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TRIANGULATIONS AND SEVERI VARIETIES

F. CHAPOTON, L. MANIVEL

Abstract. We consider the problem of constructing triangulations of pro-
jective planes over Hurwitz algebras with minimal numbers of vertices. We
observe that the numbers of faces of each dimension must be equal to the
dimensions of certain representations of the automorphism groups of the cor-
responding Severi varieties. We construct a complex involving these represen-
tations, which should be considered as a geometric version of the (putative)
triangulations.

1. Introduction

Compare the following two statements, one from complex projective geometry,
the other one from combinatorial topology.

Theorem 1 (Zak, 1982). Let Xd ⊂ PN−1 be a smooth irreducible complex projective

variety of dimension d.

(1) If N < 3 d
2 + 3, then the secant variety of X fills out the ambient space,

Sec(X) = PN−1.

(2) If N = 3 d
2 + 3, then either Sec(X) = PN−1, or d = 2, 4, 8, 16.

Recall that the secant variety Sec(X) is obtained by taking the union of the lines
joining any two points of X , and passing to the Zariski closure.

The only exceptions to the second statement are the Severi varieties, the com-
plexifications AP

2
C of the projective planes over A = R,C,H,O, the four normed

algebras (see e.g. [Ba02]).

Theorem 2 (Brehm-Kühnel, 1987). Let Xd be a combinatorial manifold of dimen-

sion d, having N vertices.

(1) If N < 3 d
2 + 3, then X is topologically a sphere.

(2) If N = 3 d
2 + 3, then either X is a sphere, or d = 2, 4, 8, or 16.

Possible exceptions to the second statement are the real Severi varieties, the
projective planes AP2 over A = R,C,H,O.

More precisely, there is a classical triangulation of the real projective plane RP2

with 6-vertices, described in the picture below where opposite sides of the big
triangle must be identified.
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There is a unique triangulation of the complex projective plane CP
2 with only

9-vertices [BaK83]. Over the quaternions the situation is not completely clear: it
was shown in [BrK92] that there exists three different combinatorial triangulations
with 15 vertices of an eight-dimensional manifold which is “like the quaternionic
projective plane”, but the authors could not decide whether this topological mani-
fold was indeed HP

2 or a fake quaternionic plane. Finally, there is no candidate for
a combinatorial triangulation of OP

2 with 27 vertices. We will see that the number
of maximal faces of such a triangulation should be 100386!

Recall that the homology of AP2 is

Hi(AP
2, k) =

{

k if i = 0, a, 2a,
0 otherwise,

if k stands for Z when a ≥ 2, and for Z2 when a = 1. A more uniform statement
is that each AP

2 has a Morse function with only three critical points. The precise
statement of the second assertion of the theorem of Brehm and Kühnel is that X ,
if not a sphere, must admit such a Morse function. Manifolds with this property,
which are like projective planes, were studied systematically in [EK62]. Among
other topological restrictions, the fact that the dimension of such a manifold must
be 2, 4, 8 or 16 is established there.

The goal of our paper is to explore the relationships between the two statements
above. Our main observation will be that the numbers of faces of each dimen-
sion in a (putative) triangulation of a projective plane AP

2, must be equal to the
dimensions of certain linear representations of the automorphism groups of the
corresponding Severi varieties AP2

C. Moreover, we will construct complexes involv-
ing these representations, which we conjecture to be closely related with the face
complexes of the triangulations. Over the complex and quaternionic numbers we
will reconsider the results of [BrK87] and [BrK92] and check that they correctly
fit with our perspective. We then present an observation concerning the links of
vertices in the triangulations. In a final section we elaborate on possible extensions
to projective spaces of higher dimensions.

2. The Severi varieties

We briefly recall the main geometric properties of the Severi varieties AP2
C (see

e.g. [Ba02] and references therein). In all the sequel we denote by a = 1, 2, 4, 8 the
dimension of the Hurwitz algebra A = R,C,H,O as a real vector space. Recall that
each A has a natural involution generalizing the usual complex conjugation; it can
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be defined as the orthogonal symmetry with respect to the unity. Then consider the
space J3(A) of Hermitian 3×3 matrices with coefficients in A . This is a real vector
space of dimension 3a+ 3, endowed with a structure of Jordan algebra defined by
symmetrization of the ordinary matrix multiplication.

The automorphism group of the Jordan algebra J3(A) will be denoted SO(3,A).
It preserves the cubic form defined by the determinant, which exists even over the
octonions. The group of invertible linear transformations of the vector space J3(A)
preserving this determinant will be denoted SL(3,A).

Let J3(AC) denote the complexification of J3(A). The Severi variety AP
2
C ⊂

PJ3(AC) can be defined as the cone over the set of rank one matrices, where having
rank one is defined by the property that all the derivatives of the determinant vanish
(these derivatives are the analogues of 2 × 2 minors). Geometrically, this means
that the Severi variety is the singular locus of the determinantal hypersurface. We
will only mention a few of its many remarkable properties:

(1) AP
2
C is smooth of dimension 2a.

(2) AP
2
C is homogeneous under the action of the complexified group SL(3,AC).

(3) The secant variety of AP2
C is the determinantal hypersurface. (The sum of

two rank one matrices has rank at most two!) In particular AP2
C is secant

defective, in the sense that the secant variety is smaller that expected.

Polarizing the determinant, one obtains a quadratic map c : J3(AC) → J3(AC)
∨

which we call the comatrix map. Let

W (A) = C⊕ J3(AC)⊕ J3(AC)
∨ ⊕ C.

One can define the projective variety LG(3,AC) as the image of the rational map
from J3(AC) to PW (A) mapping x ∈ J3(AC) to the line generated by 1 + x +
c(x) + det(x). Denote by p the point of LG(3,AC) defined by x = 0. The following
properties do hold:

(1) LG(3,AC) is smooth of dimension 3a+ 3.
(2) LG(3,AC) is homogeneous under the action of a simple Lie group Sp(6,AC).

