
ar
X

iv
:1

10
9.

58
47

v1
 [

m
at

h.
A

C
]

 2
7

Se
p

20
11

REVISITING THE SPREADING AND COVERING NUMBERS

BEN BABCOCK AND ADAM VAN TUYL

Abstract. We revisit the problem of computing the spreading and covering numbers.
These numbers were first introduced by Geramita, Gregory, and Roberts to study the
Ideal Generation Conjecture, a conjecture concerning sets of points in a projective space.
Both the spreading number and covering number can be reformulated as a graph theory
question. We describe some new approaches to computing or bounding these numbers.
In addition, we show a surprising connection to some of the spreading numbers to the
sequence A053307 in the On-Line Encyclopedia of Integer Sequences.

1. Introduction

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. For any non-negative integer
d, let Md be the set of all monomials of degree d in R. For any subset W ⊆ Md, let

R1W = {xim | m ∈ W and 1 ≤ i ≤ n},

that is, R1W is the subset of Md+1 formed by multiplying each monomial of W by each of
the variables of R. For any W ⊆ Md, we always have |R1W | ≤ n|W | and R1W ⊆ Md+1.

We are interested in finding subsets W where either |R1W | = n|W | or R1W = Md+1.
In particular, we define the spreading number to be

αn(d) = max{ |W | : W ⊆ Md and |R1W | = n|W |}.

The terminology is derived from the fact that the elements of R1W are “spread” out in
Md+1. Similarly, the covering number is defined to be

ρn(d+ 1) = min { |W | : W ⊆ Md and R1W = Md+1} .

In this case the elements of R1W “cover” the elements of Md+1. The goal of this paper is
to introduce some new approaches to computing and bounding these numbers.

The spreading and covering numbers were introduced by Geramita, Gregory, and
Roberts to study the Ideal Generation Conjecture for a set of generic points in P

n (see
[3, Theorem 4.7]). Geramita, et al. gave exact values for αn(d) for all d when n = 3
or 4, and some scattered results and bounds on other values. Curtis [2] later found a
formula for ρ3(d) for all d and an improved lower bound on ρ4(d). Using techniques from
linear programming, Hulett and Will [4] improved these lower bounds on ρ4(d). Carlini,
Hà, and the second author [1] later reformulated the problem to show it is equivalent to
computing the dimension of some abstract simplicial complex.

1991 Mathematics Subject Classification. 13F20 (13F55 13P99 68W30).
Key words and phrases. monomials, edge ideals, spreading and covering numbers.
Last updated: September 27, 2011.

1

http://arxiv.org/abs/1109.5847v1

REVISITING THE SPREADING AND COVERING NUMBERS 2

The computation of these invariants has proven to be quite challenging. Computing
αn(d) or ρn(d + 1) by brute force, even for small n, quickly proves infeasible due to the
number of subsets one must check. For example, to compute α5(5), we have |Md| =
(

5+5−1
5

)

= 126, so there are 2126 ≈ 8.5 × 1037 subsets that need to checked using a
näıve method. We have therefore focused on introducing algorithms that bound αn(d)
and ρn(d+ 1). Unfortunately, as n and d increase, so does the distance between our two
bounds. Given the difficulty of computing these invariants, we have therefore set ourselves
a goal of bounding as many of the spreading and cover numbers in a neighbourhood of a
size of no more than 100.

To find these bounds, we make use of a construction of Geramita, et. al; in particular,
we make a graph Sn(d) where the vertices of this graph correspond to the elements of
Md. The values of αn(d) and ρn(d + 1) are then related to graph theoretic invariants of
Sn(d). In Section 2, we make this connection explicit, and reframe our problem in terms
of Sn(d). We also highlight the symmetry of Sn(d), which we exploit in our algorithms.

In Section 3, we focus on an algebraic method to compute an upper bound on αn(d).
We associate to Sn(d) its edge ideal I(Sn(d)). Computing αn(d) then reduces to com-
puting the Krull dimension of T/I(Sn(d)) where T is some suitable polynomial ring. We
construct suitable linear forms L1, . . . , Ls, to make the ring T/(I(Sn(d)) + (L1, . . . , Ls)).
The dimension of this new ring allows us to give an upper bound αn(d).

In Section 4 we describe two greedy algorithms. The first algorithm gives a lower bound
for αn(d), while the second gives an upper bound for ρn(d+1). Both exploit the symmetry
of the graph Sn(d). We also include refinements to both algorithms so that they can be
adapted to compute αn(d) and ρn(d+ 1) exactly. We summarize our output in Section 5
where we compare output to the bounds found in previous papers.

In Section 6 we prove that the sequence α4(d), one of the few cases for which we have
a formula, equals the sequence A053307 found on the On-Line Encyclopedia of Integer
Sequences [7]. This sequence counts the number of 2 × 2 matrices with non-negative
entries that sum to d up to permutation of rows and columns. One is lead to ask whether
other spreading or covering numbers are related to interesting integer sequences.

As a final note, all of the code that we used will be available on the authors’ websites1.

Acknowledgements. This work was made possible by the facilities of the Shared Hi-
erarchical Academic Research Computing Network (SHARCNET:www.sharcnet.ca) and
Compute/Calcul Canada. We used Macaulay 2 [6] to carry out our calculations. The first
author was supported by an NSERC USRA during the summers of 2010 and 2011. The
second author was supported by an NSERC Discovery Grant.

