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Abstract. A plateau in a Motzkin path is a sequence of three steps: an up step,
a horizontal step, then a down step. We find three different forms for the bivariate

generating function for plateaus in Motzkin paths, then generalize to longer plateaus.
We conclude by describing a further generalization: a continued fraction form from

which one can easily derive new multivariate generating functions for various kinds of

path statistics. Several examples of generating functions are given using this technique.

A Motzkin path is a finite sequence of steps with the following properties: each step
is “up” (labeled U), “horizontal” (labeled H), or “down” (labeled D); at any point in
the sequence, the number of up steps is at least as big as the number of down steps; the
total number of up steps in the sequence is equal to the total number of down steps. The
number of steps in the sequence is referred to as the length of the path. Motzkin paths
can be visualized as graphs in the plane beginning at (0, 0) and consisting of up steps in
direction (1, 1), horizontal steps in direction (1, 0), and down steps in direction (1,−1). In
this visualization, the path ends at point (n, 0), where n is the length of the path, and
never passes below the horizontal axis. We will use this visualization to refer to the points
between steps as vertices.

To begin, we define a plateau in a Motzkin path to be a subsequence of the path
consisting of an up step immediately followed by a horizontal step immediately followed
by a down step (such a subsequence is often abbreviated UHD). In this paper we establish
several forms for generating functions that count plateaus for Motzkin paths. We then
generalize those methods to longer plateaus and also use continued fractions to derive
similar bi- and multivariate generating functions.

The enumeration of plateaus in Motzkin paths has applications in the theory of RNA
secondary structures [2, 5]. Work by Prodinger and Wagner [4] examines plateaus in
Motzkin paths with a different goal.

1. Forms for generating functions

In this section we state three theorems about forms for the generating function which
counts plateaus for Motzkin paths. Let cpn be the number of Motzkin paths of length n
with p plateaus, and let

g(x, y) =

∞∑
n=0

bn3 c∑
p=0

cpnx
nyp,

so g is the bivariate generating function for this array.
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2 DAN DRAKE AND RYAN GANTNER

Theorem 1. The function g has an integral/differential form given by

(1) g(x, y) =
1− 2x3

1− 2x3(1− y)

(
f0(x) +

x

1− 2x3

∂

∂x
x3

∫ y

0

g(x, t) dt

)
,

where

f0(x) =
1− x + x3 −

√
(1− x + x3)2 − 4x2

2x2
.

Theorem 2. The function g has a differential form given by

(2)
∂

∂x
xg
(
x,

z

x3

)
= (1− z − 2x3)

∂

∂z
g
(
x,

z

x3

)
.

Theorem 3. The function g has an explicit form given by

(3) g(x, y) =
1− x + x3 − x3y −

√
(1− 3x + x3 − x3y)(1 + x + x3 − x3y)

2x2
.

2. Proof of Theorems 1–3

Our plateau-counting formulas depend on a recursion among the cpn. This can be
obtained by the process of “sewing in” a plateau, as the first lemma reveals. After stating
and proving the lemma, we’ll turn to proving the theorems.

Lemma 1. If we set cpn = 0 when p is negative or n is negative, then the cpn satisfy

(4) cpn =
n− 2p

p
cp−1n−3 + 2cpn−3

for all n and for all p > 0.

Proof of Lemma 1. To get a path of length n with p plateaus, we can start with a path of
length n− 3 with p− 1 plateaus and sew in a plateau by inserting a UHD subpath at any
vertex. There are n− 3 + 1 vertices into which a plateau can be sewn in a path of length
n− 3. Sewing in a plateau in this way always gives us a new plateau and a Motzkin path
of length n. Sometimes, however, the sewing operation destroys an existing plateau in the
path of length n− 3. If a plateau is sewn on a vertex that is adjacent to the horizontal
step in an existing plateau (such a vertex will be said to be inside a plateau), we destroy
the plateau that was in the original path of length n − 3 in order to create one in the
path of length n. In all other places, sewing in a plateau creates a new plateau without
destroying a previous one. In summary, to get a path of length n with p plateaus, we can
sew in a plateau at any of the n− 3 + 1− 2(p− 1) vertices which are not inside a plateau
in a path of length n− 3 with p− 1 plateaus, or we can sew in a plateau at any of the 2p
vertices inside plateaus of a path of length n− 3 with p plateaus. By doing this, we can
generate all of the paths of length n with p plateaus. In fact, we generate each path p
times, according to our choice of which plateau is sewn in. Thus, we get the recursion

cpn =
n− 2− 2(p− 1)

p
cp−1n−3 +

2p

p
cpn−3

which simplifies to (4). �

As a note, to use the recursion, we’ll need to be given the sequence {c0n}. We’ll see that
the sequence {c0n} obeys a Catalan-like recurrence relation given below in (6).

