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Abstract. We show that three systematic construction methods for the n-dimensional
associahedron,
◦ as the secondary polytope of a convex (n+ 3)-gon (by Gelfand–Kapranov–Zelevinsky),
◦ via cluster complexes of the root system An (by Chapoton–Fomin–Zelevinsky), and
◦ as Minkowski sums of simplices (by Postnikov)
produce substantially different realizations, independent of the choice of the parameters
for the constructions.

The cluster complex and the Minkowski sum realizations were generalized by Hohlweg–
Lange to produce exponentionally many distinct realizations, all of them with normal
vectors in {0,±1}n. We present another, even larger, exponential family, generalizing
the cluster complex construction — and verify that this family is again disjoint from the
previous ones, with one single exception: The Chapoton–Fomin–Zelevinsky associahedron
appears in both exponential families.
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1. Introduction

The n-dimensional associahedron is a simple polytope with Cn+1 (the Catalan number)
vertices, corresponding to the triangulations of a convex (n+3)-gon, and n(n+3)/2 facets,
in bijection with the diagonals of the (n+ 3)-gon. It appears in Dov Tamari’s unpublished
1951 thesis [32], and was described as a combinatorial object and realized as a cellular ball
by Jim Stasheff in 1963 in his work on the associativity of H-spaces [30]. A realization as a
polytope by John Milnor from the 1960s is lost; Huguet & Tamari claimed in 1978 that the
associahedron can be realized as a convex polytope [18]. The first such construction, via
an explicit inequality system, was provided in a manuscript by Mark Haiman from 1984
that remained unpublished, but is available as [15]. The first construction in print, which
used stellar subdivisions in order to obtain the dual of the associahedron, is due to Carl
Lee, from 1989 [20].

Figure 1. The 3-dimensional associahedron, realized as the secondary
polytope of a regular hexagon.

Subsequently three systematic approaches were developed that produce realizations of the
associahedra in more general frameworks and suggest generalizations:
◦ the associahedron as a secondary polytope due to Gelfand, Kapranov and Zelevinsky

[13] [14] (see also [12, Chap. 7]),
◦ the associahedron associated to the cluster complex of type An, conjectured by Fomin

and Zelevinsky [11] and constructed by Chapoton, Fomin and Zelevinsky [6], and
◦ the associahedron as a Minkowski sum of simplices introduced by Postnikov in [24]. Es-

sentially the same associahedron, but described much differently, had been constructed
independently by Shnider and Sternberg [28], (compare Stasheff and Shnider [31, Ap-
pendix B]), Loday [21], Rote, Santos and Streinu [26], and most recently Buchstaber [5].
Following [16] we reference it as the “Loday realization”, as Loday obtained explicit
vertex coordinates that were used subsequently.

The last two approaches were generalized by Hohlweg and Lange [16] and by Santos [27],
who showed that they are particular cases of exponentially many constructions of the asso-
ciahedron. The Hohlweg–Lange construction produces roughly 2n−3 distinct realizations,
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while the Santos construction produces about 1
2(n+3)Cn+1 ≈ 22n+1/

√
πn5 different ones;

exact counts are in Sections 4 and 5. The construction by Santos appears in print for the
first time in this paper, so we prove in detail that it actually works. For the others we rely
on the original papers for most of the details.

The goal of this paper is to compare the constructions, showing that they produce
essentially different realizations for the associahedron. Let us explain what we exactly
mean by different (see more details in Section 2). Since the associahedron is simple, its

realizations form an open subset in the space of (n+3)n
2 -tuples of half-spaces in Rn. Hence,

classifying them by affine or projective equivalence does not seem the right thing to do.
But most of the constructions of the associahedron (all the ones in this paper except for
the secondary polytope construction) happen to have facet normals with very small integer
coordinates. This suggests that one natural classification is by linear isomorphism of their
normal fans or, as we call it, normal isomorphism.

The secondary polytope construction has a completely different flavor from the others.
Coordinates for its vertices are computed from the actual coordinates of the (n + 3)-gon
used, which can be arbitrary, and a continuous deformation of the polygon produces a
continuous deformation of the associahedron obtained. The rest of the constructions are
more combinatorial in nature, with no need to give coordinates for the polygon. This
is apparent comparing Figures 1 and 2. The first one shows the secondary polytope of
a regular hexagon, and the second shows (affine images of) other constructions of the
3-associahedron.

Figure 2. Four normally non-isomorphic realizations of the 3-dimensional
associahedron. From left to right: The Postnikov associahedron (which is
a special case of the Hohlweg–Lange associahedron), the Chapoton-Fomin-
Zelevinsky associahedron (a special case of both Hohlweg–Lange and San-
tos) and the other two Santos associahedra. Since they all have three pairs
of parallel facets, we draw them inscribed in a cube.

One way of pinning down this difference (and of testing, for example, whether two
associahedra are normally isomorphic) is to look at which parallel facets arise, if any.
We start doing this in Section 3, where we show that secondary polytope associahedra
never have parallel facets (Theorem 3.5, but see Remark 3.6) while the Chapoton-Fomin-
Zelevinsky and the Postnikov ones have n pairs of parallel facets each (Theorems 3.11
and 3.22).
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In Sections 4 and 5 we present the families of realizations by Hohlweg–Lange and by
Santos. The first one produces one n-associahedron for each sequence in {+,−}n−1. The
second one constructs one n-associahedron from each triangulation of the (n+ 3)-gon. We
call them associahedra of types I and II.

Apart of reviewing the two constructions, we show they both provide exponentially-
many normally non-isomorphic realizations of the n-dimensional associahedron with the
following common features:
◦ They all have n pairs of parallel facets.
◦ In the basis given by the normals to those n pairs, all facet normals have coordinates in
{0,±1}.

For the Santos construction both properties follow from the definition, for Hohlweg–Lange
we prove them in Sections 4.2 and 4.3. Put differently, all these constructions are (normally
isomorphic to) polytopes obtained from the regular n-cube by cutting certain

(
n
2

)
faces

according to specified rules; for example, the last example of Figure 2 cannot be obtained
by cutting faces lexicographically; the three faces, edges in this case, need to be cut at
exactly the same depth.

In Section 6 we put together results from the previous two sections, and show that
there is a single associahedron that can be obtained both with the Hohlweg–Lange and the
Santos construction, namely the one by Chapoton-Fomin-Zelevinsky.

We also note that Hohlweg–Lange–Thomas [17] provided a generalization of the Hohlweg–
Lange construction to general finite Coxeter groups; Bergeron–Hohlweg–Lange–Thomas [2]
have provided a classification of the Hohlweg–Lange–Thomas c-generalized associahedra in
Coxeter group theoretic language up to isometry, and also up to normal isomorphism [2,
Cor. 2.6]. For type A, this specializes to a classification of the Hohlweg–Lange associahe-
dra, which we obtain in Theorem 4.7 in a different, more combinatorial, setting. Besides
the isometries of c-generalized associahedra presented in [2], normal isomorphisms of these
polytopes are discussed earlier by Reading–Speyer [25] in the context of c-Cambrian fans.
In particular, they obtained combinatorial isomorphisms of the normal fans, which are in
general only piecewise-linear [25, Thm. 1.1 and Sec. 5].

One of the questions that remains is whether there is a common generalization of the
Hohlweg–Lange and the Santos construction, which may perhaps produce even more exam-
ples of “combinatorial” associahedra. It has to be noted that the associahedron seems to
be quite versatile as a polytope. For example, besides the four 3-associahedra of Figure 2
we have found another four 3-associahedra that arise by cutting three faces of a 3-cube
(see Figure 3). Do these admit a natural combinatorial interpretation as well?

2. Some preliminaries

We start by recalling the definition of an n-dimensional associahedron in terms of poly-
hedral subdivisions of an (n+ 3)-gon.

Definition 2.1. Let Pn+3 be a convex (n+ 3)-gon, whose vertices we label cyclically with
the symbols 1 through n+ 3.
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Figure 3. More 3-associahedra inscribed in a 3-cube. The 3-associahedron
is the only simple 3-polytope with nine facets all of which are quadrilaterals
or pentagons.

An associahedron Assn is an n-dimensional simple polytope whose poset of non-empty
faces is isomorphic to the poset of non-crossing sets of diagonals of Pn+3, ordered by reverse
inclusion.

