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K-THEORY OF FURSTENBERG TRANSFORMATION GROUP C∗-ALGEBRAS

KAMRAN REIHANI

Abstract. The paper studies the K-theoretic invariants of the crossed product C∗-algebras associated
with an important family of homeomorphisms of the tori Tn called Furstenberg transformations. Using
the Pimsner-Voiculescu theorem, we prove that given n, the K-groups of those crossed products, whose
corresponding n × n integer matrices are unipotent of maximal degree, always have the same rank
an. We show using the theory developed here, together with two computing programs - included in
an appendix - that a claim made in the literature about the torsion subgroups of these K-groups is
false. Using the representation theory of the simple Lie algebra sl(2,C), we show that, remarkably, an
has a combinatorial significance. For example, every a2n+1 is just the number of ways that 0 can be
represented as a sum of integers between −n and n (with no repetitions). By adapting an argument
of van Lint (in which he answered a question of Erdös), a simple, explicit formula for the asymptotic
behavior of the sequence {an} is given. Finally, we describe the order structure of the K0-groups of
an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using
classification results of H. Lin and N. C. Phillips.
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1. Introduction

Furstenberg transformations were introduced in [9] as the first examples of homeomorphisms of the tori,
which under some necessary and sufficient conditions are minimal and uniquely ergodic. In some sense,
they generalize the irrational rotations on the circle. They also appear in certain applications of ergodic
theory to number theory (e.g. in Diophantine approximation [8]), and sometimes are called skew product
transformations or compound skew translations of the tori. The terminology “Furstenberg transformation
group C∗-algebra” is what we would like to use in this paper to call the crossed products associated with
Furstenberg transformations, and we will denote them by Fθ,f . There have been several contributions to
the computations of K-theoretic invariants for some examples of these C∗-algebras in the literature (see
[16, 18, 25, 30, 39] to name a few). However, a more general study of such invariants for these C∗-algebras
has not been available to the best of our knowledge.

Remark 1.1. In independent (unpublished) work [16], R. Ji studied the K-groups of the C∗-algebras Fθ,f

(denoted by AFf,θ
in there) associated with the descending affine Furstenberg transformations (denoted

by Ff,θ in there) on the tori. He comments that “explicitly computing the K-groups of C(Tn)⋊K Z [AFf,θ

for θ = 0] is still not an easy matter”. Moreover, he gives no information about the ranks of the K-groups
or order structure of K0 in general, which are studied in the present paper. As we shall see in Remark
1.7 below, the claim that he makes about the form of the torsion subgroup of K∗(Fθ,f ) is unfortunately
not correct.

From the C∗-algebraic point view, when a Furstenberg transformation is minimal and uniquely ergodic,
the associated transformation group C∗-algebra is simple and has a unique tracial state with a dense tra-
cial range of the K0-group in the real line. Because of this, these C∗-algebras fit well into the classification
program of G. Elliott by finding their K-theoretic invariants. In fact, in the class of transformation group
C∗-algebras of uniquely ergodic minimal homeomorphisms on infinite compact metric spaces, K-theory is
a complete invariant. More precisely, suppose that X is an infinite compact metric space with finite cov-
ering dimension and h : X → X is a uniquely ergodic minimal homeomorphism, and put A := C(X)⋊hZ.
Let τ be the trace induced by the unique invariant probability measure. Then τ is the unique tracial
state on A. Let τ∗ : K0(A) → R be the induced homomorphism on K0(A) and assume that τ∗K0(A) is
dense in R. Then the 4-tuple

(K0(A),K0(A)+, [1A],K1(A))

is a complete algebraic invariant (called the Elliott invariant of A) [21, Corollary 4.8]. In this case, A has
stable rank one, real rank zero and tracial topological rank zero in the sense of H. Lin [19]. The order
on K0(A) is also determined by the unique trace τ , in the sense that an element x ∈ K0(A) is positive if
and only if either x = 0 or τ∗(x) > 0 [22, 29]. This implies, in particular, that the torsion subgroup of
K0(A) contributes nothing interesting to the order information. In other words, the order on K0(A) is
determined by the order on the free part. We will study the order structure of K0(Fθ,f ) in Section 7.

In order to compute the K-groups of a crossed product of the form C(Tn)⋊α Z in general, we make use
of the algebraic properties of K∗(C(Tn)) in Section 2. More precisely, K∗(C(Tn)) is an exterior algebra
over Zn with a certain natural basis, and the induced automorphism α∗ on K∗(C(Tn)) is in fact a ring
automorphism, which makes computations much easier. In fact, it is shown in Theorem 2.1 that the
problem of finding the K-groups of the transformation group C∗-algebra of a homeomorphism of the
n-torus is completely computable in the sense that one only needs to calculate the kernels and cokernels
of a finite number of integer matrices. These K-groups are finitely generated with the same rank (see
Corollary 2.2). In the special case of Anzai transformation group C∗-algebras An,θ associated with Anzai
transformations on the n-torus, we denote this common rank by an, which we will study in detail in this
paper. It is proved in Theorem 5.1 that an is the common rank of the K-groups of a larger class of trans-
formation group C∗-algebras, including the C∗-algebras associated with Furstenberg transformations on
Tn. We describe an as the constant term in a certain Laurent polynomial (Theorem 6.7). Then we study
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the combinatorial properties of the sequence {an}, which leads to a simple asymptotic formula.

To present the results and proofs of this paper we need some definitions about transformations on the
tori and the corresponding C∗-crossed products. Throughout this paper, Tn denotes the n-dimensional
torus with coordinates (ζ1, ζ2, . . . , ζn).

Definition 1.2. An affine transformation on Tn is given by

β(ζ1, ζ2, . . . , ζn) = (e2πit1ζb111 . . . ζb1nn , e2πit2ζb211 . . . ζb2nn , . . . , e2πitnζbn1
1 . . . ζbnn

n ),

where t := (t1, t2, . . . , tn) ∈ (R/Z)n and B := [bij ]n×n ∈ GL(n,Z). We identify the pair (t,B) with β.

Note that any automorphism of Tn followed by a rotation can be expressed in such a fashion. The set of
affine transformations on Tn form a group Aff(Tn), which can be identified with the semidirect product
(R/Z)n ⋊GL(n,Z). More precisely, for two affine transformations β = (t,B) and β′ = (t′,B′) on Tn, we
have

β ◦ β′ = (t+ Bt′,BB′) and β−1 = (−B−1t,B−1).

(In the expression Bt, t is a column vector, but for convenience we write it as a row vector.)

We remind the reader of an important fact before giving the next definition. Consider homotopy classes of
continuous functions from Tn to T. It is well known that in each class there is a unique “linear” function
(ζ1, . . . , ζn) 7→ ζb11 . . . ζbnn for some b1, . . . , bn ∈ Z. More precisely, every continuous function f : Tn → T

can be written as
f(ζ1, . . . , ζn) = e2πig(ζ1,...,ζn)ζb11 . . . ζbnn ,

for some continuous function g : Tn → R and unique integer exponents b1, . . . , bn. In particular, the
cohomotopy group π1(Tn) is isomorphic to Zn. Following [8, p. 35], we denote the exponent bi, which is
uniquely determined by the homotopy class of f , as bi = Ai[f ].

Definition 1.3. We define the following transformations in accordance with [16].

(a) A Furstenberg transformation ϕθ,f on Tn is given by

ϕ−1
θ,f (ζ1, ζ2, . . . , ζn) =

(

e2πiθζ1, f1(ζ1)ζ2, f2(ζ1, ζ2)ζ3, . . . , fn−1(ζ1, . . . , ζn−1)ζn
)

,

where θ is a real number, each fi : Ti → T is a continuous function with Ai[fi] 6= 0 for i =
1, . . . , n− 1, and f = (f1, . . . , fn−1).

(b) An affine Furstenberg transformation α on Tn is given by

α−1(ζ1, ζ2, . . . , ζn) = (e2πiθζ1, ζ
b12
1 ζ2, ζ

b13
1 ζb232 ζ3, . . . , ζ

b1n
1 ζb2n2 . . . ζ

bn−1,n

n−1 ζn),

where θ is a real number and the exponents bij are integers and bi,i+1 6= 0 for i = 1, . . . , n− 1.
(c) An ascending Furstenberg transformation α on Tn is given by

α−1(ζ1, ζ2, . . . , ζn) = (e2πiθζ1, ζ
k1

1 ζ2, ζ
k2

2 ζ3, . . . , ζ
kn−1

n−1 ζn),

where θ is a real number and the exponents ki are nonzero integers and ki | ki+1 for i = 1, . . . , n−2.
(d) In (c), if ki = 1 for i = 1, . . . , n− 1, the transformation is called an Anzai transformation σn,θ

on Tn. Thus it is given by

σ−1
n,θ(ζ1, ζ2, . . . , ζn) = (e2πiθζ1, ζ1ζ2, . . . , ζn−1ζn),

where θ is a real number. We usually drop the indices n and θ and write only σ for more
convenience.

Note that one can easily verify that ϕθ,f is a homeomorphism. Also in the above definition, we have con-
verted “descending”, which is used in [16, Definition 2.16], to “ascending” since the order of coordinates
there is opposite to ours.

For certain Furstenberg transformations on Tn we have the following theorem.
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Theorem 1.4. ([9], 2.3) If θ is irrational, then ϕθ,f defines a minimal dynamical system on Tn. If in
addition, each fi satisfies a uniform Lipschitz condition in ζi for i = 1, . . . , n− 1, then ϕθ,f is a uniquely
ergodic transformation and the unique invariant measure is the normalized Lebesgue measure on Tn. In
particular, every affine Furstenberg transformation defines a minimal and uniquely ergodic dynamical
system if θ is irrational.

As a conclusion, we have the following result for the Furstenberg transformation group C∗-algebra Fθ,f :=
C(Tn)⋊ϕθ,f

Z as introduced in [16].

Corollary 1.5. Fθ,f = C(Tn) ⋊ϕθ,f
Z is a simple C∗-algebra for irrational θ. If in addition, each fi

satisfies a uniform Lipschitz condition in ζi for i = 1, . . . , n− 1, then Fθ,f has a unique tracial state.

Proof. For the first part, the minimality of the action as stated in the preceding theorem implies the
simplicity of Fθ,f [4, 32]. For the second part, one can easily check that since θ is irrational, the action of
Z on Tn generated by ϕθ,f is free. So there are no periodic points in Tn. This and the unique ergodicity
of ϕθ,f yield the result [38, Corollary 3.3.10, p. 91]. �

Remark 1.6. Using the preceding corollary and much like the proof of Theorem 2.1 in [33], one can prove
that for irrational θ, Fθ,f is in fact the unique C∗-algebra generated by unitaries U, V1, . . . , Vn satisfying
the commutator relations

(CR)f [U, V1] = e2πiθ, [U, V2] = f1(V1), . . . , [U, Vn] = fn−1(V1, . . . , Vn−1),

where [a, b] := aba−1b−1 and all other pairs of operators from U, V1, . . . , Vn commute.

Remark 1.7. In [16, Proposition 2.17], R. Ji claims to have proved

(∗) If ϕθ,f is an ascending Furstenberg transformation on Tn with the ascending sequence {k1, k2, . . . , kn−1},

then the torsion subgroup of K∗(Fθ,f ) is isomorphic to Zk1 ⊕ Z
(m2)
k2

⊕ . . . ⊕ Z
(mn−1)
kn−1

, where the group

Z
(mi)
ki

is the direct product of mi copies of the cyclic group Zki
= Z/kiZ.

From this claim one would immediately deduce that the K-groups of the C∗-algebra An,θ := C(Tn)⋊σ Z

generated by an Anzai transformation σ on Tn should be torsion-free. However, we will show that this
is not true in general. This type of example first appears for n = 6, which seems already beyond hand
calculation. (We admit that hand calculation would be the most convincing method to use; however, it is
not practicable.) As the first counterexample we obtained by computer, we will see in Example E.1 that
K1(A6,θ) ∼= Z13 ⊕ Z2 (also, see Example 3.3). In fact, the error in the proof of (∗) is in [16, p. 29, l.2];
there it is “clearly” assumed that using a matrix S in GL(2n,Z), one can delete all entries denoted by ⋆’s
in K∗ − I, where K∗ is the 2n× 2n integer matrix corresponding to Fθ,f that acts on K∗(C(Tn)) = Λ∗Zn

with respect to a certain ordered basis. This error arose originally from the general form of the matrix
K∗ in [16, p. 27], which is not correct. R. Ji went on to use the torsion subgroup in (∗) as an invariant
to classify the C∗-algebras generated by ascending transformations and matrix algebras over them [16,
Theorem 3.6]. We do not know whether those classifications holds.

Question. Do there exist two different ascending Furstenberg transformations with the same parameter
θ and with isomorphic transformation group C∗-algebras?