2. Preliminaries

We recall the relevant definitions and preliminary results that we will need for the
remainder of the paper. As in the introduction, we let R = k[x1, . . . , xn] denote the

1https://github.com/tachyondecay/spreading-covering-numbers/

http://flash.lakeheadu.ca/~avantuyl/research/SpreadCover_Babcock_VanTuyl.html

https://github.com/tachyondecay/spreading-covering-numbers/
http://flash.lakeheadu.ca/~avantuyl/research/SpreadCover_Babcock_VanTuyl.html

REVISITING THE SPREADING AND COVERING NUMBERS 3

polynomial ring over a field k, and Md will denote the monomials of degree d in R. We
first translate our problem of computing αn(d) and ρn(d+1) into a graph theory problem.

Construction 2.1. Fix positive integers n and d. Let Sn(d) denote the graph whose
vertex set is the set of monomials Md in R = k[x1, . . . , xn], and two vertices mi, mj are
adjacent if and only if deg

(

lcm(mi, mj)
)

= d+ 1.

Note that we will abuse notation and use Md to mean both the vertices of Sn(d) and
the set of monomials of degree d in R = k[x1, . . . , xn].

Example 2.1. If we consider S3(3), then x3
1x2 and x3

1x3 are adjacent but x3
1x2 and x3

2x3

are not. The graph S3(3) is given in Figure 1.

x3
1

x2
1x2 x2

1x3

x1x
2
2

x1x2x3

x1x
2
3

x3
2 x2

2x3 x2x
2
3 x3

3

Figure 1. S3(3)

The spreading and covering numbers are related to the maximum independent set and
a special type of minimum clique covering, respectively, of Sn(d).

Definition 2.2. A subset V ⊆ Md is an independent set if any two distinct elements
of V are not adjacent; V is a maximal independent set if it is not properly contained
in any larger independent set.

Definition 2.3. A subset of Md in which any two vertices are adjacent is called a clique.
A clique is maximal if it is not properly contained in any larger clique. If C1, . . . , Ct

are cliques, we say they form a clique cover of Sn(d) if C1 ∪ · · · ∪ Ct = Md. For any
monomial m of degree d − 1, an upward clique is the clique consisting of the vertices
mxi ∈ Md for all xi ∈ {x1, . . . , xn}.

As shown in [3], αn(d) and ρn(d+ 1) are equivalent to an invariant of Sn(d):

Lemma 2.4. With the notation as above

(i) αn(d) is the cardinality of the largest maximal independent set of Sn(d).
(ii) ρn(d + 1) is the minimum cardinality of an upward clique cover of the vertices of

Sn(d+ 1).

REVISITING THE SPREADING AND COVERING NUMBERS 4

Example 2.5. The graph S3(3) in Example 2.1 has α3(3) = 4 because {x3
1, x

3
2, x

3
3, x1x2x3}

forms a maximal independent set. For the same graph, we have ρ3(2 + 1) = 4 be-
cause C1 = {x3

1, x
2
1x2, x

2
1x3}, C2 = {x3

2, x1x
2
2, x3x

2
2}, C3 = {x3

3, x1x
2
3, x2x

2
3}, and C4 =

{x2
1x2, x1x

2
2, x1x2x3} form a minimal upward clique cover of S3(2 + 1).

Finding the size of the largest maximal independent set or a minimum clique cover of
a graph are both NP-hard problems. This explains, in part, why computing αn(d) and
ρn(d+1) is so difficult. However, the symmetry of Sn(d) offers hope for using specialized
techniques to improve our bounds on αn(d) and ρn(d+ 1).

Let Sym(n) denote the symmetric group on the set {1, 2, . . . , n}. For any xa =
xa1
1 · · ·xn

an ∈ Md and σ ∈ Sym(n), let σ(xa) denote the monomial obtained by permut-
ing the indices 1, . . . , n according to the permutation σ. This operation preserves many
properties of sets of vertices; e.g., independent sets and clique covers are both unaffected.

Lemma 2.6. If W = {mi1 , . . . , mis} is an independent set on Sn(d), then the set

σ(W) = {σ(mj) | mj ∈ W}

is also an independent set of Sn(d) for any σ ∈ Sym(n).

Proof. SinceW is an independent set, for any twomj , mk ∈ W , deg
(

lcm(mj , mk)
)

6= d+1.
Applying σ to each element in W results only in an exchange of indices; the exponents of
each indeterminate, and thus the degree of the monomial, remain unchanged. Therefore,
deg

(

lcm(σ(mj), σ(mk))
)

6= d+ 1, so σ(mj) and σ(mk) are not adjacent. �

The proof that clique covers are preserved is similar. We will elaborate further on how
the symmetry of Sn(d) comes into play in Sections 3 and 4. For now we present a recursive
lower bound for αn(d) that uses another fact about the structure of Sn(d).

Theorem 2.7. For all n ≥ 2, d ≥ 3, αn(d) ≥ αn(d− 2) + αn−1(d).

Proof. Consider all the vertices of Sn(d) divisible by x2
1, i.e., those vertices which are

labelled with a monomial of the form xa1
1 · · ·xan

n with a1 ≥ 2. The induced graph on these
vertices is isomorphic to Sn(d− 2). Also, consider all the vertices which are not divisible
by x1. The induced graph on these vertices is isomorphic to Sn−1(d).

The graph Sn(d) consists of these subgraphs, plus all the vertices whose corresponding
monomials have the form x1x

a2
2 · · ·xan

n , i.e., the degree of x1 is one. These extra monomials
form a “buffer” between the two subgraphs, that is, no vertex in the subgraph Sn(d− 2)
is adjacent to a vertex in the subgraph Sn−1(d). Thus, the union of an independent set in
Sn(d − 2) and an independent set in Sn−1(d) will be an independent set in Sn(d). From
this observation we get αn(d) ≥ αn(d− 2) + αn−1(d). �

We will compare various lower bounds for αn(d) in Section 5. In general, the recursive
lower bound is not as tight as the lower bound found in [3].