Equivalently, the poset of non-empty faces of the associahedron is isomorphic to the
set of polyhedral subdivisions of Pn+3 (without new vertices), ordered by coarsening. The
minimal elements (vertices of the associahedron) correspond to the triangulations of Pn+3.

For example, for the associahedron of dimension two we look at which diagonals of the
pentagon cross each other. There are five diagonals, with five of the

(
5
2

)
pairs of them

crossing and the other five non-crossing. Thus, the poset of non-empty faces of the two-
dimensional associahedron is isomorphic to the Hasse diagram of Figure 4, in which the
five bottom elements correspond to the five triangulations of the pentagon and the top
element corresponds to the “trivial” subdivision into a single cell, the pentagon itself.

13

13, 1414, 2424, 2525, 3513, 35

∅

24 142535

Figure 4. The Hasse diagram of the 2-dimensional associahedron.

This is also the Hasse diagram of the poset of non-empty faces of a pentagon, so the
2-dimensional associahedron is a pentagon. Figure 5 shows the associahedra of dimensions
0, 1, and 2.

The goal of this paper is to compare different types of constructions of the associahedron,
saying which ones produce equivalent polytopes, in a suitable sense. The following notion
reflects the fact that the main constructions that we are going to discuss produce asso-
ciahedra whose normal vectors have small integer coordinates, usually 0 or ±1. In these
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Ass0 Ass1 Ass2
Figure 5. The associahedron Assn for n = 0, 1 and 2.

constructions the normal fan of the associahedron can be considered canonical, while there
is still freedom in the right-hand sides of the inequalities. (See [33, Sec. 7.1] for a discussion
of fans and of normal fans.) This leads us to use the following notion of equivalence.

Definition 2.2. Two complete fans in real vector spaces V and V ′ of the same dimension
are linearly isomorphic if there is a linear isomorphism V → V ′ sending each cone of one to
a cone of the other. Two polytopes P and P ′ are normally isomorphic if they have linearly
isomorphic normal fans.

Normal isomorphism is weaker than the usual notion of normal equivalence, in which
the two polytopes P and P ′ are assumed embedded in the same space and their normal
fans are required to be exactly the same, not only linearly isomorphic.

The following lemma is very useful in order to prove (or disprove) that two associahedra
are normally isomorphic. It implies that all linear (or combinatorial, for that matter)
isomorphisms between associahedra come from isomorphisms between the (n + 3)-gons
defining them.

Lemma 2.3. The automorphism group of the face lattice of the associahedron Assn is the
dihedral group of the (n + 3)-gon: All automorphisms are induced by symmetries of the
(n+ 3)-gon.

Proof. Suppose ϕ is an automorphism of the face lattice of the associahedron Assn, and
let D be the set of all diagonals of a convex (n+ 3)-gon. ϕ induces a natural bijection

ϕ̃ : D −→ D

such that for any two diagonals δ, δ′ ∈ D we have:

δ cross δ′ ⇐⇒ ϕ̃(δ) cross ϕ̃(δ′).

For a diagonal δ ∈ D denote by length(δ) the minimum between the lengths of the two
paths that connect the two end points of δ on the boundary of the (n+ 3)-gon. Then

length(δ) = length(ϕ̃(δ)).

The reason is that the length of δ is determined by the number of diagonals that cross δ,
and this property is invariant under the map ϕ̃.
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ϕ̃(δn)

ϕ̃

v0

δ0 δ1

δ2

δ3

δ4δn

ṽ0

ϕ̃(δ0)

ϕ̃(δ1)

ϕ̃(δ2)ϕ̃(δ3)

ϕ̃(δ4)

Figure 6. The situation in the proof of Lemma 2.3.

Let δ0 be a diagonal of length 2, and ϕ̃(δ0) its image under ϕ̃. The diagonals that cross δ0
have a common intersection vertex v0; from this vertex we label these diagonals in clockwise
direction by δ1, . . . , δn. Similarly, the diagonals that cross ϕ̃(δ0) have a common intersection
vertex ṽ0, and they are labeled by ϕ̃(δ1), . . . , ϕ̃(δn). For any non-empty interval I ⊂ [n]
there is an unique diagonal δI that intersects the diagonal δi if and only if i ∈ I. Applying
the map ϕ̃ we obtain diagonals ϕ̃(δI) that intersect ϕ̃(δi) if and only if i ∈ I. This task is
possible only if the labelings ϕ̃(δ1), . . . , ϕ̃(δn) appear in either clockwise or counterclockwise
direction. From this, we deduce that ϕ̃ restricted to {δ1, . . . , δn} is equivalent to a reflection-
rotation map. Moreover, this map coincides with ϕ̃ for all other diagonals δI . �

3. Three realizations of the associahedron

3.1. The Gelfand–Kapranov–Zelevinsky associahedron. The secondary polytope is
an ingenious construction motivated by the theory of hypergeometric functions as devel-
oped by I.M. Gelfand, M. Kapranov and A. Zelevinsky [12]. In this section we recall the
basic definitions and main results related to this topic, which yield in particular that the
secondary polytope of any convex (n+3)-gon is an n-dimensional associahedron. For more
detailed presentations we refer to [7, Sec. 5] and [33, Lect. 9]. All the subdivisions and
triangulations of polytopes that appear in the following are understood to be without new
vertices.

The secondary polytope construction.

Definition 3.1 (GKZ vector/secondary polytope). Let Q be a d-dimensional convex poly-
tope with n + d + 1 vertices. The GKZ vector v(t) ∈ Rn+d+1 of a triangulation t of Q
is

v(t) :=

n+d+1∑
i=1

vol(start(i))ei =

n+d+1∑
i=1

∑
σ∈t : i∈σ

vol(σ)ei

The secondary polytope of Q is defined as

Σ(Q) := conv{v(t) : t is a triangulation of Q}.
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Theorem 3.2 (Gelfand–Kapranov–Zelevinsky [13]). Let Q be a d-dimensional convex poly-
tope with m = n + d + 1 vertices. Then the secondary polytope Σ(Q) has the following
properties:

(i) Σ(Q) is an n-dimensional polytope.
(ii) The vertices of Σ(Q) are in bijection with the regular triangulations of Q.

(iii) The faces of Σ(Q) are in bijection with the regular subdivisions of Q.
(iv) The face lattice of Σ(Q) is isomorphic to the lattice of regular subdivisions of Q,

ordered by refinement.

The associahedron as the secondary polytope of a convex (n+ 3)-gon.

Definition 3.3. The Gelfand–Kapranov–Zelevinsky associahedron GKZn(Q) ⊂ Rn+3 is
defined as the (n-dimensional) secondary polytope of a convex (n+ 3)-gon Q ⊂ R2:

GKZn(Q) := Σ(Q).

Corollary 3.4 ([13]). GKZn(Q) is an n-dimensional associahedron.

There is one feature that distinguishes the associahedron as a secondary polytope from all
the other constructions that we mention in this paper: the absence of parallel facets. This
property, in particular, will imply that the GKZ–associahedra are not normally isomorphic
to the associahedra produced by the other constructions:

Theorem 3.5. Let Q be a convex (n+ 3)-gon. Then GKZn(Q) has no parallel facets for
n ≥ 2.

Our proof is based on the understanding of the facet normals in secondary polytopes.
Let Q be an arbitrary d-polytope with n+d+1 vertices {q1, . . . , qn+d+1}, so that GKZn(Q)
lives in Rn+d+1, although it has dimension n. In the theory of secondary polytopes one
thinks of each linear functional Rn+d+1 → R as a function ω : vertices(Q) → R assigning
a value ω(qi) to each vertex qi. In turn, to each triangulation t of Q (with no additional
vertices) and any such ω one associates the function gω,t : Q → R which takes the value
ω(qi) at each qi and is affine linear on each simplex of t. That is, we use t to piecewise
linearly interpolate a function whose values (ω(q1), . . . , ω(qn)) we know on the vertices
of Q. The main result we need is the following equality for every ω and every triangulation
t (see, e.g., [7, Thm. 5.2.16]):

〈ω, v(t)〉 = (d+ 1)

∫
Q
gω,t(x)dx.

