_{1}^{\prime} s_{2}, k_{1}, s_{1}, k_{2}^{\prime}, j_{4}^{\prime}, l_{1}, j_{4}, k_{2}$ in 45, Fig. A 3.5].
- $\mathrm{F}[4,-5,4,-5,-4,4 ;-]$ 45, Fig. A 3.6].
- $G[6,-5,5]$ ~ 4 [45, Fig. A 3.7].
- H $[6,-5,-4,4,-5,4,6,-4,5,-4,4,5]$ 45, Fig. A 3.8].
- I $[6,-4,5,-5,4,6,6,-5,-4,4,5,6]$ [45, Fig. A 3.9].
- K $[-4,4,4,6,6,-4] \sim 2$ [45, Fig. A 3.10].
- L $[6,-3,6,6,3,6]^{\sim} 2$ [45, Fig. A 3.12].
- M $[6,4,6,6,6,-4]^{\wedge} 2$ [45, Fig. A 3.13].
- $N[4,-3,4,5,-4,4 ;-]$ [45, Fig. A 3.15].
- $\mathrm{P}[6,-3,5,6,-5,3,6,-5,-3,6,3,5]$ [45, Fig. A 3.16].
- $\mathrm{R}[3,4,5,-3,5,-4 ;-]$ [45, Fig. A 3.17].
- $\mathrm{S}[-3,5,-3,4,4,5 ;-]$ [45, Fig. A 3.18].
- T [-4, 6, 3, 6, 6, -3, 5, 6, 4, 6, 6, -5] walking for example $r, l, s, u, n, p, j, r^{\prime}, l^{\prime}, m^{\prime}, p^{\prime}, j^{\prime}$ in 45, Fig. A 3.11].
- $\mathrm{V}[6,-4,6,-4,3,5,6,-3,6,4,-5,4]$ [45, Fig. A 3.14].

FIG. 14. 12 of the 18 graphs on $n=12$ vertices which are irreducible.

FIG. 15. The remaining 6 of the 18 graphs on $n=12$ vertices which are irreducible. [-5,5]^6 is the Franklin graph; [6] 12 is the 6 -prism graph.

VI. 14 VERTICES

The total number of graphs on 14 vertices is 509 [8, 9, 33, 41] [38, A002851].
Only the 84 of the diagrams which are irreducible are finally shown in Figures 1622 , each representing a $21 j$-symbol. The 84 graphs can be characterized by the following Hamiltonian cycles:

Figure 16

```
    LCF [3,-3,4,-3,5,3,-4;-] = [-6,6,4,-5,7,5,-4]^2 =
[-5,6,4,-5,7,3,-4,-6,-3,5,3,7,5,-3] = [-5,7,-3,3,-6,6,-3,3,7,5,-3,-6,6,3] W209
d4 g4 EE48.48328
    LCF [3,7,7,-3,7,7,7]^2 = [7,7,7,-5,7,5,7]^2 = [3,-3,5,-3,5,3,5;-] =
[7,3,-5,7,-3,3,7,7,-3,3,7,5,-3,7] = [7,7,-3,-5,5,5,5,7,7,-5,-5,-5,5,3] =
[5,3,-5,5,-3,-5,7,3,-5,3,-3,5,-3,7]=[-5,5,5,-5,7,3,-5,-5,-3,5,3,7,5,-3] W209
d4 g4 EE48.36236
    LCF [7, 3, -4,7,-3,-6, 3,7,3,-3,7,-3,4,6] = [-3,-6,3,7,4,-3,7,5,-4,6,7,3,-5,7]
= [-3,5,5,7,4,-6,-5,-5,-4,3,7,3,-3,6] = [-5,7,-4,3,-5,6,-3,3,7,5,-3,-6,4,5] =
[7,-3,6,-6,-5,5,3,7,-6,-3,-5,6,3,5] = [4,6,-4,3,-4,4,-3,-6,3,-4,3,-3,4,-3] =
[5,-4,4,5,-5,-5,-4,3,-5,3,-3,4,-3,5] = [4,-5,4,6,-4,-6,-4,5,3,-6,5,-3,-5,6] =
[-5,5,-4,-6,6,3,-5,6,-3,5,-6,6,4,-6] W200 d4 g4 EE47.76064
    LCF [-3,7,4,6,-5,7, -4,3,7,-6,-3,3,7,5] =
[-3,6,4,7,4,-6,-4,-6,-4,3,7,3,-3,6]=[-5,5,5,-6,4,7,-5,-5,-4,5,3,6,7,-3]=
[5,-3,6,-6,5,-5,7,3,-6,-5,-3,6,3,7] = [-6,-4,3,7,-6,-3,3,6,6,-3,7,4,6,-6] =
[6,-4,3,5,-5,-3,-6,3,-5,3,-3,4,-3,5] = [-3,-5,4,6,-5,3,-4,5,-3,-6,5,3,-5,5] =
[5,-5,4,6,-5,-5,-4,5,3,-6,5,-3,-5,5] = [6,3,-6,4,-3,6,-6,-4,5,3,6,-6,-3,-5] =
[-3,-6,3,5,6,-3,6,6,-5,6,-6,3,-6, -6] = [-5,3,-6,5,-3,6,6,6,-5,5,6,-6,-6,-6]
W197 d4 g4 EE47.67915
    LCF [7, 3, -3,7,-3,7,3]^2 = [5,-5,7,5,7,-5,7]^2 = [-3,5,-3,5,5,5,-5;-] =
[5,-3,7,5,7,-5,7,3,-5,7,-3,7,3,7] = [3,7,5,-3,5,7,5,-5,7,-5,3,-5,7,-3] =
[-5,-3,3,7,3,-3,5,-3,5,5,7,-5,3,-5] = [3,7,-5,-3,-5,5,3,5,7,-3,-5,5,-5,5] W205
d4 g4 EE47.93708
    LCF [6,6,-3,7,5,7,-6, -6,3,-5,7,-3,7,3] =
[4,-3,5,7,-4,-6,3,-5,3,-3,7,-3,3,6] = [6,-3,5,7,5,-6,-6,-5,3,-5,7,-3,3,6] =
[-6,-6,4,-5,7,5,-4,6,6,6,-5,7,5,-6]=[-3,-5,5,3,-6,4,-3,-5,5,-4,5,3,6,-5] =
[6,6,6,-6,-6,4,-6,-6,-6,-4,3,6,6,-3] W201 d4 g4 EE47.97647
    LCF [4,-3,6,4,-4,6,4;-] = [7,-4,3,7,4,-3,7]^2 = [4,-3,6,3,-4,6,-3;-] =
[3,-6,5,-3,-6,3,5;-] = [-5,-3,6,4,-5,6,4;-] = [7,-3,6,7,7,-6,3,7,-6,-3,7,7,3,6]
= [7,-3,6,-6,6,-6,3,7,-6,-3, -6,6,3,6] = [3,-6,-5,-3,4,-6,6,3,-4,6,-3,5,-6,6]
W197 d4 g4 EE47.72988
    LCF [-3,3,6,7,-3,-6,3,5,-6,-3,7,3,-5,6] =
[6,-5,6,4,7,-6,-6,-4,-6,3,5,7,-3,6] = [-4,-6,3,-4,4,-3,5,5,-4,6,4,-5,-5,4] =
[-6,3,-4,6,-3,5,5,6,6,-6,-5,-5,4, -6] = [-6,5,-3,6,-6,6,-5,3,6,-6,-3,-6,6,3]
W195 d3 g4 EE47.64838
    LCF [-3,6,-3,6,6,3,6;-] = [7,7,-6,6,-5,7,5]^2 = [-3,5,-3,6,6,3,-5;-] =
[6,-4,-4,5,5,5,-6;-] = [-5,-5,4,4,7,7,-4,-4,5,5,5,7,7,-5] =
[-5,-3,4,4,7,5,-4,-4,5,5,-5,7,3,-5] = [-6,3,-6,6,-3,7,5,6,6,-6,6,-5,7,-6] =
[5,3,6,-5,-3,-5,3,4,-6,-3,3,-4,5,-3] = [-6,3,-5,-5,-3,4,4,6,6,-4,-4,5,5,-6]
W199 d4 g4 EE48.03267
    LCF [-3, -6,3,7,3,-3,6,-3,5,6,7,3,-6, -5] =
[-4,-6,5,3,7,-6,-3,-5,4,6,4,7,-4,6]=[6,-4,6,7,3,-6,-6,-3,-6,3,7,4,-3,6] =
[5,-6,6,4,7,-5,6,-4,-6,6,3,7,-6,-3] = [6,6,7,-5,6,-6,-6,-6,3,7,-6,-3,5,6] =
[-6,3,-4,3,-3,5,-3,4,6,4,-5,-4,4,-4]=[5,3,-6,5,-3,-5,5,6,-5,3,6,-5,-3,-6] =
[6,6,-3,-6,4,5,-6, -6, -4,3,-5,6,-3,3] W197 d4 g4 EE47.75062
    LCF [-4,-6, 4, 4,7,7,-4,-4,5,6,4,7,7,-5] = [5,-6,6,7,7,-5,6,6,-6,6,7,7,-6,-6]
= [4, -3,3,7,-4,-3,3,4,5,-3,7,-4,3,-5] = [-6,-6,3,4,7,-3,6,-4,6,6,3,7,-6,-3] =
[-6,5,5,-6,6,7,-5,-5,6,4,-6,6,7,-4] = [4,4,-4,5,-4,-4,3,4,-5,-3,3,-4,4,-3] =
[4,4,6,-5,-4,-4,3,4,-6,-3,3,-4,5,-3] = [3,4,6,-3,-6,-4,3,4,-6,-3,3,-4,6,-3]=
[-6,3,4,-6,-3,5,-4,6,6,3,-5,6,-3,-6] = [-5,4,4,-6,6,-4, -4,6,4,5,-6,6,-4,-6] =
[4,-6,-6,5,-4,-6,5,5,-5,6,6,-5,-5,6] W197 d4 g4 EE47.83708
```