REVISITING THE SPREADING AND COVERING NUMBERS 5

3. Upper Bound for the Spreading Number

We will describe how to find an upper bound on αn(d) by using some techniques from
commutative algebra. In particular, we first show that αn(d) can be encoded as the
dimension of particular ring and then describe how to bound this dimension.

We first take our graph theory problem of Lemma 2.4 and translate it into an new
question. For any finite simple graph G with vertex set VG = {z1, . . . , zn} and edge set
EG, we can associate to G a quadratic square-free monomial ideal called the edge ideal.
In particular, given G, the edge ideal of G is then

I(G) = (zizj | {zi, zj} ∈ EG) ⊆ T = k[z1, . . . , zn].

Understanding how the graph theory invariants of G are encoded into the invariants of
T/I(G) is an ongoing area of research (e.g., see [8]). In particular, it is known that

dimT/I(G) = α(G),

where α(G) is the independence number of G, that is, is the cardinality of the largest
independent set. When G = Sn(d), it follows by Lemma 2.4 that α(Sn(d)) = αn(d), the
spreading number. We have thus proved:

Lemma 3.1. Let I(Sn(d)) = (zmi
zmj

| {mi, mj} is an edge of Sn(d)) in the ring T =
k[zm | m ∈ Md]. Then

αn(d) = dim T/I(Sn(d)).

We therefore want to compute dimT/I(Sn(d)). Computer algebra systems, such as
CoCoA or Macaulay2, normally tackle this problem by computing the associated Hilbert-
Poincaré series. This approach improves upon naive methods, but even for small cases,
many computer algebra systems cannot compute this dimension.

Remark 3.2. Computing αn(d) by computing dimT/I(Sn(d)) was first described in
[1]. Our initial hope was that improved computer hardware in the intervening ten years
would allow us compute new values of αn(d). This hope ended up being too optimistic.
For example, computing α5(5) in Macaulay 2 requires us to compute the Hilbert-Poincaré
series of an ideal in a ring with

(

5+5−1
5

)

= 126 variables.

Instead of using the Hilbert-Poincaré series approach to computing the dimension of a
ring, we wish to make use of a system of parameters.

Definition 3.3. Let I ⊆ R = k[x1, . . . , xn] be a homogeneous ideal. A partial homoge-
neous system of parameters (hsop) of R/I is a finite sequence of homogeneous forms
F1, . . . , Ft with degFi > 0 for each i such that

dim(R/(I, F1, . . . , Ft)) = dimR/I − t.

A partial homogeneous system of parameters is a (complete) homogeneous system
parameters if t = dimR/I.

If we could find a hsop for T/I(Sn(d)), then we would be able to compute dimT/I(Sn(d)).
However, the standard algorithms for computing a hsop (see [5]) require knowing dimR/I
in order to compute its hsop. We can still bound αn(d) using the following lemma.

REVISITING THE SPREADING AND COVERING NUMBERS 6

Lemma 3.4. Let L1, . . . , Lt be any t linear forms of T . Then

dimT/(I(Sn(d)), L1, . . . , Lt) + t ≥ dimT/I(Sn(d)) = αn(d).

Moreover, we have equality if L1, . . . , Lt forms a partial hsop.

Proof. The second part of the proof follows directly from the definition of a partial hsop.
The first part of the proof follows from the more general fact that for any homogeneous
ideal I in T and linear form L ∈ T , then dimT/(I, L) ≥ dimT/I − 1. �

This lemma forms the basis of our algorithm to compute an upper bound on αn(d).
We want to judiciously pick a set of linear forms L = {L1, . . . , Lt} so that computing
dimT/I(Sn(d), L1, . . . , Lt) is easier than computing dimT/I(Sn(d)). At the same time,
we want to pick our Li’s so that a large subset of L forms a partial hsop.

For the moment, let us suppose that we know how to pick L; we can then present the
pseudo-code for this approach:

Algorithm 3.5. Compute an upper bound for αn(d)

Input: n, d — The number of variables and degree of monomials, respectively.
Output: An upper bound for αn(d)

Step 1 Let T = k[zm1 , . . . , zmℓ
] where Md = {m1, . . . , mℓ} is the set of

(

n+d−1
d

)

= ℓ
monomials of degree d, and let I(Sn(d)) be the edge ideal of Sn(d) in T .

Step 2 Pick a suitable choice of linear forms L = {L1, . . . , Lt}.
Step 3 Compute dimT/J where J = I(Sn(d)) + (L | L ∈ L).
Step 4 Return dim T/J + |L|.

We still need to explain how to pick L in Step 2 of Algorithm 3.5. We describe three
strategies and comment on their strengths and weakness.

3.1. Random Linear Forms. Fix integers n and d, and assume that some oracle has
given a crude lower bound on αn(d) (e.g., [3] showed that vn(d)/n ≤ αn(d) where vn(d) =
(

n+d−1
d

)

= |V (Sn(d)|). Pick t to be equal to this lower bound. Form a t× vn(d) matrix C
with random entries taken from the field k, and let L be the following t linear equations:

C







zm1

...
zmvn(d)







We then make use of the following theorem of Kemper:

Theorem 3.6 ([5, Proposition 1]). Suppose that A = R/I has dimension n, and let

d1, . . . , dt ∈ N>0. Then the set

{(F1, . . . , Ft) : dim(R/(I, F1, . . . , Ft)) = n− t}

forms a Zariski open subset of Ad1 × · · · ×Adt .