To give a sense of what this array of numbers looks like, see the table of values of cpn
for small n and p given in Table 1. That triangle is sequence A114583 in the OEIS [3].
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p: 0 1 2 3 4
n: 0 1

1 1
2 2
3 3 1
4 7 2
5 15 6
6 36 14 1
7 85 39 3
8 209 102 12
9 517 280 37 1

10 1303 758 123 4
11 3312 2085 381 20
12 8510 5730 1194 76 1
13 22029 15849 3657 295 5
14 57447 43914 11187 1056 30

Table 1. cpn for small values of n and p.

2.1. Proof of Theorem 1: generating functions for each p. To prove Theorem 1,
we first find the generating function for the sequence {c0n}∞n=0, the first column of Table 1.
Let f0(x) denote that generating function. We first show the following.

Lemma 2. The function f0 is given by

(5) f0(x) =

∞∑
n=0

c0nx
n =

1− x + x3 −
√

(1− x + x3)2 − 4x2

2x2
.

Furthermore, the sequence {c0n} satisfies

(6) c0n = c0n−1 + c0n−2 +

n−2∑
k=2

c0kc
0
n−k−2.

Proof of Lemma 2. The terms of the sequence {c0n} are the number of Motzkin paths of
various lengths which have no plateaus. Each such path falls into one of three categories.

Category 0: the empty path. This contributes 1 to f0(x).
Category 1: the path starts with a horizontal step. In this case, the horizontal step is

followed by a Motzkin path of length n− 1 with no plateaus. The generating function for
such paths is xf0(x).

Category 2: the path starts with an up step. In this case, the path can be decomposed
into

(1) an up step,
(2) a plateau-free Motzkin path that is not a single horizontal step,
(3) a down step, then
(4) any plateau-free Motzkin path.

That decomposition tells us that the generating function for paths in category 2 is
x(f0(x)− x)xf0(x).
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Every plateau-free Motzkin path falls into exactly one of the above categories, so

f0(x) = 1 + xf0(x) + x2f0(x)(f0(x)− x),

which after an application of the quadratic formula yields

f0(x) =
1− x + x3 ±

√
(1− x + x3)2 − 4x2

2x2
.

The limit of f0(x) as x goes to zero is 1 (the empty path has no plateau), so we may take
limits of both possibilities for f0(x) to see that only the subtraction term in the numerator
makes sense, which gives (5).

Similar reasoning with the above categories and decomposition yields the recurrence
relation for c0n in (6). �

Remark. Note that the function in (5) is the generating function for OEIS sequence
A114584 [3].

Proof of Theorem 1. Knowing f0(x) and the recurrence relation from Lemma 1, we can
calculate the generating functions fp(x) =

∑
n c

p
nx

n. For p > 0, one can multiply both
sides of (4) by xn and sum over n ≥ 0 to get

fp(x) =

∞∑
n=0

cpnx
n =

∞∑
n=0

n− 2p

p
cp−1n−3x

n + 2

∞∑
n=0

cpn−3x
n

=
1

p

∞∑
n=0

ncp−1n−3x
n − 2x3fp−1(x) + 2x3fp(x).

The remaining sum above equals

x

p

d

dx

[
x3fp−1(x)

]
,

so one solves to find a recurrence relation for fp for p ≥ 1:

(7) fp(x) =
1

1− 2x3

(
x

p

d

dx

[
x3fp−1(x)

]
− 2x3fp−1(x)

)
,

which can also be written

(7′) fp(x) =
x2p+1

p(1− 2x3)

d

dx

[
x3−2pfp−1(x)

]
.