(3) The lines through p contained in LG(3,AC) generate a cone over AP2
C.

The groups we met have the following types:

A R C H O

SO(3,AC) A1 A2 C3 F4

SL(3,AC) A2 A2 ×A2 A5 E6

Sp(6,AC) C3 A5 D6 E7

This table is a chunk of the famous Tits-Freudenthal magic square. (For more on
this see the survey paper [LM04] and references therein.)

3. Faces and representations

3.1. Special properties of minimal triangulations. The triangulations of RP2,
CP

2 and (supposedly) HP
2 with minimal numbers of vertices have very peculiar

properties [BrK87, BrK92], among which:

(1) (Tightness) Each face of dimension a or less is part of the triangulation.
(2) (Duality) A face of dimension a+ j is part of the triangulation if and only

if the complementary face of dimension 2a− j + 1 is not.
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(3) (Secant defectivity) Any two maximal simplices intersect along a simplex
of dimension at least a− 1.

Note that tightness is a consequence of duality, since there is no face of dimension
2a + 1. Moreover, it was noticed by Marin that the duality property is imposed
by the algebra structure of the Z2-valued cohomology (see [AM91], and [BrK92,
Proposition 2]).

Since the number of vertices is 3a+ 3, the dimension of the intersection of two
simplices of dimension 2a is at least a− 2, and should in general be equal to a− 2.
In our triangulations any two maximal simplices meet in dimension a− 1, and this
means that their linear span has dimension 3a+1 rather than the expected 3a+2.
This is why this property should be understood as the combinatorial version of the
secant defectivity property of the Severi varieties.

3.2. Numbers of faces. The numbers of faces fk of each dimension k in a trian-
gulation of a smooth manifold are not independent. For example a codimension
one face has to belong to exactly two codimension zero faces, hence the relation

(d+ 1)fd = 2fd−1

if d denotes the dimension. More generally, the Dehn-Sommerville equations for
simplicial complexes, or rather their extension by Klee (see [NS09, Theorem 5.1])
to a context including combinatorial manifolds, imply that the numbers of faces of
dimension smaller than half of d determine the remaining numbers of faces. The
precise statement is the following. Let f−1 = 1, and consider the h-vector, which
is the sequence h0, . . . , hd+1 defined by the identity

d+1
∑

i=0

hix
d+1−i =

d+1
∑

j=0

fj−1(x− 1)d+1−j .

For a simplicial complex, the classical Dehn-Sommerville equations assert that the
h-vector is symmetric, that is hi = hd+1−i. More generally, for a triangulation of a
smooth manifold X , the h-vector is such that

hd+1−i − hi = (−1)i
(

d+ 1

i

)

(

χtop(X)− χtop(S
d)
)

,

where χtop(X) denotes the topological Euler characteristic.
Let us denote by fa

k the number of faces of dimension k in a tight triangulation

of AP2 with 3a+ 3 vertices. The tightness property means that

fa
k =

(

3a+ 3

k + 1

)

for 0 ≤ k ≤ a.

The generalized Dehn-Sommerville equations show that all the numbers fa
k are then

completely determined. These numbers are given in the following table:
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RP
2

CP
2

HP
2

OP
2

#vertices 6 9 15 27
15 36 105 351

#2 − dim 10 84 455 2925
90 1365 17550

#4 − dim 36 3003 80730
4515 296010
4230 888030
2205 2220075

#8 − dim 490 4686825
8335899
12184614
14074164
12301200
7757100
3309696
853281

#16− dim 100386

Main observation. For each k, the number fa
k of k-dimensional faces of a minimal

triangulation of AP2 is the dimension of a representation of SL(3,AC).

3.3. A connection with Severi varieties. One can be much more precise. We
will describe a recipe which allows to understand a priori which representation of
SL(3,AC) has dimension fa

k . Note that it will not be an irreducible representation
in general, but it will have very few irreducible components, and never more than
three.

Consider the variety LG(3,AC) = G/P , where G = Sp(6,AC) and P is the
stabilizer of the base point p. As any rational homogeneous variety does, LG(3,AC)
has a cellular decomposition defined by the Schubert cells. If B ⊂ P ⊂ G is a
Borel subgroup, recall that the Schubert cells can be defined as the B-orbits inside
LG(3,AC). Their closures are called Schubert varieties and usually denoted Xu,
where u belongs to some index set WP defined in terms of the combinatorics of the
root system of G. It is clear from the definition that the boundary of any Schubert
variety is a finite union of smaller Schubert varieties. This allows to define an
oriented graph, which we call the Hasse diagram. The vertices of this graph are in
bijection with the Schubert varieties, that is with WP . Moreover, there is an arrow
u → v if Xu is an irreducible component of the boundary of Xv (or equivalently,
Xu is a codimension one subvariety of Xv). The Hasse diagram is obviously ranked
by the dimension of the Schubert varieties. Moreover, Poincaré duality implies that
it is symmetric with respect to the middle dimension. We denote the operation of
Poincaré duality on the Hasse diagram by π.

Proposition 1. One has the following properties:

(1) The cone over AP
2
C is a Schubert variety of LG(3,AC).

(2) The Hasse diagram of AP2
C embeds in the Hasse diagram of LG(3,AC), as

an interval I.
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(3) The Hasse diagram of LG(3,AC) is the disjoint union of the interval I, the
Poincaré dual π(I), and the two extremities given by the fundamental class

and the punctual class.

