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A NOTE ON THE FIRST CUBOID CONJECTURE.

Ruslan Sharipov

Abstract. Recently the problem of constructing a perfect Euler cuboid was related
with three conjectures asserting the irreducibility of some certain three polynomi-
als depending on integer parameters. In this paper a partial result toward proving
the first cuboid conjecture is obtained. The polynomial which, according to this
conjecture, should be irreducible over integers is proved to have no integer roots.

1. Introduction.

An Euler cuboid is a rectangular parallelepiped whose edges and face diagonals
all are of integer lengths. A perfect cuboid is an Euler cuboid whose space diagonal
is also of an integer length. Cuboids with integer edges and face diagonals are
known since 1719 (see [1–35]), however, no perfect cuboid is known by now. The
problem of constructing perfect cuboids or proving their non-existence is an open
mathematical problem.

In [36] the problem of constructing perfect cuboids was reduced to the polynomial
Diophantine equation Pabu(t) = 0, where Pabu(t) is given by the formula

Pabu(t) = t12 + (6 u2 − 2 a2 − 2 b2) t10 + (u4 + b4 + a4 + 4 a2 u2+

+4 b2 u2 − 12 b2 a2) t8 + (6 a4 u2 + 6 u2 b4 − 8 a2 b2 u2−
− 2 u4 a2 − 2 u4 b2 − 2 a4 b2 − 2 b4 a2) t6 + (4 u2 b4 a2+

+4 a4 u2 b2 − 12 u4 a2 b2 + u4 a4 + u4 b4 + a4 b4) t4+

+(6 a4 u2 b4 − 2 u4 a4 b2 − 2 u4 a2 b4) t2 + u4 a4 b4.

(1.1)

The main result of [36] is formulated in the following theorem.

Theorem 1.1. A perfect Euler cuboid does exist if and only if the Diophantine

equation Pabu(t) = 0 has a solution such that a, b, u, and t are positive integer

numbers obeying the inequalities t > a, t > b, t > u, and (a+ t) (b+ t) > 2 t2.

Note that Pabu(t) is a polynomial of four variables a, b, u and t. However, in the
formula (1.1) it is presented as a univariate polynomial depending on three integer
parameters a, b, and u. Relying on this presentation, in [37] the theorem 1.1 was
reformulated as follows.

Theorem 1.2. A perfect Euler cuboid does exist if and only if for some positive

coprime integer numbers a, b, and u the polynomial equation Pabu(t) = 0 has a ra-

tional solution t obeying the inequalities t > a, t > b, t > u, and (a+t) (b+t) > 2 t2.
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If the equation Pabu(t) = 0 has a rational solution, then the polynomial (1.1)
with integer coefficients is reducible over the field of rational numbers. Note that
the leading coefficient of this polynomial is equal to unity. Hence due to the rational
root theorem (see [38], [39], or [40]) each rational root of the polynomial Pabu(t), if
any, is necessarily integer and Pabu(t) is reducible over the ring of integers.

In [37] the polynomial (1.1) was studied for reducibility and the following special
cases were discovered where Pabu(t) is reducible:

1) a = b; 3) b u = a2; 5) a = u;
(1.2)

2) a = b = u; 4) a u = b2; 6) b = u.

Being reducible in the cases (1.2), the polynomial (1.1) gives rise to the polynomials

Pau(t) = t8 + 6 (u2 − a2) t6 + (a4 − 4 a2 u2 + u4) t4−
− 6 a2 u2 (u2 − a2) t2 + u4 a4,

(1.3)

Qpq(t) = t10 + (2 q2 + p2) (3 q2 − 2 p2) t8 + (q8 + 10 p2 q6+

+4 p4 q4 − 14 p6 q2 + p8) t6 − p2 q2 (q8 − 14 p2 q6 + 4 p4 q4+

+10 p6 q2 + p8) t4 − p6 q6 (q2 + 2 p2) (−2 q2 + 3 p2) t2 − q10 p10
(1.4)

depending on the integer parameters a, u and p, q. In [37] the reducibility of the
polynomials (1.3), (1.4) and the reducibility of the initial polynomial (1.1) were
studied numerically and three conjectures were formulated.

Conjecture 1.1. For any positive coprime integers a 6= u the polynomial Pau(t)
in (1.3) is irreducible in the ring Z[t].

Conjecture 1.2. For any positive coprime integers p 6= q the polynomial Qpq(t)
in (1.4) is irreducible in the ring Z[t].

Conjecture 1.3. For any three positive coprime integer numbers a, b, and u such

that none of the conditions (1.2) is satisfied the polynomial Pabu(t) in (1.1) is irre-

ducible in the ring Z[t].

The main goal of this paper is to prove the following partial result associated
with the first cuboid conjecture 1.1.

Theorem 1.3. For any positive coprime integers a 6= u the polynomial Pau(t) in

(1.3) has no integer roots.

2. The inversion symmetry and parity.

The polynomial Pau(t) in (1.3) possesses some special property. It is expressed
by the following formula which can be verified by direct calculations:

Pau(t) =
Pau(i a u/t) t

8

a4 u4
. (2.1)

Here i =
√
−1. The formula (2.1) contains the inversion of t in Pau(t). For this
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reason I call it the inversion symmetry. Apart from (2.1), we have

Pau(t) = Pau(−t). (2.2)

The formula (2.2) means that the polynomial Pau(t) is even.