We can use the recurrence for the generating functions fp(x) to derive the inte-
gral/differential form for g(x, y) in (1). Start with (7), multiply both sides by yp and sum
over all p ≥ 1. This yields

g(x, y)− f0(x) =
1

1− 2x3

∞∑
p=1

(
x

p

∂

∂x
x3fp−1(x)− 2x3fp−1(x)

)
yp.

A little rearrangement and simplification leads to

g(x, y) = f0(x) +
y

1− 2x3

( ∞∑
p=1

x

p

∂

∂x
x3fp−1(x)yp−1 − 2x3g(x, y)

)
,



GENERATING FUNCTIONS FOR PLATEAUS IN MOTZKIN PATHS 5

and since
∞∑
p=1

1

p

∂

∂x
x3fp−1(x)yp−1 =

1

y

∂

∂x
x3

∫
g(x, y) dy,

we can solve for g to get our first expression for g(x, y) to get (1). �

2.2. Proof of Theorem 2: summing array diagonals. In Theorem 1, we found a
functional equation for g by finding generating functions for the columns of Table 1.
For Theorem 2, we find a form for g by looking at the diagonals of that table. Let
hk(z) =

∑∞
m=0 dmzm, where dm = cm3m+k. For instance, h0(z) =

∑∞
m=0 c

m
3mzm =∑∞

m=0 1zm = 1/(1− z), since there is just one path of length 3m with m plateaus. Using
the recursion from Lemma 1, we get

cm3m+k =
m + k

m
cm−13m+k−3 + 2cm3m+k−3.

Substituting this into the generating function hk, we get
∞∑

m=0

dmzm = c0k +
∞∑

m=1

(
m + k

m
cm−13(m−1)+k + 2cm3m+(k−3)

)
zm

= c0k +

∞∑
m=1

cm−13(m−1)+kz
m +

∞∑
m=1

k

m
cm−13(m−1)+kz

m + 2

∞∑
m=1

cm3m+(k−3)z
m

which reduces to

hk(z) = zhk(z) + k

∫ z

0

hk(t) dt + 2hk−3(z)− 2c0k−3 + c0k.

Upon differentiation, we get the differential difference equation

(8) h′k(z) = zh′k(z) + hk(z) + khk(z) + 2h′k−3(z)

Returning to g, we can use (8) to derive (2): first observe that

g(x, y) =
∑
k≥0

hk(x3y)xk,

so that
∂

∂x
xg
(
x,

z

x3

)
=
∑
k≥0

(k + 1)hk(z)xk and

∂

∂z
g
(
x,

z

x3

)
=
∑
k≥0

h′k(z)xk.

Since (8) can be rearranged into

(k + 1)hk(z) = (1− z)h′k(z)− 2h′k−3(z),

if one multiplies both sides of that equation by xk and sums over all k, we obtain (2) and
complete the proof of Theorem 2. �

Remark. Much more can be said about the functions hk from the proof above. For
instance, one may solve the differential equation (8) using standard techniques to obtain,
for k ≥ 3,

(9) hk(z) =
1

(1− z)k+1

(
c0k + 2

∫ z

0

(1− t)kh′k−3(t) dt

)
.
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We just need three initial conditions: when k = 0, we already know that h0(z) = 1/(1− z).
If k = 1, the recurrence yields the sequence of positive natural numbers, whose generating
function is 1/(1 − z)2, and if k = 2, the recurrence relation produces the sequence
2, 6, 12, 20, 30, 42, . . . , whose generating function is simply the derivative of the previous:
2/(1− z)3. With these three initial generating functions and the recurrence relation (9),
any hk(z) can be found. Note that if one defines hk(z) = 0 for negative k, the recurrence
(9) holds for all nonnegative k.

Furthermore, for k = 0, 1, and 2, hk is a rational function whose denominator is
(1− z)k+1, and it is a simple matter to use induction to prove that the same is true for
all k: if hk−3 is a rational function of the form p/(1− z)k−2, where p is a polynomial of
degree d, then the integrand in (9) is a polynomial of degree d + 1, so the second factor in
that expression is a polynomial of degree d + 2, and we see that the numerator of hk has
degree 2bk/3c. Moreover, if Nk denotes the numerator of hk, the numerators obey the
differential difference equation

Nk(z) = c0k + 2

∫ z

0

(1− t)

(
(1− t)

d

dt
Nk−3(t) + (k − 2)Nk−3(t)

)
dt.