In particular:
◦ If ω is affine-linear (that is, if the points {(q1, ω1), . . . , (qn+d+1, ωn+d+1)} ⊂ Rn+d+1 × R

lie in a hyperplane) then 〈ω, v(t)〉 is the same for all t. Moreover, the converse is also
true: The affine-linear ω’s form the lineality space of the normal fan of GKZn(Q).
◦ An ω lies in the linear cone of the (inner) normal fan of GKZn(Q) corresponding to a

certain triangulation t (that is, 〈ω, v(t)〉 ≤ 〈ω, v(t′)〉 for every other triangulation t′) if
and only if the function gω,t is convex; that is to say, if its graph is a convex hypersurface.
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Proof of Theorem 3.5. With the previous description in mind we can identify the facet
normals of the secondary polytope of a polygon Q. For this we use the correspondence:

vertices ←→ triangulations of Q
facets ←→ diagonals of Q

For a given diagonal δ of Q, denote by Fδ the facet of GKZn(Q) corresponding to δ. The
vector normal to Fδ is not unique, since adding to any vector normal to Fδ an affine-linear
ω0 we get another one. One natural choice is

ωδ(qi) := dist(qi, lδ),

where lδ is the line containing δ and dist(·, ·) is the Euclidean distance. Indeed, ωδ lifts
the vertices of Q on the same side of δ to lie in a half-plane in R3, with both half-planes
having δ as their common intersection. That is, gωδ,t is convex for every t that uses δ.
But another choice of normal vector is better for our purposes: choose one side of lδ to be
called positive and take

ω+
δ (qi) :=

{
dist(qi, lδ) if qi ∈ l+δ
0 if qi ∈ l−δ

.

For the end-points of δ, which lie in both l+δ and l−δ , there is no ambiguity since both

definitions give the value 0. Again, ω+
δ is a normal vector to Fδ since it lifts points on

either side of lδ to lie in a plane.
We are now ready to prove the theorem. If two diagonals δ and δ′ of Q do not cross,

then they can simultaneously be used in a triangulation. Hence, the corresponding facets
Fδ and Fδ′ meet, and they cannot be parallel. So, assume in what follows that δ and δ′ are
two crossing diagonals. Let δ = pr and δ′ = qs, with pqrs being cyclically ordered along
Q. Since n ≥ 2 there is at least another vertex a in Q. Without loss of generality suppose
a lies between s and p. Now, we call negative the side of lδ and the side of lδ′ containing
a, and consider the normal vectors ω+

δ and ω+
δ′ as defined above. They take the following

values on the five points of interest:

ω+
δ (a) = 0, ω+

δ (p) = 0, ω+
δ (q) > 0, ω+

δ (r) = 0, ω+
δ (s) = 0,

ω+
δ′(a) = 0, ω+

δ′(p) = 0, ω+
δ′(q) = 0, ω+

δ′(r) > 0, ω+
δ′(s) = 0.

Suppose that Fδ and Fδ′ were parallel. This would imply that δ and δ′ are linearly
dependent or, more precisely, that there is a linear combination of them that gives an
affine-linear ω (in the lineality space of the normal fan). But any (non-trivial) linear
combination ω of ω+

δ and ω+
δ′ necessarily takes the following values on our five points,

which implies that ω is not affine-linear:

ω(a) = 0, ω(p) = 0, ω(q) 6= 0, ω(r) 6= 0, ω(s) = 0. �

Remark 3.6. The secondary polytope can be defined for any set of points {q1, . . . , qn+3}
in the plane, not necessarily the vertices of a convex polygon. In general this does not
produce an associahedron, but there is a case in which it does: if the points are cyclically
placed on the boundary of an m-gon with m ≤ n + 3 in such a way that no four of
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them lie on a boundary edge. By the arguments in the proof above, a necessary condition
for the associahedron obtained to have parallel facets is that m ≤ 4. For m = 4 we
can obtain associahedra up to dimension 4 with exactly one pair of parallel facets (those
corresponding to the main diagonals of the quadrilateral). For m = 3, we can obtain 2-
dimensional associahedra with two pairs of parallel facets, and 3-dimensional associahedra
with three pairs of parallel facets. The latter is obtained for six points {p, q, r, a, b, c} with
p, q and r being the vertices of a triangle and a ∈ pq, b ∈ qr and c ∈ ps intermediate points
in the three sides. The associahedron obtained has the following three pairs of parallel
facets:

Fpq||Far, Fqr||Fbs, Fps||Fcq.

Remark 3.7. Rote, Santos and Streinu [26] introduce a polytope of pseudo-triangulations
associated to each finite set A of m points (in general position) in the plane. This polytope
lives in R2m and has dimension m+3+i, where i is the number of points interior to conv(A).
They show that for points in convex position their polytope is affinely isomorphic to the
secondary polytope for the same point set. Their constructions uses rigidity theoretic ideas:
the edge-direction joining two neighboring triangulations t and t′ is the vector of velocities
of the (unique, modulo translation and rotation) infinitesimal flex of the embedded graph
of t ∩ t′.

3.2. The Postnikov associahedron. We now review two further realizations of the asso-
ciahedron: one by Postnikov [24] and one by Rote–Santos–Streinu [26] (different from the
one in Remark 3.7). The main goal of this section is to prove that these two constructions
produce affinely equivalent results. As special cases of these constructions one obtains, re-
spectively, the realizations by Loday [21] and Buchstaber [5], which turn out to be affinely
equivalent as well.

3.2.1. The Postnikov associahedron.

Definition 3.8. For any vector a = {aij > 0 : 1 ≤ i ≤ j ≤ n + 1} of positive parameters
we define the Postnikov associahedron as the polytope

Postn(a) :=
∑

1≤i≤j≤n+1

aij∆[i,...,j],

where ∆[i,...,j] denotes the simplex conv{ei, ei+1, . . . , ej} in Rn+1.

Proposition 3.9 (Postnikov [24, Sec. 8.2]). Postn(a) is an n-dimensional associahedron.
In particular, for aij ≡ 1 this yields the realization of Loday [21].

In terms of inequalities the Postnikov associahedron is given as follows.

Lemma 3.10.

Postn(a) = {(x1, . . . , xn+1) ∈ Rn+1 :
∑
p<i<q

xi ≥ fp,q for 0 ≤ p < q ≤ n+ 2,

x1 + · · ·+ xn+1 = f0,n+2},
where fp,q =

∑
p<i≤j<q ai,j.



MANY NON-EQUIVALENT REALIZATIONS OF THE ASSOCIAHEDRON 11

123213

312

321 141

600 060

006

Figure 7. The Postnikov associahedron AssII2 (1) with the coordinates of
the vertices. This coincides with the realization of Loday.

The facet of Postn(a) determined by the hyperplane with right hand side parameter fp,q
corresponds to the diagonal pq of an (n+ 3)-gon with vertices labeled in counterclockwise
direction from 0 to n+ 2. In particular:

Theorem 3.11. Postn(a) has exactly n pairs of parallel facets. These correspond to the
pairs of diagonals ({0, i+ 1}, {i, n+ 2}) for 1 ≤ i ≤ n, as illustrated in Figure 8.

Proof. Two hyperplanes of the form
∑

i∈S1
xi ≥ c1 and

∑
i∈S2

xi ≥ c2 for S1, S2 ⊆ [n+ 1],
intersected with an affine hyperplane x1+ · · ·+xn+1 = c are parallel if and only if S1∪S2 =
[n+ 1] and S1 ∩ S2 = ∅. Therefore two diagonals pq and rs correspond to parallel facets if
and only if pq = {0, i+ 1} and qr = {i, n+ 2}. �

i < i + 1

{1

2

0 {n + 2, i

, i

{n

n + 1. They correspond

i < i + 1

{1

2

0 {n + 2, i

, i

{n

n + 1. They correspond

i < i + 1

{1

2

0 {n + 2, i

, i

{n

n + 1. They correspond

i < i + 1

{1

2

0 {n + 2, i

, i

{n

n + 1. They correspond

Figure 8. Diagonals of the (n + 3)-gon that correspond to the pairs of
parallel facets of both Postn(a) and RSSn(g).

3.2.2. The Rote–Santos–Streinu associahedron. By “generalizing” the construction of Re-
mark 3.7 to sets of points along a line, Rote, Santos and Streinu [26] obtain a second
realization of the associahedron.