It is worth mentioning that explicit calculations of K-groups in terms of the parameters involved are
possible in low dimensions (of the tori), and answer the question raised above negatively. However, such
calculations in terms of the given integer parameters (exponents) of the ascending Furstenberg transfor-
mation become quickly cumbersome and impossible in higher dimensions. We have used the computer
codes in Appendix E for several numerical values of the parameters in higher dimensions, and we have
not found any examples leading to the negative answer to this question yet. The torsion subgroups of
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the K-groups are usually larger than what R. Ji claimed in [16, Proposition 2.17]; it seems likely that
the torsion subgroups depend on the parameters involved in such a way that Ji’s classification result is
still true. We are currently investigating this problem.

This paper is organized as follows. In Section 2, we review the general approach of exterior algebras
for finding K-groups of transformation group C∗-algebras of homeomorphisms of the tori. In Section 3,
we apply this method to the important case of Anzai transformations and give the K-groups of their
transformation group C∗-algebras based on the tori of dimension up to 12 in Table 1 using the computer
programs given in Appendix E. In Section 4, we establish a Poincaré type of duality for the cokernels
of integer matrices that leads to some interesting facts about the K-groups when the dimension of the
underlying torus is odd. In Section 5, we focus on the rank an of the K-groups of Anzai transformations
group C∗-algebras based on the n-torus, and we show that an is, in fact, the rank of theK-groups of a large
class of transformation group C∗-algebras including those associated with Furstenberg transformations
on the n-torus. In Section 6, we first uncover an interesting connection between studying an and the
irreducible representations of the Lie algebra sl(2,C). This leads to a formula for an in terms of certain
partitions of integers. Then we use this formula to show several interesting combinatorial properties of the
sequence {an}. In Section 7, we study the order structure of the K0-group of a class of simple Furstenberg
transformation group C∗-algebras to make their Elliott invariants more accessible. The appendices at
the end are provided mainly for self-containment of the paper, but we sometimes refer to them for the
proof of some lemmas or propositions that are somewhat far from the main concepts and goals of this
paper by nature. Appendix F contains some applications of the results of this paper to our earlier work
[33].

2. K-groups of C(Tn)⋊α Z

In this section, we describe a general method to compute the K-groups of C(Tn) ⋊α Z, where α is an
arbitrary homeomorphism of Tn. (By abuse of notation, the automorphism α of C(Tn) is defined by
α(f) = f ◦ α−1 for f ∈ C(Tn).) To do this, we will pay special attention to the algebraic structure of
K∗(Tn) and how the induced automorphisms on it can be realized. Note that it is sufficient to consider
the special case of “linear” homeomorphisms since, as stated before Definition 1.3, every continuous func-
tion f : Tn → T is homotopic to a unique “linear” function (ζ1, . . . , ζn) 7→ ζb11 . . . ζbnn for some integer
exponents b1, . . . , bn. Moreover, the K-groups of C(Tn) ⋊α Z depend (up to isomorphism) only on the
homotopy class of α [3, Corollary 10.5.2].

It is well known that K∗(Tn) is a Z2-graded ring, and by the Künneth formula (see [2, Corollary 2.7.15]
or [36, Theorem 4.1]), it is an exterior algebra (over Z) on n generators, where the elements of even degree
are in K0(Tn) and those of odd degree are in K1(Tn). The generators of this exterior algebra correspond
to the generators of the dual group Zn of Tn [37, p. 185]. Indeed, in this case the Chern character

ch : K∗(Tn) −→ Ȟ∗(Tn,Q)

is integral and gives the Chern isomorphisms

ch0 : K0(Tn) −→ Ȟeven(Tn,Z),

ch1 : K1(Tn) −→ Ȟodd(Tn,Z),

where Ȟ∗(Tn,Z) ∼= Λ∗
Z
(e1, . . . , en) is the (Čech) cohomology ring of Tn under the cup product, and

Ȟk(Tn,Z) ∼= Λk
Z
(e1, . . . , en). On the other hand, K∗(Tn) ∼= K∗(C(T

n)). So by introducing ei := [zi]1, i.e.
the class in K1(C(Tn)) of the coordinate function zi : T

n → T given by

zi(ζ1, . . . , ζn) = ζi

as a unitary element of of C(Tn) for i = 1, . . . , n, we have the isomorphismsK∗(C(Tn)) ∼= Λ∗
Z
(e1, . . . , en) ∼=

Λ∗Zn, which respect the canonical embedding of Zn. Moreover, these isomorphisms are unique since only
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the identity automorphism of the ring Λ∗Zn fixes each element of Zn.

Now, we use the Pimsner-Voiculescu six term exact sequence [31] as the main tool for computing the
K-groups of C(Tn) ⋊α Z. Let α∗(= K∗(α)) be the ring automorphism of K∗(C(T

n)) induced by α and
let αi be the restriction of α∗ on Ki(C(Tn)) for i = 0, 1, and set A := C(Tn) ⋊α Z. Then we have the
following exact sequence.

(1)

K0(C(Tn))
α0−id
−−−−→ K0(C(Tn))

0
−−−−→ K0(A)

exp

x









y
∂

K1(A)
1

←−−−− K1(C(Tn))
α1−id
←−−−− K1(C(Tn))

Here,  : C(Tn)→ A is the canonical embedding of C(Tn) in A, 0 := K0() and 1 := K1(). Also, from
now on id denotes the identity function on each underlying set. As a result, we have the following short
exact sequences

(2) 0 −→ coker(α0 − id) −→ K0(C(T
n)⋊α Z) −→ ker(α1 − id) −→ 0,

(3) 0 −→ coker(α1 − id) −→ K1(C(T
n)⋊α Z) −→ ker(α0 − id) −→ 0.

Since all the groups involved are abelian and finitely generated, and ker(αi− id) is torsion-free (i = 0, 1),
these short exact sequences split (since projective Z-modules are precisely free abelian groups), and we
have

(4) K0(C(T
n)⋊α Z) ∼= coker(α0 − id)⊕ ker(α1 − id),

(5) K1(C(T
n)⋊α Z) ∼= coker(α1 − id)⊕ ker(α0 − id).

So it suffices to determine the kernel and cokernel of (α0−id) and (α1−id) acting as endomorphisms on the

finitely generated abelian groups Λeven
Z

(e1, . . . , en) ∼= Z2n−1

and Λodd
Z

(e1, . . . , en) ∼= Z2n−1

, respectively.
Note that from the isomorphisms (4) and (5), the K-groups of C(Tn)⋊α Z are finitely generated abelian
groups. Now, since α∗ is a ring homomorphism, it suffices to know the action of α∗ on e1, . . . , en. In fact,
for a general basis element ei1 ∧ ei2 ∧ . . . ∧ eir of K∗(C(Tn)) ∼= Λ∗

Z
(e1, . . . , en) we have

α∗(ei1 ∧ ei2 ∧ . . . ∧ eir ) = α∗(ei1) ∧ α∗(ei2) ∧ . . . ∧ α∗(eir ).

Thus if we consider {e1, . . . , en} as the canonical basis of Zn and take α̂ = α∗|Zn , we have α∗ = ∧∗α̂ =

⊕n
r=1 ∧

r α̂, α0 = ∧evenα̂ = ⊕r≥0 ∧2r α̂ and α1 = ∧oddα̂ = ⊕r≥0 ∧2r+1 α̂, where ∧iα̂ is the i-th exterior
power of α̂, which acts on ΛiZn for i = 0, 1, . . . , n. Now, let α−1 = (f1, . . . , fn) and aji := Aj [fi], or in
other words, assume that fi is homotopic to za1i

1 . . . zani
n : (ζ1, . . . , ζn) 7→ ζa1i

1 . . . ζani
n for i = 1, . . . , n. So

we can write

α∗(ei) = α∗[zi]1 = [α(zi)]1 = [zi ◦ α
−1]1 = [fi]1 = [za1i

1 . . . zani
n ]1 =

n
∑

j=1

aji[zj ]1 =
n
∑

j=1

ajiej .

Therefore α̂ acts on Zn via the corresponding integer matrix A := [aij ]n×n ∈ GL(n,Z), α∗ acts on Λ∗Zn

via ∧∗A, and we have the following isomorphisms

K0(C(T
n)⋊α Z) ∼= coker(α0 − id)⊕ ker(α1 − id) = coker(⊕r≥0 ∧

2r α̂− id)⊕ ker(⊕r≥0 ∧
2r+1 α̂− id),

so we can write

K0(C(T
n)⋊α Z) ∼=

⊕

r≥0

[coker(∧2rα̂− id)⊕ ker(∧2r+1α̂− id)],
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and similarly

K1(C(T
n)⋊α Z) ∼=

⊕

r≥0

[coker(∧2r+1α̂− id)⊕ ker(∧2rα̂− id)].

We summarize the arguments discussed above in the following theorem.

Theorem 2.1. Let α be a homeomorphism of Tn and α̂ ∈ Aut(Zn) be the restriction of α∗ to Zn (as
above). Then α∗ = ∧∗α̂ = ⊕n

r=1 ∧
r α̂ on K∗(Tn) = Λ∗Zn and

K0(C(T
n)⋊α Z) ∼=

⊕

r≥0

[coker(∧2rα̂− id)⊕ ker(∧2r+1α̂− id)],

K1(C(T
n)⋊α Z) ∼=

⊕

r≥0

[coker(∧2r+1α̂− id)⊕ ker(∧2rα̂− id)].

Therefore in order to compute the K-groups of C(Tn) ⋊α Z, we must find the kernel and cokernel of
∧rα̂− id as an endomorphism of ΛrZn for r = 0, 1, . . . , n. Note that the matrix of ∧rα̂− id with respect
to the canonical basis {ei1 ∧ . . .∧eir |1 ≤ i1 < . . . < ir ≤ n} with lexicographic order is An,r := ∧rA− I(nr)

,

which is an integer matrix of order
(

n
r

)

(Ik is the identity matrix of order k - we often omit k whenever it
is clear). So by computing the kernel and cokernel of An,r for r = 0, 1, . . . , n with appropriate tools (such
as the Smith normal form), one can determine the K-groups of C(Tn)⋊αZ. The author has written some
Maple codes to handle such computations (see Appendix E) .

Corollary 2.2. The K-groups of C(Tn) ⋊α Z are finitely generated abelian groups with the same rank.
Moreover, this common rank equals

rank ker(∧∗α̂− id) =

n
∑

r=0

rank ker(∧rα̂− id).

Proof. Use the previous proposition and note that for any ϕ ∈ End(Zn) one has rank kerϕ = rank cokerϕ
by the Smith normal form theorem (see Theorem A.2). �

Corollary 2.3. If α, β are homeomorphisms of Tn, whose corresponding integer matrices A,B ∈ GL(n,Z)
are similar over Z, then

Kj(C(T
n)⋊α Z) ∼= Kj(C(T

n)⋊β Z), (j = 1, 2).

Proof. The assumption obviously implies that the automorphisms α̂ and β̂ are conjugate in Aut(Zn).

This together with an easy application of the identity ∧r(φ̂ ◦ ψ̂) = (∧rφ̂) ◦ (∧rψ̂) (see Appendix C) imply

that ∧rα̂ and ∧r β̂ (and therefore ∧rα̂− id and ∧rβ̂ − id) are conjugate in Aut(ΛrZn) for r = 0, 1, . . . , n.
The result follows now from Theorem 2.1. �

3. Anzai transformation group C∗-algebras An,θ

The simplest case of a Furstenberg transformation on an n-torus is an Anzai transformation σ, which was
defined in part (d) of Definition 1.3. To study the K-groups of Anzai transformation group C∗-algebras
An,θ = C(Tn)⋊σ Z using methods of the previous section, we will first need the “linearized” form of the
corresponding affine homeomorphism σ−1, which is as follows

(ζ1, ζ2, . . . , ζn) 7→ (ζ1, ζ1ζ2, . . . , ζn−1ζn).

So σ̂(ei) = ei−1+ei for i = 1, . . . , n (e0 := 0). The matrix with respect to the canonical basis {e1, . . . , en}
of Zn that corresponds to σ̂ is the full Jordan block
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Sn :=

























1 1 0 · · · 0

0 1 1
...

0
. . .

. . .
. . . 0

... 0 1 1

0 · · · 0 0 1

























n×n

The following examples illustrates the methods described in the previous section for computing the K-
groups of Anzai transformation group C∗-algebras An,θ.