$\operatorname{LCF}[3,-6,6,-3,7,-6,6]^{\wedge} 2=[-6,6,4,-6,6,7,-4]^{\wedge} 2=$
$[4,7,-3,6,-4,7,5,3,7,-6,-3,-5,7,3]=[-3,3,4,5,-3,-6,-4,3,-5,3,-3,3,-3,6]=$ $[6,4,5,-6,6,-4,-6,-5,5,3,-6,6,-3,-5]$ W202 d4 g4 EE48. 20639

Figure 17 .

```
    LCF [3,-3,5,-3,4,4,5;-] = [-6,6,7,3,7,7,-3]^2 = [3,-3,4,-3,4,4,-4;-] =
[6,4,-5,6,6,-4,-6;-] = [6,6,7,7,7,7,-6,-6,5,7,7,7,7,-5] =
[-5,5,6,4,7,7,-5,-4,-6,5,3,7,7,-3] = [4,-5,3,6,-4,-3,7,5,3,-6,5,-3,-5,7] W205
d4 g4 EE48.21641
    LCF [-3, 5, 3, 7, 4, -3, -5,6,-4,3,7,3, -3, -6] =
[5,-3, -6,6,4,-5,7,4,-4,-6,6,-4,3,7] W204 d4 g4 EE48.18647
    LCF [6,7,7,-4,7,7,-6,3,7,7,-3,7,7,4] = [6,7,5,7,7,7,-6,-5,7,4,7,7,7,-4] =
[7,4,-5,7,4,-4,7,7,-4,3,7,5,-3,7] = [7,7,-6,-5,-5,6,3,7,7,-3,6,-6,5,5] =
[4,5,-3,7,-4,4,-5,5,3,-4,7,-3,-5,3] = [4,4,-4,7,-4,-4,3,6,3,-3,7,-3,4,-6] =
[-3,3,4,7,-3,4,-4,6,4,-4,7,3,-4,-6] = [5,-3,-6,5,5,-5,7,4,-5,-5,6,-4,3,7] =
[4,-3,-6,5,-4,-6,3,4,-5,-3,6,-4,3,6] = [-5,6,-4,3,4,6,-3,-6,-4,5,3,-6,4,-3] =
[3,-3,6,-3,5,-6,4,4,-6,-5, -4, -4,3,6] W200 d4 g4 EE47.84785
    LCF [3,-4,7,-3,4,-6,6]^2 W199 d4 g4 EE47.86854
    LCF [-4,7,4,4,7,7,-4]^2 = [7,-6,6,7,7,-6,6]^2 = [4,-3,3,4,-4,-3,4;-] =
[-4,7,4,4, -6,6,-4] 2 W197 d4 g4 EE48.08295
    LCF [7,7,7,-6,6,7,7]^2 = [-3,3,-3,4,-3,3,4;-] = [6,-3,-5,6,6,3,-6;-] =
[-4,7,5,3,7,7,-3,-5,7,4,4,7,7,-4] = [-5,6,6,3,7,7,-3,-6,-6,5,3,7,7,-3] =
[4,4,-6,6,-4,-4,7,5,3,-6,6,-3,-5,7] W207 d4 g4 EE48.66179
    LCF [6,6,7,7,7,-6,-6,-6,4,7,7,7,-4,6] = [7,7,-6,-4,-6,6,3,7,7,-3,6,-6,6,4]
= [-6,3,-4,3,-3,6,-3,3,6,4,-3,-6,4,-4] = [5,6,-3,-5,6,-5,3,-6,3,-3,-6,-3,5,3] =
[-6,6,-4,3,6,6,-3,-6,6,4,-6,-6,4,-4] W201 d4 g4 EE48.11933
    LCF [7,7,-6,6,-6,6,7]^2 = [3,4,-5,-3,3,-4,3;-] = [6,-4,-4,6,6,3,-6;-] =
[-6,-6,4,4,7,7,-4,-4,6,6,3,7,7,-3] W201 d4 g4 EE48.21995
    LCF [7]^14 = [-3,3]^7 = [-5,7,5,3,7,7, -3]^2 W217 d4 g4 EE49.25357
    LCF [3,6,-5,-3,5,3,6;-] = [5,-6,6,-6,6,-5,7]^2 =
[3,-6,6,-3,7,5,7,5,-6,6,-5,7,-5,7] W197 d3 g4 EE47.87399
    LCF [4,-3,5,5,-4,5,5;-] = [6,3,-5,5,-3,5,-6;-] =
[-3,7,3,7,-6,-3,3,6,7,-3,7,3,6,-6] = [-6,5,-5,7,3,7,-5,-3,6,4,7,5,7,-4] =
[3,-6,4,-3,7,5,-4,5,5,6,-5,7,-5,-5] = [-6,3,-6,4,-3,7,5,-4,6,4,6,-5,7,-4] W197
d4 g4 EE47.58692
    LCF [-5,6,4,7,7,7,-4,-6,5,5,7,7,7,-5] = [6,6,7,5,7,7,-6,-6,-5,7,3,7,7,-3] =
[-3,7,-3,3,-6,4,-3,3,7,-4,-3,3,6,3] = [-3,7,5,-4,-6,4,4,-5,7,-4,-4,3,6,4] =
[-5,6,4,-5,7,5,-4,-6,5,5,-5,7,5,-5] = [-3,5,3,-5,4,-3,-5,3,-4,4,-3,3,5,-4] =
[-4,-4,3,6,4,-3,6,6,-4,-6,4,4,-6,-6] W203 d4 g4 EE48.11421
```