Definition 3.12. The Rote–Santos–Streinu associahedron is the polytope

RSSn(g) = {(y0, y1, . . . , yn+1) ∈ Rn+2 : yj − yi ≥ gi,j for j > i, y0 = 0, yn+1 = g0,n+1},
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where g = (gi,j)0≤i<j≤n+1 is any vector with real coordinates satisfying

gi,l + gj,k > gi,k + gj,l for all i < j ≤ k < l,
gi,l > gi,k + gk,l for all i < k < l.

Proposition 3.13 (Rote–Santos–Streinu [26, Sec. 5.3]). If the vector g satisfies the pre-
vious inequalities then RSSn(g) is an n-dimensional associahedron.

A particular example of valid parameters g is given by g0: gi,j = i(i − j). In this case
we get the realization of the associahedron introduced by Buchstaber in [5, Lect. II Sec. 5].

y1(0,0) (1,0)

(2,1)

(2,2)(0,2)

y2

Figure 9. The Rote–Santos–Streinu associahedron RSS2(g0) with the co-
ordinates of the vertices. This coincides with the realization of Buchstaber.

The facet of RSSn(g) related to yj − yi ≥ gi,j corresponds to the diagonal {i, j + 1} of
an (n+ 3)-gon with vertices labeled in counterclockwise direction from 0 to n+ 2. One can
also see that with this specified combinatorics of the facets, the conditions on the vector g
are also necessary for the proposition to hold.

Theorem 3.14. RSSn(g) has exactly n pairs of parallel facets. They correspond to the
pairs of diagonals ({0, i+ 1}, {i, n+ 2}) for 1 ≤ i ≤ n, as illustrated in Figure 8.

Rote, Santos and Streinu stated in [26, Sec. 5.3] that RSSn(g) is not affinely equiva-
lent to neither the associahedron as a secondary polytope nor the associahedron from the
cluster complex of type A. Next we prove that RSSn(g) is affinely isomorphic to Postn(a).
Furthermore, we prove, in Corollary 4.8 and Theorem 6.1, that these two polytopes are not
normally isomorphic to the associahedron as a secondary polytope or the associahedron
from the cluster complex of type A.

3.2.3. Affine equivalence.

Theorem 3.15. Let ϕ be the affine transformation

ϕ : Rn+1 → Rn
(x1, . . . , xn+1) → (y1, . . . , yn)

defined by yk =
∑k

i=1(xi − i). Then ϕ maps Postn(a) bijectively to RSSn(g), for g given

by gi,j − (i+j+1)(j−i)
2 = fi,j+1(a). In particular, ϕ maps the Loday associahedron Postn(1)

to the Buchstaber associahedron RSSn(g0).
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Proof.
yj − yi ≥ gi,j

(xi+1 + · · ·+ xj) + ((i+ 1) + · · ·+ j) ≥ gi,j
xi+1 + · · ·+ xj ≥ gi,j − (i+j+1)(j−i)

2 . �

Corollary 3.16 (Minkowski sum decomposition of RSSn(g)). Every Rote–Santos–Streinu
associahedron can be written as

RSSn(g) =
∑

1≤i≤j≤n
bi,j∆̃i,j ,

for certain (bi,j) with bi,j > 0 whenever i < j, and bi,i possibly negative. Here ∆̃i,j =
conv{ui, ui+1, . . . , uj} and ui = (0, . . . , 0, 1, . . . , 1) ∈ Rn is a 0/1-vector with i zeros.

3.3. The Chapoton–Fomin–Zelevinsky associahedron.

3.3.1. The associahedron associated to a cluster complex. Cluster complexes are combina-
torial objects that arose in the theory of cluster algebras [9] [10] initiated by Fomin and
Zelevinsky. They correspond to the normal fans of polytopes known as generalized associ-
ahedra because the particular case of type An yields to the classical associahedron. This
polytope was constructed by Chapoton, Fomin and Zelevinsky in [6]. We refer to [11], [8]
and [6] for more detailed presentations.

3.3.2. The cluster complex of type An. The root system of type An is the set Φ := Φ(An) =
{ei − ej , 1 ≤ i 6= j ≤ n+ 1} ⊂ Rn+1. The simple roots of type An are the elements of the
set Π = {αi = ei − ei+1, i ∈ [n]}, the set of positive roots is Φ>0 = {ei − ej : i < j}, and
the set of almost positive roots is Φ≥−1 := Φ>0 ∪ −Π.

There is a natural correspondence between the set Φ≥−1 and the diagonals of the (n+3)-
gon Pn+3: We identify the negative simple roots −αi with the diagonals on the snake of
Pn+3 illustrated in Figure 10.

− α2

− α3 − αn−2

− αn−1

− αn
−α1

Figure 10. Snake and negative roots of type An.

Each positive root is a consecutive sum

αij = αi + αi+1 + · · ·+ αj , 1 ≤ i ≤ j ≤ n,
and thus is identified with the unique diagonal of Pn+3 crossing the (consecutive) diagonals
that correspond to −αi,−αi+1, . . . ,−αj .
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Definition 3.17 (Cluster complex of type An). Two roots α and β in Φ≥−1 are compatible
if their corresponding diagonals do not cross. The cluster complex ∆(Φ) of type An is the
clique complex of the compatibility relation on Φ≥−1, i.e., the complex whose simplices
correspond to the sets of almost positive roots that are pairwise compatible. Maximal
simplices of ∆(Φ) are called clusters.

In this case, the cluster complex satisfies the following correspondence, which is dual to
the complex of the associahedron:

vertices ←→ diagonals of a convex (n+ 3)-gon
simplices ←→ polyhedral subdivisions of the (n+ 3)-gon

(viewed as collections of non-crossing diagonals)
maximal simplices ←→ triangulations of the (n+ 3)-gon

(viewed as collections of n non-crossing diagonals)

Theorem 3.18 ([11, Thms. 1.8, 1.10]). The simplicial cones R≥0C generated by all clusters
C of type An form a complete simplicial fan in the ambient space

{(x1, . . . , xn+1) ∈ Rn+1 : x1 + · · ·+ xn+1 = 0}.

Theorem 3.19 ([6, Thm. 1.4]). The simplicial fan in Theorem 3.18 is the normal fan of
a simple n-dimensional polytope P .

Theorem 3.18 is the case of type An of [11, Thm. 1.10]. It allows us to think of the cluster
complex as the complex of a complete simplicial fan. Theorem 3.19 was conjectured by
Fomin and Zelevinsky [11, Conj. 1.12] and subsequently proved by Chapoton, Fomin, and
Zelevinsky [6]. For an explicit description by inequalities see [6, Cor. 1.9]. These two
theorems are special cases of Theorems 5.1 and 5.2, proved in Section 5.

3.3.3. The Chapoton–Fomin–Zelevinsky associahedron CFZn(An).

Definition 3.20. The Chapoton–Fomin–Zelevinsky associahedron CFZn(An) is any poly-
tope whose normal fan is the fan with maximal cones R≥0C generated by all clusters C of
type An.

Proposition 3.21 ([11, 6]). CFZn(An) is an n-dimensional associahedron.

A polytopal realization of the associahedron CFZ2(A2) is illustrated in Figure 11; note
how the facet normals correspond to the almost positive roots of A2.

Theorem 3.22. CFZn(An) has exactly n pairs of parallel facets. These correspond to
the pairs of roots {αi,−αi}, for i = 1, . . . , n, or, equivalently, to the pairs of diagonals
{αi,−αi} as indicated in Figure 12. �

4. Exponentially many realizations, by Hohlweg–Lange

4.1. The Hohlweg–Lange construction. In this section we give a short description of
the first, “type I”, exponential family of realizations of the associahedron, as obtained
by Hohlweg and Lange in [16]. We prove that the number of normally non-isomorphic
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−α2

α1

α1 + α2

−α1

α2

Figure 11. The complete simplicial fan of the cluster complex of type A2

and an associahedron CFZ2(A2).