2.3. Proof of Theorem 3: explicit form. As a third approach to finding the generating
function for the array {cpn}, we can take the categories of paths defined in subsection 2.1
for plateau-free Motzkin paths and use them to work on all Motzkin paths. Each Motzkin
path falls into one of three categories: the path is empty, it begins with a horizontal step,
or it begins with an up step. If it begins with an up step, it is of the form “UPDQ” where
P and Q are Motzkin paths. Since Q can be any Motzkin path, the generating function
describing the possibilities for Q is simply g. For P , we can have any path, but if we use a
path that is a single horizontal step, we will create an extra plateau which is unaccounted
for in the generating function multiplication. To combat this, we can subtract x from g
and add xy to count the plateau properly. Therefore, g(x, y) satisfies

(10) g(x, y) = 1 + xg(x, y) + x(g(x, y)− x + xy)xg(x, y).

We can again use the quadratic formula in that functional equation and take limits to
find the explicit form given in (3). �

3. Generalization to longer plateaus

We can generalize the approaches in the three theorems above to longer plateaus.
Define a plateau of length r to be a subsequence of a Motzkin path consisting of an up
step, immediately followed by r consecutive horizontal steps, then a down step (we will
abbreviate such a subsequence as “UHrD”). Using this definition, the previous calculations
have been for plateaus of length 1. Since the groundwork has been laid, in this section we
quickly state and prove results similar to the previously stated lemmas and theorems. We
set rc

p
n to be the number of Motzkin paths of length n with p plateaus of length r

Lemma 3. With rc
p
n as above, we have

(11) rc
p
n =

n− (r + 1)p

p
rc

p−1
n−(r+2) + (r + 1)rc

p
n−(r+2).
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Proof. We observe that there are r + 1 vertices inside each plateau for which sewing in a
plateau destroys the existing plateau upon creating another. Also, sewing in a plateau of
length r increases the length of the path by r + 2. Therefore, we get the recursion

rc
p
n =

n− (r + 1)− (r + 1)(p− 1)

p
rc

p−1
n−(r+2) +

(r + 1)p

p
rc

p
n−(r+2),

which simplifies to (11). �

We now quickly address each of the three approaches we used earlier for finding forms

for the generating function rg(x, y) =
∑∞

n=0

∑bn/(r+2)c
p=0 rc

p
nx

nyp.

Theorem 4. The function rg satisfies the integral/differential form

(12) rg(x, y) =
1− (r + 1)xr+2

1− (r + 1)xr+2(1− y)

(
rf0(x)

+
x

1− (r + 1)xr+2

∂

∂x
xr+2

∫ y

0
rg(x, t) dt

)
,

where

rf0(x) =
−x + x2+r + 1−

√
(x− x2+r − 1)2 − 4x2

2x2
.

Proof. We find a relationship for the generating functions rfp(x) =
∑∞

n=0 rc
p
nx

n for each
p, as we did in Lemma 2. We use the same categorization as discussed in the proof of that
lemma, simply noting that now the second category consists of Motzkin paths that have
an up step, then a Motzkin path with no plateaus of length r which is not a sequence of r
horizontal steps, then a down step, then any Motzkin path with no plateaus of length r.
We use this to obtain

rf0(x) = 1 + xrf0(x) + x2
rf0(x)(rf0(x)− xr),

where rf0(x) is the generating function for number of Motzkin paths of length n with no
plateaus of length r. Solving the quadratic equation above yields an explicit form

(13) rf0(x) =

∞∑
n=0

rc
0
nx

n =
−x + x2+r + 1−

√
(x− x2+r − 1)2 − 4x2

2x2
.

The recursion for rc
p
n analogous to (6) in Lemma 2 is

rc
0
n = rc

0
n−1 +

n−2∑
k=0

rc
0
krc

0
n−k−2 − rc

0
n−r−2.

We then continue as in the proof of Theorem 1 by multiplying both sides of (11) by xn

and summing over n ≥ 0 to get

rfp(x) =

∞∑
n=0

rc
p
nx

n =

∞∑
n=0

n− (r + 1)p

p
rc

p−1
n−(r+2)x

n + (r + 1)

∞∑
n=0

rc
p
n−(r+2)x

n.