Proof. The first claim is clear since the cone over AP2
C is the union of the lines in

LG(3,AC) passing through p. In particular it is stabilized by P , hence by B, which
implies that it is a Schubert variety Xt since there are only finitely many B-orbits.
The second claim follows immediately: there is only one one-dimensional Schubert
variety Xs (a line), and since the Schubert subvarieties of LG(3,AC) contained in
AP

2
C are exactly the cones over the Schubert subvarieties of the rational homoge-

neous variety AP
2
C, the interval I = [s, t] is isomorphic with the Hasse diagram of

AP
2
C. Finally, the third claim was first observed in [CMP07] in connection with

certain unexpected symmetry properties of quantum cohomology. �

The picture below shows the Hasse diagram of LG(3,O), the Freudenthal vari-

ety, which is a homogeneous space of exceptional type, with automorphism group
Sp(6,OC) of type E7. The interval I is in blue while π(I) is in red.

•

•

•

•

•

• • • • •

• • • • •

• • • • •

• • •

• •

• •

•

• • • • •

• • • • •

• • • • •

• • •

• •

•

• •

•

•

•

•

•
Xt

Xs

Remark. There is another connection between these Hasse diagrams. By Birkhoff’s
theorem, the Hasse diagram of LG(3,AC), being a distributive lattice, is the lattice
of upper ideals of a poset P . This poset is precisely the poset encoded by the
Hasse diagram of AP2

C. In particular the vertices of the latter can be associated
with the join-irreducibles of the former Hasse diagram. That the Hasse diagram
of LG(3,AC) is a distributive lattice is a consequence of the fact that this is a
minuscule homogeneous space [Hil82].

3.4. Wedge powers of the Jordan algebra. On the other hand, consider the
following problem: decompose the wedge powers of J3(AC) into irreducible compo-
nents, with respect to the action of SL(3,AC). We shall see shortly that this de-
composition is multiplicity free. This allows to define an oriented graph G(J3(AC))
as follows. The vertices are in bijection with the components of the wedge powers
of J3(AC). There is an edge between a component U of ∧kJ3(AC) and a component
V of ∧k+1J3(AC) if the composite map

V ⊗ J3(AC)
∨ →֒ ∧k+1J3(AC)⊗ J3(AC)

∨ → ∧kJ3(AC) → U
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is non-zero. Here the morphism ∧k+1J3(AC)⊗ J3(AC)
∨ → ∧kJ3(AC) is the natural

contraction map, and the map ∧kJ3(AC) → U is the projection with respect to the
other irreducible components.

Proposition 2. The graph G(J3(AC)) coincides with the Hasse diagram of LG(3,AC).

Before giving the proof, we need to recall certain properties of the relationship
between AP

2
C and LG(3,AC). First, the latter being minuscule, the Lie algebra

g = sp(6,A) of its automorphism group has an associated three-step grading

g = g−1 ⊕ g0 ⊕ g1,

where g0 is a reductive Lie algebra with one dimensional center and with semi-
simple part sl(3,AC), while g1 is isomorphic with J3(AC) as a sl(3,AC)-module. The
positive part g0 ⊕ g1 of the grading is the Lie algebra of the parabolic subgroup
P of Sp(6,AC) such that G/P = LG(3,AC). This parabolic is always maximal,
hence associated to a simple root α0. Its Weyl group WP can then be defined as
the stabilizer, inside the Weyl group W of Sp(6,A), of the associated fundamental
coweight ω∨

0 . The orthogonal hyperplane to ω∨
0 cuts the root system Φ of Sp(6,A)

along the root system Φ0 of SL(3,AC), which is the root subsystem generated by
the simple roots except α0. The positive roots which do not belong to Φ0 are those
that appear in g1, that is, they are exactly the weights of J3(AC). This module
is again minuscule, which means that WP acts transitively on the roots having
positive evaluation on ω∨

0 .

Proof of the proposition. We have mentioned the fact that the vertices of the Hasse
diagram are indexed by a set WP , a subset of the Weyl group of Sp(6,A). This is
the set of minimal length representatives of W/WP , and it can be characterized as
follows:

WP = {w ∈ W, w(α) ∈ Φ+ ∀α ∈ Φ+
0 }.

Now, the cotangent space to LG(3,AC) at the point p is nothing else than J3(AC),
not only as a vector space but as a P -module, hence also as an SL(3,AC)-module
since SL(3,AC) is the semi-simple part of P . (In fact the action of the unipotent
radical of P is trivial, because LG(3,AC) is minuscule). Under such favourable
circumstances, the decomposition of the bundle of k-forms has been obtained by B.
Kostant [Ko61]:

∧kJ3(AC) =
⊕

v∈WP ,ℓ(v)=k

Vρ−v−1(ρ),

where ρ denotes the half-sum of the positive roots in the root system of Sp(6,AC).
In particular, the vertices of G(J3(AC)) are in bijection with WP , hence with the
vertices of the Hasse diagram of LG(3,AC)

There remains to check that the edges are the same. In the Hasse diagram,
consider u of length k and v of length k + 1. There is an edge u → v if and only if
v = su for some reflection s in the Weyl group W . We claim that this is equivalent
to the condition that u−1(ρ) − v−1(ρ) is a weight of J3(AC). Admitting this, we
conclude the proof as follows. If u−1(ρ) − v−1(ρ) is not a weight of J3(AC), then
Vρ−v−1(ρ) cannot be a component of Vρ−u−1(ρ) ⊗ J3(AC) by [Zh73, section 131]. If

u−1(ρ)− v−1(ρ) is a weight of J3(AC), then the fact that Vρ−v−1(ρ) is a component
of Vρ−u−1(ρ) ⊗ J3(AC) is a special case of the PRV conjecture, proved in [Ku88].

There remains to prove our claim. First recall that in the minuscule setting the
strong Bruhat order coincides with the weak Bruhat order [LW90, Lemma 1.14].
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This means that the reflexion s must be the simple reflection si associated to a
simple root αi. Since ℓ(v) = ℓ(siu) = ℓ(u) + 1 we must have u(αi) > 0. We also
need that v belongs to WP , which means that any positive root in the subsystem
Φ0 must be sent to a positive root. Since this is already the case for u, and since
the only positive root that si sends to a negative root is αi, this is equivalent to the
condition that the positive root β = u−1(αi) does not belong to Φ+

0 . Since Φ0 is
the set of roots in Φ orthogonal to ω∨

0 , our condition can be restated as ω∨
0 (β) > 0.