Figure 18

```
    LCF [7,-3,-6,6,-5,3,5]^2 = [7,3,-4,6,-3,5,7,7,3,-6,-5,-3,4,7] =
[7,-5,3,6,-6,-3,7,7,3,-6,5,-3,6,7] = [-4,5,-3,6,3,7,-5,-3,3,-6,4,-3,7,3]=
[-5,-5,3,5,7,-3,6,6,-5,5,5,7,-6,-6] = [5,-4,-6,5,-5,-5,3,5,-5,-3,6,4,-5,5] =
[-6,3,-4,6,-3,6,4,6,6,-6,-4,-6,4,-6] W197 d4 g4 EE47.60125
    LCF [7,-5,7,-4,7,3,6,7,-3,7,5,7,-6,4] = [7,7,-6,-4,5,7,5,7,7,-5,6,-5,7,4] =
[7,-4,3,7,-5,-3,3,7,4,-3,7,4,-4,5] = [-5,5,-6,4,7,7,-5,-4,5,5,6,7,7,-5] =
[-3,6,4,7,-5,4,-4,-6,4,-4,7,3,-4,5]= [-5,4,5,-5,7,-4,4,-5,5,5,-4,7,5,-5] =
[7,3,6,-6,-3,-6,4,7,-6,3,-4,6,-3,6] = [7,-6,-6,3,-5,6,-3,7,4,6,6,-6,-4,5] =
[-5,5,-3,4,-6,5,-5,-4,3,5,-5,-3,6,3] = [-5,-4,3,5,6,-3,6,6,-5,5,-6,4,-6,-6]
W195 d4 g4 EE47.32016
    LCF [7, -4,6,7,-6, -6,3,7,-6, -3,7,4,6,6] =
[4,-4,-6,5,-4,4,7,5,-5,-4,6,4,-5,7] = [-5,-4,3,7,4,-3,6,6,-4,5,7,4,-6,-6] W194
d4 g4 EE47.44879
    LCF [-5,5,5,7,7,7,-5]^2 = [3,5,-5,-3,5,3,-5;-] = [-5,5,5,-5,7,5,-5]^2 =
[7,7,-3,7,5,7,5,7,7,-5,7,-5,7,3] = [7,3,-3,7,-3,3,5,7,-3,3,7,-5,-3,3] W205 d4
g4 EE47.91606
```

$\operatorname{LCF}[7,-5,3,5,7,-3,7]^{\wedge} 2=[-5,-3,5,5,-5,5,5 ;-]=$
$[-3,3,5,7,-3,7,3,-5,5,-3,7,3,7,-5]=[7,-5,3,-5,5,-3,7,7,3,-5,5,-3,5,7]=$
$[-5,5,-5,7,3,7,-5,-3,5,5,7,5,7,-5]$ W201 d4 g4 EE47. 49035
$\operatorname{LCF}[7,4,7,-5,6,-4,7,7,3,7,-6,-3,5,7]=[-5,-4,4,7,3,7,-4,-3,5,5,7,4,7,-5]$
$=[4,7,-3,7,-4,6,3,5,7,-3,7,-6,-5,3]=[7,4,-5,5,6,-4,7,7,-5,3,-6,5,-3,7]=$ $[-5,7,3,7,-6,-3,5,6,7,5,7,-5,6,-6]=[-3,-6,4,7,3,-6,-4,-3,4,6,7,3,-4,6]=$
$[-4,-6,4,4,7,-6,-4,-4,4,6,4,7,-4,6]=[-6,-4,4,-4,3,5,-4,-3,6,3,-5,4,-3,4]=$ $[-5,-4,4,-5,3,5,-4,-3,5,5,-5,4,5,-5]=[-6,-4,4,-5,3,5,-4,-3,6,4,-5,4,5,-4]=$ $[4,6,4,-6,-4,5,-4,-6,4,4,-5,6,-4,-4]$ W197 d4 g4 EE47. 42171

LCF $[3,-3,6,-3,3,6,3 ;-]=[-6,6,4,7,7,7,-4] \wedge 2=[6,-3,3,6,6,-3,-6 ;-]=$ $[-6,-6,3,7,7,-3,6,6,6,6,7,7,-6,-6]=[-3,-5,3,6,4,-3,6,6,-4,-6,5,3,-6,-6]$ W203 d4 g4 EE48.46324