This can be manipulated using the same techniques as earlier to get the integral/differential
form for rg in (14). �

Next, we can use the technique of summing array diagonals to get another form for rg.
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Theorem 5. The function rg satisfies

(14)
∂

∂x
xrg

(
x,

z

xr+2

)
= (1− z − (r + 1)xr+2)

∂

∂z
rg
(
x,

z

xr+2

)
.

Proof. Define rhk(z) to be
∑∞

m=0 rdmzm, where rdm = cm(r+2)m+k. Using the recursion in

Lemma 3, we get

rc
m
(r+2)m+k =

m + k

m
rc

m−1
(r+2)m+k−(r+2) + (r + 1)rc

m
(r+2)m+k−(r+2),

which upon substitution into the definition of rhk, becomes

rhk(z) = rc
0
k +

∞∑
m=1

(
m + k

m
rc

m−1
(r+2)(m−1)+k + (r + 1)rc

m
(r+2)m+k−(r+2)

)
zm.

Upon differentiation we get

(15) rh
′
k(z) = zrh

′
k(z) + rhk(z) + krhk(z) + (r + 1)rh

′
k−(r+2)(z),

a differential difference equation similar to (8). This gives rise to (14), which is similar
to (2) from Theorem 2. �

Finally, following the approach of the proof of Theorem 3, we show the following.

Theorem 6. The function rg has explicit form

(16) rg(x, y) =
1− x + xr+2 − xr+2y −

√
(1− x + xr+2 − xr+2y)2 − 4x2

2x2
.

Proof. We understand that either a Motzkin path is empty, it begins with a horizontal
step, or it begins with an up step. If it begins with an up step, it is of the form “UPDQ”
where P and Q are Motzkin paths. Since Q can be any Motzkin path, the generating
function for that part of the decomposition is rg. For P , we can have any path, but if
we use a path that is a sequence of r horizontal steps we will create an extra plateau
which is unaccounted for in the generating function multiplication. To combat this, we
can subtract xr from g(x, y) and add xry. Therefore, rg(x, y) satisfies

(17) rg(x, y) = 1 + xrg(x, y) + x2
rg(x, y)(rg(x, y)− xr + xry).

We use the quadratic formula in (17) to solve for rg explicitly to get (16). �

Remark. Observe that if r = 0, then the “plateaus” are just UD subpaths—that is,
they are peaks, and when r = 0 the generating function in Theorem 3 does correctly count
Motzkin paths in which peaks have weight y; see OEIS sequence A097860 [3].

4. Further generalizations and continued fraction expansions

The functional equation (17) leads us to a continued fraction form that generalizes the
above generalization. Instead of choosing a specific plateau length, let us rewrite (17) as:

(18) G(x, y) = 1 + xG(x, y) + x(G(x, y) + C)xG(x, y);

here C simply stands for whatever correction we need to make for plateaus. Rearrange
that functional equation and we have:

G(x, y) =
1

1− x− x2C − x2G(x, y)
.
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Inductively replacing G with the right-hand side of that equation yields the continued
fraction expansion

(19) G(x, y) =
1

1− x− x2C −
x2

1− x− x2C −
x2

1− x− x2C −
x2

1− · · ·

,

which we will write more compactly as

G(x, y) =
1 |

| 1− x− x2C
− x2 |
| 1− x− x2C

− x2 |
| 1− x− x2C

− · · ·

We can use this discussion to get continued fraction expansions for g and rg from earlier.

Theorem 7. The function g of Theorems 1–3 has a continued fraction expansion given by

(20) g(x, y) =
1 |

| 1− x− x2(xy − x)
− x2 |
| 1− x− x2(xy − x)

− · · · .

Proof. In our original problem, we needed to give weight xy to the horizontal step in a
UHD subpath, not x, so in the above continued fraction, we simply set C = xy − x in
(19). �

Theorem 8. The function rg of Theorems 4–6 has a continued fraction expansion given
by

(21) rg(x, y) =
1 |

| 1− x− x2(xry − xr)
− x2 |
| 1− x− x2(xry − xr)

− · · ·

Proof. Set C = xry − xr in (19). �

This form of the generating function has two advantages: first, we can specialize C to
represent whatever plateau (or other features of the path) that we want, and second, we
now have “infinitely many Cs”. The C appearing at the kth level of (19) corresponds to
corrections made at height k in a path (see Flajolet [1, Theorem 1]), so we can generalize
that continued fraction expansion to

(22) G(x, y) =
1 |

| 1− x− x2C1
− x2 |
| 1− x− x2C2

− x2 |
| 1− x− x2C3

− · · ·

Now Ck refers to the “correction term” for parts of the path occurring at height k. We
can now easily find the generating function for many variations of the problems considered
here. Here are several examples.