− α2

− α3 − αn−2

− αn−1

− αn

α1

α2

α3

αn−2 αn−1

αn−α1

Figure 12. The diagonals of the (n+ 3)-gon that correspond to the pairs
of parallel facets of CFZn(An).

realizations obtained this way is equal to the number of sequences {+,−}n−1 modulo

reflection and reversal. This number is equal to 2n−3 + 2b
n−3
2
c for n ≥ 3 (see [29, Sequence

A005418]).
Let σ ∈ {+,−}n−1 be a sequence of signs on the edges of an horizontal path on n

nodes. We identify n + 3 vertices {0, 1, . . . , n + 1, n + 2} with the signs of the sequence
σ̃ = {+,−, σ,−,+}, and place them in convex position from left to right so that all
positive vertices are above the horizontal path, and all negative vertices are below it.
These vertices form a convex (n + 3)-gon that we call Pn+3(σ). Figure 4.1 illustrates the
example P7({+,−,+}), where n = 4.

Definition 4.1. For a diagonal ij (i < j) of Pn+3(σ), we denote by Rij(σ) the set of
vertices strictly below it. We define the set Sij(σ) as the result of replacing 0 by i in Rij(σ)
if 0 ∈ Rij(σ), and replacing n+ 2 by j if n+ 2 ∈ Rij(σ).

The Hohlweg–Lange associahedron AssIn(σ) is the polytope

AssIn(σ) =
{

(x1, . . . xn+1) ∈ Rn+1 :
∑

i∈Sδ(σ)
xi ≥ 1

2 |Sδ(σ)|(|Sδ(σ)|+ 1) for all diagonals δ,

x1 + · · ·+ xn+1 = (n+1)(n+2)
2

}
.
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+ 1
1 5

2

3

4

0 6

+ 1 −}

Figure 13. P7({+,−,+}).

Remark 4.2. If in σ̃ = {+,−, σ,−,+} we interchange the first two signs and/or the
last two signs, the sets Sδ(σ) do not change and the construction will produce the same
associahedron AssIn(σ).

Proposition 4.3 ([16, Thm. 1.1]). AssIn(σ) is an n-dimensional associahedron.

Proposition 4.4 ([16, Remarks 1.2 and 4.3]). AssIn({−,−, . . . ,−}) produces the Postnikov
(Loday) associahedron Postn(1), and AssIn({+,−,+,−, . . . }) is normally isomorphic to the
Chapoton–Fomin–Zelevinsky associahedron CFZn(An).

Proof. For the first part we note that for σ = {−,−, · · · −}, the set Sp,q(σ) of a diagonal

pq is given by Sp,q = {i : p < i < q}, and that the description of AssIn(σ) coincides with
that of Postn(a) in Lemma 3.10 for a = 1. For the second part let σ = {+,−,+,−, . . . }.
We write Sδ instead of Sδ(σ) for simplicity, and denote by IS ∈ Rn+1 the 0/1 vector with
ones in the positions of a set S ⊆ [n + 1]. The snake triangulation is given by the set of
diagonals of the form i, i + 1, for 1 ≤ i ≤ n (in the case where n, n + 1 is not a diagonal
we interchange vertices n+ 1 and n+ 2; this doesn’t change the associahedron we get, see
Remark 4.2). We denote by −αi = ISi,i+1 the normal vector associated to the diagonal
i, i+1, and by ni,j = ISi−1,j+2 (i ≤ j) the normal vector associated to the diagonal crossing
{−αi,−α2, . . . ,−αj}. We need to prove that

ni,j ≡ αi + αi+1 + · · ·+ αj mod (1, . . . , 1).

The reason is that our polytope lies in an affine hyperplane orthogonal to the vector
(1, . . . , 1), and so we must consider the normal vectors modulo (1, . . . , 1). To this end, note
that

ni,i = αi + (1, . . . , 1)

and

ni,j+1 =

{
ni,j + (1, . . . , 1) + αj+1 if j is odd,

ni,j + αj+1 if j is even. �

Remark 4.5. The Postnikov associahedron was defined as a Minkowski sum of certain
faces ∆S of the standard simplex ∆[n+1]. The question arises whether such Minkowski sum
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descriptions exist for AssIn(σ) in general. A partial answer is as follows. Postnikov [24]
introduced generalized permutahedra as the polytopes with facet normals contained in those
of the standard permutahedron such that the collection of right hand side parameters of
the defining inequalities belongs to the deformation cone of the standard permutahedron.
This includes all the Minkowski sums

∑
S⊆[n+1] aS∆S for which the coefficients aS are non-

negative. Ardila et al. [1] have shown that by dropping the deformation cone condition
every polytope of the resulting family admits a (unique) expression as a Minkowski sum
and difference of faces of the standard simplex. These decompositions, for the case of
AssIn(σ), are studied by Lange in [19]. A different decomposition arises from the work of
Pilaud and Santos [23], who show that the associahedra AssIn(σ) are the “brick polytopes”
of certain sorting networks. As such, they admit a decomposition as the Minkowski sum
of the

(
n
2

)
polytopes associated to the individual “bricks”. However, these summands need

not be simplices.

4.2. Parallel facets.

Theorem 4.6. AssIn(σ) has exactly n pairs of parallel facets. They correspond to the
diagonals of the quadrilaterals with vertices {i, j, j + 1, k} for j = 1, . . . , n, where

i = max{0 ≤ r < j : sign(r) · sign(j) = −}
k = min{j + 1 < r ≤ n+ 2 : sign(r) · sign(j + 1) = −}

Proof. Two diagonals δ and δ′ correspond to two parallel facets of AssIn(σ) if and only if
the sets Sδ and Sδ′ satisfy Sδ ∪ Sδ′ = [n+ 1] and Sδ ∩ Sδ′ = ∅. These two properties hold
if and only if δ and δ′ are the diagonals of the quadrilateral {i, j, j + 1, k} for j = 1, . . . , n,
and i and k satisfying the conditions of the theorem. �

Associated to a sequence σ we define two operations, reflection and reversal. The reflec-
tion of σ is the sequence −σ, and the reversal σt is the result of reversing the order of the
signs in σ.

Theorem 4.7. Let σ1, σ2 ∈ {+,−}n−1. Then the two realizations AssIn(σ1) and AssIn(σ2)
are normally isomorphic if and only if σ2 can be obtained from σ1 by reflections and rever-
sals.

Proof. Suppose there is a linear isomorphism between the normal fans of AssIn(σ1) and
AssIn(σ2). It induces an automorphism of the face lattice of the associahedron that, by
Lemma 2.3, corresponds to a certain reflection-rotation of the polygon. We denote this
reflection-rotation by ϕ : Pn+3(σ1) → Pn+3(σ2). Any linear isomorphism of the normal
fans preserves the property of a pair of facets being parallel, so ϕ maps the “parallel” pairs
of diagonals of Pn+3(σ1), to the “parallel” pairs of diagonals of Pn+3(σ2). Furthermore,
for both realizations there are exactly four diagonals that cross at least one diagonal of
every parallel pair; they are {0, n + 1}, {0, n + 2}, {1, n + 1} and {1, n + 2}. The set of
these four diagonals is also preserved under ϕ. This is possible only if ϕ is a reflection-
rotation that corresponds to a composition of reflections and reversals of the sequence
σ̃1 = {+,−, σ1,−,+}.
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It remains to prove that AssIn(σ) is normally-isomorphic to both AssIn(−σ) and AssIn(σt).
The isomorphism between the normal fans of AssIn(σ) and AssIn(−σ) is given by multipli-
cation by −1, since Sδ(−σ) = [n] − Sδ(σ). The isomorphism between the normal fans
of AssIn(σ) and AssIn(σt) is given by the permutation of coordinates τ(i) = n + 1 − i, as
Sδ(σ

t) = τ(Sδ(σ)). �

Corollary 4.8. The Postnikov associahedron is not normally isomorphic to the Chapoton–
Fomin–Zelevinsky associahedron.

Proof. The Postnikov associahedron is produced by the sequence σ1 = {−,−, . . . ,−}, and
the Chapoton–Fomin–Zelevinsky associahedron is normally isomorphic to the one produced
by the sequence σ2 = {+,−,+,−, . . . }. The two sequences are not equivalent under
reflections and reversals. �

4.3. Facet vectors. We now show that AssIn(σ) can (modulo normal isomorphism) be
embedded in Rn so that its facet normals are a subset of {0,−1,+1}n and contain the n
standard basis vectors and their negatives among them. That is, it can be obtained from
a cube by cutting certain faces, as in Figures 2 and 3.