Example 3.1. We compute the K-groups of A3,θ, which were computed in [39] by another method (the

C∗-algebra was denoted by A5,5
θ in there). In fact, the Chern character and noncommutative geometry

were used in [39] to compute the kernel and cokernel of σi − id for i = 0, 1. However, we compute the
kernel and cokernel of S3,r := ∧rS3 − I(3r)

for r = 0, 1, 2, 3, where

S3 =











1 1 0

0 1 1

0 0 1











r = 0) S3,0 = ∧0S3 − I1 = [0]. So kerS3,0 = Z and coker S3,0 = Z/〈0〉 ∼= Z.

r = 1)

S3,1 = ∧1S3 − I3 =











1 1 0

0 1 1

0 0 1











−











1 0 0

0 1 0

0 0 1











=











0 1 0

0 0 1

0 0 0











So

kerS3,1 = {(x, y, z) ∈ Z3| y = z = 0} = (Z, 0, 0) ∼= Z,

coker S3,1 = Z3/S3,1Z
3 = Z3/〈e1, e2〉 ∼= Z.

r = 2)

S3,2 = ∧2S3 − I3 =











1 1 1

0 1 1

0 0 1











−











1 0 0

0 1 0

0 0 1











=











0 1 1

0 0 1

0 0 0











So

kerS3,2 = {(x, y, z) ∈ Z3| y + z = z = 0} = (Z, 0, 0) ∼= Z,

coker S3,2 = Z3/S3,2Z
3 = Z3/〈e1, e2〉 ∼= Z.

r = 3) S3,3 = ∧3S3 − I1 = [0]. So kerS3,3 = Z and coker S3,3 = Z/〈0〉 ∼= Z.
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Now, using Theorem 2.1 we have

K0(A
5,5
θ ) = K0(A3,θ) ∼= (coker S3,0 ⊕ coker S3,2)⊕ (kerS3,1 ⊕ kerS3,3) ∼= Z⊕ Z⊕ Z⊕ Z = Z4,

K1(A
5,5
θ ) = K1(A3,θ) ∼= (coker S3,1 ⊕ coker S3,3)⊕ (kerS3,0 ⊕ kerS3,2) ∼= Z⊕ Z⊕ Z⊕ Z = Z4.

Notation 3.2. We let an := rankK0(An,θ) = rankK1(An,θ) and an,r := rank ker(∧rSn − I) for r =
0, 1, . . . , n. From Corollary 2.2 we have

an = rankker(∧∗Sn − I) =

n
∑

r=0

an,r.

Example 3.3. Using the methods described in Section 2, we have obtained the K-groups of An,θ by
computer for 1 ≤ n ≤ 12. The cases n = 1, 2, 3 have been calculated in the literature already: A1,θ = Aθ

in [34]; A2,θ = A4
θ in [25]; and A3,θ = A5,5

θ in [39]. However, there are no explicit computations for

the higher dimensional cases starting with A4,θ = A6,10
θ as in [24] since hand calculations of kernels and

cokernels of the maps become quickly impossible. Using the Maple codes given in Appendix E, we can
find the kernel and cokernel of

Sn,r := ∧rSn − I(nr)

for r = 0, 1, . . . , n and n = 1, . . . , 12 by means of the Smith normal form theorem (see Appendix A), and

therefore we can compute the K-groups. The results are illustrated in Table 1, where Z
(m)
k denotes the

direct sum of m copies of the cyclic group Zk = Z/kZ.

Table 1. The K-groups of An,θ for 1 ≤ n ≤ 12

n K0(An,θ) K1(An,θ) an

1 Z2 Z2 2

2 Z3 Z3 3

3 Z4 Z4 4

4 Z6 Z6 6

5 Z8 Z8 8

6 Z13 Z13 ⊕ Z2 13

7 Z20 Z20 20

8 Z32 ⊕ Z
(2)
8 Z32 ⊕ Z

(2)
18 32

9 Z52 ⊕ Z
(2)
3 ⊕ Z

(2)
9 Z52 ⊕ Z

(2)
3 ⊕ Z

(2)
9 52

10 Z90 ⊕ Z
(4)
55 Z90 ⊕ Z

(2)
11 ⊕ Z99 ⊕ Z198 ⊕ Z2574 90

11 Z152 ⊕ Z
(12)
11 ⊕ Z

(4)
143 ⊕ Z

(2)
286 Z152 ⊕ Z

(12)
11 ⊕ Z

(4)
143 ⊕ Z

(2)
286 152

12 Z268 ⊕ Z
(14)
13 ⊕ Z

(4)
26 ⊕ Z

(4)
1716 ⊕ Z

(2)
3432 ⊕ Z

(2)
58344 Z268 ⊕ Z

(4)
13 ⊕ Z

(4)
26 ⊕ Z

(6)
286 ⊕ Z

(2)
4862 ⊕ Z

(2)
68068 268

Due to computational limitations, we do not have any results yet for n > 12, except for the sequence
of ranks {an}, which we will study in detail in Sections 5 and 6. We will show the importance of
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this sequence in Section 5. Briefly, an is the common rank of the K-groups of a certain family of C∗-
algebras including Furstenberg transformation group C∗-algebras Fθ,f based on Tn. Also, we will prove
that {an} is a strictly increasing sequence (see Proposition 6.5). On the other hand, it seems that
the K-groups of An,θ have torsion in general. The first example is K1(A6,θ); this is in fact because
coker S6,3 = coker(∧3S6 − I20) ∼= Z3 ⊕ Z2 (see Example E.1 and Remark 1.7). Also, it is seen that the
K0- and K1-groups are isomorphic for odd values of n in Table 1. In fact, this is true for more general
cases (see Theorem 4.3).

4. A Poincaré type of duality

As stated in Theorem 2.1, the K-groups of a transformation group C∗-algebras of the form C(Tn)⋊α Z

are completely determined by the corresponding homomorphism α̂ ∈ Aut(Zn) and its exterior powers.
From a computational point of view, we only need the cokernels of the maps involved, since we know that
for any endomorphism ̺ on Zm, ker ̺ ∼= coker̺/tor(coker̺), where tor(G) denotes the torsion subgroup
of the finitely generated abelian group G (see Appendix A). When det α̂ = 1, we don’t even need to
compute all the cokernels. This is due to the following proposition, which establishes a Poincaré type
of duality between cokernels of certain integer matrices. We refer to Definition A.1 for the notion of
equivalence of endomorphisms of Zn.

Proposition 4.1 (Poincaré duality). Let α̂ ∈ SL(n,Z) (i.e. det α̂ = 1). Then ∧rα̂− id and ∧n−rα̂− id

are equivalent as endomorphisms of ΛrZn = Λn−rZn = Z(
n
r). Equivalently, coker(∧rα̂− id) is isomorphic

to coker(∧n−rα̂− id) for r = 0, 1, . . . , n.

Proof. We prove the equivalence of the endomorphisms for their corresponding integer matrices with
respect to a certain basis. Let E = {e1, . . . , en} be a basis for Zn and set S = {1, 2, . . . , n}. For
I = {i1, . . . , ir} ⊂ S with 1 ≤ i1 < . . . < ir ≤ n, put eI = ei1 ∧ . . . ∧ eir ∈ ΛrZn. Then Er :=
{eI | I ⊂ S , |I| = r} is a basis for ΛrZn. Let ω := e1 ∧ . . . ∧ en, which generates ΛnZn. We have
∧0α̂ − id = 0, and ∧nα̂(ω) = α̂(e1) ∧ . . . ∧ α̂(en) = (det α̂)(e1 ∧ . . . ∧ en) = ω, so ∧nα̂ − id = 0. Now,
fix an r ∈ {1, . . . , n − 1}. For an arbitrary subset I ⊂ S with |I| = r, take J = E \ I = {j1, . . . , jn−r},
so |J | = n− r. Then eI ∧ eJ = (sgn µ)ω, in which µ ∈ Sn is the permutation that converts (1, 2, . . . , n)
to (i1, . . . , ir, j1, . . . , jn−r). It is easily seen that µ = µ1 . . . µr, where µk is the permutation that takes ik
from its position in (1, 2, . . . , n) to its new position in (i1, . . . , ir, j1, . . . , jn−r). One can see that µk is the
combination of ik − (r − k + 1) number of transpositions (k = 1, . . . , r). Thus

sgn µ =
r
∏

k=1

(−1)ik−(r−k+1) = (−1)ℓ(I)−
r(r+1)

2 ,

where ℓ(I) :=
∑r

k=1 ik. Now, take m =
(

n
r

)

=
(

n
n−r

)

and let Er = {eI1 , . . . , eIm} be a basis for ΛrZn.

Write En−r = {eJ1 , . . . , eJm
} as the basis for Λn−rZn such that Jk = E \ Ik for k = 1, . . . ,m. From the

above argument one can write

eIi ∧ eJj
= (−1)ℓ(Ii)−

r(r+1)
2 δijω,

since if i 6= j then Ii∩Jj 6= ∅ and eIi ∧eJj
= 0. Let A = [aij ]m×m and B = [bij ]m×m be the corresponding

integer matrices of ∧rα̂ and ∧n−rα̂ with respect to Er and En−r, respectively. So ∧rα̂(eIi) =
∑m

p=1 apieIp
and ∧n−rα̂(eJj

) =
∑m

q=1 bqjeJq
. What we want to show is that A− I is equivalent to B− I. We have

∧nα̂(eIi ∧ eJj
) = (−1)ℓ(Ii)−

r(r+1)
2 δijω = ∧rα̂(eIi)

∧

∧n−rα̂(eJj
) =

m
∑

p,q=1

apibqj(−1)
ℓ(Ip)−

r(r+1)
2 δpqω.

Therefore one obtains

(6)
m
∑

k=1

(−1)ℓ(Ik)−ℓ(Ii)akibkj = δij .
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Now, if we set cij := (−1)ℓ(Ij)−ℓ(Ii)aji and C := [cij ]m×m, then cij − δij = (−1)ℓ(Ij)−ℓ(Ii)(aji − δji).
Therefore C− I is obtained from A− I by changing rows (and columns) and occasionally multiplying some
rows (and columns) by −1. This means that C− I is equivalent to A− I. On the other hand, the equation
(6) means that CB = I. So C− I = C(B− I)(−I) and B− I is also equivalent to C− I. Consequently, A− I

is equivalent to B− I. �

Corollary 4.2. If det α̂ = 1, then rank ker(∧rα̂ − id) = rank ker(∧n−rα̂ − id). In particular, using
Notation 3.2, we have an,r = an,n−r for r = 0, 1, . . . , n.

We are now ready to apply our Poincaré duality to a the following K-theoretic result.

Theorem 4.3. Let A := C(T2m−1) ⋊α Z be such that the corresponding homomorphism α̂ satisfies
det α̂ = 1. Then K0(A) ∼= K1(A) as abelian groups, and the (common) rank of the K-groups of A is
an even number. In particular, for every Furstenberg transformation group C∗-algebra Fθ,f based on an
odd-dimensional torus (e.g. A2m−1,θ), one has K0(Fθ,f ) ∼= K1(Fθ,f ).

Proof. Combining Theorem 2.1 and Proposition 4.1, one obtains

K0(A) ∼= K1(A) ∼=

m−1
⊕

k=0

[coker(∧kα̂− id)⊕ ker(∧kα̂− id)].

As a result, the rank of the K-groups of A is an even number since the ranks of the cokernel and kernel
of an endomorphism coincide. Note that for Fθ,f the corresponding integer matrix of α̂ is an upper
triangular matrix with 1’s on the diagonal. Thus det α̂ = 1. �

5. The rank an of the K-groups of An,θ

In this section, we study some general properties of an, the (common) rank of the K-groups of Anzai
transformation group C∗-algebras based on Tn. We specify a family of C∗-algebras, whose ranks of
K-groups are given by the same sequence {an}. As an application, we characterize the rank of the K-
groups of Furstenberg transformation group C∗-algebras Fθ,f . In Appendix F, this study will have some
applications to the classification of simple infinite dimensional quotients of the Heisenberg-type group
C∗-algebras C∗(Dn), which were studied in an earlier work [33]. We remind the reader of some linear
algebraic properties of nilpotent and unipotent matrices in Appendix B.

We compare the ranks of the K-groups of a class of C∗-algebras of the form C(Tn)⋊α Z in the following
theorem, which shows that the rank an of the K-groups of An,θ is somehow generic.

Theorem 5.1. Let A = C(Tn)⋊αZ, in which α is a homeomorphism of Tn, whose corresponding integer
matrix A ∈ GL(n,Z) is unipotent of maximal degree (i.e. deg(A) = n). Then

rankK0(A) = rankK1(A) = an = rankK0(An,θ) = rankK1(An,θ).

In particular, the rank of the K-groups of any Furstenberg transformation group C∗-algebra Fθ,f =
C(Tn)⋊ϕθ,f

Z is equal to the rank of the K-groups of An,θ, namely, to an.

Proof. Let α̂ denote the restriction of α∗ to Zn and A be the corresponding matrix of α̂ acting on Zn.
Also, let Sn be the corresponding matrix for An,θ as denoted in Section 3. Since A is unipotent of maximal
degree by assumption, and Sn is unipotent of maximal degree too, the matrices A and Sn are similar
over C (see Corollary B.4). In fact, the Jordan normal form of A − I is precisely Sn − I. On the other
hand, we know by Corollary 2.2 that the rank of the K-groups of A is equal to rankker(∧∗A − I). Note
that by the Smith normal form theorem (see Theorem A.2), rank ker(∧∗A− I) = dimC ker(∧∗A− I). The
similarity of A and Sn implies the similarity of ∧∗A − I and ∧∗Sn − I as matrices acting on Λ∗Cn. So
dimC ker(∧∗A− I) = dimC ker(∧∗Sn − I) = an, which yields the result.

For the second part, note that the corresponding integer matrix of a Furstenberg transformation ϕθ,f on
Tn is of the form
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(♥)

























1 b12 b13 · · · b1n

0 1 b23
...

0
. . .