Theorem 9. The generating function for Motzkin paths with no peaks (UD subpaths) is

x2 − x + 1−
√
x4 − 2x3 − x2 − 2x + 1

2x2
.

Proof. Set C = −1 in (18) to correct for the empty path between the up and down steps
and solve as before. �

Remark. This is sequence A4148 in the OEIS [3].



10 DAN DRAKE AND RYAN GANTNER

Theorem 10. The generating function for Motzkin paths in which only plateaus at odd
height have weight y is

(1− x)
(
A +

√
A(A + 4x2)

)
2x2A

,

where A = (1− x)(x2(xy − x) + x− 1).

Proof. Set C2k+1 = xy−x and C2k = 0 in (22). At even height, no correction is necessary.
In this case, if we call the generating function f(x, y), we easily get

f(x, y) =
1

1− x− x2(xy − x)−
x2

1− x− x2f(x, y)

;

The proof is completed by solving for f . �

Remark. The corresponding triangle is surprisingly close—but not equal—to sequence
A114581 in the OEIS. (They differ for paths of length 7.)

Theorem 11. The generating function for Motzkin paths in which UHDs have weight y,
UHHDs have weight z, and no plateaus of length three or more appear is

(23)
−(A(2) + 1) +

√
(A(4) + 1)(A(0) + 1)

2x2(x− 1)
,

where A(k) = x(x− 1)(x3z + x2y + x + k).

Proof. In (22), set Ck = xy − x + x2z − x2 − x3/(1− x). To explain why, notice that the
xy − x and x2z − x2 terms give the correct weights to UHD and UHHDs, respectively,
and subtracting x3/(1− x) = x3 + x4 + x5 + · · · eliminates the possibility of plateaus of
length three or more. Using the functional equation (18) one can find that the generating
function is as in (23). �

Remark. Notice that, by setting y and z to 1 in (23), this is another way of counting the
number of Motzkin paths with minimal plateau length 1 and maximal plateau length 2.
(Compare with Prodinger and Wagner [4].)

Theorem 12. The generating function which counts Motzkin paths in which UHDs at
height 2 or more have weight y, and UHHDs at a height that is a multiple of 3 have
weight z is given by

G(x, y, z) =
1

1− x− x2p
,

where

p = −A +
√
B

2x2D
,
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and

A = x2Y (x2Y (x2Y + 3x− 3) + x2Z(x2Y + 2x− 2) + 2x2 − 6x + 3)

+ x2Z(2x2 − 2x + 1)− 2x2 + 3x− 1,

B = (x2Y − 1)(x2Y + 2x− 1)(D − x3Y − x3Z − 2x2 + x)

(D + x3Z + x3Y − x),

D = x2Y (x2Z + x2Y + x− 2) + (y − z)x4 + x3Z − 2x + 1,

Y = xy − x,

Z = x2z − x2.

Proof. It is easy to see what our correction terms must be:

k 1 2 3 4 5 6 7 8 9 10
Ck 0 Y Y + Z Y Y Y + Z Y Y Y + Z Y · · ·

Above, the correction term Y equals xy−x and Z equals x2z−x2. If G is the generating
function for such paths, the continued fraction expansion for g is

(24) G =
1 |

| 1− x
− x2 |
| 1− x− x2Y

− x2 |
| 1− x− x2(Y + Z)

− x2 |
| 1− x− x2Y

− x2 |
| 1− x− x2Y

− x2 |
| 1− x− x2(Y + Z)

− · · ·

We need to split off the “purely periodic” part of that continued fraction; call that
generating function p. It satisfies

p =
1 |

| 1− x− x2Y
− x2 |
| 1− x− x2(Y + Z)

− x2 |
| 1− x− x2Y − x2p

and therefore equals

p = −A +
√
B

2x2D
,

with A, B, and D as in the statement of the theorem. The theorem now follows. �
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