But this means that the root β appears in g1, hence that it is a weight of J3(AC).
Since u−1(ρ)− v−1(ρ) = β, our claim follows. �

A nice consequence is that the interval I = [s, t] defines a submodule of the
exterior algebra of J3(AC), namely

Lk =
⊕

v∈WP ,ℓ(v)=k,
s≤v≤t

Vρ−v−1(ρ).

Our refined version of the main observation is the following:

Proposition 3.

fa
k = dimLk+1.

This is straightforward to check case by case. A conceptual proof would probably
require an interpretation of the generalized Dehn-Sommerville equations in repre-
sentation theoretic terms. We have no idea of what could be such an interpretation.

As we already mentioned, although not always irreducible, Lk has only a very
small number of irreducible components. More precisely, it contains at most three
components, as is apparent on the Hasse diagrams of LG(3,AC). For k small enough
∧kJ3(AC) is irreducible, hence by symmetry Lk is also irreducible when 2a+ 1− k
is small. A natural question to ask is, when the representation is not irreducible,
whether there is any natural way to split the faces into subsets of the corresponding
dimensions.

Maximal faces. In particular, the number of faces of maximal dimension is the
dimension of the irreducible module L2a+1. This module can be interpreted as
follows. Recall that each point of AP

2
C defines an A-line on the dual plane in

PJ3(AC)
∨. This A-line is a quadric of dimension a, whose linear span is projective

space of dimension a+ 1. Hence an equivariant map

π : AP2
C → G(a+ 2, J3(AC)

∨)

If this map is of degree d, in the sense that π∗
O(1) is equal to the d-th power of

the hyperplane line bundle on AP
2
C, we get a non-zero equivariant map

H0(G(a+ 2, J3(AC)
∨),O(1)) = ∧a+2J3(AC)

π∗

−→ H0(AP2
C,O(d)) = (J3(AC)

∨)(d),

the d-th Cartan power of J3(AC)
∨. Dualizing, we get an inclusion of J3(AC)

(d)

inside ∧a+2J3(AC)
∨ = ∧2a+1J3(AC). In fact d = a/2 + 1 and

L2a+1 = J3(AC)
(a/2+1).

(This still makes sense for a = 1 because the hyperplane class of RP2
C, the Veronese

surface, is divisible by two.)
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In general the number of irreducible components of Lk behaves as follows:

#irred Lk+1 =

{ 1 if 0 ≤ k ≤ a
2 − 1 or 3a

2 + 1 ≤ k ≤ 2a,
2 if a

2 ≤ k ≤ a− 1 or a+ 1 ≤ k ≤ a
2 ,

3 if k = a.

(There is a strange similarity with the homology of AP2.)

Tightness. Note that π(I) = [π(s), π(t)] where the dimension of the Schubert
variety Xπ(t) is a+1, being complementary to the dimension of Xt, which is 2a+1

since it is a cone over AP2
C. Since the whole Hasse diagram is the disjoint union of

I, π(I) and the two extremities, this implies that

Lk = ∧kJ3(AC) for 1 ≤ k ≤ a+ 1.

This is the algebraic version of tightness.

Duality. Duality can also be interpreted in the representation theoretic setting.
Indeed, there exists an exterior automorphism of SL(3,A) exchanging the repre-
sentations J3(AC) and its dual J3(AC)

∨. Since

∧kJ3(AC) ≃ ∧3a+3−kJ3(AC)
∨,

the graph G(J3(AC)) has an induced symmetry which can be seen to coincide with
Poincaré duality. Since, once again, the disjoint union of I and π(I) is the whole
Hasse diagram minus its two extremities, we must have the identity

∧kJ3(AC) = Lk ⊕ (L3a+3−k)∨.

This is the algebraic version of duality. Indeed, taking dimensions, we conclude
that the number of (k− 1)-dimensional faces is equal to the number of (3a+2−k)-
dimensional “non-faces”.

Secant defectivity. In [EPW00] the minimal triangulation ∆ of RP2 is considered.
The Stanley-Reisner ideal I∆ defines an arrangement of 10 hyperplanes in P5. Over
a field k of characteristic two, the corresponding scheme is Gorenstein and its
canonical bundle is 2-torsion. Moreover, this scheme can be flatly deformed into a
family of special smooth Enriques surfaces in P5. This family is defined in terms
of Lagrangian subspaces in ∧3k6, endowed with the quadratic form (characteristic
two !) induced by the wedge product.

In terms of representations (and over C), the relevant property is that

∧3(Sym2
C

3) = Sym3
C

3 ⊕ (Sym2
C

3)∨

where both components are Lagrangian (with respect to the skew-symmetric form
induced by the wedge product). In the other cases we have the following substitute:

Proposition 4. Consider (L2a+1)∨ as an irreducible component of ∧a+2J3(AC) ≃
∧2a+1J3(AC)

∨. Then the natural map

(L2a+1)∨ ⊗ (L2a+1)∨ → ∧2a+4J3(AC) = ∧a−1J3(AC)
∨

is zero.