. . .
. . . bn−2,n

... 0 1 bn−1,n

0 · · · 0 0 1

























n×n

which is unipotent of maximal degree since bi,i+1 6= 0 for i = 1, . . . , n−1 (see Definition 1.3 and Example
B.5). Now, the proof of the first part yields the result. �

Remark 5.2. In the preceding theorem, the basis for Zn for the matrices involved is {e1, . . . , en}, where
ei := [zi]1 as introduced at the beginning of Section 2. It is interesting to know that if α̂ is an arbitrary
unipotent automorphism of Zn, then there is a basis for Zn with respect to which the integer matrix A of
α̂ is of the form (♥) above (but not necessarily with bi,i+1 6= 0 for i = 1, . . . , n− 1, unless α̂ is of maximal
degree) [12, Theorems 16 and 18]. The unipotency of α̂ has also important effects on the dynamics of the
generated flow on Tn. For example, if α is an affine transformation on Tn and α̂ is unipotent, then the
dynamical system (Tn, α) has quasi-discrete spectrum [12, Theorem 19]. More generally, let α = (t,A) be
an affine transformation on Tn and take Zp(A) = ker(Ap − id) ⊂ Zn for p ∈ N and consider the following
conditions

(1) Z1(A) = Zp(A), ∀p ∈ N,
(2) t is rationally independent over Z1(A), i.e. if k = (k1, . . . , kn) ∈ Z1(A) is such that 〈t,k〉 :=

∑n
j=1 tjkj is a rational number, then k = 0.

(3) Z1(A) 6= {0},
(4) A is unipotent.

Then (Tn, α) is ergodic with respect to Haar measure if and only if α satisfies the conditions (1) and
(2) [12]. Moreover, if α satisfies the conditions (1) through (4), then the dynamical system (Tn, α) is
minimal, uniquely ergodic with respect to Haar measure, and has quasi-discrete spectrum. Conversely,
any minimal transformation on Tn with topologically quasi-discrete spectrum is conjugate to an affine
transformation which must satisfy the conditions (1) through (4) [13]. The C∗-algebras corresponding to
such actions are therefore simple and have a unique tracial state.

6. Combinatorial properties of the sequence {an}

As mentioned before, one of our main goals is to describe an as the rank of the K-groups of An,θ.
Since an =

∑n
r=0 an,r, it makes sense to first study an,r. So we begin by finding some combinatorial

properties of an,r, which is the rank of ker(∧r σ̂ − id) for r = 0, 1, . . . , n, where σ̂ is the automorphism of
Zn corresponding to the Anzai transformation σ on Tn, and is represented by the integer matrix Sn as in
the beginning of Section 3. In fact, we will show that an,r equals the number of partitions of [r(n+1)/2]
to r distinct positive integers not greater than n. To do this, we will use properties of the irreducible
representations of the simple Lie algebra sl(2,C).

6.1. Connections with representation theory of sl(2,C). The automorphism σ̂ is realized through
its action on the basis {e1, . . . , en} of Zn, where ei := [zi] for i = 1, . . . , n as in Section 2, and we have
σ̂(ei) = ei + ei−1 with e0 := 0. Therefore introducing a new endomorphism of Zn by ϕ̂ := σ̂− id, we will
get

ϕ̂(ei) = ei−1.

This is precisely a relation that may be recognized as part of the data of the canonical representation πn
of the Lie algebra sl(2,C) on a complex vector space V with basis {e1, . . . , en}. More precisely, we have

ϕ̂ = πn(f),
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where the canonical representation πn and the (third) basis element f ∈ sl(2,C) are defined in Appendix
D. The endomorphism ϕ̂ induces a derivation on ΛrV , which is defined by

D rϕ̂(x1 ∧ . . . ∧ xr) =
r

∑

i=1

x1 ∧ . . . ∧ ϕ̂(xi) ∧ . . . ∧ xr

for r = 2, . . . , n and xi ∈ V , and by setting D 0ϕ̂ := 0, and D 1ϕ̂ := ϕ̂ (see Appendix C). Then the
following result states that an,r equals the nullity of the linear mapping D rϕ̂.

Proposition 6.1. Let σ be an Anzai transformation on Tn and σ∗ be the corresponding induced homo-
morphism on K∗(C(Tn)) = Λ∗Zn. Let σ̂ be the restriction of σ∗ to Zn and consider the linear mapping
σ̂ ⊗ 1 on V := Zn ⊗ C. Take ϕ̂ = σ̂ ⊗ 1− id and D rϕ̂ as above. Then

an,r = rankker(∧rσ̂ − id) = dim kerD rϕ̂.

Proof. Since ϕ̂ is a nilpotent mapping, we can use Corollary C.4 to conclude that ∧r(σ̂ ⊗ 1)− id ∼ D rϕ̂.
Therefore

rankker(∧r σ̂ − id) = dimker(∧r(σ̂ ⊗ 1)− id) = dimkerD rϕ̂.

�

Notation 6.2. Let n, k, r be positive integers. Then P (n, r, k) denotes the number of partitions of k to
r distinct positive integers not greater than n. In other words

P (n, r, k) = card{(i1, . . . , ir) | i1 + . . .+ ir = k, 1 ≤ i1 < . . . < ir ≤ n}.

By convention, we set P (n, 0, 0) = 1 and P (n, r, 0) = P (n, 0, k) = 0 for r, k ≥ 1.

We are ready now to state the main result of this section.

Theorem 6.3. With the above notation, an,r = P (n, r, [r(n+1)/2]), where [x] denotes the greatest integer
not greater than x. In particular,

an =

n
∑

r=0

P (n, r, [
r(n+ 1)

2
]).

Proof. Let πn : sl(2,C) → gl(V ) be the canonical representation of the Lie algebra sl(2,C) on the n-
dimensional complex vector space V , and extend πn to πr

n : sl(2,C) → gl(ΛrV ) with π1
n = πn. More

precisely, for every X ∈ sl(2,C) define

πr
n(X)(v1 ∧ . . . ∧ vr) = (πn(X)v1) ∧ v2 ∧ . . . ∧ vr + . . .+ v1 ∧ . . . ∧ vr−1 ∧ (πn(X)vr).

This means that we have D rϕ̂ = πr
n(f). In particular, an,r is the nullity of πr

n(f) by the previous
proposition. Following Weyl’s theorem (see Theorem D.1), since the Lie algebra sl(2,C) is semisimple
the representation πr

n has to be completely reducible. This means we should have a decomposition
ΛrV = ⊕N

p=1Wp, where Wp’s are some πr
n-invariant irreducible subspaces of ΛrV . Moreover, the number

N of such subspaces is equal to dimE0 + dimE1, where

Ej = {v ∈ ΛrV | πr
n(h) v = j v}, (j = 0, 1)

and h is the first basis element of sl(2,C) as in Appendix D (see Theorem D.3). On the other hand, the
number N is equal to the nullity of πn

r (f). In fact, since πn
r |Wp

is an irreducible representation of sl(2,C)
on Wp, it is equivalent to the canonical representation of sl(2,C) on Wp by Theorem D.3. But the image
of f in the canonical representation has a 1-dimensional kernel due to the part (c) of Proposition D.2.
So the nullity of πn

r (f) counts the number of Wp’s. Therefore

an,r = dimkerπr
n(f) = dimE0 + dimE1.

To compute the last two terms, note that using Proposition D.2 we have πn(h)ei = (2i− n− 1)ei, which
leads to

πr
n(h)(ei1 ∧ . . . ∧ eir ) = (2(i1 + . . .+ ir)− r(n+ 1))ei1 ∧ . . . ∧ eir .
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So for even r(n + 1) we have E1 = {0} and dimE0 = P (n, r, r(n + 1)/2), and for odd r(n + 1) we have
E0 = {0} and dimE1 = P (n, r, r(n+1)/2−1). To summarize, we have established the following equalities

an,r = dimkerD rϕ̂ = dimkerπr
n(f) = N = dimE0 + dimE1 = P (n, r, [r(n+ 1)/2]).

The desired formula for an is immediate now by writing an =
∑n

r=0 an,r. �

Using the previous theorem, we can prove that {an} is a strictly increasing sequence. We need a lemma
first.

Lemma 6.4. P (n+ 1, r, k + s) ≥ P (n, r, k) for s = 0, 1, . . . , r.

Proof. For s = 0, the proof is clear. Now, let 1 ≤ s ≤ r and suppose that (j1, . . . , jr) is a partition of k
such that 1 ≤ j1 < . . . < jr ≤ n. Define iq := jq for 1 ≤ q ≤ r−s and iq := jq+1 for r−s+1 ≤ q ≤ r. Then
(i1, . . . , ir) is a partition of k + s and 1 ≤ i1 < . . . < ir ≤ n+ 1. Thus P (n+ 1, r, k + s) ≥ P (n, r, k). �

Proposition 6.5. {an} is a strictly increasing sequence.

Proof. First, note that an,0 = an,n = P (n, 0, 0) = P (n, n, n(n+1)/2) = 1, and from the previous theorem
we have an =

∑n
r=0 P (n, r, [r(n+ 1)/2]). Fix m ∈ N, and get

a2m+1 = 1 +

m
∑

r=0

P (2m+ 1, 2r, 2rm+ 2r) +

m−1
∑

r=0

P (2m+ 1, 2r + 1, 2rm+ 2r +m+ 1),

a2m =
m
∑

r=0

P (2m, 2r, 2rm+ r) +
m−1
∑

r=0

P (2m, 2r + 1, 2rm+m+ r)

= 1 +
m−1
∑

r=0

P (2m, 2r, 2rm+ r) +
m−1
∑

r=0

P (2m, 2r + 1, 2rm+m+ r),

a2m−1 =

m−1
∑

r=0

P (2m− 1, 2r, 2rm) +

m−1
∑

r=0

P (2m− 1, 2r + 1, 2rm+m).

Applying the previous lemma to the terms of the sums expressed above implies that

a2m+1 > a2m > a2m−1.

�

6.2. Generating functions for the sequence {an}. In this part, we express the rank of the K-groups
of An,θ as explicitly as possible. In fact, we present them as the constant terms in the polynomial
expansions of certain functions. First of all, we need the following basic lemma.

Lemma 6.6. Let P (n, r, k) denote the number of partitions of k to r distinct positive integers not greater
than n. Then P (n, r, k) is the coefficient of urtk in the polynomial expansion of Fn(u, t) :=

∏n
i=1(1+ut

i).
In other words,

∑

r,k≥0

P (n, r, k)urtk =

n
∏

i=1

(1 + uti).

Proof.
n
∏

i=1

(1 + uti) = 1 +
n
∑

r=1

∑

(i1,...,ir)

1≤i1<...<ir≤n

(uti1) . . . (utir) = 1 +
n
∑

r=1

∑

k≥1

P (n, r, k)urtk =
∑

r,k≥0

P (n, r, k)urtk.

�

Now, we have the following result for the rank an of the K-groups of An,θ.
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Theorem 6.7. Let an = rankK0(An,θ) = rankK1(An,θ). Then for a nonnegative integer m we have

(i) a2m+1 is the constant term in the Laurent polynomial expansion of
m
∏

j=−m

(1 + zj),

(ii) a2m is the constant term in the Laurent polynomial expansion of

(1 + z)

m
∏

j=−m+1

(1 + z2j−1).

Proof. We know that an =
∑n

r=0 an,r and an,r = P (n, r, [r(n+1)/2]) by Theorem 6.3. We have a2m+1 =
∑2m+1

r=0 P (2m+ 1, r, r(m+ 1)). Now, take y = utm+1 and use the preceding lemma to get

F2m+1(u, t) = F2m+1(yt
−m−1, t) =

2m+1
∏

i=1

(1 + yti−m−1) =
∑

r,k≥0

P (2m+ 1, r, k)yrtk−r(m+1).

In particular, we get the following identity for y = 1

2m+1
∏

i=1

(1 + ti−m−1) =
∑

r,k≥0

P (2m+ 1, r, k)tk−r(m+1),

or equivalently, by setting z = t and j = i−m− 1 we have
m
∏

j=−m

(1 + zj) =
∑

r,k≥0

P (2m+ 1, r, k)zk−r(m+1).

In particular, the constant term in the Laurent polynomial expansion of
∏m

j=−m(1+zj) is obtained when

we take the sum of those terms for which k = r(m+ 1) holds, namely

2m+1
∑

r=0

P (2m+ 1, r, r(m+ 1)),

which is precisely the expression for a2m+1.

For part (ii), write

a2m =

2m
∑

r=0

P (2m, r, [r(m+
1

2
)]) =

m
∑

r=0

P (2m, 2r, r(2m+ 1)) +

m−1
∑

r=0

P (2m, 2r + 1, 2rm+m+ r)

=: Am +Bm.

Let us determine Am first. Note that using the preceding lemma we have

1

2
{
2m
∏

i=1

(1 + uti) +

2m
∏

i=1

(1 − uti)} =
∑

r,k≥0

P (2m, r, k){
1 + (−1)r

2
}urtk =

∑

r,k≥0

P (2m, 2r, k)u2rtk.