LCF $[7,-4,3,-4,4,-3,4]^{\wedge} 2=[-5,5,-3,4,7,5,-5,-4,4,5,-5,7,-4,3]$ W197 d4 g4 EE47. 32024

LCF $[5,-3,5,6,6,-5,5 ;-]=[4,6,-6,-6,-4,3,6 ;-]=$
$[7,-4,3,5,-5,-3,4,7,-5,3,-4,4,-3,5]=[6,-6,-3,4,7,5,-6,-4,4,6,-5,7,-4,3]=$ $[7,5,-6,5,-5,6,-5,7,-5,3,6,-6,-3,5]$ W193 d3 g4 EE47. 18167

LCF $[-5,7,3,-5,7,-3,4,6,7,5,-4,7,5,-6]=[3,7,5,-3,6,7,5,-5,7,4,-6,-5,7,-4]$
$=[5,-6,-5,7,4,-5,7,5,-4,6,7,5,-5,7]=[-3,6,4,7,-6,3,-4,-6,-3,4,7,3,6,-4]=$ $[-4,4,-4,5,3,-4,5,-3,-5,4,4,-5,4,-4]=[-3,5,-3,5,-6,4,-5,3,-5,-4,-3,3,6,3]=$ $[-4,-4,5,3,-6,4,-3,-5,5,-4,4,4,6,-5]=[-4,-3,3,6,4,-3,5,6,-4,-6,4,-5,3,-6]=$ $[-3,6,-6,3,-6,3,-3,-6,-3,4,6,3,6,-4]$ W199 d4 g4 EE47. 76644

LCF $[4,6,-3,7,-4,7,3,-6,3,-3,7,-3,7,3]=[6,-5,7,5,7,-6,-6,5,-5,7,5,7,-5,6]$ $=[-4,-4,5,3,5,7,-3,-5,5,-5,4,4,7,-5]=[5,-3,6,7,-5,-5,3,4,-6,-3,7,-4,3,5]=$ $[-5,7,-4,3,6,6,-3,6,7,5,-6,-6,4,-6]=[6,6,-3,7,5,6,-6,-6,4,-5,7,-6,-4,3]=$ $[4,-4,6,-4,-4,5,3,5,-6,-3,-5,4,-5,4]=[-5,3,-5,-5,-3,3,4,6,-3,5,-4,5,5,-6]=$ $[-6,3,-5,3,-3,5,-3,5,6,4,-5,5,-5,-4]=[5,5,5,-5,6,-5,-5,-5,3,4,-6,-3,5,-4]=$ $[6,-5,6,6,-6,-6,-6,4,-6,-6,5,-4,6,6]$ W198 d4 g4 EE47. 70929

LCF $[3,-6,5,-3,7,5,7,-5,4,6,-5,7,-4,7]=$
$[-5,4,-4,7,3,-4,5,-3,5,5,7,-5,4,-5]=[6,-6,-3,7,3,6,-6,-3,4,6,7,-6,-4,3]=$ $[5,-6,5,-6,6,-5,7,-5,4,6,-6,6,-4,7]=[-5,3,-4,5,-3,5,5,6,-5,5,-5,-5,4,-6]=$ $[6,-6,-3,-6,3,5,-6,-3,4,6,-5,6,-4,3]$ W193 d3 g4 EE47. 23870

Figure 19 .
LCF $[-3,6,4,7,4,7,-4,-6,-4,4,7,3,7,-4]=$
$[-5,-4,4,4,6,7,-4,-4,5,5,-6,4,7,-5]=[3,-6,5,-3,7,5,6,-5,5,6,-5,7,-6,-5]=$ $[3,4,-6,-3,4,-4,5,6,-4,3,6,-5,-3,-6]=[4,4,-6,5,-4,-4,5,5,-5,4,6,-5,-5,-4]$ W194 d4 g4 EE47. 39737

LCF $[6,-4,7,7,3,-6,-6,-3,4,7,7,4,-4,6]=[7,3,-6,6,-3,6,7,7,4,-6,6,-6,-4,7]$
$=[-3,7,3,-5,3,-3,4,-3,7,4,-4,3,5,-4]=[5,5,-4,7,3,-5,-5,-3,3,4,7,-3,4,-4]=$ $[5,-6,5,3,7,-5,-3,-5,4,6,3,7,-4,-3]=[-4,5,5,5,7,-6,-5,-5,-5,3,4,7,-3,6]=$ $[6,6,7,-6,6,-6,-6,-6,4,7,-6,6,-4,6]=[5,-3,-6,5,-5,-5,3,4,-5,-3,6,-4,3,5]=$ $[-4,-3,5,3,5,6,-3,-5,5,-5,4,-6,3,-5]=[-6,3,-6,3,-3,6,-3,5,6,4,6,-6,-5,-4]=$ $[-5,6,-4,3,6,6,-3,-6,5,5,-6,-6,4,-5]=[5,-6,6,-6,-5,-5,6,3,-6,6,-3,6,-6,5]$ W197 d4 g4 EE47. 78069

LCF $[-3,6,-3,5,5,5,6 ;-]=[3,-4,3,-3,4,-3,7]^{\wedge} 2=$
$[3,5,5,-3,-6,4,-5,-5,3,-4,3,-3,6,-3]=[3,-6,6,-3,6,-6,6,4,-6,6,-6,-4,-6,6]$ W201 d4 g4 EE48.06221