Otherwise stated, (L2a+1)∨ is isotropic with respect to a whole system of bilinear
forms parametrized by ∧a−1J3(AC), which is a very strong property. Moreover
these forms are symmetric for a ≥ 2, exactly as for a = 1 in characteristic two (but
skew-symmetric for a = 1 in characteristic zero...).
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Proof. Since (L2a+1)∨ is irreducible, it is enough to prove that ω ∧ ω′ = 0 when
ω, ω′ are two highest weight vectors. Since L2a+1 is a Cartan power of J3(AC), these
highest weight vectors correspond to two points p, p′ of the dual AP2

C. Moreover,
we have seen that the associated points in ∧a+2J3(AC) correspond to the linear
spans of the A-lines on AP

2
C defined by p and p′. But two such A-lines always meet

non-trivially (we are dealing with a plane projective geometry!), and this implies
that ω ∧ ω′ = 0. �

4. Complexes

4.1. A subcomplex of the Koszul complex. Recall that the wedge powers of
J3(AC) can be put together into a Koszul complex: for any non-zero linear form
φ ∈ J3(AC)

∨, the contraction by φ,

· · · → ∧k+1J3(AC)
φ

−→ ∧kJ3(AC) → · · ·

defines an exact complex K•(φ). By their very definition, the contraction map by
any linear form φ maps Lk+1 to Lk and we get a subcomplex L•(φ)

0 → L2a+1 → · · · → Lk+1 φ
−→ Lk → · · · → L1 → 0.

This complex is not exact. Indeed, suppose that φ ∈ J3(AC)
∨ is general, in the

sense that it does not belong to the determinantal hypersurface. The stabilizer
SO(φ) of φ in SL(3,A) is then a conjugate of SO(3,A) = Aut(J3(AC)) (such that
φ becomes the identity of the twisted Jordan structure). The complex L•(φ) is
SO(φ)-equivariant. In particular we consider its Euler characteristic as an element
of the representation ring of SO(φ). A direct check with LiE [LiE] yields:

Proposition 5. The Euler characteristic of the complex L•(φ) is

χ(L•(φ)) = χtop(AP
2) [C],

where [C] denotes the class of the trivial representation of SO(φ). In particular the

Euler characteristic is SO(φ)-invariant.

One can also check that the SO(φ)-invariants of the complex are

(Lk+1(φ))SO(3,A) =

{

C if k = 0, a, 2a,
0 otherwise.

The existence of these invariants can be seen as follows. Inside L1 = J3(AC) there
is the invariant hyperplane J3(AC)φ = φ⊥. This is an irreducible SO(φ)-module,
and therefore it admits a unique invariant supplementary line ℓφ ⊂ J3(AC). Since
J3(AC) = J3(AC)φ ⊕ ℓφ as SO(φ)-modules, we have for any integer k

SkJ3(AC) = ⊕k
ℓ=0S

ℓJ3(AC)φ.

It turns out that a similar statement holds for Cartan powers:

J3(AC)
(k) = ⊕k

ℓ=0J3(AC)
(ℓ)
φ .

In particular there is always a unique line of SO(φ)-invariants inside J3(AC)
(k),

hence inside L2a+1 = J3(AC)
(a/2+1). Moreover this line is contained in ∧2a+1J3(AC)φ,

and since J3(AC)φ is self-dual of dimension 3a+2, there is an induced line of SO(φ)-
invariants inside ∧a+1J3(AC)φ ⊂ ∧a+1J3(AC) = La+1.

Proposition 5 suggests the following conjecture:
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Conjecture. Let φ ∈ J3(AC)
∨ be general. Then the inclusion of L•(φ)SO(φ) inside

L•(φ) is a quasi-isomorphism.

Proposition 5 also shows that L•(φ) has one of the main properties of the face

complex of a triangulation of AP2.

4.2. The main conjecture. Let ∆ be a simplicial complex. Associate to each
vertex v of ∆ a variable xv. Let I∆ ⊂ k[xv, v ∈ ∆0] denote the ideal generated
by all the square-free monomials xv1 · · ·xvr such that (v1, . . . , vr) is not a face of
∆. Then R = k[xv, v ∈ ∆0]/I∆ is the Stanley-Reisner ring of ∆ [BH93]. When ∆
is a spherical complex, R is a Cohen-Macaulay ring. If ∆ is a triangulation of a
topological manifold (not necessarily a sphere), then R is only Buchsbaum [NS09].

The face complex C•
∆ is defined by

Ck
∆ =

⊕

v1,...,vk

Rxv1
···xvk

,

where the sum is over all (k−1)-dimensional faces. (In order to define the morphisms
one has to chose an ordering of ∆0.) This complex computes the local cohomology
of R at the maximal ideal. For Buchsbaum modules the local cohomology is closely
connected with the socle (see [NS09], in particular Corollary 3.5).

Remark. Note that a consequence of ∆ not being Cohen-Macaulay is that the h-
vector is not symmetric. As explained in [NS09], the symmetry can be recovered
by changing the h-vector into a h′′-vector, the modification taking into account the
Betti numbers of the manifold triangulated by ∆. For AP2 we would get

h′′
k = h′′

2a−k =

(

a+ k + 1

k

)

for 0 ≤ k ≤ a.

These numbers are the dimensions of the graded part of a Gorenstein Artinian
ring ([NS09], Conjecture 7.3), and by Macaulay’s theorem one can associate a
polynomial Fa to this ring. What is the significance of Fa?

We will now define a variant of the face complex. Considering a space V endowed
with a basis ev indexed by vertices of ∆. We can then define

Lk
∆ =

⊕

v1,...,vk

Cev1 ∧ · · · ∧ evk ⊂ ∧kV,

the sum being again over all (k− 1)-dimensional faces. Since every subset of a face

is a face, each contraction map by a linear form φ ∈ V ∗ sends Lk
∆ to Lk−1

∆ .

Conjecture. There exists a degeneration of L• to L•
∆, for some triangulation ∆

of AP2
C with 3a+ 3 vertices.

More precisely, such a degeneration should exist inside the Koszul complex of
J3(AC), which means that we do not need to care about the morphisms, but only to
prove the existence of a degeneration Lk

t of each Lk to Lk
∆ inside the Grassmannian

parametrizing subspaces of ∧kJ3(AC) of the same dimension. Of course we require

that for any φ ∈ V ∨ = J3(AC)
∨, the contraction map by φ sends Lk

t to Lk−1
t . It

would even be natural to require that for all k,

Lk
t = Im(L2a+1

t ⊗ ∧2a+1−kJ3(AC)
∨ → ∧kJ3(AC)).