Our linear forms L, for a suitable choice of matrix C, belong to the Zariski open
subset A1 × · · · × A1. In other words, we expect most, if not all, of the elements of
L to form a partial hsop. Indeed, our computer experiments on small values of n and

REVISITING THE SPREADING AND COVERING NUMBERS 7

d appear to support this statement. However, the computation of dimT/J with J =
I(Sn(d)) + (L | L ∈ L) in Step 3 of our algorithm appears just as difficult as computing
dimT/I(Sn(d)). We had to abandon this approach because it was not practical.

3.2. Using the symmetry. The second construction of L makes use of the symmetry
of the graph Sn(d). Consider the cycle σ = (12 · · ·n − 1) ∈ Sym(n). For each vertex
m ∈ Md of the graph Sn(d), define the linear form:

L(m) = zm + zσ(m) + · · ·+ zσn−1(m) ∈ T.

Here, zm is the variable of T = k[zm | m ∈ Md] indexed by m. We make two observations:

Lemma 3.7. Let mi, mj ∈ Md. With the notation as above

(i) L(mi) = L(mj) if and only if mj = σt(mi) for some t ∈ {0, . . . , n− 1}.
(ii) If deg(gcd(m, σ(m), . . . , σn−1(m))) = d−1, then the class of L(m) is a zero divisor

on T/I(Sn(d)).

Proof. (i) Suppose that L(mi) = L(mj). So

zmi
+ zσ(mi) + · · ·+ zσn−1(mi) = zmj

+ zσ(mj) + · · ·+ zσn−1(mj).

So zmj
= zσt(mi) for some integer t, i.e., mj = σt(mi). Conversely, if mj = σt(mi), then for

all l ∈ {0, . . . , n−1}, σl(mj) = σl(σt(mi)) = σl+t(mi) = σp(mi) were p ≡ l+t (mod n−1)
since σ has order n− 1. The conclusion now follows.

(ii) We begin with the observation that if m = xa1
1 xa2

2 · · ·xan
n , then

σi(m) = x
ai+1

1 x
ai+2

2 · · ·xan−1

n−i−1x
a1
n−i · · ·x

ai
n−1x

an
n

Thus, if a = min{a1, . . . , an−1}, then gcd(mi, σ(mi), . . . , σ
n−1(mi)) = xa

1 · · ·x
a
n−1x

an
n . This

monomial will only have degree d−1 if n−2 of {a1, . . . , an−1} equal a, and the remaining
exponent equals a+ 1. Say that ai = a+ 1.

Consider the monomial m̃ = m
xi
xn = xa

1 · · ·x
a
n−1x

an+1
n . Let zm̃ be the corresponding

monomial in T . The linear forms L(m) and zm̃ are not in I(Sn(d)). However,

zm̃L(m) = zm̃(zm + zσ(m) + · · ·+ zσn−1(m)) ∈ I(Sn(d))

because m̃ and σi(m) are adjacent in Sn(d) for each i = 0, . . . , n−1. This implies (ii). �

Our second strategy for constructing L is to form the set

L = {L(m) | m ∈ Md} \ {L(m) | deg(gcd(m, σ(m), . . . , σn−1(m))) = d− 1}.

By Lemma 3.7 (i) we can pick all the L(m) to be distinct. Moreover, we want to eliminate
those linear forms that are zero divisors since they will never be part of partial hsop.

In contrast to our previous method, we found that the computation of dimT/J with J =
I(Sn(d)) + (L | L ∈ L) was significantly easier than the computation of dimT/I(Sn(d)).
It also required less memory. However, this method has the disadvantage of introducing
too many extraneous linear forms, resulting in large upper bounds.

REVISITING THE SPREADING AND COVERING NUMBERS 8

3.3. Neighbours. Our third choice for constructing L makes use of the neighbours of a
vertex. Recall that for any m ∈ Md, the neighbourhood of m, is the set N(m) = {m′ ∈
Md | {m,m′} is an edge of Sn(d)}. To each m ∈ Md we associate the linear form

L(m) = zm +
∑

m′∈N(m)

zm′ .

Computer experimentation has then suggested the following construction of L. Suppose
that some oracle has given some maximal independent set W of vertices in the graph Sn(d)
(in the next section, we describe an algorithm which does this). Our desired set is

L = {L(m) : zm ∈ W}.

When we applied Algorithm 3.5 with this set of linear forms in Step 2, we found that
for known values of n and d (i.e., small n and d), our bounds were close to the true
value of αn(d). In other words, L was almost a partial hsop. At the same time, the
computation of dimT/J with J = I(Sn(d)) + (L | L ∈ L) appeared easier than the
computation of dimT/I(Sn(d)). Unfortunately, as n and d increase, the computation of
dimT/J bececomes difficult; see Section 5 for more details. As a final comment, it would
be of interest to find a good theoretical reason why one should use a maximal independent
set.

4. Greedy Algorithms for Computing Bounds

In this section, we use the symmetry of the graph Sn(d) to either compute or place
bounds on αn(d) and ρn(d). The symmetry is used to reduce the number of cases we
must check in our algorithms. We first present a greedy lower bound algorithm for αn(d).
Following that, we will explain some additional ways to use the symmetry of Sn(d) and
present two greedy upper bound algorithms for ρn(d+ 1).

4.1. The Spreading Number. Be Lemma 2.4 αn(d) is the cardinality of the maximum
independent set on Sn(d). Finding a random maximal independent set is trivial with a
greedy algorithm. Depending upon our initial choice of vertex and the graph itself, the
difference between the cardinality of the resulting set and αn(d) will vary greatly. The
following algorithm is well known; we include it for completeness.