LCF $[6,7,5,-6,5,7,-6,-5,7,-5,3,6,7,-3]=$
$[3,4,6,-3,7,-4,4,6,-6,3,-4,7,-3,-6]=[7,-3,6,-6,-5,4,4,7,-6,-4,-4,6,3,5]=$ $[7,-5,-5,6,-5,3,6,7,-3,-6,5,5,-6,5]=[-4,4,-3,5,-6,-4,3,4,-5,-3,4,-4,6,3]=$ $[-5,4,-4,3,6,-4,-3,4,5,5,-6,-4,4,-5]=[-6,4,-4,3,6,-4,-3,4,6,4,-6,-4,4,-4]=$ $[4,4,-6,5,-4,-4,5,6,-5,3,6,-5,-3,-6]=[-5,-4,3,4,6,-3,6,-4,5,5,-6,4,-6,-5]=$ $[6,-3,6,-6,-5,4,-6,3,-6,-4,-3,6,3,5]=[6,-3,5,-6,5,5,-6,-5,5,-5,-5,6,3,-5]$ W194 d4 g4 EE47. 41178
$\operatorname{LCF}[4,7,-6,6,-4,7,7]^{\wedge} 2=[4,-4,-4,4,-4,3,4 ;-]=[-4,-3,5,-4,4,4,5 ;-]=$ $[-3,7,4,4,6,7,-4,-4,7,4,-6,3,7,-4]=[6,-4,7,7,4,-6,-6,5,-4,7,7,4,-5,6]=$ $[-6,5,7,-6,6,7,-5,6,6,7,-6,6,7,-6]=[-3,7,4,4,-6,5,-4,-4,7,4,-5,3,6,-4]=$
$[5,-3,-6,-4,4,-5,3,4,-4,-3,6,-4,3,4]$ W195 d4 g4 EE47. 65770
LCF $[3,6,-5,-3,4,4,6 ;-]=[3,5,-5,-3,4,4,-5 ;-]=[5,5,-5,6,6,-5,-5 ;-]=$ $[-5,5,5,-6,6,7,-5]^{\wedge} 2=[-6,6,-5,6,6,-6,6 ;-]=$
$[6,-3,7,-4,3,5,-6,-3,3,7,-5,-3,3,4]$ W195 d3 g4 EE47. 62118
LCF $[7,7,7,-4,7,7,4]^{\wedge} 2=[5,-4,7,7,4,-5,7] \wedge 2=[4,-3,-5,4,-4,3,4 ;-]=$
$[-4,-3,6,-4,3,6,3 ;-]=[7,-6,3,7,7,-3,6,7,5,6,7,7,-6,-5]$ W199 d4 g4 EE47. 92512 LCF $[7,-5,7,5,7,-6,6]^{\wedge} 2=[-4,-3,5,-4,5,3,5 ;-]=$
$[-5,5,-4,-4,7,3,-5,3,-3,5,-3,7,4,4]=[4,4,6,-6,-4,-4,7,3,-6,3,-3,6,-3,7]=$ $[7,5,6,-6,6,-6,-5,7,-6,3,-6,6,-3,6]$ W199 d4 g4 EE47. 81083 LCF $[-5,-4,3,7,4,-3,7,5,-4,5,7,4,-5,7]=[7,-6,3,5,7,-3,6,7,-5,6,3,7,-6,-3]$ $=[7,7,-6,-4,-6,4,5,7,7,-4,6,-5,6,4]=[6,-6,5,7,7,-6,-6,-5,4,6,7,7,-4,6]=$ $[-4,7,-3,3,-6,4,-3,4,7,-4,4,-4,6,3]=[-6,5,-4,7,3,6,-5,-3,6,4,7,-6,4,-4]=$ $[-3,-6,3,-4,4,-3,4,5,-4,6,-4,3,-5,4]=[4,-4,6,6,-4,-6,4,5,-6,-6,-4,4,-5,6]$ W195 d4 g4 EE47. 39167

LCF $[-4,5,7,4,7,7,-5]^{\wedge} 2=[4,-3,4,5,-4,5,-4 ;-]=$
$[7,-3,7,-6,4,-6,4,7,-4,7,-4,6,3,6]=[6,7,-4,7,3,6,-6,-3,7,4,7,-6,4,-4]=$ $[5,-6,5,7,7,-5,6,-5,5,6,7,7,-6,-5]=[5,-4,7,-4,3,-5,4,-3,4,7,-4,4,-4,4]=$ $[5,-5,6,4,7,-5,6,-4,-6,4,5,7,-6,-4]$ W193 d4 g4 EE47. 05310 LCF $[4,-5,5,-5,-4,3,5 ;-]=[6,-5,6,-5,5,6,-6 ;-]=$
$[4,-4,5,7,-4,7,3,-5,5,-3,7,4,7,-5]=[-3,4,7,-5,4,-4,4,6,-4,7,-4,3,5,-6]=$ $[-4,7,3,-5,5,-3,5,6,7,-5,4,-5,5,-6]=[7,-5,-4,5,5,-6,5,7,-5,-5,5,-5,4,6]=$ $[-3,4,6,-5,5,-4,4,6,-6,-5,-4,3,5,-6]=[6,-4,5,-5,5,5,-6,-5,5,-5,-5,4,5,-5]$ W191 d3 g4 EE46.91447 LCF $[6,7,-6,6,-5,7,-6,4,7,-6,6,-4,7,5]=$
$[5,-4,4,7,3,-5,-4,-3,4,4,7,4,-4,-4]=[6,-4,-3,7,3,4,-6,-3,4,-4,7,4,-4,3]=$ $[-4,5,6,4,7,-6,-5,-4,-6,3,4,7,-3,6]=[5,-3,6,-4,5,-5,4,4,-6,-5,-4,-4,3,4]$ W193 d3 g4 EE47. 55605