Then we would only have to degenerate L2a+1, subject to the condition that these
contractions maps have constant rank.
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Proposition 6. The conjecture is true for a = 1.

Proof. In this case we only have a three term complex to deal with:

L3 → L2 = ∧2V → L1 = V.

Here V = S2U for U of dimension three. In particular there is only L3 to degenerate
in the Grassmannian of ten-dimensional subspaces of ∧3V , subject to the condition
that the contraction map to ∧2V is surjective. Since this is an open condition, we
can certainly degenerate it to the space L3

∆ defined by the classical triangulation

∆ of RP2. �

It turns out that something rather special happens. Let u1, u2, u3 be a basis of U ,
and consider the Borel subgroup of GL(U) defined by this basis. Then L3 = S411U
is the submodule of ∧3(S2U) with highest weight vector u2

1 ∧ u1u2 ∧ u1u3 with
respect to our Borel subgroup. We denote this vector by (11)(12)(13). A basis of
L3, consisting in eigenvectors of the maximal torus defined by the basis, can then
be obtained by applying successively the root vectors associated to the opposite of
the two simple roots of sl3. We get the following diagram.

(11)(12)(13)

��

(11)(12)(23) + (11)(22)(13)

''OOOOOOOOO

wwooooooooo

(11)(22)(23) + (12)(22)(13)

++WWWWWWWWWWWWWWWWW

��

(11)(12)(33) + (11)(23)(13)

��

(12)(22)(23)

��

(11)(22)(33) + 2(12)(23)(13)

ssggggggggggggggggg

��

(13)(22)(23) + (12)(22)(33)

''OOOOOOOOO
(11)(23)(33) + (12)(33)(13)

wwooooooooo

(12)(23)(33) + (13)(22)(33)

��

(13)(23)(33)

Now we may consider each basis vector uiuj = (ij) of V as a vertex of a triangu-
lation. Then a decomposable tensor (ij)(kl)(mn) in ∧3V encodes a two-dimensional
face. Not all the vectors in our basis are decomposable, but those that are not are
the sum of only two decomposable vectors, and there is a unique way to choose
one among these two, for each of the seven non decomposable vectors, in such a
way that the ten faces that we obtain define a triangulation ∆ of RP2 (the minimal
triangulation). The terms corresponding to these ten faces are indicated in bold on
our diagram. In particular we can get a degeneration of L3 to L3

∆ just by rescaling
the terms that are not in bold.
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5. The minimal triangulation of CP
2, revisited

In [BrK87] the authors exhibited a triangulation of CP2 with nine vertices. The
list of its 36 maximal faces was obtained with the help of a computer:

12456 45789 12378
23456 56789 12389
13456 46789 12379
12459 34578 12678
23567 15689 23489
13468 24679 13579
23469 35679 13689
13457 14678 12479
12568 24589 23578
13569 34689 23679
12467 14579 13478
23458 25678 12589

The symmetry group G of this triangulation has order 54 and acts transi-
tively on the vertices. More specifically, the permutations (147)(258)(369) and
(123)(456)(789) generate a subgroup H of the symmetry group isomorphic with
Z3 × Z3, and this subgroup acts simply transitively on the vertices. Note also
that H has index two in its normalizer NG(H), which is generated by H and the
involution τ = (12)(46)(89). The involutions in G are all conjugate.

Let us review how this can be connected to our approach. For A = C, the
Jordan algebra J3(AC) can be identified with the tensor product A ⊗ B of two
vector spaces of dimension three. The terms of the Koszul complex are given by
the Cauchy formula, and the subcomplex L• is encoded in the following graph:

[1]⊗ [1]

##GG
GGG

GG
[3]⊗ [111]

##GG
GGG

GG
[311]⊗ [311]

[2]⊗ [11]

;;wwwwwww

##GGG
GGG

G
[31]⊗ [211]

;;wwwwwww

[21]⊗ [21]

;;wwwwwww

Our notation here is the following: by [µ] ⊗ [ν] we mean the tensor product of
Schur powers SµA⊗ SνB, plus the symmetric term SνA⊗ SµB if µ 6= ν. We have
Lk = ∧k(A ⊗ B) for 1 ≤ k ≤ 3, corresponding to the first three columns of the
complex. On the extreme right, L5 = S311A⊗S311B = S2A⊗detA⊗S2B⊗detB
has dimension 36.

If we choose a basis a1, a2, a3 of A and a basis b1, b2, b3 of B, we get a basis
ai ⊗ bj = (ij) of A ⊗ B and an induced basis of its wedge powers. Note that
L5 = [311]⊗ [311] is a multiplicity free module. As a submodule of ∧5(A⊗B), it is
generated by the highest weight vector (11)(12)(13)(21)(31). Taking into account
the action of the Weyl group W = S3 × S3, we get nine decomposable vectors.
Our principle is that each weight vector (ij) should be identified with a vertex of
the triangulation, and each decomposable vector to a face of this triangulation.
Starting from the configuration of the nine faces that have to be associated to the
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nine decomposable vectors, we are led to the following identification between our
weight vectors and the vertices of the Brehm-Kühnel triangulation:

1 2 3 4 5 6 7 8 9
(23) (32) (11) (21) (33) (12) (22) (31) (13)

We can then make several observations:

(1) The transitive action of H on the vertices coincides with the natural action
of the subgroup A3 ×A3 of the Weyl group S3 × S3.

(2) The involution τ coincides with the external symmetry (ij) 7→ (ji).
(3) The maximal faces split into four H-orbits of nine elements, corresponding

to the four W -orbits among the weights of L5.
(4) Each weight space is generated by a vector which is the sum of one, two or

four decomposable vectors, and exactly one of these decomposable vectors
correspond to a maximal face of the triangulation.