If we define y := u2t2m+1, we have the following identity

1

2
{
2m
∏

i=1

(1 + y
1
2 ti−(m+ 1

2 )) +

2m
∏

i=1

(1− y
1
2 ti−(m+ 1

2 ))} =
∑

r,k≥0

P (2m, 2r, k)yrtk−r(2m+1),

which for y = 1 yields

1

2
{
2m
∏

i=1

(1 + ti−(m+ 1
2 )) +

2m
∏

i=1

(1− ti−(m+ 1
2 ))} =

∑

r,k≥0

P (2m, 2r, k)tk−r(2m+1).
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Hence Am is the constant term in the polynomial expansion of

1

2
{
2m
∏

i=1

(1 + ti−(m+ 1
2 )) +

2m
∏

i=1

(1− ti−(m+ 1
2 ))}.

Similarly, for Bm we have

1

2
{
2m
∏

i=1

(1 + uti)−
2m
∏

i=1

(1− uti)} =
∑

r,k≥0

P (2m, r, k){
1− (−1)r

2
}urtk =

∑

r,k≥0

P (2m, 2r + 1, k)u2r+1tk.

If we define y2 := u2t2m+1, we have the following identities

1

2
{
2m
∏

i=1

(1 + y
1
2 ti−(m+ 1

2 ))−
2m
∏

i=1

(1− y
1
2 ti−(m+ 1

2 ))}

=
∑

r,k≥0

P (2m, 2r + 1, k)y2r+1tk−(2rm+r+m)− 1
2

= t−
1
2

∑

r,k≥0

P (2m, 2r + 1, k)y2r+1tk−(2rm+r+m),

which for y = 1 yields

t
1
2

2
{
2m
∏

i=1

(1 + ti−(m+ 1
2 ))−

2m
∏

i=1

(1− ti−(m+ 1
2 ))} =

∑

r,k≥0

P (2m, 2r + 1, k)tk−(2rm+r+m).

Hence Bm is the constant term in the polynomial expansion of

t
1
2

2
{
2m
∏

i=1

(1 + ti−(m+ 1
2 ))−

2m
∏

i=1

(1− ti−(m+ 1
2 ))}.

Therefore a2m = Am +Bm is the constant term in the polynomial expansion of

1

2
{
2m
∏

i=1

(1 + ti−(m+ 1
2 )) +

2m
∏

i=1

(1− ti−(m+ 1
2 )) +

t
1
2

2

2m
∏

i=1

(1 + ti−(m+ 1
2 ))−

t
1
2

2

2m
∏

i=1

(1 − ti−(m+ 1
2 ))},

or equivalently, the constant term in the polynomial expansion of

1

2
{(1 + z)

2m
∏

i=1

(1 + z2i−(2m+1)) + (1− z)
2m
∏

i=1

(1− z2i−(2m+1))},

which equals the constant term in the Laurent polynomial expansion of

(1 + z)

m
∏

j=−m+1

(1 + z2j−1).

�

Thanks to this theorem, one can compute an for large values of n using a computer algebra program.
Many more terms are also available online at OEIS (The Online Encyclopedia of Integer Sequences at
www.oeis.org). Moreover, as the following corollaries suggest, such recognitions as constant terms of
certain Laurent polynomials opens the door to finding even more interesting combinatorial properties of
the sequence {an}, which have been of interest to Erdős, J. H. van Lint and R. C. Entringer to name a
few (cf. [6, 23, 5]).

Corollary 6.8. Let n be a nonnegative integer.
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(i) The integer a2n+1 is the number of solutions of the equation

k=n
∑

k=−n

k ǫk = 0,

where ǫk = 0 or 1 for −n ≤ k ≤ n. In other words, a2n+1 is the number of ways that a sum of
integers between −n and n (with no repetitions) equals to 0.

(ii) The integer a2n is the number of solutions of the equation

k=n
∑

k=−n+1

(2k − 1) ǫk = 0 or 1,

where ǫk = 0 or 1 for −n+ 1 ≤ k ≤ n. In other words, a2n is the number of ways that a sum of
half-integers between −n+ 1/2 and n− 1/2 (with no repetitions) equals to 0 or 1/2.

Proof. Using Theorem 6.7, the number a2n+1 is the constant term in the Laurent polynomial expansion
of

∏n
k=−n(1 + zk), which is a finite sum of the form

∑

A(n,m)zm. Obviously, the integer coefficient

A(n,m) is the number of all possible combinations from the terms z−n, . . . , z0, . . . , zn, whose product
makes a zm. In other words, by putting ǫk = 1 when zk contributes to such a product making a zm, and
ǫk = 0 otherwise, we conclude that

A(n,m) = #{(ǫ−n, . . . , ǫ0, . . . , ǫn) ∈ {0, 1}
2n+1 :

k=n
∑

k=−n

k ǫk = m}.

In particular, the constant term of the Laurent polynomial expansion is A(n, 0), and we have a2n+1 =
A(n, 0). This proves part (i). Fort part (ii), we use the same idea for the Laurent polynomial expansion
of

(1 + z)

m
∏

k=−m+1

(1 + z2k−1) =

m
∏

k=−m+1

(1 + z2k−1) + z

m
∏

k=−m+1

(1 + z2k−1)

as suggested by part (ii) of Theorem 6.7. �

J. H. van Lint in [23] answered a question of Erdős by determining the asymptotic behavior of

A(n, 0) = #{(ǫ−n, . . . , ǫ0, . . . , ǫn) ∈ {0, 1}
2n+1 :

k=n
∑

k=−n

k ǫk = 0}.

The idea in his proof is as follows. Since A(n, 0) is the constant term of the Laurent polynomial expansion
of

∏n
k=−n(1 + zk), we can compute it as the Cauchy integral

1

2πi

∮

C

∏n
k=−n(1 + zk)

z
dz,

where C denotes the unit circle. By parameterizing C by z = e2ix for x ∈ [0, π], applying the elementary
identity (1 + e2ikx)(1 + e−2ikx) = 4 cos2 kx, and a simple calculation we arrive at

A(n, 0) =
22n+2

π

∫ π
2

0

n
∏

k=1

cos2 kx dx.

We can then proceed by estimating the integrand near and far from 0 using some elementary inequalities,

which lead to the asymptotic formula A(n, 0) ∼ (3/π)
1
2 22n+1n− 3

2 [23]. This will immediately give the
asymptotic behavior of the sequence {a2n+1} by the previous corollary. One can adapt the arguments
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used by J. H. van Lint to obtain a similar asymptotic behavior for the sequence {a2n} by estimating the
corresponding integral

22n+2

π

∫ π
2

0

cos2 x

n
∏

k=1

cos2(2k − 1)x dx,

which leads to the asymptotic formula a2n ∼ (3/π)
1
2 22nn− 3

2 . This gives rise to the following result.

Corollary 6.9. an ∼

√

24

π
2nn− 3

2 when n→∞. In particular, lim
n→∞

an+1

an
= 2.

7. The positive cone of K0(Fθ,f )

In this section, we generalize a result of Kodaka on the order structure of the group K0 of the crossed
product by a Furstenberg transformation on the 2-torus [18, Theorem 5.2]. However, our approach is dif-
ferent, and follows the general guidelines of [30, Lemma 3.1]. We remind the reader that for a C∗-algebra
A the positive cone of K0(A) is the set K0(A)+ = {[q] ∈ K0(A) : q ∈ P∞(A)}, where P∞(A) is the set of
all projections in matrix algebras over A. Also, any positive trace τ on a C∗-algebra A induces a group
homomorphism τ∗ : K0(A) → R. As was indicated in the Introduction, when the Furstenberg transfor-
mation ϕθ,f is minimal and uniquely ergodic, using the results of H. Lin and N. C. Phillips in [21] the
transformation group C∗-algebra Fθ,f is classifiable by its Elliott invariant, and the order of K0(Fθ,f )
is determined by the unique tracial state τ on Fθ,f [22, 29]. The fact that τ∗K0(Fθ,f ) = Z + Zθ was
first proved in the unpublished thesis of R. Ji [16]. However, we will study the effect of the trace on the
order structure of K0 using R. Exel’s machinery of rotation numbers [7].

For a C∗-algebra A, we denote by Up(A) the set of unitary elements of Mp(A). The following lemma is
well known, but it is convenient to state and prove it for self-containment of the paper.

Lemma 7.1. Let A and B be unital C∗-algebras and let A ⊗ B denote their minimal tensor product.
Suppose that u ∈ Up(A) and v ∈ Uq(B), and let φ : C(T2) :→Mpq(A ⊗B) be the unique homomorphism
mapping the coordinate unitaries z1, z2 ∈ U(C(T2)) to the commuting unitaries u ⊗ 1q, 1p ⊗ v ∈ Upq(A⊗
B), respectively. Let b(u, v) ∈ K0(A ⊗ B) denote the Bott element of u, v defined by K0(φ)(b), where
β = [z1]∧ [z2] is the Bott element in K0(C(T2)) so that K0(C(T2)) = Z[1] +Zβ. Then τ∗(b(u, v)) = 0 for
any tracial state τ on A⊗B.

Proof. Since τ ◦ φ is a trace on T2, there exists a Borel probability measure µ on T2 such that

(τ ◦ φ)(f) =

∫

T2

f(x) dµ(x), f ∈ C(T2).

Write β = [p]− [q], where p, q are appropriate projections in some matrix algebra over C(T2), so we have

τ∗(b(u, v)) = τ∗(K0(φ)(β) = (τ ◦ φ)∗(β) =

∫

T2

Tr(p(x)) − Tr(q(x)) dµ(x).

It is well known that for the Bott element b we have Tr(p(x)) − Tr(q(x)) = 0, namely, the projections
p(x) and q(x) have the same rank for all x ∈ T2, and this common rank does not depend on x since T2

is connected (in fact, they are rank one projections). This can be proved either by a calculation of the
traces of the projections p(x) and q(x) explicitly (cf. [1, p. 7]), or by using the naturality in the Künneth
formula for T2, which shows that the image under any point evaluation of β is zero. Briefly speaking,
the map x 7→ Tr(p(x)) − Tr(q(x)) belongs to C(T2,Z), so it has to assume a constant integer, which we
call dimβ. In particular, dimβ is invariant under the change of coordinate (ζ1, ζ2) 7→ (ζ1, ζ

−1
2 ), whereas

the naturality of the Künneth homomorphism α1,1 : K1(C(T)) ⊗ K1(C(T)) → K0(C(T2)), which maps
[z] ⊗ [z] to β, implies that the Bott element β will transform into −β under this change of coordinates
since [z]⊗ [z−1] = [z]⊗ (−[z]) = −([z]⊗ [z]). This means dimβ = 0. �
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We denote by u the unitary in Fθ,f implementing the action generated by the transformation ϕθ,f on Tn

with irrational parameter θ, and by z1 the unitary in C(Tn) defined by z1(ζ1, . . . , ζn) = ζ1 as in Section
2. Then we have uz1u

−1 = z1 ◦ ϕ
−1
θ,f = e2πiθz1 so that C∗(u, z1) ∼= Aθ, the irrational rotation algebra.

Let pθ ∈ C∗(u, z1) be a Rieffel projection of trace θ as in [34]. It is obvious that τ∗([1]) = 1. On the
other hand, since the restriction of τ on the C∗-subalgebra Aθ ⊆ Fθ,f has to be the unique tracial state
on Aθ, we have τ∗([pθ]) = θ. The main result of this section will show that all the essential information
about the order structure of K0(Fθ,f ) is encoded in the embedding of Aθ in Fθ,f .

Theorem 7.2. Let ϕθ,f be a minimal uniquely ergodic Furstenberg transformation on Tn with θ ∈ (0, 1)
(e.g. when θ ∈ (0, 1) \ Q and each fi satisfies a uniform Lipschitz condition in ζi for i = 1, . . . , n − 1).
Let an and T 0

f denote, respectively, the rank and the torsion subgroup of K0(Fθ,f ) so that K0(Fθ,f ) ∼=
Zan ⊕T 0

f . Then the isomorphism of K0(Fθ,f ) with this group can be chosen in such a way that

(i) the unique tracial state τ on Fθ,f induces the map

τ∗(a[1] + b[pθ], c, t) = a+ b θ

on K0(Fθ,f ) for all (a[1] + b[pθ], c, t) ∈ (Z[1] + Z[pθ])⊕ Zan−2 ⊕T 0
f
∼= Zan ⊕T 0

f ,

(ii) the positive cone K0(Fθ,f )+ can be identified with

{(a[1] + b[pθ], c, t) ∈ (Z[1] + Z[pθ])⊕ Zan−2 ⊕T
0
f : a+ b θ > 0} ∪ {0}.

