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Abstract The Fermat quotierdp(a) := (aP~1—1)/p, for prime p{ a, and the Wil-
son quotientvp 1= ((p—1)! +1)/pare integers. Ip | wp, thenp is a Wilson prime.
For oddp, Lerch proved tha(zg;iqp(a) —Wp)/pis also an integer; we call it the
Lerch quotient /. If p| ¢, we sayp is aLerch prime. A simple Bernoulli-number
test for Lerch primes is proven. There are four Lerch primgk03 839 2237 up
to 3 x 10%; we relate them to the known Wilson primesl3,563 Generalizations
are suggested. Next, [f is a non-Wilson prime, thegp(wp) is an integer that we
call the Fermat-Wlson quotient of p. The GCD of allgp(wp) is shown to be 24.
If p|ap(a), thenpis a Wieferich prime base; we give a survey of them. Taking
a= Wy, if p|qgp(wp) we sayp is aWeferich-non-Wlson prime. There are three up
to 10/, namely, 23,14771 Several open problems are discussed.

1 Introduction

By Fermat’s little theorem and Wilson’s theorempifs a prime and is an integer
not divisible byp, then theFermat quotient of p base a,

ab1-1
dp(a) == ; 1)
p
and thewilson quotient of p,
-1I+1
Wp i= (P 1i¥d p) , (2)

are integers. (See [26, pp. 16 and 19] and [27, pp. 216-217].)

For example, the Fermat quotients of the prime- 5 basea = 1,2,3,4 are
gs(a) = 0,3,16,51; the Fermat quotients gf = 3,5,7,11,13,17,19,23 29,31, ...
basea=2 are
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2p-1_q
ap(2) =

=1,3,9,93,315385513797182361925639534636833. ..

[29, sequence A007663]; and the Wilson quotients €f2,3,5,7,11,13 17,... are
wp =1,1,5,103329891368462771230752346353..

[29, sequence A007619].
A prime pis called aMlson prime [16, section A2], [26, p. 277] ip divideswy,
that is, if the supercongruence

(p—1)!4+1=0 (modp?)

holds. (Asupercongruenceis a congruence whose modulus is a prime power.)

Forp=2,3,5,7,11,13, we find thatw, = 1,1,0,5,1,0 (mod p) (see [29, se-
guence A002068]), and so the first two Wilson primes are 5 @ d e third and
largest known one is 563incovered by Goldberg [14] in 195&randall, Dilcher,
and Pomerance [5] reported in 1997 that there are no new Wsones up to
5x 108. The bound was raised t0>210'2 by Costa, Gerbicz, and Harvey [4] in
2012.

Vandiver in 1955 famously said (as quoted by MacHale [22 40]¢t

Itis not known if there are infinitely many Wilson primes. Slguestion seems to be of such
a character that if | should come to life any time after my Hesmtd some mathematician
were to tell me that it had definitely been settled, | think lulkbimmediately drop dead
again.

As analogs of Fermat quotients, Wilson quotients, and Wilsoames, we intro-
duce Lerch quotients and Lerch primes in Section 2, and ReWifilaon quotients
and Wieferich-non-Wilson primes in Section 3. We define thmntombining Fer-
mat and Wilson quotients in apparently new ways.

2 Lerch quotients and Lerch primes

In 1905 Lerch [21] proved a congruence relating the Fermdt\&fison quotients
of an odd prime.

Lerch’s Formula. If a prime p is odd, then

p—1
S chl@)=wp (modp),

that is,
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p—1
Zapfl—p—(p—l)!zo (mod p?). (3)

a=1

Proof. Replacea with ab in equation (1). Substituting®* = pgp(a) + 1 and
bP~1 = pgp(b) + 1, we deduce Eisenstein’s logarithmic relation [11]

dp(ab) = gp(a) +agp(b)  (mod p)
and Lerch’s formula follows. For details, see [21] or [30]. O

Ribenboim [27, p. 218] explains the point of Lerch’s formthés way:

Since the Fermat quotient is somehow hard to compute, it i matural to relate their
sums, over all the residue classes, to quantities defingd by

Wilson quotients and Lerch’s formula have been used (se€l¢ {8@haracterize
solutions of the congruence

1"+ 2"+ 4K = (k+1)"  (modk?).