Obviously, the basis vectors and their negatives will correspond to the n pairs of parallel
facets that we identified in Theorem 4.6. Each such pair consists of a diagonal with positive
slope and one with negative slope. We choose as “positive basis vector” the one with
positive slope, which can be characterized as follows:

Lemma 4.9. Let {i, j, j + 1, k} for j = 1, . . . , n be as in Theorem 4.6. Let

a := max{0 ≤ r ≤ j : sign(r) = −},
b := min{j + 1 ≤ r ≤ n+ 2 : sign(r) = +}.

Then ab is one of the diagonals of the quadrilateral with vertices {i, j, j + 1, k} and it has
positive slope.

Proof. By construction, {i, j, j+1, k} has two positive points and two negative points (i and
j have opposite sign, as have j + 1 and k). Our definition of a and b is equivalent to: a is
the negative point in {i, j} and b is the positive point in {j + 1, k}. �

As customary, we call characteristic vector of a set S ⊂ [n + 1] the vector in {0, 1}n+1

with 1’s in the coordinates of the elements of S. We denote it eS . In particular, the i-th
standard basis vector is ei = e{i}.

For each j = 1, . . . , n, let Xj = eSa,b(σ), where a and b are as in Lemma 4.9 and Sa,b(σ)

is from Definition 4.1. Then Xj is normal to the facet of AssIn(σ) corresponding to the
diagonal ab, one of the facets in the j-th parallel pair. By convention, let Xn+1 = e∅ =
(0, . . . , 0) and X0 = e[n+1] = (1, . . . , 1).

Theorem 4.10. For every S ⊂ [n+1], the characteristic vector of S is a linear combination
of {X0, . . . , Xn+1} with coefficients in {0,+1,−1}.
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Proof. Since

eS =
∑
j∈S

ej ,

the statement follows from the formula

ej = Xj−1 −Xj , ∀j ∈ [n],

which we prove distinguishing the case of j being positive or negative (the cases j = 1 and
j = n + 1 need separate treatment, but the formula holds for them too). Let a and b be
as in Lemma 4.9 and let a′ and b′ be the same, but computed for j − 1 instead of j. That
is, let Xj−1 be the characteristic vector of Sa′,b′ . If j is positive, then a = a′, b′ = j and b
is the next positive point after j. If j is negative, then b = b′, a = j and a′ is the previous
negative point before j. �

Definition 4.1 says that the characteristic vector of Sδ(σ) is a normal vector to the facet
of AssIn(σ) corresponding to a certain diagonal δ. Since AssIn(σ) is not full-dimensional,
the normal to each facet is not unique. Others are obtained adding multiples of e[n+1] =

(1, . . . , 1) to it. Put differently, the normal fan of AssIn(σ) lives naturally in (Rn+1)∗/〈X0〉.
For the basis {X1, . . . , Xn} in this space, Theorem 4.10 yields the following.

Corollary 4.11. With respect to the basis {X1, . . . , Xn}, the normal vectors of AssIn(σ)
are all in {0,+1,−1}n and include the 2n vectors {±X1, . . . ,±Xn}.

5. Catalan many realizations, by Santos

In this section we describe a generalization of the Chapoton–Fomin–Zelevinsky construc-
tion of the associahedron (Section 3.3), originally presented at a conference in 2004 [27].
We prove that the number of normally non-isomorphic realizations obtained this way, our
“type II exponential family”, is equal to the number of triangulations of an (n + 3)-gon
modulo reflections and rotations. Interest in this number goes back to Motzkin (1948) [22].
An explicit formula for it is

1
2(n+3)Cn+1 + 1

4C(n+1)/2 + 1
2Cb(n+1)/2c + 1

3Cn/3,

where Cn = 1
n+1

(
2n
n

)
for n ∈ Z and Cn = 0 otherwise [29, Sequence A000207].

Let α1, . . . , αn denote a linear basis of an n-dimensional real vector space V ∼= Rn, and
let T0 be a certain triangulation of the (n + 3)-gon, fixed once and for all throughout the
construction. We call T0 the seed triangulation. The CFZ associahedron will arise as the
special case where V = {(x1, . . . , xn+1) ∈ Rn+1 :

∑
xi = 0}, αi = ei − ei+1, and T0 is the

snake triangulation of Figure 10.
Let {δ1, . . . , δn} denote the n diagonals present in the seed triangulation T0. To each

diagonal pq out of the n(n+3)
2 possible diagonals of the n-gon we associate a vector vpq as

follows:
◦ If pq = δi for some i (that is, if pq is used in T0) then let vpq = −αi.
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◦ If pq 6∈ T0 then let

vpq :=
∑

pq crosses δi

αi.

As a running example, consider the triangulation {123, 345, 156, 135} of a hexagon with
its vertices labelled cyclically. Let δ1 = 13, δ2 = 35 and δ3 = 15. Written with respect to
the basis {α1, α2, α3} the nine vectors vpq that we get are as follows (see Figure 14):

2

3

5

6

4

δ1

δ3

δ2

1

Figure 14. A seed triangulation for Santos’ construction.

v13 = −α1 = (−1, 0, 0), v35 = −α2 = (0,−1, 0), v15 = −α3 = (0, 0,−1),
v25 = α1 = (1, 0, 0), v14 = α2 = (0, 1, 0), v36 = α3 = (0, 0, 1),
v46 = α2 + α3 = (0, 1, 1), v26 = α1 + α3 = (1, 0, 1), v24 = α1 + α2 = (1, 1, 0).

With a slight abuse of notation, for each subset of diagonals of the polygon we denote
with the same symbol the set of diagonals and the set of vectors associated with them.
For example, R≥0T0 = R≥0{−α1, . . . ,−αn} is the negative orthant in V (with respect
to the basis [αi]i). More generally, for each triangulation T of the (n + 3)-gon consider
the cone R≥0T . We claim the following generalizations of Theorems 3.18 and 3.19, and
Proposition 3.21:

Theorem 5.1. The simplicial cones R≥0T generated by all triangulations T of the (n+3)-
gon form a complete simplicial fan FT0 in the ambient space V .

Theorem 5.2. This fan FT0 is the normal fan of an n-dimensional associahedron.

5.1. Proof of Theorem 5.1. The statement follows from the following two claims:
(1) R≥0T0 is a simplicial cone and is the only cone in FT0 that intersects (the interior of)

the negative orthant.
(2) If T1 and T2 are two triangulations that differ by a flip, let v1 ∈ T1 and v2 ∈ T2 be the

diagonals removed and inserted by the flip. That is, T1 \T2 = {v1} and T2 \T1 = {v2}.
Then there is a linear dependence in T1 ∪ T2 which has coefficients of the same sign
(and different from zero) in the elements v1 and v2.

The first assertion is obvious, and the second one is Lemma 5.3 below. Before proving
it let us argue why these two assertions imply Theorem 5.1. Suppose that we have two
triangulations T1 and T2 related by a flip as in the second assertion, and suppose that we
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already know that one of them, say T1, spans a full-dimensional cone (that is, we know
that T1 considered as a set of vectors is independent). Then assertion (2) implies that T2
spans a full-dimensonal cone as well and that R≥0T1 and R≥0T2 lie in opposite sides of
their common facet R≥0(T1 ∩ T2). This, together with the fact that there is some part of
V covered by exactly one cone (which is why we need assertion (1)) implies that we have
a complete fan. (See, for example, [7, Cor. 4.5.20], where assertion (2) is a special case of
“property (ICoP)” and assertion (1) a special case of “property (IPP)”.)

Lemma 5.3. Let T1 and T2 be two triangulations that differ by a flip, and let v1 and
v2 be the diagonals removed and inserted by the flip from T1 to T2, respectively (that is,
T1 \T2 = {v1} and T2 \T1 = {v2}). Then there is a linear dependence in T1 ∪T2 which has
coefficients of the same sign in the elements v1 and v2.