Algorithm 4.1. Compute a lower bound for αn(d)

Input: n, d — The number of variables and degree of monomials, respectively.
W — An initial independent set. (Optional)
Output: The cardinality of a maximal independent set on Sn(d)

Step 1 Let L denote the set of all vertices not in W and not adjacent to any m ∈ W .
Step 2 Select the vertex v ∈ L with the smallest degree, and add it to W .
Step 3 Remove v and N(v) from L. If L = ∅, return |W |. Otherwise, return to Step 2.

We describe an alternative approach to finding a lower bound for αn(d). The moti-
vation comes from an observation about the case n = 3. Interior vertices of S3(d) are
of degree 6, and if we regard the vertices of a maximum independent set as the centres

REVISITING THE SPREADING AND COVERING NUMBERS 9

of hexagons, then a maximum independent set on S3(d) yields a hexagonal tiling of the
plane. Constructing this sort of tiling on S3(d) therefore yields a lower bound for α3(d).
In the next algorithm, we pick a vertex “in the middle” of Sn(d). We then work out
towards the exterior of Sn(d); the vertices in our independent set can be thought of as
the centre of n-dimensional tile.

Algorithm 4.2. Compute a lower bound for αn(d)

Input: n, d — The number of variables and degree of monomials, respectively.
Output: The cardinality of a maximal independent set on Sn(d)

Step 1 Let W = ∅ and E = Md.
Step 2 Let a = ⌊ d

n
⌋, and set v1 = xa

1x
a
2 · · ·x

a
n−1x

e
n with e = d− (n− 1)a. Designate v1 the

origin. Add v1 to W .
Step 3 Let E := E \ (N(v1) ∪ {v1}) be the set of all vertices eligible for inclusion in

W . Choose a vertex v2 one degree removed from the origin, i.e, adjacent to some
element of N(v1). Then v2 is the new origin.

Step 4 Repeat the above step. At each step i, choose the new origin to be the vertex with
the most neighbours already discarded from E. This preserves as many vertices as
possible for consideration. If there are no eligible vertices one degree removed from
the current origin, backtrack to the previous origin, and continue until E = ∅.

Step 5 Return |W |.

4.2. The Covering Number. By Lemma 2.4 ρn(d+ 1) is the minimum upward clique
cover of Sn(d+1). As with finding maximal independent sets, we can use greedy algorithms
to produce minimal clique covers of Sn(d+1). These provide an upper bound for ρn(d+1).

By definition, every upward clique is uniquely identified with a monomial from Md. For
vertices of Sn(d + 1) that consist of more than one indeterminate, many factorizations
are possible; e.g., x1x

2
2 can be written as (x1)x

2
2 or (x1x2)x2. For monomials of the form

xd+1
i , however, there is only one such factorization: xd

i xi. Thus, x
d+1
i belongs only to the

upward clique identified with xd
i . These unique upward cliques containing each xd+1

i must
therefore by in any clique cover of Sn(d+ 1), so we can use them as the initial set when
constructing an upward clique cover.

Algorithm 4.3. Compute an upper bound for ρn(d).

Input: n, d — The number of variables and degree of monomials, respectively.
Output: A minimal upward clique cover of Sn(d)

Step 1 Initialize our cover C with the set of upward cliques that contain xd
i .

Step 2 Select an uncovered vertex, v, at random. If there are no vertices left uncovered,
go to Step 4.

Step 3 Iterate over the upward cliques that contain v. Select the upward clique with the
fewest number of vertices already covered and add it to C. Return to Step 2.

Step 4 For each v ∈ Md, compute its frequency, i.e., the number of upward cliques that
contain it, in C.

Step 5 Iterate over the elements of the C. If an upward clique does not contain a vertex
of frequency 1—all its vertices are represented by other cliques as well—then it

REVISITING THE SPREADING AND COVERING NUMBERS 10

is not essential to the cover, so discard it. Repeat this step until we complete an
iteration without discarding any cliques.

Step 6 Return C as a minimal cover.

Aside from our choice of initial members of the cover, this method does not take into
account any specific information about Sn(d+1). Curtis [2] proved a formula for ρ3(d+1)
using combinatorial methods, and [4] has a proof of the same result using linear program-
ming. Hulett and Will also provided lower bounds for ρ4(d + 1), when d > 25, and
upper bounds for ρ4(d + 1), when d > 4. They observed that, owing to the structure of
Sn(d), vertices on the interior of the graph can be covered exactly once, and the “excess”
members of the cover come from vertices along the outside of the graph.

We adapted our greedy algorithm to this idea, removing the random selection of vertices
to cover and instead working outward, covering the interior vertices first and the vertices
closest to the outside last. We also use Sym(n) to create orbits of the vertices of Sn(d).

Definition 4.4. For any m ∈ Md, the orbit of m is the set

{σ(m) | σ ∈ Sym(n)}.

Since elements of Sym(n) do not alter the exponents of a monomial, only the order of the
exponents relative to the indeterminates, the orbit of m is also the set of all permutations
of the exponents of m. By definition, the exponents of any m ∈ Md always sum to d,
and therefore the orbits of Sn(d) are in an one-to-one correspondence with the integer
partitions of d of length at most n. We can write orbits as vectors in N

n, and in this
form it is easy to determine whether an orbit is an independent set, a clique, or neither
by examining the entries in the vector. Iterating over the list of orbits of Sn(d + 1) in
reverse lexicographical order will help us in computing an upper bound on ρn(d+ 1).

Algorithm 4.5. Compute an upper bound for ρn(d).