Proof. The idea of the proof is to show that there exists a generating set for the finitely generated abelian
group K0(Fθ,f ) including [1] and [pθ] such that the induced homomorphism τ∗ vanishes at all generators,
except for [1] and [pθ] for which we have τ∗([1]) = 1 and τ∗([pθ]) = θ. Using Theorem 2.1 and setting
α = ϕθ,f and αj = Kj(α) for j = 1, 2 we have

K0(Fθ,f ) ∼= coker(α0 − id)⊕ ker(α1 − id) =
⊕

r≥0

[coker(∧2rα̂− id)⊕ ker(∧2r+1α̂− id)],

where α̂ is the restriction of α1 to the subgroup Z[z1] + . . . + Z[zn] of K1(C(Tn)) as in Section 2, and
zj(ζ, . . . , ζn) = ζj of C(Tn) for j = 1, . . . , n. Note that by Definition 1.3, f = (f1, . . . , fn−1) consists of
continuous functions fj−1 : Tj−1 → T for j = 2, . . . , n. First, we “linearize” each fj−1 by finding the
unique “linear” function

(ζ1 . . . , ζj−1) 7→ ζ
b1j
1 . . . ζ

bj−1,j

j−1 , (bj−1,j 6= 0)

in the homotopy class of fj−1. This allows us to calculate α̂([zj ]) by writing

α̂([z1]) = [z1 ◦ ϕ
−1
θ,f ] = [e2πiθz1] = [z1],

α̂([zj ]) = [zj ◦ ϕ
−1
θ,f ] = [fj−1(z1, . . . , zj−1)zj ] = [z

b1j
1 . . . z

bj−1,j

j−1 zj ] = b1j[z1] + . . .+ bj−1,j [zj−1] + [zj ],

for j = 2, . . . , n. In other words, the integer matrix of α̂ with respect to the basis {[z1] . . . , [zn]} of
Zn is precisely in the form (♥) as in the proof of Theorem 5.1. Now, we can realize α0 = ∧evenα̂ and
α1 = ∧oddα̂ to calculate the K-groups of Fθ,f as in Section 2.

It is important to note that, by referring to the exact sequences (1), (2) and (3) in Section 1, the isomor-
phic image of coker(α0 − id) in K0(Fθ,f ) is precisely the image im0 of K0(C(Tn)), and an isomorphic
image of ker(α1 − id) in K0(Fθ,f ) is obtained by finding the image of a splitting (injective) homomor-
phism s : ker(α1 − id) → K0(Fθ,f ) for the exact sequence (2) so that ∂ ◦ s = id on ker(α1 − id). Any
such splitting homomorphism is obtained as follows: fix a basis {γ1, . . . , γq} for the free finitely gener-

ated group ker(α1 − id) of rank q, and find elements ν
(0)
1 , . . . , ν

(0)
q ∈ K0(Fθ,f ) such that ∂ν

(0)
j = γj for

j = 1, . . . , q. Then define s(
∑

j mjγj) =
∑

j mjν
(0)
j for mj ∈ Z. Clearly, K0(Fθ,f ) = im 0 ⊕ im s.

Now, since ∧0α̂ = id on Λ0Zn = Z, and ∧1α̂ = α̂ on Λ1Zn = Zn, we can write the isomorphism

K0(Fθ,f ) ∼= Z⊕ ker(α̂ − id)⊕
⊕

r≥1

[ker(∧2r+1α̂− id)⊕ coker(∧2rα̂− id)].



20 KAMRAN REIHANI

In fact, a single generator for the isomorphic image of Z in K0(Fθ,f ) is [1], and since bj−1,j 6= 0 for
j = 2, . . . , n we have ker(α̂− id) = Ze1 = Z[z1]. It is easy to see that ∂([pθ]) = [z1] (see the proposition in
the appendix of [31]). Therefore there exists a basis {γ1, . . . , γq} for ker(α1− id) = ⊕r≥0 ker(∧2r+1α̂− id)
with γ1 = [z1] and a splitting homomorphism s : ker(α1 − id) → K0(Fθ,f ) with s([z1]) = [pθ]. Hence a
single generator for the image of ker(α̂− id) in K0(Fθ,f ) is [pθ].

It remains to study the effect of τ∗ on the isomorphic image of ⊕r≥1coker(∧2rα̂− id), which contains the
the torsion subgroup T 0

f , and the image of ⊕r≥1 ker(∧2r+1α̂− id) in K0(Fθ,f ). For more convenience, set

ej := [zj ] for j = 1, . . . , n as in Section 2. First, we study the isomorphic image of ⊕r≥1coker(∧2rα̂− id).
We show that τ∗ vanishes on this whole subgroup by showing, equivalently, that τ∗ vanishes on the image
of the subgroup ⊕r≥1Λ

2r
Z
(e1, . . . , en) ⊂ K0(C(Tn)) inK0(Fθ,f ) under the map 0. Let η = ei1∧. . .∧ei2r ∈

K0(C(Tn)) for some r ≥ 1 and 1 ≤ i1 < . . . < i2r ≤ n. We want to show that τ∗(0(η)) = 0, where
0 := K0() and  : C(Tn) → Fθ,f is the natural embedding in the structure of the crossed product
Fθ,f = C(Tn) ⋊α Z. By Künneth formula we have η = b(u, z), where u is a unitary in some matrix
algebra over C(Tn−1) with [u] = ei1 ∧ . . . ∧ ei2r−1 ∈ K1(C(T

n−1)) and z is the canonical unitary in C(T)
with [z] = ei2r ∈ K1(C(T)). By Lemma 7.1, we have

τ∗(0(η)) = τ∗(K0()(η)) = (τ ◦ )∗(η) = (τ ◦ )∗(b(u, z)) = 0.

Now, we study the isomorphic image of ⊕r≥1 ker(∧2r+1α̂− id) in K0(Fθ,f ). We will show that τ∗ assumes
only integer values on this whole subgroup. In other words, if {γ1, . . . , γq} is a basis for the ker(α0 − id)
as above such that γ1 = [z1] is a basis for ker(α̂− id) and {γ2, . . . , γq} is a basis for ⊕r≥1 ker(∧2r+1α̂− id),

then τ∗(ν
(0)
1 ) = θ, and τ∗(ν

(0)
j ) = kj for some kj ∈ Z for j = 2, . . . , q, where ν

(0)
j ’s are chosen in K0(Fθ,f )

so that ∂(ν
(0)
j ) = γj for j = 1, . . . , q and ν

(0)
1 = [pθ] as above. To demonstrate this, we prove that

the determinant of any unitary representing an element in the subgroup ⊕r≥1Λ
2r+1
Z

(e1, . . . , en) is the
constant function 1. Then the rotation number homomorphism ρµα : ker(α1 − id) → T defined by R.
Exel is the constant 1 on the subgroup ⊕r≥1 ker(∧2r+1α̂ − id) [7, Theorem VI.11], hence the trace will
be integer-valued on this subgroup because exp(2πiτ∗(η)) = ρµα ◦ ∂(η) for all η ∈ K0(Fθ,f ) [7, Theorem

V.12]. To calculate the determinant on ⊕r≥1Λ
2r+1
Z

(e1, . . . , en), let γ = ei1 ∧ . . .∧ ei2r+1 ∈ K1(C(Tn)), set
η = ei1 ∧ . . . ∧ ei2r ∈ K0(C(Tn−1)), and write η = [p]− [q] as above. Then ei2r+1 = [z] for the canonical
unitary z of C(T), and using the Künneth formula we have

γ = η ⊗ [z] = ([p]− [q])⊗ [z] = [p]⊗ [z] + [q]⊗ [z−1] = [((1− p)⊗ 1 + p⊗ z)((1− q)⊗ 1 + q ⊗ z−1)]

So, γ = [ω1ω2], where ω1 := (1 − p) ⊗ 1 + p ⊗ z and ω2 := (1 − q) ⊗ 1 + q ⊗ z−1 are unitaries in some
matrix algebra of the same size over C(Tn). Since for all x ∈ Tn−1 the projections p(x) and q(x) have
the same rank ρ as in the proof of the previous lemma, we have the following equivalence of projections
in some matrix algebra Ml(C)

p(x) ∼ 1ρ ⊕ 0l−ρ ∼ q(x),

where 1m,0m denote the identity and the zero matrix of order m, respectively, and ⊕ is the direct sum
of matrices. This implies the following unitary equivalence of projections in M2l(C)

p(x) ⊕ 0l ∼u 1ρ ⊕ 02l−ρ ∼u q(x) ⊕ 0l.

In particular, we conclude the following unitary equivalence of unitary matrices for all (x, ζ) ∈ Tn−1 ×T

ω1(x, ζ) ⊕ 1l ∼u ζ1ρ ⊕ 12l−ρ, ω2(x, ζ) ⊕ 1l ∼u ζ
−11ρ ⊕ 12l−ρ.

Therefore Detω1(x, ζ) = ζρ and Detω2(x, ζ) = ζ−ρ, hence Det (ω1ω2)(x, ζ) = 1, for all (x, ζ) ∈ Tn−1×T.
This implies that Det∗(γ) = 1 ∈ [Tn,T], where [Tn,T] denotes the set of homotopy classes of continuous
functions from Tn to T (see Definition VI.8 and Proposition VI.9 of [7]).

Finally, by setting ν1 := ν
(0)
1 = [pθ] and νk := ν

(0)
j −kj [1] for j = 2, . . . , q so that τ∗(ν1) = θ and τ∗(νj) = 0

for j = 2, . . . , q, we can form a generating set with the desired property for K0(Fθ,f ) by taking the union
of {ν1, . . . νq} and a generating set including [1] for the isomorphic image of coker(α0 − id). This proves
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part (i).

For part (ii), we use part (i) together with the fact that the order on K0(Fθ,f ) is determined by the
effect of the unique tracial state τ because Tn is a finite dimensional infinite compact metric space and
ϕθ,f is a minimal homeomorphism of Tn (see Theorem 5.1(1) of [22] or Theorem 4.5(1) of [29]).

�

Corollary 7.3. Let ϕθ,f be a minimal uniquely ergodic Furstenberg transformation on Tn as above. Then
linearizing the functions fi : T

i → T in f = (f1, . . . , fi−1) does not change the isomorphism class of the
transformation group C∗-algebra Fθ,f .

Proof. Since ϕθ,f is minimal, θ must be irrational. So the range of the unique tracial state (by unique
ergodicity) on K0(Fθ,f ) is dense in R as it is Z+Zθ by the above argument. Benefiting from the results of
[21], such C∗-algebras are completely classifiable by their Elliott invariants, which remain unchanged (up
to isomorphism) after the linearization process: linearizing does not change the isomorphism classes of
the K-groups, and the previous theorem guarantees that the order structure of the group K0 is precisely
the regular order inherited from R on Z+ Zθ before and after linearization. �

8. Concluding remarks

I) The method used in Section 1 for computing K-groups of the transformation group C∗-algebras of
homeomorphisms of the tori may be extended to more general settings. Let G be a compact connected
Lie group with torsion-free fundamental group π1(G). (It is well known that the fundamental group
of such spaces are finitely generated and abelian, so being torsion-free means π1(G) ∼= Zl, for some l.)
Some important examples are any finite Cartesian products of the groups S3, SO(2), Sp(n), U(n) and
SU(n). Then K∗(G) is torsion-free and can be given the structure of a Z2-graded Hopf algebra over the
integers [14]. Moreover, regarded as a Hopf algebra, K∗(G) is the exterior algebra on the module of the
primitive elements, which are of degree 1. The module of the primitive elements of K∗(G) may also be
described as follows. Let U(n) denote the group of unitary matrices of order n and let U := ∪∞n=1U(n)
be the stable unitary group. Any unitary representation ρ : G → U(n), by composition with the in-
clusion U(n) ⊂ U , defines a homotopy class β(ρ) in [G,U ] = K1(G). The module of the primitive
elements in K1(G) is exactly the module generated by all classes β(ρ) of this type. If in addition, G
is semisimple and simply connected of rank l, there are l basic irreducible representations ρ1, . . . , ρl,
whose maximum weights λ1, . . . , λl form a basis for the character group T̂ of the maximal torus T of
G and the classes β(ρ1), . . . , β(ρl) form a basis for the module of the primitive elements in K1(G) and
K∗(G) = Λ∗(β(ρ1), . . . , β(ρl)). In any case, to compute K∗(C(G) ⋊α Z) it is sufficient to determine the
homotopy classes of α ◦ ρ for the irreducible representations ρ of G in terms of β(ρ)’s.

II) There is a relation between theK-theory of transformation group C∗-algebras of the homeomorphisms
of the tori and the topological K-theory of compact nilmanifolds. In fact, let α = (t,A) be an affine
transformation on Tn satisfying the conditions (1) through (4) in Remark 5.2. Then it has been shown in
[12] that α is conjugate (in the group of affine transformations on Tn) to the transformation α′ = (t′,A′),
where A′ has an upper triangular matrix, whose bottom right k × k corner is the identity matrix Ik and
t′ = (0, . . . , 0, t′1, . . . , t

′
k). The transformation α′ is called a standard form for α [28]. Assume that α is

given in standard form. Then J. Packer associates an induced flow (R, N/Γ) to the flow (Z,Tn) generated
by α, where N is a simply connected nilpotent Lie group of dimension n + 1, the discrete group Γ is a
cocompact subgroup of N , and the action of R is given by translation on the left by exp sX for s ∈ R and
some X ∈ n, the Lie algebra of N . One of the most important facts is that the C∗-algebra C(N/Γ)⋊β R

corresponding to the induced flow is strongly Morita equivalent to C(Tn) ⋊α Z [28, Proposition 3.1].
Consequently, one has

(7) Ki(C(T
n)⋊α Z) ∼= Ki(C(N/Γ)⋊β R) ∼= K1−i(N/Γ); i = 0, 1.
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The second isomorphism here, is the Connes’ Thom isomorphism. So the K-theory of C(Tn) ⋊α Z is
converted to the topologicalK-theory of the compact nilmanifoldN/Γ. Following the proof of Proposition
3.1 in [28], one can conclude that for the special case of Anzai transformations we can take N = Fn−1

(the generic filiform Lie group of dimension n + 1) and Γ = Dn−1, which were defined in [33]. On the
other hand, following [35, Theorem 3.6], one has the isomorphism

(8) Ki(C
∗(Γ)) ∼= Ki+n+1(N/Γ); i = 0, 1.