Proof. Let p, q, r and s be the four points involved by the two diagonals v1 and v2, in
cyclic order. That is, the diagonals removed and inserted are pr and qs. We claim that
one (and exactly one) of the following things occurs (see Figure 15):
(a) There is a diagonal in the seed triangulation T0 that crosses two opposite edges of the

quadrilateral pqrs.
(b) One of pr and qs is used in the seed triangulation T0.
(c) There is a triangle abc in T0 with a vertex in pqrs and the opposite edge crossing two

sides of pqrs (that is, without loss of generality p = a and bc crosses both qr and rs).
(d) There is a triangle abc in T0 with an edge in common with pqrs and with the other two

edges of the triangle crossing the opposite edge of the quadrilateral (that is, without
loss of generality, p = a, q = b and rs crosses both ac and bc).

p s p s p s p s

q r q r q r q r

(a) (b) (c) (d)

Figure 15. The four cases in the proof of Lemma 5.3.

To prove that one of the four things occurs we argue as follows. It is well-known that
in any triangulation of a k-gon one can “contract a boundary edge” to get a triangulation
of a (k − 1)-gon. Doing that in all the boundary edges of the seed triangulation T0 except

those incident to either p, q, r or s we get a triangulation T̃0 of a polygon P̃ with at most
eight vertices: the four vertices p, q, r and s and at most one extra vertex between each

two of them. We embed P̃ having as vertex a subset of the vertices of a regular octagon,

with pqrs forming a square. We now look at the position of the center of the octagon P̃

with respect to the triangulation T̃0: If it lies in the interior of an edge, then this edge is a
diameter of the octagon and we are in cases (a) or (b). If it lies in the interior of a triangle

of T̃0, then we are in cases (c) or (d). See Figure 15 again.
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Now we show explicitly the linear dependences involved in T1 ∪ T2 in each case.
(a) Suppose T0 has a diagonal crossing pq and rs. Then

vpr + vqs = vpq + vrs, (1)

because every diagonal of T0 intersecting the two (respectively, one; respectively none)
of pr and qs intersects also the two (respectively, one; respectively none) of pq and rs.

(b) If T0 contains the diagonal pr, let a and b be vertices joined to pr in T0, with a on the
side of q and b on the side of s. We define the following vectors wa and wb:
◦ wa equals 0, vpq or vqr depending on whether a equals q, lies between p and q, or lies

between q and r.
◦ wb equals 0, vps or vrs depending on whether a equals s, lies between p and s, or lies

between s and r.
We claim that in the nine cases we have the equality

vpr + vqs = wa + wb. (2)

This is so because vpr + vqs now equals the sum of the αi’s corresponding to the
diagonals of T0 \ {pr} crossing qs, and we have that:
◦ The diagonals of T0 crossing qs in the q-side of pr are none, the same as those crossing
pq, or the same as those crossing qr in the three cases of the definition of wa, and
◦ The diagonals of T0 crossing qs in the s-side of pr are none, the same as those crossing
ps, or the same as those crossing rs in the three cases of the definition of wb

(c) If T0 contains a triangle pbc with bc crossing both qr and rs then we have the equality

2vpr + vqs = vqr + vrs, (3)

because in this case the diagonals of T0 crossing pr are the same as those crossing both
qr and rs, while the ones crossing qs are those crossing one, but not both, of qr and
rs.

(d) If T0 contains a triangle pqc with rs crossing both pc and qc then we have the equality

vpr + vqs = vrs (4)

because the diagonals of T0 crossing rs are the same as those crossing pr and the same
as those crossing qs. �

Observe that when T0 is a snake triangulation (the CFZ case) or, more generally, when
the dual tree of T0 is a path, cases (c) and (d) do not occur.

5.2. Proof of Theorem 5.2. To prove that FT0 is the normal fan of a polytope we use
the following characterization.

Lemma 5.4. Let F be a complete simplicial fan in a real vector space V and let A be the
set of generators of F (more precisely, A has one generator of each ray of F). Then the
following conditions are equivalent:
(1) F is the normal fan of a polytope.
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(2) There is a map ω : A → R>0 such that for every pair (C1, C2) of maximal adjacent
cones of F the following happens: Let λ : A→ R be the (unique, up to a scalar multiple)
linear dependence with support in C1 ∪C2, with its sign chosen so that λ is positive in
the generators of C1 \C2 and C2 \C1. Then the scalar product λ · ω =

∑
v λ(v)ω(v) is

strictly positive.

Proof. One short proof of the lemma is that both conditions are equivalent to “F is a
regular triangulation of the vector configuration A” [7]. But let us show a more explicit
proof of the implication from (2) to (1), which is the one we need. What we are going to
show is that if such an ω exists and if we consider the set of points

Ã :=
{

v
ω(v) : v ∈ A

}
,

then the convex hull of Ã is a simplicial polytope with the same face lattice as the complete

fan F . (We think of Ã as points in an affine space, rather than as vectors in a vector space.)

Hence F is the central fan of conv(Ã), which coincides with the normal fan of the polytope

polar to conv(Ã).

To show the claim on conv(Ã) we argue as follows. Consider the simplicial complex ∆

with vertex set Ã obtained by embedding the face lattice of F in it. That is, for each

cone C of F we consider the simplex with vertex set in Ã corresponding to the generators

of C. Since F is a complete fan and since the elements of Ã are generators for its rays (they
are positive scalings of the elements of A), ∆ is the boundary of a star-shaped polyhedron
with the origin in its kernel. The only thing left to be shown is that this polyhedron is
strictly convex, that is, that for any two adjacent maximal simplices σ1 and σ2 the origin
lies in the same side of σ1 as σ2 \ σ1 (or, equivalently, in the same side of σ2 as σ1 \ σ2).
Equivalently, if we understand σ1 and σ2 as subsets of Ã, we have to show that the unique
affine dependence between the points {O} ∪ σ1 ∪ σ2 has opposite sign in O than in σ1
and σ2.

Now the proof is easy. The coefficients in the linear dependence among the vectors
in σ1 ∪ σ2 are the vector

(λ(v)ω(v))v∈A.

To turn this into an affine dependence of points involving the origin we simply need to
give the origin the coefficient −

∑
v λ(v)ω(v) which is, by hypothesis, negative. �

So, in the light of Lemma 5.4, to prove Theorem 5.2 we simply need to choose weights ωij
for the diagonals of the polygon with the property that, for each of the linear dependences
exhibited in equations (1), (2), (3), and (4), the equation

∑
ij ωijλij > 0 holds.

As a first approximation, let ωij = 2 if ij is in T0 and ωij = 1 otherwise. This is good
enough for equations (3) and (4) in which all the ω’s in the dependence are 1 and the sum
of the coefficients in the left-hand side is greater than in the right-hand side. It also works
for equations (2), in which we have

ωpr = 2, ωqs = 1, λpr = 1, λqs = 1,
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so that the sum
∑

ij ωijλij for the left-hand side is three, while that of the right-hand side
can be 0, −1 or −2 depending on the cases for the points a and b.

The only (weak) failure is that in equation (1) we have

λpr = 1, λqs = 1, λpq = −1, λrs = −1

and all the ω’s are 1, so we get
∑

ij ωijλij = 0. We solve this by slightly perturbing the ω’s.

A slight perturbation will not change the correct signs we got for equations (2), (3), and (4).
For example, for each ij not in T0 change ωij to

ωij = 1 + εgij

for a sufficiently small ε > 0 and for a vector (gij)ij satisfying

gik + gjl > max{gij + gkl, gil + gjk} for all i, j, k, l, 1 ≤ i < j < k < l ≤ n+ 3.

This holds (for example) for gij := (j − i)(n+ 3 + i− j).

5.3. Distinct seed triangulations produce distinct realizations. Let AssIIn (T ) denote
the n-dimensional associahedron obtained with the construction of the previous section
starting with a certain triangulation T . (This is a slight abuse of notation, since the
associahedron depends also in the weight vector ω that gives the right-hand sides for an
inequality definition of our associahedron. Put differently, by AssIIn (T ) we denote the
normal fan rather than the associahedron itself.) We want to classify the associahedra
AssIIn (T ) by normal isomorphism.

In principle, it looks like we have as many associahedra as there are triangulations (that
is, Catalan-many) but that is not the case because, clearly, changing T by a rotation or a
reflection does not change the associahedron obtained. The question is whether this is the
only operation that preserves AssIIn (T ), modulo normal isomorphism. The answer is yes,
as we show below.