Input: n, d — The number of variables and degree of monomials, respectively.
Output: A minimal upward clique cover of Sn(d)

Step 1 Initialize our cover C with the set of upward cliques that contain xd
i .

Step 2 Obtain a list, L, of the orbits of Sn(d), where each orbit is represented as a vector
in N

n. Sort the list in reverse lexicographical order.
Step 3 Iterate over L. For each orbit O ∈ L, iterate over the vertices v ∈ O. If v is

covered, continue. If not, iterate over the upward cliques containing v. Select the
upward clique that contains the fewest number of vertices already covered, and
add it to C.

Step 4 Minimize the cover by computing the frequency of each vertex and eliminating
unnecessary upward cliques, as described in Algorithm 4.3.

Step 5 Return C as a minimal cover.

4.3. From Bounds to Exact Values. The greedy algorithms described for both αn(d)
and ρn(d+ 1) can be extended, using a brute force approach, to compute the exact value
of these numbers. For a set W of size u ≤ αn(d), we can iterate over the sets of size u+1
to check if a larger independent set exists. If we do not find such a set, then obviously
αn(d) = u; otherwise, we can maximize the new independent set and repeat the process.

REVISITING THE SPREADING AND COVERING NUMBERS 11

Similarly, for a cover C of size t ≥ ρn(d+ 1), we can iterate over families of cliques of size
t−1 to check for a smaller cover. With each iteration, the number of combinations we are
required to check grows quite quickly. We can reduce this number using the symmetry of
the graph: each set T ⊆ Md is associated, via Sym(n), with n! (not necessarily distinct)
other subsets of Md. Hence, when we eliminate T , we also eliminate up to n! other
potential sets that we must check. In practise, this improvement is not significant enough
to make this method feasible. For example, the best lower bound we have for α5(5) is 26.
Since |M5| = 126, we would have to check

(

126
27

)

≈ 2.33 × 1027 sets to ascertain whether
αn(d) = 26. This is an improvement of several orders of magnitude upon the purely
brute-force approach, where we would need to check 8.5 × 1037 sets. However, it is still
computationally infeasible when run as a serial process, even on an HPC cluster provided
by SHARCNET.

5. Results and Comparison to Known Bounds

In this section we will summarize the bounds for αn(d) and ρn(d+1) reported in previous
papers and compare them to bounds we found with our algorithms from Sections 3 and 4.
We conclude the section with two tables that present the known values of the spreading
and covering numbers, as well as the best known bounds for certain n and d. Some of the
computations were performed in Macaulay2 1.3.1 with 4 GB of memory allocated to 1
CPU and 1 node on SHARCNET’s Saw cluster.2 Other computations ran on the Kraken
cluster3 and used up to 16 GB of memory in Macaulay2 1.4. The run times are taken
from Macaulay2 ’s time function.

5.1. Existing Bounds. As well as providing the first definition of the spreading and
covering numbers, Geramita, Gregory, and Roberts proved the following inequalities:

Theorem 5.1 ([3, Theorem 5.2 and Proposition 5.9]). For all n ≥ 2, d ≥ 2, we have

(1) vn(d)
n

≤ αn(d) ≤ ρn(d) ≤
vn(d)
n

+ n−1
n
vn−1(d), and

(2) vn(d)
n−1

− αn(d−1)
n−1

≤ ρn(d).

Moreover, they presented formulas for α3(d) [3, Theorem 5.4], αn(3) and ρn(3) [3,
Theorem 5.8], and α4(d) for d odd [3, Proposition 5.6]. They include a formula, without
proof, for the case of even d as well. We will refer to these formulas in Section 6 to
prove the correspondence of α4(d) to an interesting integer sequence. Curtis [2] proved a
formula for ρ3(d + 1), and in [4], Hulett and Will presented an alternative proof of this
formula, as well as bounds on ρ4(d+ 1):

Theorem 5.2 ([4, Theorems 4.1 and 4.2]). For all d ≥ 5, we have

(1) if d is odd, ρ4(d) ≤ (d3 + 15d2 − 61d+ 261)/24, or
(2) if d is even, ρ4(d) ≤ (d3 + 15d2 − 34d+ 240)/24.

2https://www.sharcnet.ca/my/systems/show/41
3https://www.sharcnet.ca/my/systems/show/69

https://www.sharcnet.ca/my/systems/show/41
https://www.sharcnet.ca/my/systems/show/69

REVISITING THE SPREADING AND COVERING NUMBERS 12

5.2. Comparison of Bounds for αn(d). We compared the lower bounds of [3] to our
computations with Algorithm 4.2, as well as our random greedy algorithm. Like αn(d)
itself, the spreading number’s existing upper bounds are similarly difficult to compute,
so we focused on how closely Algorithm 3.5 approximates known values of αn(d). In
Tables 1 and 2, GGR refers to the lower bound for αn(d) from in Theorem 5.1(1) , and
2.7 refers to the recursive lower bound from Theorem 2.7, while 4.1 and 4.2 refer to
the bounds computed by those respective algorithms. Recall that Algorithm 4.1 has a
random component, and so the reported result is the maximum taken over 100 iterations.

d α3(d) GGR 2.7 4.1 4.2

3 4 4 3 4 4
4 6 5 6 6 5
5 7 7 7 7 7
6 10 10 10 10 10
7 12 12 11 12 12
8 15 15 15 15 15
9 19 19 17 19 19
10 22 22 21 20 22

Table 1. Comparison of
lower bounds for α3(d).

d α4(d) GGR 2.7 4.1 4.2

3 5 5 5 5 5
4 11 9 10 11 9
5 14 14 12 14 13
6 24 21 21 24 19
7 30 30 26 27 27
8 45 42 39 40 35
9 55 55 49 48 48
10 76 72 67 64 60

Table 2. Comparison of
lower bounds for α4(d).