3. Breaking the proof of irreducibility into special cases.

The irreducibility of polynomials is usually proved by contradiction. If the con-
jecture 1.1 is not valid, this would mean that the polynomial (1.3) is reducible, i. e.
it is presented as a product of two non-constant polynomials

Pau(t) = A(t)B(t). (3.1)

Since degPau(t) = 8, the equality (3.1) assumes four special cases:

1) Pau(t) = A1(t)B7(t), 2) Pau(t) = A2(t)B6(t),
(3.2)

3) Pau(t) = A3(t)B5(t), 4) Pau(t) = A4(t)B4(t).

Other three cases Pau(t) = A5(t)B3(t), Pau(t) = A6(t)B2(t), Pau(t) = A7(t)B1(t)
are equivalent to the cases 1, 2, and 3 up to the transposition of factors.

4. The case of a linear factor.

This case is number one in (3.2). In this case Pau(t) = A1(t)B7(t), where A1(t)
is a linear factor and B7(t) is its complementary seventh order factor:

A1(t) = t−A0. (4.1)

The formula (3.1) means that t = A0 is a real integer root of the polynomial Pau(t).
Since a 6= 0 and b 6= 0, we have A0 6= 0. Due to (2.1) and (2.2), along with t = A0,
the polynomial Pau(t) has the following real and imaginary roots:

t =
i a b

A0

, t = −A0, t = − i a b

A0

. (4.2)

The formulas (4.1) and (4.2) mean that

Pau(t) = (t2 −A2

0
)

(

t2 +
a2 u2

A2

0

)

B4(t). (4.3)

Applying the Gauss’s lemma (see [38], [39], and [41]), we conclude that the fraction
a2 u2/A2

0
in (4.3) simplifies to an integer number. Let’s denote

C0 =
a u

A0

. (4.4)

Then the formula (4.3) is written as follows:

Pau(t) =
(

t4 + (C2

0
−A2

0
) t2 − a2 u2

)

B4(t), where A0 C0 = a u. (4.5)
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Now let’s apply the formulas (2.1) and (2.2) to (4.5). As a result we get the
following symmetries for the polynomial B4(t) in (4.3) and (4.5):

B4(t) = −B4(i a u/t) t
4

a2 u2
, B4(−t) = B4(t). (4.6)

The symmetries (4.6) mean that the polynomial B4(t) is given by the formula

B4(t) = t4 +B2 t
2 − a2 u2. (4.7)

Substituting (4.7) into the formula (4.5), we derive

Pau(t) = t8 + (B2 + C2

0
−A2

0
) t6 +

(

(C2

0
−A2

0
)B2 − 2 a2 u2

)

t4−
− a2 u2 (B2 + C2

0
−A2

0
) t2 + u4 a4.

(4.8)

Comparing (4.8) with the initial formula (1.3), we find that

B2 + C2

0 −A2

0 = 6 (u2 − a2),

(C2

0 −A2

0)B2 = (u2 − a2)2.
(4.9)

The equations (4.9) should be complemented with the equation

A0 C0 = a u. (4.10)

The equation (4.10) is taken from (4.5). It is equivalent to (4.4). The results of the
above calculations are summarized in the following lemma.

Lemma 4.1. For a 6= 0 and u 6= 0 the polynomial Pau(t) in (1.3) has a linear

factor of the form (4.1) in the ring of polynomials Z[t] if and only if the system

of Diophantine equations (4.9) and (4.10) is solvable with respect to the integer

variables A0, B2, and C0.

The Diophantine equations (4.9) and (4.10) are easily solvable for u = ± a.
Indeed, in this case we have the following solution for them:

A0 = ± a, C0 = ± a, B2 = 0.

Lemma 4.2. For u 6= ± a the system of Diophantine equations (4.9) and (4.10) is
not solvable with respect to the integer variables A0, B2, and C0.

Proof. Let’s square the first equation (4.9) and let’s multiply by 36 the second
equation (4.9). As a result we get the equations

B2

2 + 2 (C2

0 −A2

0)B2 + (C2

0 −A2

0)
2 = 36 (u2 − a2)2,

36 (C2

0 −A2

0)B2 = 36 (u2 − a2)2.
(4.11)

Subtracting the second equation (4.11) from the first one, we derive

B2

2
− 34 (C2

0
−A2

0
)B2 + (C2

0
−A2

0
)2 = 0. (4.12)
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The left hand side of the equation (4.12) is factored into the product of two linear
terms with respect to B2. As a result this equation is written as

(B2 − (17 + 12
√
2) (C2

0 −A2

0)) (B2 − (17− 12
√
2) (C2

0 −A2

0)) = 0. (4.13)

The equation (4.13) breaks into two separate equations, i. e. it means that A0, B2,
and C0 should obey one of the following two equations:

B2 = (17 + 12
√
2) (C2

0 −A2

0),

B2 = (17− 12
√
2) (C2

0 −A2

0).
(4.14)

None of the equations (4.14) can be satisfied by integer numbers A0, B2, and C0

unless C2

0 = A2

0. But if C2

0 = A2

0, from the second equation (4.9) we easily derive
u2 = a2 and u = ± a. The proof of the lemma 4.2 is over. �

Combining the lemmas 4.1 and 4.2 one easily proves the following theorem.

Theorem 4.1. For any two positive integers a 6= u the polynomial Pau(t) in (1.3)
has no linear factors of the form (4.1) in the ring Z[t].

The theorem 4.1 implies the theorem 1.3 declared in the introduction. The
theorem 1.3 is weaker than the conjecture 1.1. However, if similar results for the
other two conjectures 1.2 and 1.3 will be obtained, this would be sufficient to prove
the non-existence of perfect cuboids.
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