The minimal triangulation of CP
2 and its symmetries thus become much more

transparent when interpreted in our representation theoretic setting.

6. The quaternionic case, revisited

In [BrK92], three combinatorial triangulations were constructed of a manifold
“like a quaternionic projective plane”. One of these triangulations is more sym-
metric than the two others: its automorphism group, the icosahedral group A5,
acts transitively on the 15 vertices. It can be characterized as the unique tight
triangulation of a manifold with this symmetry property. The authors conjectured
that the underlying manifold is really the quaternionic projective plane HP

2, but
up to our knowledge this conjecture remains open.

For A = H, the Jordan algebra J3(HC) can be identified with the second wedge
power ∧2A of a vector space a of dimension six. The subcomplex L• of the Koszul
complex is encoded in the following graph:

[11]

$$JJ
JJ

[222]

$$JJJ
[3322]

$$JJJ
[44222]

$$JJJ
[552222]

[211]

$$JJJ

::ttt

[3221]

$$JJJ

::ttt

[43221]

$$JJJ

::ttt

[542221]

::ttt

[3111]

$$JJJ

::ttt

[42211]

$$JJJ

::ttt

[532211]

::ttt

[41111]

$$JJJ

::ttt

[522111]

::ttt

[511111]

::ttt

Here again we denote by [λ] the Schur power SλA. In particular [11] denotes the
minuscule representation ∧2A, whose fifteen weights (with respect to some fixed
maximal torus) should represent the fifteen vertices of the Brehm-Kühnel triangu-
lation. This suggests in particular that the action of the icosahedral group A5 on
these vertices, which is produced in [BrK92] by exhibiting an explicit embedding
in S15, is in fact induced by a much more simple embedding in S6.
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This is indeed the case, and we consider this fact as a strong hint that our insights
should be correct. Consider the permutations defined in cyclic notation by

p = (1)(23456),
r1 = (1)(2)(36)(45),
s = (156)(243),
r2 = (4)(5)(36)(12).

There is an induced action on the set of pairs of distinct integers, that we put in
correspondence with integers between 1 and 15 by identifying the following tables:

45 36 12 1 6 11
56 24 13 2 7 12
26 35 14 vs 3 8 13
23 46 15 4 9 14
34 25 16 5 10 15

It is then straightforward to check that the resulting permutations of S15 coincide
with the permutations denoted P,R1, S, R2 in [BrK92], pp. 170-171.

The maximal simplices defining the Brehm-Kühnel triangulation (see [BrK92],
Table 2 p. 174) can then be identified with sets of nine pairs of integers. In partic-
ular, the simplex denoted M1 corresponds to (12)(13)(14)(15)(16)(23)(24)(25)(26).
This expression can be seen as defining a highest weight vector of the representation
[552222] inside ∧9[11], in complete agreement with our expectations.

7. Spherical links

Assuming that the vertex-transitive action by a symmetry group, which exists
for the known triangulations of RP2 and CP

2 and for the conjectural triangulation
of HP

2, also exists for the hypothetical case of OP
2, one can consider the link of

an arbitrary vertex in one of these triangulations. This link does not depend on
the chosen vertex, up to isomorphism, and defines a triangulation of a sphere of
dimension 2a− 1.

Knowing the number of simplices in the triangulation of AP2, one can compute
the number of simplices in this triangulated sphere by a double counting argument.
First note that in order to count simplices of the link, one can study the star
instead of the link. Consider now the set of pairs (v, f) where v is a vertex in

the triangulation of AP2 and f is a simplex in the star of v. Every k-dimensional
simplex of the triangulation of AP2 belongs exactly to the links of its k+1 elements,
hence will appear k + 1 times in the set of pairs (v, f). One can then count pairs
(v, f) such that f is k-dimensional in two different ways.

The results for the spherical triangulations are listed below by increasing dimen-
sions. The spherical link in RP

2 is a pentagonal circle. According to [BrK92, §5], the
spherical link in CP

2 is a non-polytopal 3-sphere, called the Brückner-Grünbaum
sphere, and the spherical link in HP

2 is a non-polytopal 7-sphere.
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RP
2

CP
2

HP
2

OP
2

#vertices 5 8 14 26
#1− dim 5 28 91 325

40 364 2600
#3− dim 20 1001 14950

1806 65780
1974 230230
1176 657800

#7− dim 294 1562275
3087370
4964102
6255184
5922800
4022200
1838720
505648

#15− dim 63206

Observation. The number of maximal faces in the spherical triangulation is

3a+ 2

a+ 2

(

2a+ 1

a+ 1

)

.

This is the dimension of the irreducible representation of the Lie algebra so(a+4),
whose highest weight is aω, where ω is the fundamental weight defining the vector

representation of dimension a+ 4.

The meaning of this observation remains unclear to us. Moreover we could not
find similar interpretations for the other numbers of faces.

As a curiosity, one can note that the numbers of maximal faces also appear in
the sequence A129869 of the On-Line Encyclopedia of Integer Sequences (oeis.org),
which counts tilting modules for quivers of type D.

8. Higher ranks

Much of what we have explained in the previous section remains true for higher
rank, that is, for the projective spaces AP

n = RP
n,CPn,HP

n with n ≥ 3. Their
complex versions APn

C are homogeneous under the action of a group SL(n+ 1,A).
Moreover there exists a bigger homogeneous variety LG(n + 1,A), with automor-
phism group Sp(2n+2,A), such that APn

C can be identified with the space of lines
in LG(n+ 1,A) passing through a prescribed point p.