The GGR lower bound remains the best lower bound. For n = 3, the two algorithms
perform quite well compared to this bound, while the bound of Theorem 2.7 is noticeably
worse. For n = 4, the algorithms remain comparable with each other but are still worse
than the GGR bound. Algorithm 4.2, which begins at the centre of the graph and works
outward, produces worse lower bounds than the greedy Algorithm 4.1. Both algorithms
are similar in terms of memory consumption and time complexity. As an example of the
time needed, Algorithm 4.1 takes 0.40 seconds to compute a bound for α4(3) but 40.99
seconds to compute a bound for α4(10).

Overall, we have not made much progress improving lower bounds for αn(d). Our
algorithms are useful if one needs to generate a maximal independent set on Sn(d), but if
one needs only a bound, then the GGR formula remains superior.

Comparing our upper bounds from Section 3 with the bounds from [3] is more difficult.
Geramita, Gregory, and Roberts prove several upper bounds that, like αn(d), are linked
to properties of Sn(d) that make them difficult to compute. Our algorithms avoid this
by using commutative algebra techniques; unfortunately, these methods introduce their
own performance issues. However, our algorithms can compute an upper bound that, in
tandem with a lower bound, provide a specific range into which each of αn(d) must fall.

We tested two versions of Algorithm 3.5 differing in our choice of linear form. The first
version uses the symmetry of Sn(d), as described in Section 3.2. The second version uses
neighbours of a vertex, as described in Section 3.3. We encountered practical limitations
with both versions. The first version does not produce very tight bounds; for example,
for α4(8) = 40, the algorithm gives 79 as an upper bound. The second version produces
very good bounds, at least for the few values we could compute. This version consumes

REVISITING THE SPREADING AND COVERING NUMBERS 13

a great deal of memory. For n = 3, 3 ≤ d ≤ 9 this version gives bounds that match the
known value of α3(d). We ran out of memory computing a bound for α3(10), and the
same is true for n = 4, d > 4, and n = 5, 6, d > 3.

5.3. Comparison of Bounds for ρn(d + 1). We will examine how the upper bounds
found in [3] and [4] compare to our computations with Algorithms 4.3 and 4.5. In Table
3, GGR refers to the upper bound for ρn(d+1) from (1) in Theorem 5.1 and HW refers
to the bounds from Theorem 5.2, while 4.3 and 4.5 refer to the bounds computed by
those respective algorithms.

d GGR HW 4.3 4.5

5 30 19 22 19
6 42 33 33 29
7 57 38 44 40
8 75 60 62 55
9 97 69 81 74
10 121 100 113 96
11 150 114 122
12 182 155 147
13 219 175 185
14 260 227 223
15 306 254 275

Table 3. Comparison of upper bounds for ρ4(d).

All three revised bounds are better than the original GGR bound. Our original greedy
algorithm, 4.3, fails to match HW. However, by taking advantage of the symmetry and
structure of Sn(d), our revised algorithm, Algorithm 4.5, is quite close to HW. In fact, it
seems that for even d our bounds are equal or better, with the reverse is true for odd d.
This pattern holds for at least d ≤ 24, with the exception of d = 22. We are not certain
why this is the case. Finally, recall that the HW bound holds only for n = 4, whereas our
algorithm works for all n ≥ 2. When tested against GGR for small values of d for n = 5, 6,
Algorithm 4.5 consistently performs better (refer to Table 5 for example output).

Neither of our algorithms consume much memory, but as one might expect, as d in-
creases the computational time increases significantly. As a result, we did not compute
bounds for d > 10 with Algorithm 4.3: the computation for d = 3 took only 2.37 seconds,
but for d = 10, the algorithm took 1709.44 seconds to terminate. Algorithm 4.5 once
again performs better, taking 0.05 seconds for d = 3 and 21.28 seconds for d = 10. With
each increase in degree, the amount of time to compute a bound roughly doubles, with
d = 24 taking 83051.40 seconds. This complexity increases as n increases; for example,
we computed a bound for ρ6(3) in 2.77 seconds, but a bound for ρ6(4) takes 7.81 seconds.

Our computations indicate that our algorithms yield tighter upper bounds for ρn(d+1)
than those of [3] and, n = 4 and d even, [4]. In some cases, it might be preferable to
sacrifice some accuracy in favour of speed, particularly for values of n and d at which our

REVISITING THE SPREADING AND COVERING NUMBERS 14

algorithms might become infeasible. Even so, we hope this provides a useful example of
how one can use the structure and symmetry of Sn(d) along with a greedy algorithm to
improve bounds on αn(d) and ρn(d+ 1).