Combining (7) and (8) one gets

(9) Ki(C(T
n)⋊α Z) ∼= Ki+1(N/Γ) ∼= Ki+n(C

∗(Γ)); i = 0, 1.

Using the above isomorphisms, one can relate the algebraic invariants of the involved C∗-algebras and
topological information of the corresponding nilmanifold. For example, since N/Γ is a classifying space
for Γ, one has the following isomorphisms

(10) H∗
dR(N/Γ)

∼= Ȟ∗(N/Γ,R) ∼= H∗(Γ,R) ∼= H∗(N,R) ∼= H∗(n,R),

where H∗
dR(N/Γ) denotes the de Rham cohomology of the manifold N/Γ, H∗(N/Γ,R) denotes the Čech

cohomology of N/Γ with coefficients in R, H∗(Γ,R) denotes the group cohomology of Γ with coeffi-
cients in the trivial Γ-module R, H∗(N,R) denotes the Moore cohomology group of N (as a locally
compact group) with coefficients in the trivial Polish N -module R, and H∗(n,R) denotes the cohomology
of the Lie algebra n with coefficients in the trivial n-module R. Now, using the Chern isomorphisms
ch0 : K0(N/Γ)⊗Q→ Ȟeven(N/Γ,Q) and ch1 : K1(N/Γ)⊗ Q→ Ȟodd(N/Γ,Q), one concludes that the
even and odd cohomology groups stated in (10) are all isomorphic to Rk, where k is the (common) rank
of the K-groups of C(Tn)⋊αZ as in Corollary 2.2. As an example, if N = Fn−1, Γ = Dn−1, and n = fn−1,
then the even and odd cohomology groups stated in (10) are all isomorphic to Ran , where an is the rank
of the K-groups of An,θ that was studied in detail in Sections 5 and 6. Conversely, one may use the
topological tools for N/Γ to get some information about C(Tn)⋊α Z and C∗(Γ). For example, we know
that N/Γ as a compact nilmanifold can be constructed as a principal T-bundle over a lower dimensional
compact nilmanifold [10]. Then we can compute the topological K-groups of N/Γ using the six term
Gysin exact sequence [17, IV.1.13, p. 187]. As an example, one can see that Fn−1/Dn−1 is a principal
T-bundle over Fn−2/Dn−2, and the corresponding Gysin exact sequence is in fact the topological version
of the Pimsner-Voiculescu exact sequence for the crossed product An,θ

∼= An−1,θ ⋊α Z as in Theorem
2.1(d) in [33].
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Appendix A. The Smith normal form

The Smith normal form is a very important tool for studying integer matrices. We refer to [27] for this
interesting topic and its applications.

Definition A.1. Let α̂, β̂ ∈ End(Zm). We say that α̂ is equivalent to β̂ over Z (and write α̂ equiv β̂) if

there exist û, v̂ ∈ Aut(Zm) such that û ◦ α̂ ◦ v̂ = β̂. Similarly, if A and B are integer m×m matrices, A
is equivalent to B if there exist U,V ∈ GL(m,Z) such that UAV = B.

Recall that α̂ equiv β̂, if and only if cokerα̂ ∼= cokerβ̂, if and only if α̂ and β̂ have the same Smith normal
form. Also, A equiv B if and only if B is obtainable from A by a finite number of elementary operations.
An elementary operation on an integer matrix is one of the following types: interchanging two rows (or
two columns), adding an integer multiple of one row (or column) to another, and multiplying a row (or
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column) by −1.

Now, we recall a fundamental theorem for integer matrices (cf. [27, p. 26]).

Theorem A.2 (Smith Normal Form). Let A be an m × m integer matrix. Then A is equivalent to a
diagonal matrix diag(d1, . . . , dr, 0, . . . , 0), where r is the rank of A, and the integers d1, . . . , dr satisfy
di|di+1 for i = 1, . . . , r − 1.

Appendix B. Nilpotent and unipotent linear mappings

Definition B.1. Let V be a (complex) vector space. A mapping ǫ̂ ∈ EndCV is called nilpotent (respec-
tively, unipotent) if ǫ̂k = 0 (respectively, (ǫ̂ − id)k = 0) for some positive integer k. The minimum value
of k with this property is called the degree of ǫ̂, denoted deg(ǫ̂).

As an example, every upper (respectively, lower) triangular matrix with zeros on the diagonal is nilpotent.
Also, the matrix Sn defined in Section 2 is a unipotent matrix of degree n. Note that all eigenvalues of
a nilpotent (respectively, unipotent) matrix are zeros (respectively, ones). In particular, every unipotent
matrix is invertible, and every unipotent endomorphism is an automorphism.

Corollary B.2. Let V be a finite dimensional complex vector space and ǫ̂ be a nilpotent (respectively,
unipotent) endomorphism of V . Then deg(ǫ̂) is equal to the maximum order of its Jordan blocks.

Proof. It suffices to prove the statement for the nilpotent case. Since all the eigenvalues of ǫ̂ are zero,
each Jordan block is a zero matrix of order one or is of the form

























0 1 0 · · · 0

0 0 1
...

0
. . .

. . .
. . . 0

... 0 0 1

0 · · · 0 0 0

























which is a nilpotent matrix and its degree is the same as its order, which is greater than 1. The rest of
proof is clear. �

Definition B.3. Let V be a finite dimensional complex vector space and ǫ̂ ∈ EndCV be nilpotent
(respectively, unipotent). We say that ǫ̂ is of maximal degree if deg(ǫ̂) = dimV .

Corollary B.4. Let V be an n-dimensional complex vector space and ǫ̂ ∈ EndCV be nilpotent (respec-
tively, unipotent). Then deg(ǫ̂) ≤ n. If deg(ǫ̂) = n, then the Jordan normal form of ǫ̂ is the full Jordan
block of order n with 0’s on the diagonal. In particular, all nilpotent (respectively, unipotent) matrices of
maximal degree acting on V are similar.

Proof. Use the preceding corollary and the Jordan normal form theorem. �

Example B.5. Let B = [bij ]n×n be any upper triangular matrix, whose diagonal elements are all zeros
(respectively, ones), and whose entries bi,i+1 for i = 1, . . . , n − 1 are all nonzero. Then B is nilpotent

(respectively, unipotent) of maximal degree. In fact, let n be the order of B and let b :=
∏n−1

i=1 bi,i+1,
which is a nonzero number. Then one can easily see that Bn = 0 (respectively, (B − I)n = 0) and Bn−1

(respectively, (B− I)n−1) is a matrix with b appearing on the upper-right corner and zeros elsewhere. So
deg(B) = n, i.e. B is of maximal degree.

Lemma B.6. Let V be a complex vector space and ǫ̂ ∈ EndCV be nilpotent of degree k. Then exp(ǫ̂) is
unipotent of degree k. Moreover, exp(ǫ̂)− id is similar to ǫ̂.
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Proof. For the first part, we know that exp(ǫ̂) − id = ǫ̂ + ǫ̂2/2! + . . . + ǫ̂k−1/(k − 1)! = ǫ̂ω, where
ω := id+ǫ̂/2!+. . .+ǫ̂k−2/(k−1)! commutes with ǫ̂ and is invertible since it is unipotent. So, (exp(ǫ̂)−id)r =
(ǫ̂ω)r = ǫ̂rωr for all positive integers r. Thus exp(ǫ̂)− id is unipotent with the same degree of ǫ̂. For the
second part, using the Jordan normal form of ǫ̂, it is sufficient to prove the statement for the special case
when ǫ̂ is a Jordan block with zeros on the diagonal. Since in this case ǫ̂ is of maximal degree, by the
first part, exp(ǫ̂)− id is also of maximal degree. Therefore they are similar by Corollary B.4. �

Appendix C. Endomorphisms and derivations of exterior algebras

We refer to the Chapter 5 of [11] for general properties of exterior algebras and mappings between them.

Let V be a (complex) vector space and φ̂ : V → V be a linear mapping. Then φ̂ can be extended in a

unique way to a homomorphism ∧∗φ̂ : Λ∗V → Λ∗V such that ∧∗φ̂(1) = 1, yielding

∧∗φ̂(x1 ∧ . . . ∧ xp) = φ̂(x1) ∧ . . . ∧ φ̂(xp), (xi ∈ V ).

Also, φ̂ can be extended in a unique way to a derivation D ∗φ̂ : Λ∗V → Λ∗V , yielding

D ∗φ̂(x1 ∧ . . . ∧ xp) =

p
∑

i=1

x1 ∧ . . . ∧ φ̂(xi) ∧ . . . ∧ xp (p ≥ 2, xi ∈ V ).

We define ∧rφ̂ := ∧∗φ̂|ΛrV and D rφ̂ := D ∗φ̂|ΛrV as induced linear mappings on the r-th exterior power
of V for r ≥ 0. Then we have

∧∗φ̂ =
⊕

r≥0

∧rφ̂ , D ∗φ̂ =
⊕

r≥0

D rφ̂ .

One can easily show that ∧∗(φ̂ ◦ ψ̂) = (∧∗φ̂) ◦ (∧∗ψ̂) and D ∗([φ̂, ψ̂]) = [D ∗φ̂,D ∗φ̂] (cf. equations (5.20)
and (5.25) in [11]).

Lemma C.1. With the above notation, if φ̂ : V → V is nilpotent, then ∧rφ̂ and D rφ̂ are also nilpotent

for r ≥ 1. If V is finite dimensional, then D ∗φ̂ is nilpotent.

Proof. Assume that φ̂t = 0 for some t ∈ N. We have (∧rφ̂)t(x1 ∧ . . . ∧ xr) = φ̂t(x1) ∧ . . . ∧ φ̂t(xr) = 0.

So, (∧rφ̂)t = 0, which means that ∧rφ̂ is nilpotent. For D rφ̂, we know that D rφ̂(x1 ∧ . . . ∧ xr) =
∑r

i=1 x1 ∧ . . . ∧ φ̂(xi) ∧ . . . ∧ xr and one can easily deduce that

D rφ̂p(x1 ∧ . . . ∧ xr) =
∑

i1+...+ir=p

(ij≥0)

p!

(i1)! . . . (ir)!
φ̂i1x1 ∧ . . . ∧ φ̂

irxr .

Now since i1 + . . . + ir = p, there exists an ij with ij ≥ p/r. So, if p ≥ rt then φ̂ij = 0 and D rφ̂p = 0.

Thus D rφ̂ is nilpotent.

For the next part, let m := dimV . Since D ∗φ̂ =
⊕m

r≥0D
rφ̂ and φ̂0 = 0, from the first part we have

(D ∗φ̂)mt = 0, hence D ∗φ̂ is nilpotent, too. �

Lemma C.2. Let φ̂ : V → V be a nilpotent linear mapping. Then exp(D ∗φ̂) = ∧∗ exp(φ̂) on Λ∗V .

Proof. We have

exp(D ∗φ̂)(x1 ∧ . . . ∧ xr) =
∑

p≥0

1

p!
D rφ̂p(x1 ∧ . . . ∧ xr)

=
∑

p≥0

1

p!
(

∑

i1+...+ir=p

(ij≥0)

p!

(i1)! . . . (ir)!
φ̂i1x1 ∧ . . . ∧ φ̂

irxr)
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=
∑

ij≥0

1

(i1)! . . . (ir)!
φ̂i1x1 ∧ . . . ∧ φ̂

irxr

= (
∑

i1≥0

1

(i1)!
φ̂i1x1) ∧ . . . ∧ (

∑

ir≥0

1

(ir)!
φ̂irxr)

= (exp(φ̂)x1) ∧ . . . ∧ (exp(φ̂)xr)

= ∧∗ exp(φ̂)(x1 ∧ . . . ∧ xr),

which yields the result. Note that all sums in the above equalities are finite according to the previ-
ous lemma. �

Remark C.3. The nilpotency of φ̂ is not necessary in the preceding lemma. In fact, one may use the

definition of exp : gl(Λ∗V ) → GL(Λ∗V ). More precisely, define s : R → GL(Λ∗V ) by s(t) = ∧∗ exp(tφ̂).

Then one may check that s is the 1-parameter subgroup generated by D ∗φ̂ (i.e. ṡ(0) = D ∗φ̂), and we

have s(1) = ∧∗ exp(φ̂).