Figure 20 .

```
    LCF [-4,3,5,-4,-3,3,5;-] = [7,-6,6,-6,6,-6,6]^2 W195 d3 g4 EE47.79409
    LCF [6,-3,6,6,6,6,-6;-] = [7,3,-6,6,-3,7,7]^2 = [6,-3,-5,5,5,5,-6;-] =
[6,6,-3,7,7,3,-6,-6,-3,3,7,7,-3,3] = [3,-6,3,-3,6,-3,7,5,3,6,-6,-3,-5,7] =
[6,-5,-5,5,3,-6,-6,-3,-5,3,5,5,-3,6] W203 d4 g4 EE48.34463
    LCF [6, -5,5,-4,7,3,-6,-5,-3,3,5,7,-3,4] =
[5,-6,-3,7,3,-5,5,-3,4,6,7,-5,-4,3] = [4,-3,5,7,-4,6,3,-5,5,-3,7,-6,3,-5] =
[5,-6,-3,7,4,-5,5,5,-4,6,7,-5,-5,3] = [5,-5,5,-6,4,-5,7,-5,-4,3,5,6,-3,7] =
[-3,-6,3,-5,4,-3,4,6,-4,6,-4,3,5,-6] = [-5,4,-3,5,6,-4,6,4,-5,5,-6,-4,-6,3] =
[-5,5,-4,4,6,6,-5,-4,5,5,-6,-6,4,-5] = [-5,5,-6,-5,3,6,-5,-3,5,5,6,-6,5,-5] =
[-5,5,-6,4,-6,6,-5,-4,5,5,6,-6,6,-5] = [-5,4,6,-6,6,-4,6,6,-6,5,-6,6,-6,-6]
W194 d4 g4 EE47.25303
    LCF [5, -5,7,4,7,-5,7,-4,4,7,5,7,-4,7] = [7,-4,4,7,-5,3,-4,7,-3,3,7,4,-3,5]
= [-5,4,-5,7,4,-4,7,5,-4,5,7,5,-5,7] = [-5,3,-4,7,-3,3,5,6,-3,5,7,-5,4,-6] =
[7,-5,-3,6,-6,3,5,7,-3,-6,5,-5,6,3] = [6,6,-5,7,-5,4,-6,-6,4,-4,7,5,-4,5] =
[7,-4,6,6,-6,-6,4,7,-6,-6,-4,4,6,6] = [3,-4,6,-3,6,-6,3,5,-6,-3,-6,4,-5,6] W195
d4 g4 EE47.32025
    LCF [3,5,6,-3,5,6,-5;-] = [-4,6,6,-4,5,6,6;-] = [-4,6,3,-4,5,-3,6;-] =
[-6,4,7,-5,7,-4,4,6,6,7,-4,7,5,-6] W194 d4 g4 EE47.31023
        LCF [7, -5, 3, 5,7,-3,6,7,-5,4,5,7,-6,-4] = [5,-5,7,4,7,-5,6,-4,5,7,5,7,-6, -5]
= [7,-5,-4,6,-5,3,5,7,-3,-6,5,-5,4,5] = [6,7,-5,4,-6,4,-6,-4,7,-4,3,5,6,-3] =
[4,7,-4,6,-4,6,4,6,7,-6,-4,-6,4,-6] W193 d4 g4 EE46.99597
        LCF [4,-4,4,7,-4,4,-4,5,5,-4,7,4,-5,-5]=
[7,-6,3,-4,6,-3,5,7,4,6,-6,-5,-4,4] = [4,7,-4,6,-4,5,5,6,7,-6,-5,-5,4,-6] =
[-6,-4,4,7,-6,4,-4,6,6,-4,7,4,6,-6] = [-6,4,7,-5,6,-4,5,6,6,7,-6,-5,5,-6] =
[5,-5,6,-6,3,-5,6,-3,-6,4,5,6,-6,-4] W191 d3 g4 EE47.04310
        LCF [-3,7,4,-5,3,5,-4]^2 = [4,7,-6,6,-4,6,7,5,7,-6,6,-6,-5,7] =
[-4,4,6,3,7,-4, -3,5,-6,4,4,7,-5,-4] = [6,7,-5,-4,-6,4,-6,3,7,-4,-3,5,6,4] =
[3,-6,-4,-3,4,-6,4,4,-4,6,-4,-4,4,6] W196 d4 g4 EE47.51335
    LCF [-3,5,7,-5,3,5,-5]^2 = [5,-3,5,7,5,-5,5,-5,5,-5,7,-5,3,-5] W197 d4 g4
```

```
EE47.08518
    LCF [5,-3,6,7,5,-5,5,6,-6,-5,7,-5,3,-6] =
[-4,-4,4,6,-5,3,-4,5,-3,-6,4,4,-5,5] = [4,-5,-3,5,-4,6,3,5,-5,-3,5,-6,-5,3] =
[6,3,-6,4,-3,6,-6, -4,4,4,6,-6,-4,-4] = [3,-6,-4,-3,4,6,4,6,-4,6,-4,-6,4,-6]
W196 d4 g4 EE47.35467
    LCF [-5, -4, 4,7,-5,3,-4,5,-3,5,7,4,-5,5] =
[7,-5,3,6,-5,-3,5,7,4,-6,5,-5,-4,5] = [-5,5,6,-4,7,5,-5,5,-6,5,-5,7,-5,4] =
[6,-4,5,-4,5,5,-6,-5,4,-5,-5,4,-4,4] = [-5,5,-5,-4,6,3,-5,5,-3,5,-6,5,-5,4] =
[-4,5,-4,6,3,6,-5,-3,5,-6,4,-6,4,-5] = [5,5,6,-5,6,-5,-5,4,-6,4,-6,-4,5,-4] =
[-5,4,6,-4,6,-4,6,4,-6,5,-6,-4,-6,4] = [-5,4,-5,5,6,-4,6,6,-5,5,-6,5,-6,-6] =
[6,-6,-6,4,-5,6,-6,-4,4,6,6,-6,-4,5] W192 d4 g4 EE46.91455
    LCF [6,-6,5,-4,7,5,-6,-5,4,6,-5,7,-4,4] =
[-5,-4,4,-4,6,3,-4,5,-3,5,-6,4,-5,4] = [6,-4,5,-4,6,4,-6,-5,4,-4,-6,4,-4,4] =
[-4,6,3,6,-6,-3,5,-6,5,-6,4,-5,6,-5] W191 d3 g4 EE46.97169
```