5.4. Tables of Results. These tables are based on those from [1]. The α4(d) row was
filled according to the formulas in [3]. In some entries we have used a bracketed notation,
[a, b], to indicate a range given by known lower and upper bounds a and b, respectively.
For values we could not compute exactly, we have attempted to bound them within a
neighbourhood [a, b] where |b−a| ≤ 100. If no value is given, then we could not find such
a neighbourhood.

d 1 2 3 4 5 6 7 8 9 10

α1(d) 1 1 1 1 1 1 1 1 1 1
α2(d) 1 2 2 3 3 4 4 5 5 6
α3(d) 1 3 4 6 7 10 12 15 19 22
α4(d) 1 4 5 11 14 24 30 45 55 76
α5(d) 1 5 7 16 [26,33] [42,61] [66,94] [99,142] [143,209] [201,285]
α6(d) 1 6 10 [24,30] [42,63] [77,119] [132,201] [215,] [334,] [501,]
α7(d) 1 7 14
α8(d) 1 8 [16,20]
α9(d) 1 9
α10(d) 1 10

Table 4. Computed values and bounds of the spreading number

d 1 2 3 4 5 6 7 8 9 10

ρ1(d+ 1) 1 1 1 1 1 1 1 1 1 1
ρ2(d+ 1) 2 2 3 3 4 4 5 5 6 6
ρ3(d+ 1) 3 4 6 9 12 15 18 23 27 32
ρ4(d+ 1) 4 6 12 18 27 [32,38] [45,55] [58,69] [77,96] [96,114]
ρ5(d+ 1) 5 9 20 33 [42,61] [66,94] [99,142] [143,209] [200,285] [273,]
ρ6(d+ 1) 6 12 30 [42,63] [77,119] [132,201] [214,] [333,] [500,] [728,]
ρ7(d+ 1) 7 16 [30,46] [66,102] [132,210]
ρ8(d+ 1) 8 20
ρ9(d+ 1) 9 25
ρ10(d+ 1) 10 30

Table 5. Computed values and bounds of the covering number

6. A053307

We conclude by showing a relationship between α4(d) and a known integer sequence.
For α4(d), [3] gives an explicit formula; in particular

α4(d) =

{

v4(d)
4

for d even
v4(d)
4

+ 3d+6
8

for d odd.

Here, v4(d) is the number of vertices of S4(d).

REVISITING THE SPREADING AND COVERING NUMBERS 15

Theorem 6.1. For d ≥ 0, α4(d) is the number of non-negative integer 2 × 2 matrices

with sum of entries equal to d, under row and column permutations.

Proof. Let a(d) be the number of non-negative integer 2× 2 matrices with sum of entries
equal to d, under row and column permutations. This sequence is in the OEIS as A053307
[7]. In fact, it is an interleaved sequence where

a(2d+ 1) = A000330(d+ 1) =
(d+ 1)(d+ 2)(2d+ 3)

6
and

a(2d) = A006527(d+ 1) =
(d+ 1)3 + 2(d+ 1)

3
.

Recalling that v4(d) =
(

d+3
3

)

, it follows that

α4(2d+ 1) =
v4(2d+ 1)

4
=

(

2d+4
3

)

4
=

(2d+ 4)(2d+ 3)(2d+ 2)

3!(4)

=
(d+ 2)(2d+ 3)(d+ 1)

6
= a(2d+ 1).

Similarly,

α4(2d) =
v4(2d)

4
+

3(2d) + 6

8
=

(

2d+3
3

)

4
+

6d+ 6

8

=
8d3 + 24d2 + 22d+ 6

24
+

6d+ 6

8
=

8d3 + 24d2 + 40d+ 24

24

=
d3 + 3d2 + 5d+ 3

3
=

(d+ 1)3 + 2(d+ 1)

3
= a(2d).

�

Even though the sequence A053307 and α4(d) are related, it is not immediately apparent
why this sequence and the spreading numbers of S4(d) are linked. The correspondence
may be a result of the two interleaved sequences that make up A053307: the square
pyramidal numbers, for odd d, and the sum of two tetrahedral numbers, for even d. Thus,
we conclude with the following question.

Question 6.2. What is the relationship between the spreading number in four variables

and the sequence A053307? Why are they equivalent?

Hopefully explaining the relationship between α4(d) and A053007 could open up new
techniques for computing the spreading and covering numbers.

References

[1] E. Carlini, H.T. Hà, A. Van Tuyl, Computing the spreading and covering numbers. Comm. Algebra
29 (2001) 5687–5699.

[2] F. Curtis, A combinatorial problem involving monomial ideals. J. Pure Appl. Algebra 104 (1995)
161–167.

[3] A. Geramita, D. Gregory, L. Roberts, Monomial Ideals and Points in Projective Space. J. Pure Appl.
Algebra 40 (1986) 33–62.

REVISITING THE SPREADING AND COVERING NUMBERS 16

[4] H. Hulett, T. Will, Generating monomials in dimensions three and four. J. Pure Appl. Algebra 138

(1999) 139–150.
[5] G. Kemper, An algorithm to calculate optimal homogeneous systems of parameters. J. Symbolic

Comput. 27 (1999), 171–184.
[6] D. R. Grayson and M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry.

http://www.math.uiuc.edu/Macaulay2/.
[7] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/ (2010), sequences A000330,

A006527, and A053307.
[8] R.H. Villarreal, Monomial algebras. Monographs and Textbooks in Pure and Applied Mathematics,

238. Marcel Dekker, Inc., New York, 2001.

Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON, P7B

5E1, Canada

E-mail address : bababcoc@lakeheadu.ca

Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON, P7B

5E1, Canada

E-mail address : avantuyl@lakeheadu.ca

http://www.math.uiuc.edu/Macaulay2/
http://oeis.org/

	1. Introduction
	2. Preliminaries
	3. Upper Bound for the Spreading Number
	3.1. Random Linear Forms
	3.2. Using the symmetry
	3.3. Neighbours

	4. Greedy Algorithms for Computing Bounds
	4.1. The Spreading Number
	4.2. The Covering Number
	4.3. From Bounds to Exact Values

	5. Results and Comparison to Known Bounds
	5.1. Existing Bounds
	5.2. Comparison of Bounds for n(d)
	5.3. Comparison of Bounds for n(d+1)
	5.4. Tables of Results

	6. A053307
	References