Corollary C.4. Let φ̂ : V → V be a nilpotent linear mapping, and set ǫ̂ := φ̂ + id. Then ∧r ǫ̂ − id is

similar to D rφ̂ for r ≥ 0.

Proof. We know from Lemma B.6 that exp(φ̂)− id is similar to φ̂, hence exp(φ̂) is similar to φ̂+ id = ǫ̂.
So

∧r ǫ̂− id ∼ ∧r exp(φ̂)− id = exp(D rφ̂)− id ∼ D rφ̂.

�

Appendix D. Representation theory of sl(2,C)

We refer to Section II.7 of [15] for studying the irreducible representations of the Lie algebra sl(2,C).

Let sl(2,C) denote the special linear Lie algebra over C2 defined by sl(2,C) := {a ∈M2(C) | Tr(a) = 0}.
It is well known that sl(2,C) is a 3-dimensional simple complex Lie algebra. One can check that

B := {h :=





1 0

0 −1



 , e :=





0 1

0 0



 , f :=





0 0

1 0



}

is a basis for this Lie algebra.

The following theorem is the foundation of representation theory of semisimple Lie algebras including
sl(2,C). It is stated and proved in the Subsection II.6.3 of [15].

Theorem D.1 (Weyl). Every finite dimensional representation of a semisimple Lie algebra is completely
reducible, namely, it can be decomposed into a direct sum of irreducible representations.

Proposition D.2. Let V be an n-dimensional complex vector space with a basis {e1, . . . , en}. Then the
following equalities (for i = 1, . . . , n)

(a) πn(h)ei = (2i− n− 1)ei;
(b) πn(e)ei = i(n− i)ei+1; (en+1 := 0)
(c) πn(f)ei = ei−1; (e0 := 0).

define a representation πn : sl(2,C)→ gl(V ).

We call πn defined in the previous proposition the canonical representation of sl(2,C) on V associated
with the basis {e1, . . . , en}. We recall the following theorem from Section II.7 of [15].

Theorem D.3. Let πn be the representation described above. Then
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(i) πn is an irreducible representation of sl(2,C).
(ii) Any n-dimensional irreducible representation of sl(2,C) is equivalent to πn.
(iii) Let V be a finite dimensional sl(2,C)-module and define

Vα = {v ∈ V | h.v = α v}

for α ∈ C. Then V decomposes into a direct sum of irreducible submodules (Weyl), and in any
such decomposition, the number of summands is precisely dimV0 + dimV1.

Appendix E. Some computer codes and a counterexample

To compute the K-groups of C(Tn) ⋊α Z, one should first compute the kernels and cokernels of the
following integer matrices

(11) Ar := ∧rA− I(nr)

for r = 0, 1, . . . , n, where A is the integer matrix corresponding to α acting on Zn. We have written two
Maple codes to obtain this goal.

The first one is an auxiliary procedure called exterior(r,A), which computes the r-th exterior power of
a given n× n integer matrix A for r = 1, . . . , n as follows (note that ∧0A := I1)

> exterior:=proc(r,A)

> local n,N,Q,E,i,j;

> n:=linalg[rowdim](A);

> N:=binomial(n,r);

> Q:=combinat[choose](n,r);

> E:=array(1..N,1..N);

> for i from 1 to N do

> for j from 1 to N do

> E[i,j]:=linalg[det](linalg[submatrix](A,Q[i],Q[j]));

> od;

> od;

> RETURN(evalm(E));

> end;

The second code, which calls the first one, is called po(A). It lists the factorized characteristic polynomials
of the Smith normal forms of Ar for r = 0, 1, . . . , n given a matrix A

> po:=proc(A)

> local r,n,x,p;

> n:=linalg[rowdim](A);

> print(x);

> for r from 1 to n do

> p:=factor(linalg[charpoly](linalg[ismith](exterior(r,A)-1),x));

> print(p);

> od;

> end;

These factorized polynomials encode the diagonal entries of the Smith normal forms of the matrices Ar

for r = 0, 1, . . . , n. In particular, one can easily find the kernels and cokernels of these matrices. To see
this, observe that the kernel of an m ×m integer matrix is isomorphic to a torsion-free finitely gener-
ated abelian group, whose rank is the number of zeros on the diagonal of its Smith normal form, and
the cokernel is isomorphic to ⊕m

j=1Zkj
, where k1, . . . , km are the diagonal entries of the Smith normal form.

The following example computes the K-groups of A6,θ, which was mentioned in Remark 1.7 as a coun-
terexample for [16, Proposition 2.17].
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Example E.1. K0(A6,θ) ∼= Z13 and K1(A6,θ) ∼= Z13 ⊕ Z2.

Proof. Using the procedure po(A) for the matrix A := S6 as defined at the beginning of Section 3 we get

po(A);

x

x(x− 1)5

x3(x − 1)12

x3(x− 2)(x− 1)16

x3(x − 1)12

x(x− 1)5

x

Consequently, we have the following table representing the kernels and cokernels of S6,r := ∧rS6 − I(6r)
for r = 0, 1, . . . , 6.

r kerS6,r coker S6,r

0 Z Z

1 Z Z

2 Z3 Z3

3 Z3 Z3 ⊕ Z2

4 Z3 Z3

5 Z Z

6 Z Z

Now, using Theorem 2.1 we have

K0(A6,θ) ∼=(coker S6,0 ⊕ coker S6,2 ⊕ coker S6,4 ⊕ coker S6,6)⊕ (kerS6,1 ⊕ kerS6,3 ⊕ kerS6,5)

∼=(Z ⊕ Z3 ⊕ Z3 ⊕ Z)⊕ (Z⊕ Z3 ⊕ Z) = Z13,

K1(A6,θ) ∼=(coker S6,1 ⊕ coker S6,3 ⊕ coker S6,4)⊕ (kerS6,0 ⊕ kerS6,2 ⊕ kerS6,4 ⊕ kerS6,6)

∼=(Z ⊕ Z3 ⊕ Z2 ⊕ Z)⊕ (Z⊕ Z3 ⊕ Z3 ⊕ Z) = Z13 ⊕ Z2.

�

Appendix F. Applications to C∗(Dn)

This appendix is devoted to some applications of the results of this paper to the C∗-algebras studied in
[33], in which the authors promised to completely classify the simple infinite dimensional quotients of
the group C∗-algebra of their interest C∗(Dn) by their K-theoretic invariants in a later work. In this
context, the discrete group Dn is a higher dimensional analogue of the discrete Heisenberg group H3, and
is defined by

Dn = 〈x, y0, y1, . . . , yn | xy0 = y0x, yiyj = yjyi for 0 ≤ i, j ≤ n, [x, yj ] = yj−1 for 1 ≤ j ≤ n 〉,

where [x, y] := xyx−1y−1. The group Dn can be represented as a semidirect product Zn+1 ⋊η Z, where
the group homomorphism η : Z→ GL(n+1,Z) is such that η(k) is the matrix, whose (i, j)-entry is given

by
(

k
j−i

)

as defined in [33]. This realization allows us to study K-theory of C∗(Dn).
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Proposition F.1. Ki(C
∗(Dn)) ∼= Ki(An+1,θ) for i = 0, 1. In particular,

rankK0(C
∗(Dn)) = rankK1(C

∗(Dn)) = an+1.

Proof. Since Dn
∼= Zn+1 ⋊η Z, so C∗(Dn) ∼= C∗(Zn+1) ⋊η̃ Z ∼= C(Tn+1) ⋊η̃ Z and the integer matrix

corresponding to η̃ is the (n + 1) × (n + 1) matrix Mn introduced in [33], which is precisely the matrix
Sn+1 defined in Section 5 to describe the linear structure of Anzai transformations on Tn+1. The rest of
the proof follows from the Theorem 2.1. �

As some higher-dimensional analogues of the irrational rotation algebrasAθ, all simple infinite-dimensional
quotients of C∗(Dn) have been classified in Theorem 3.2 of [33]. These consist of the C∗-algebras An,θ for

some irrational parameter θ, and a few more classes of C∗ algebras denoted by A
(n)
i , which are of the form

C(Yi×Tn−i)⋊φi
Z for some suitable finite sets Yi and minimal homeomorphisms φi for i = 1, 2, . . . , n−1.

Then it is proved in Theorem 4.8 of [33] that A
(n)
i
∼=MCi

(B
(n)
i ), where B

(n)
i is a certain transformation

group C∗-algebra of some affine Furstenberg transformation on Tn−i. We conclude the following results.

Corollary F.2. Let A be a simple infinite dimensional quotient of C∗(Dn). Then rankK0(A) =
rankK1(A) = an−i for some i ∈ {0, 1, . . . , n − 1} that is uniquely determined by the isomorphism
A ∼= C(Yi × Tn−i)⋊φi

Z as in Theorem 3.2 of [33].

Proof. It is proved that A is isomorphic to a matrix algebra over a Furstenberg transformation group

C∗-algebra B
(n)
i on Tn−i for some suitable i ∈ {0, 1 . . . , n} [33, Theorem 4.8]. So Kj(A) ∼= Kj(B

(n)
i ) for

j = 0, 1. The rest of the proof is clear from the preceding theorem. �

We saw in Proposition 6.5 that {an} is a strictly increasing sequence. Therefore the preceding corollary
is a first step towards the classification of the simple infinite dimensional quotients of C∗(Dn) by means
of K-theory. But as is seen, the rank of the K-groups alone can not distinguish the algebras at the
same “level” (i.e. those algebras that are included in the same class, but with different values of the
parameters). The other powerful K-theoretic invariant that helps us do this is the trace invariant, i.e.
the range of the unique tracial state acting on the K0-group.

Proposition F.3. Suppose A ∼= C(Yi×Tn−i)⋊φi
Z is a simple infinite dimensional quotient of C∗(Dn)

as in Theorem 3.2 in [33]. Then A has a unique tracial state τ̃ and τ̃∗K0(A) = 1
Ci

(Z + Zϑi), where

Ci = |Yi| and e2πiϑi = ζi = (−1)Ci+1ηCi

i as in Lemma 4.6 and Theorem 4.8 in [33].

Proof. Following Theorem 4.8 in [33], A is isomorphic to MCi
(B

(n)
i ) = MCi

(C) ⊗ B
(n)
i , where B

(n)
i is

a simple Furstenberg transformation group C∗-algebra with the irrational parameter ζi = (−1)Ci+1ηCi

i .

By Corollary 1.5, B
(n)
i has a unique tracial state τ . Moreover, τ∗K0(B

(n)
i ) = Z+ Zϑi, where e

2πiϑi = ζi
(see [16, Theorem 2.23] or Theorem 7.2). Thus A has the unique tracial state τ̃ = ( 1

Ci
Tr) ⊗ τ , in which

Tr is the usual trace on MCi
(C), and so τ̃∗K0(A) =

1
Ci

(Z+ Zϑi) [16, Lemma 3.5]. �

Finally, we can characterize all simple infinite-dimensional quotients of C∗(Dn).

Proposition F.4. An,θ
∼= An′,θ′ if and only if n = n′ and there exists an integer k such that θ = k± θ′.

More generally, let A
(n)
i
∼= C(Yi × Tn−i)⋊φi

Z be a simple infinite dimensional quotient of C∗(Dn) with

the structure constants λ, µ1, . . . , µi as on p. 165-166 of [33], and let A
(n′)
i′
∼= C(Y′

i′ ×Tn′−i′)⋊φ′

i
Z be a

simple infinite dimensional quotient of C∗(Dn′) with the structure constants λ′, µ′
1, . . . , µ

′
i′ . Suppose that

Ci = |Yi| and C′
i′ = |Y

′
i′ |. Then A

(n)
i
∼= A

(n′)
i′ if and only if n− i = n′ − i′, Ci = C′

i′ and

λ(
Ci
i+1)µ

(Ci
i )

1 µ
( Ci
i−1)

2 . . . µCi

i = λ
′(

C′

i′

i′+1
)µ′

1
(
C′

i′

i′
)µ′

2
(

C′

i′

i′−1
) . . . µ′

i′
C′

i′

or

λ(
Ci
i+1)µ

(Ci
i )

1 µ
( Ci
i−1)

2 . . . µCi

i = (λ
′(

C′

i′

i′+1
)µ′

1
(
C′

i′

i′
)µ′

2
(

C′

i′

i′−1
) . . . µ′

i′
C′

i′ )−1.
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Proof. Use the previous proposition and the fact that {an} is a strictly increasing sequence (see Propo-
sition 6.5). Note that

ζi = (−1)Ci+1ηCi

i = λ(
Ci
i+1)µ

(Ci
i )

1 µ
( Ci
i−1)

2 . . . µCi

i

by the last equation on p. 171 of [33]. �

Remark F.5. Note that Ci = |Yi| is completely determined by the structural constants λ, µ1, . . . , µi−1

(which are roots of unity). More precisely, by calculations on p. 165-166 of [33], we have

Ci = min{r ∈ N | λr = λ(
r
2)µr

1 = . . . = λ(
r
i)µ

( r
i−1)

1 µ
( r
i−2)

2 . . . µr
i−1 = 1}.

For an explicit example in lower dimensions, see [26, Lemma 5.4].
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