Figure 21

```
    LCF [3,4,5,-3,5,-4,5;-] = [4,7,-3,7,-4,7,3]^2 = [4,4,-5,4,-4,-4,4;-] =
[-4,-4,4,4,5,7,-4,-4,5,-5,4,4,7,-5] = [-4,4,6,3,7,-4,-3,6,-6,3,4,7,-3,-6] =
[-6,5,-4,7,5,6,-5,6,6,-5,7,-6,4,-6] = [7,-6,-6,5,-5,6,6,7,-5,6,6,-6,-6,5] =
[4,-4,6,-4,-4,4,4,5,-6,-4,-4,4,-5,4] = [4,-5,3,6,-4,-3,6,4,5,-6,5,-4,-6,-5]
W195 d4 g4 EE47.49901
    LCF [-4,3,-5,4,-3,7,3,-4,5,-3,4,5,7, -5]=
[7,3,-6,5,-3,-6,5,7,-5,3,6,-5,-3,6]=[6,-3,-6,4,-5,4,-6,-4,3,-4,6,-3,3,5] =
[-3,6,4,6,-6,5,-4,-6,5,-6,-5,3,6,-5] = [-4,6,4,6,-6,6,-4,-6,5,-6,4,-6,6,-5]
W193 d3 g4 EE47.32454
    LCF [4,6,-3,6,-4,7,4,-6,3,-6,-4,-3,7,3] =
[6,6,-4,7,5,6,-6,-6,5,-5,7,-6,4,-5] = [-6,5,7,-5,6,6,-5,6,6,7,-6,-6,5,-6] =
[5,-3,6,-4,6,-5,3,4,-6,-3,-6,-4,3,4]=[6,4,-6,5,-5,-4,-6,4,-5,3,6,-4,-3,5]
W194 d4 g4 EE47.48901
    LCF [7, -6,4,-6,6,-6,-4,7,4,6,-6,6,-4,6] =
[-4,6,-4,3,5,6,-3,-6,5,-5,4,-6,4,-5] W191 d3 g4 EE47.05742
    LCF [3,6,6,-3,5,6,6;-] = [3,6,3,-3,5,-3,6;-] = [5,3,-5,4,-3,-5,4;-] =
[6,6,-4,7,5,-6,-6,-6,3,-5,7,-3,4,6] = [-3,6,6,7,-6,-6,3,-6,-6,-3,7,3,6,6] W200
d4 g4 EE48.02357
    LCF [5,-6,6,-4,7,-5,6,3,-6,6,-3,7,-6,4] W193 d3 g4 EE47.48376
    LCF [7, 4, -4,6,-5, -4,4,7,3,-6,-4,-3,4,5] =
[7,-6, -5,5,6,-6,6,7,-5,6,-6,5,-6,6] = [-5,-4,4,-4,3,5,-4,-3,4,5,-5,4,-4,4] W191
d3 g4 EE47.14460
    LCF [5,-3,4,6,6,-5,-4;-] = [-6,-3,5,6,6,-6,5;-] W193 d3 g4 EE47.30020
    LCF [5, -6,6,-4,7,-5,4]^2 = [-6,5,-3,7,-6,4,-5,4,6,-4,7,-4,6,3] =
[-4,7,3,6,-6,-3,5,6,7,-6,4,-5,6,-6] = [6,-5,-4,4,-5,4,-6,-4,3,-4,5,-3,4,5] =
[-4,6,4,-5,5,6,-4,-6,5,-5,4,-6,5,-5] W191 d3 g4 EE47.04309
    LCF [7, -4,3,7,4, -3,6,7,-4, 4,7,4,-6,-4] = [5,-6, -4,7,4,-5,7,4,-4,6,7,-4,4,7]
= [6,4,-4,7,4,-4,-6,4,-4,4,7,-4,4,-4] = [7,-3,6,-6,5,-6,4,7,-6,-5,-4,6,3,6] =
[-4,6,-5,3,-6,4,-3,-6,5,-4,4,5,6,-5] W191 d3 g4 EE47.11027
    LCF [5,6,-5,6,6,-5,6;-] = [5,-4,-4,4,5,-5,4;-] = [-4,6,-5,-4,4,4,6;-] =
[5,6,-6,-6,5,-5,6;-] W191 d3 g4 EE47.06319
    LCF [5,-3,-5,4,5,-5,4;-] = [-4,6,-5,-4,5,3,6;-] =
[-5,5,6,-5,7,5,-5,6,-6,5,-5,7,5,-6] W195 d4 g4 EE47.34090
```

Figure 22 .
$\operatorname{LCF}[-3,4,-3,4,5,-4,4 ;-]=[-6,5,7,4,7,7,-5,-4,6,7,3,7,7,-3]=$
$[7,7,-6,-5,5,6,7,7,7,-5,6,-6,5,7]=[7,3,-3,7,-3,4,5,7,4,-4,7,-5,-4,3] \mathrm{W} 199 \mathrm{~d} 4$ g4 EE47. 50380

LCF $[5,3,-6,6,-3,-5,7]^{\wedge} 2$ W217 d4 g4 EE49. 25588
LCF $[7,-6,-4,7,4,6,7,7,-4,6,7,-6,4,7]=[5,-4,7,-4,4,-5,6,3,-4,7,-3,4,-6,4]$ W193 d4 g4 EE47. 19176
$\operatorname{LCF}[4,7,-4,7,-4,4,7]^{\wedge} 2=[7,-4,4,7,-5,4,-4,7,4,-4,7,4,-4,5]=$ $[7,-6,-5,-4,4,5,6,7,-4,6,-5,5,-6,4]$ W189 d3 g5 EE46.75706 LCF $[-5,5,-4,7,4,-6,-5,4,-4,5,7,-4,4,6]=$
$[5,-5,5,-6,4,-5,6,-5,-4,4,5,6,-6,-4]=[6,-6,5,-6,-5,5,-6,-5,4,6,-5,6,-4,5]$ W189 d3 g5 EE46. 62280 $\operatorname{LCF}[-4,5,6,-4,5,6,-5 ;-]=[-6,-4,5,7,-5,4,6,-5,6,-4,7,4,-6,5]$ W190 d4 g5 EE46.60848

LCF $[5,-6,5,-4,7,-5,4,-5,4,6,-4,7,-4,4]=$
$[-5,5,-4,7,4,6,-5,6,-4,5,7,-6,4,-6]=[7,-5,6,-6,-5,4,6,7,-6,-4,5,6,-6,5]=$ $[5,-6,-5,-4,4,-5,4,5,-4,6,-4,5,-5,4]$ W189 d3 g5 EE46. 70425

LCF $[-5,4,-4,7,4,-4,5,6,-4,5,7,-5,4,-6]$ W189 d3 g5 EE46. 67561
LCF $[5,-4,7,-4,4,-5,4] \sim 2=[4,7,-4,7,-4,4,5,6,7,-4,7,-5,4,-6]=$
$[7,-4,6,7,-5,4,6,7,-6,-4,7,4,-6,5]$ W190 d4 g5 EE46.77138
$\operatorname{LCF}[4,6,-5,5,-4,5,6 ;-]=[4,5,-5,5,-4,5,-5 ;-]=[-5,6,-5,5,-5,5,6 ;-]$ W189
d3 g5 EE46. 50858
LCF $[-4,4,5,-4,5,-4,5 ;-]=[7,-5,-4,5,-5,4,5]^{\wedge} 2=$
$[7,-6,-5,5,-5,5,6,7,-5,6,-5,5,-6,5]$ W189 d3 g5 EE46. 64714
LCF $[-5,5]^{\wedge} 7$ W189 d3 g6 EE46. 27353
Some of these have appeared in the nuclear physics literature [15, 36]. Ponzano's figures (1)-(8) are number 58, 32, $68,33,71,57,59$ and 82 in this list of 84 .

FIG. 16. Graphs on $n=14$ vertices which are irreducible (start).

FIG. 17. Graphs on $n=14$ vertices which are irreducible (continued).

FIG. 18. Graphs on $n=14$ vertices which are irreducible (continued).

FIG. 19. Graphs on $n=14$ vertices which are irreducible (continued).

FIG. 20. Graphs on $n=14$ vertices which are irreducible (continued).

FIG. 21. Graphs on $n=14$ vertices which are irreducible (continued).