A R C H

AP
n
C v2(P

n) Pn × Pn G(2, 2n+ 2)
SL(n+ 1,A) SL(n+ 1) SL(n+ 1)× SL(n+ 1) SL(2n+ 2)
LG(n+ 1,A) LG(n+ 1, 2n+ 2) G(n+ 1, 2n+ 2) S2n+2

Sp(2n+ 2,A) Sp(2n+ 2) SL(2n+ 2) SO(4n+ 4)

Exactly as for n = 2, this allows to embed the Hasse diagram of APn
C into that of

LG(n+1,A), as an interval I = [s, t]. Moreover the Hasse diagram of LG(n+1,A) is
canonically identified to the graph constructed from the wedge powers of Jn+1(AC),
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the complexification of the space of Hermitian matrices of size n+1 with coefficients
in A. These wedge powers are given by the following classical formulas.

A = R. Then Jn+1(RC) = Sym2U where U has dimension n+ 1. We have

∧kJn+1(RC) =
⊕

|λ|=k,
h(λ)≤n

Sd+(λ)U,

where the sum is over strict partitions λ = (λ1 > · · · > λℓ > 0) of size k and of
height h(λ) = λ1 at most n. Moreover d+(λ) is the partition of size 2k obtained by
putting together λ and its conjugate:

d+(λ) = (λ1, λ2 + 1, . . . , λℓ + ℓ− 1, ℓλℓ , (ℓ− 1)λℓ−1−λℓ−1, . . . , 1λ1−λ2−1),

where powers mean repetitions.

A = C. Then Jn+1(CC) = U ⊗ V where U and V have dimension n+ 1. We have

∧kJn+1(CC) =
⊕

|λ|=k,
ℓ(λ),h(λ)≤n+1

SλU ⊗ Sλ∨V,

where the sum is over partitions λ = (λ1 ≥ · · · ≥ λℓ > 0) of size k and of height
h(λ) = λ1 and length ℓ(λ) = ℓ at most n+ 1.

A = H. Then Jn+1(HC) = ∧2U where U has dimension 2n. We have

∧kJn+1(HC) =
⊕

|λ|=k,
h(λ)≤2n

Sd−(λ)U,

where the sum is over strict partitions λ = (λ1 > · · · > λℓ > 0) of size k and of
height h(λ) = λ1 at most 2n. Moreover d−(λ) is the conjugate partition to d+(λ).

In each case the Hasse diagram of LG(n + 1,A) coincides with the graph of
partitions with the partial order defined by the inclusion relation. The minimal
element s of I corresponds to the partition of size one, while t corresponds to the
partition (n), (n+ 1, 1n), (2n+ 1, 2n) respectively. This yields

Lan+1 = Jn+1(AC)
(d) where d = a

n− 1

2
+ 1.

The other terms are then easy to write down explicitly:

A = R. Then Lk = Sk+1,1k−1U for 1 ≤ k ≤ n+ 1. This implies that

f1,n
k =

1

2

(

n+ k + 2

k + 1

)(

n+ 1

k + 1

)

.

A = C. Here Lk = ⊕i+j=k−1Si+1,1jU ⊗ Sj+1,1iU for 1 ≤ k ≤ 2n+ 1. Therefore

f2,n
k =

(n+ 1

k + 1

)2 ∑

i+j=k

(

n+ i+ 1

i

)(

n

i

)(

n+ j + 1

j

)(

n

j

)

.

A = H. Here Lk = ⊕i+j=k,i>jSd−(i,j)U .

If we fix a generic element φ ∈ Jn+1(AC)
∨, its stabilizer is a conjugate of

SO(n + 1,A) = Aut(Jn+1(AC)). We expect that the complex L•(φ) should be
quasi-isomorphic with the complex of SO(n+ 1,A)-invariants, with trivial arrows.
Moreover, we have:
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Proposition 7.

(Lk+1)SO(n+1,A) =

{

C if k = 0, a, . . . , na,
0 otherwise.

Proof. Consider for example the case where a = 4. It follows from the branching
rules from SL to Sp [Li40] that a Schur module SµU has a Sp(2n)-invariant if and
only if the conjugate partition µ∨ has only even parts, in which case this invariant
is unique up to scalars. For µ = d−(i, j), hence µ∨ = d+(i, j), this means that
i = j + 1 and j is even. Hence i + j − 1 = 2j must be divisible by four, and the
claim follows. �

There is therefore an intriguing relation between these modules and the coho-
mology of APn, confirmed by the following statement:

Proposition 8. For any a = 1, 2, 4 and any n ≥ 2, one has

na
∑

k=0

(−1)kfa,n
k =

{

1+(−1)n

2 if a = 1,
n+ 1 if a = 2 or a = 4.

An optimistic guess would be that some degeneration of the complex L•(φ)
should be the Stanley-Reisner complex of some triangulation of APn. This trian-
gulation would have fa,n

k faces of dimension k, in particular it would have exactly

a
(

n+1
2

)

+ n + 1 vertices. Unfortunately, this is definitely over-optimistic: it was

proved in [AM91] that RP3 does not admit any triangulation with only 10 vertices!
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[Li40] Littlewood D.E., The Theory of Group Characters and Matrix Representations of
Groups, Oxford University Press 1940.

[NS09] Novik I., Swartz E., Socles of Buchsbaum modules, complexes and posets, Adv.
Math. 222 (2009), no. 6, 2059-2084.

[Zh73] Zhelobenko D.P., Compact Lie groups and their representations, Translations of
Mathematical Monographs 40, AMS 1973.

http://young.sp2mi.univ-poitiers.fr/~marc/LiE/

	1. Introduction
	2. The Severi varieties
	3. Faces and representations
	3.1. Special properties of minimal triangulations
	3.2. Numbers of faces
	3.3. A connection with Severi varieties
	3.4. Wedge powers of the Jordan algebra

	4. Complexes
	4.1. A subcomplex of the Koszul complex
	4.2. The main conjecture

	5. The minimal triangulation of CP2, revisited
	6. The quaternionic case, revisited
	7. Spherical links
	8. Higher ranks
	References