Lemma 5.5. AssIIn (T0) has exactly n pairs of parallel facets, each pair consisting of (the
facet of) one diagonal in T0 and the diagonal obtained from it by a flip in T0.

Proof. As always, a necessary condition for the facets corresponding to two diagonals to
be parallel is that the diagonals cross; if the diagonals do not cross, they are present in
some common triangulation which implies the corresponding facets intersect.

So, let pr and qs be two crossing diagonals. Since AssIIn (T ) is full-dimensional, their facets
are parallel only if vpr and vqs are linearly dependent. By definition of the vectors vij this
only happens when {vpr, vqs} = {±αi} for some i, which is the case of the statement. �

Lemma 5.6. Let Q be an (n+ 3)-gon, with n ≥ 2. For each triangulation T of Q let BT
denote the set consisting of the n diagonals in T plus the n diagonals that can be introduced
by a single flip from T . Then for every T1 6= T2 we have BT1 6= BT2.

Proof. Suppose that T1 and T2 had BT1 = BT2 . We claim that T2 is obtained from T1 by
a set of “parallel flips”. That is, by choosing a certain subset of diagonals of T1 such that
no two of them are incident to the same triangle and flipping them simultaneously. This
is so because every diagonal pr in T2 but not in T1 intersects a single diagonal qs of T1. If
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pqr and prs were not triangles in T2, then let a be a vertex joined to pr in T2, different
from q or s. One of pa and ra intersects the diagonal qs of T1 and one of the edges pq, qr,
rs and pr of T1.

Once we have proved this for T2, the statement is obvious. For every T2 different from
T1 but with all its diagonals in BT1 there is a diagonal that we can flip to get one that is
not in BT1 (same argument, let pr be a diagonal in T2 but not in T1; let pq, qr, rs and pr
be the other sides of the two triangles of T2 containing pq. Flipping any of them, say pq,
gives a diagonal that crosses pq and qs, which are both in T1). �

Corollary 5.7. Let T1 and T2 be two triangulations of a convex (n + 3)-gon. Then
AssIIn (T1) and AssIIn (T2) are normally isomorphic if and only if T1 and T2 are equivalent
under rotation-reflection.

Proof. If T1 and T2 are equivalent under rotation-reflection then the resulting associahedra
are clearly the same. Now suppose that AssIIn (T1) and AssIIn (T2) are normally isomorphic.
By Lemma 2.3 the automorphism of the associahedron face lattice induced by the iso-
morphism corresponds to a rotation-reflection of the polygon. Now, normal isomorphism
preserves the property of a pair of facets being parallel, so using the previous lemma we
get that this rotation-reflection sends T1 to T2. �

However, the same is not true if we only look at the set of normal vectors of AssIIn (T ):

Proposition 5.8. Let T1 and T2 be two triangulations of the (n+ 3)-gon. Let A(T1) and
A(T2) be the sets of normal vectors of AssIIn (T1) and AssIIn (T2). Then A(T1) and A(T2) are
linearly equivalent if, and only if, T1 and T2 have isomorphic dual trees.

Proof. Let T be the dual tree of a triangulation T . Observe that the edges of T correspond
bijectively to the inner diagonals in T . Moreover, the diagonals of the polygon not used in
T correspond bijectively to the possible paths in T . More precisely: for every pair of nodes
of T , the two corresponding triangles of T have the property that one edge of each triangle
“see each other”. Let p and q be the vertices of the two triangles opposite (equivalently,
not incident) to those two edges. Then the diagonals of T crossed by pq correspond to the
path in T joining the two nodes.

This means that, if we label the edges of T with the numbers 1 through n in the same
manner as we labelled the diagonals of T we have that

A(T ) = {−αi : i ∈ [n]} ∪ {
∑
i∈p

αi : p is a path in T }.

In particular, A(T ) can be recovered knowing only T as an abstract graph. For the
converse, observe that if two trees are not isomorphic then there is no bijection between
their edges that sends paths to paths. For example, knowing only the sets of edges that
form paths we can identify the (stars of) vertices of the tree as the sets of edges such that
every two of them form a path. �

In particular, this gives us exponentially many ways of embedding the associahedron of
dimension n with facet normals in the root system of An:
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Corollary 5.9. Let T0 be a triangulation whose dual tree is a path. Let its diagonals be
numbered from 1 to n in the order they appear in the path. Then, taking αi = ei+1 − ei,
we have that A(T0) is the set of almost positive roots in the root system An.

The number of normally non-isomorphic classes of associahedra, for which the dual tree
of the seed triangulation T0 is a path, is equal to the number of sequences {+,−}n−1 modulo
reflection and reversal.

It is surprising that the number of realizations that we get in this way is exactly the
same as we got in the previous section. Nevertheless, we prove in Theorem 6.2 that the
two sets of realizations are (almost) disjoint.

6. How many associahedra?

We have presented several constructions of the associahedron. We call associahedra of
types I and II the associahedra AssIn(σ) and AssIIn (T ) studied in the previous two sections.
Associahedra of type I include the Postnikov (or Rote–Santos–Streinu, or Loday, or Buch-
staber) associahedron, and both types I and II include the Chapoton–Fomin–Zelevinsky
associahedron. They all have pairs of parallel facets while the secondary polytope on an
n-gon (according to Section 3.1) does not. This implies that:

Theorem 6.1. The associahedron as a secondary polytope is never normally isomorphic
to any associahedron of type I or type II. In particular, it is not normally isomorphic to
the Postnikov associahedron or the Chapoton–Fomin–Zelevinsky associahedron.

Both types I and II produce exponentially many normally non-isomorphic realizations.
The number of normally non-equivalent associahedra of type I is asymptotically 2n−3, while

for type II is asymptotically 22n+1/
√
πn5. Explicit computations up to dimension 15 are

given in Table 1.

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AssIn 1 1 1 2 3 6 10 20 36 72 136 272 528 1056 2080 4160

AssIIn 1 1 1 3 4 12 27 82 228 733 2282 7528 24834 83898 285357 983244

Table 1. The number of normally non-isomorphic realizations of the asso-
ciahedron of types I and II up to dimension 15.

Surprisingly, the realizations of types I and II are (almost) disjoint:

Theorem 6.2. The only associahedron that is normally isomorphic to both one of type I
and one of type II is the Chapoton–Fomin–Zelevinsky associahedron.

Proof. Suppose that a sequence σ ∈ {+,−}n−1 and a triangulation T produce normally
isomorphic associahedra AssIn(σ) and AssIIn (T ). The induced automorphism between the
face lattice of these two associahedra comes from a reflection-rotation map on the (n+ 3)-
gon, by Lemma 2.3, so there is no loss of generality in assuming that this reflection-rotation
is the identity.
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Denote by Bσ and BT the 2n diagonals corresponding to the n pairs of parallel facets in
both constructions respectively. The diagonals of BT consist of the diagonals of T together
with its flips. Since normal isomorphisms preserve pairs of parallel facets, BT = Bσ.

We consider the (n+ 3)-gon drawn in the Hohlweg–Lange fashion (with vertices placed
along two x-monotone chains, the positive and the negative one, placed in the x-order
indicated by σ). The crucial property we use is that Bσ contains only diagonals between
vertices of opposite signs. Knowing this we conclude:
◦ Every triangle in T contains a boundary edge in one of the chains. (That is, the dual tree

of T is a path). Suppose, in the contrary, that T has a triangle pqr with no boundary
edge. Then the three diagonals pq, pr and qr lie in BT = Bσ. This is impossible since
at least two of p, q and r must have the same sign.
◦ The third vertex of each triangle is in the opposite chain. (That is, the dual path of T

separates the two chains). Otherwise the three vertices of a certain triangle lie in the
same chain. This is impossible, because (at least) one of the three edges of each triangle
is a diagonal, hence it is in Bσ.
◦ No two consecutive boundary edges in one chain are joined to the same vertex in the

opposite chain. (That is, the dual tree of T alternates left and right turns). Otherwise,
let abp and bcp be two triangles in T with ab and bc consecutive boundary edges in one
of the chains. Then the flip in bp inserts the edge ac, so that ac ∈ Bσ. This is impossible,
since a and c are in the same chain.

These three properties imply that T is the snake triangulation, so AssIIn (T ) is the Chopoton–
Fomin–Zelevinsky associahedron. �
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