$[4,7,-4,7,-4,4,7]^{\wedge} 2$

$[-5,5,-4,7,4,-6,-5,4,-4,5,7,-4,4,6]$

[-6,-4,5,7,-5,4,6,-5,6,-4,7,4,-6,5]

[5,-6,5,-4,7,-5,4,-5,4,6,-4,7,-4,4]

$[-5,4,-4,7,4,-4,5,6,-4,5,7,-5,4,-6]$

$[5,-4,7,-4,4,-5,4]^{\wedge} 2$

[-4,4,5,-4,5,-4,5;-]

$[-5,5]^{\wedge} 7$

[4,6,-5,5,-4,5,6;-]

FIG. 22. Graphs on $n=14$ vertices which are irreducible (end).

VII. SUMMARY

We have plotted the non-isomorphic simple cubic graphs up to 12 vertices ($18 j$-symbols) plus the subset on 14 vertices that defines classes of $21 j$-symbols. Hamiltonian cycles have been identified. The associated LCF notation introduces a convenient ordering representation
which combats the bewildering variety of planar graphical representations as the number of edges becomes large.

ACKNOWLEDGMENTS

The graphs were generated with Meringer's program genreg [33] and have been plotted with the neato program of the graphviz package.
[1] Aldred, R. E. L., D. Van Dyck, G. Brinkmann, V. Fack, and B. D. McKay, 2009, Discrete Math. 157(2), 377.
[2] Ališauskas, S., 2002, J. Math. Phys. 43(3), 1547.
[3] Anderson, R. W., V. Aquilanti, and A. Marzuoli, 2009, J. Phys. Chem. A 113(52), 15106.
[4] Aquilanti, V., A. C. P. Bitencourt, C. da S. Ferreira, A. Marzuoli, and M. Ragni, 2009, Theor. Chem. Acc. 123(3-4), 237.
[5] Balcar, E., and S. W. Lovesey, 2009, Introduction to the graphical theory of angular momentum, volume 234 of Springer Tracts in Modern Physics (Springer).
[6] Bar-Shalom, A., and M. Klapisch, 1988, Comp. Phys. Commun. 50(3), 375.
[7] Bau, S., 1990, Australas. J. Comb. 2, 57.
[8] Brinkmann, G., 1996, J. Graph Theory 23(2), 139.
[9] Brinkmann, G., J. Goedgebeur, and B. D. McKay, 2011, Disc. Math. Theor. Comp. Sci. 13(2), 69.
[10] Brouder, C., and G. Brinkmann, 1997, J. Electron. Spectrosc. 86(1-3), 127.
[11] Clark, L., and R. Entringer, 1983, Period. Math. Hung. 14(1), 57.
[12] Coxeter, H. S. M., R. Frucht, and D. L. Powers, 1981, Zero-symmetry graphs: trivalent graphical regular representations of groups (Academic Press), ISBN 0-12-1945804.
[13] Dalby, A., J. G. Nourse, W. D. Hounshell, A. K. I. Gushurst, D. L. Grier, B. A. Leland, and J. Laufer, 1992, J. Chem. Inf. Comput. Sci. 32(3), 244.
[14] Danos, M., and U. Fano, 1998, Phys. Rep. 304(4), 155.
[15] Di Leva, A., and G. Ponzano, 1967, Nuovo Cimento 51A(4), 1107.
[16] Dürr, H. P., and F. Wagner, 1968, Nuovo Cimento 53A(1), 255.
[17] Edmonds, A. R., 1957, Angular momentum in quantum mechanics (Princeton University Press), E: the factor $\sqrt{2 j_{2}+1}$ in the denominator of (3.7.3) ought read $\sqrt{2 j_{3}+1}$.
[18] El-Batanoni, F., M. El-Nadi, and G. L. Vysotsky, 1966, Nucl. Phys. 82(2), 407.
[19] Fack, V., S. N. Pitre, and J. Van der Jeugt, 1997, Comput. Phys. Commun. 101(1-2), 155.
[20] Frucht, R., 1976, J. Graph Theory 1(1), 45.
[21] Granovskii, Y. I., and A. S. Zhednov, 1993, J. Phys. A.: Math. Gen. 26(17), 4339.
[22] Graovac, A., and T. Pisanski, 1991, J. Math. Chem. 8(1), 53.
[23] Gutman, I., and A. Graovac, 2007, Chem. Phys. Lett. 436(1-4), 294.
[24] Imrich, W., 1971, Aequationes mathematicae 6(1), 6.
[25] Jahn, H. A., and J. Hope, 1954, Phys. Rev. 93(2), 318.
[26] Kent, R. D., and M. Schlesinger, 1989, Phys. Rev. A 40(2), 536.
[27] Lievens, S., and J. Van der Jeugt, 2002, J. Math. Phys. 43(7), 3824.
[28] Lima, P. M., 1991, Comput. Phys. Commun. 66(1), 89.
[29] Louck, J. D., 2008, Unitary symmetry and combinatorics (World Scientific, Singapore), ISBN 981-281-472-8.
[30] Martello, S., 1983, ACM Trans. Math. Software 9(1), 131.
[31] Massot, J.-N., E. El-Baz, and J. Lafoucriére, 1967, Rev. Mod. Phys. 39(2), 288.
[32] Mattis, M. P., and E. Braaten, 1989, Phys. Rev. D. 39(9), 2737.
[33] Meringer, M., 1999, J. Graph Theory 30(2), 137.
[34] Newman, D. J., and J. Wallis, 1976, J. Phys. A: Math. Gen. 9(12), 2021.
[35] Ord-Smith, R. J., 1954, Phys. Rev. 94(5), 1227.
[36] Ponzano, G., 1965, Nuovo Cimento 36(2), 385.
[37] Schwenk, A. J., 1989, J. Comb. Theory B 47, 53.
[38] Sloane, N. J. A., 2003, Notices Am. Math. Soc. 50(8), 912, http://oeis.org/, URL http://oeis.org/
[39] Stone, A. P., 1956, Math. Proc. Cambr. Phil. Soc. 52, 424.
[40] Stone, A. P., 1957, Proc. Phys. Soc. A 70(12), 908.
[41] van Dyck, D., G. Brinkmann, V. Fack, and B. D. McKay, 2005, Comput. Phys. Commun. 173(1-2), 61.
[42] van Dyck, D., and V. Fack, 2007, Disc. Math. 307, 1506.
[43] Weininger, D., 1988, J. Chem. Inf. Comput. Sci. 28(1), 31.
[44] Wormer, P. E. S., and J. Paldus, 2006, Adv. Quant. Chem. 51, 59.
[45] Yutsis, A. P., I. B. Levinson, V. V. Vanagas, and A. Sen, 1962, Mathematical Apparatus of the Theory of Angular Momentum (Israel program for scientific translations), E: Eq. (20.6) in [18, Fig. 17.1 in [32].

[^0]: * http://www.strw.leidenuniv.nl/~mathar