2.1 Lerch quotients

Lerch’s formula allows us to introduce the Lerch quotienanfodd prime, by anal-
ogy with the classical Fermat and Wilson quotients of angnpri

Definition 1. TheLerch quotient of an odd primep is the integer

o Sham@-wp  yiiaPt-p-(p-1)
p-= p - p2 ’

For instance,

 0+43+16+51-5 1+16+81+256-5-24
- 5 - 25 -

The Lerch quotients op = 3,5,7,11,13,17,19,23 29,... are

s 13.

lp=0,13,1356123229034794170317107237045496594199
1667103375139715776,/A93090310179794898808058068
60995221345838813484944512721637147449

and for primep < 62563 the only Lerch quotierd}, that is itself a prime number is
l5 =13 (see [29, Sequence A197630]). By contrast, the Wilsotiguisw, of the
primesp=5,7,11,29,773 13212621 are themselves prime [16, Section A2], [29,
Sequence A050299].



4 Jonathan Sondow

2.2 Lerch Primes and Bernoulli Numbers

We define Lerch primes by analogy with Wilson primes.
Definition 2. An odd primep is aLerch primeif p divides/y, that s, if

-1
pZ«':\F’*l—p—(p—l)!EO (mod p°). )

a=1

Forp=3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,
89,97,101,103 ..., we find that

lp= 0,3,5,56,12,133,7,19,2,21 34,3352 31,51,38,32,25,25,25,
53,22,980,... (modp)

[29, Sequence A197631], and so the first two Lerch primes amed3L03

We give atest for Lerch primes involviriernoulli numbers. Ubiquitous in num-
ber theory, analysis, and topology (see Dilcher [8]), they rational numbers,
defined implicitly forn > 1 by the symbolic recurrence relation

(B+ 1)n+l_ Bn+1 —0.

(Ribenboim [27, p. 218] says, “Tre& as an indeterminate and, after computing
the polynomial in the left-hand side, replaB& by By.”) Thus for n = 1, we have
(B+1)2—-B? =2B; +1=0, and soB; = —1/2. Now with n = 2, we see that
(B4 1)%—B%=3B,+ 3B, +1=0leads td3, = 1/6. In this way, we get

1 1 1 5
_185:0786:_78720188:__189201810:_a-"'

Bs=0,B4=—35 42 30 66

In 1937 (before the era of high-speed computers!) Emma Lelfi20$ showed
that 5 and 13 are the only Wilson primps< 211 To do this, she used her husband
D. H. Lehmer’s table of Bernoulli numbers up By, together withGlaisher’s
congruence[12] (see also [21]), which holds for any prinpe

1
Wp=Bp 1+ e 1 (mod p). (5)
Here recall the definition
g =0 (modm) <= m|a, GCD(a,b)=1

For example, that 5 is a Wilson prime, but 7 is not, followsnirthe congruences
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Multiplying Glaisher’s congruence by and substitutingow, = (p—1)! +1
yieldsE. Lehmer’stest: A prime p isaWilson primeif and only if

pBp1=p—1 (modp?).

We provide an analogous test for Lerch primes.
Theorem 1 (Test For Lerch Primes).A prime p > 3isa Lerch primeif and only if
PBp-1=p+(p—1)! (modp®). (6)

Proof. We first establish the followin@riterion: an odd prime p is a Lerch prime
if and only if

(B+p)P=p?+p! (modp?. (7)

To see this, recall the classical application of Bernoullinbers calledraulhaber’s
formula (also known a8ernoulli’s formula—Knuth [19] has insights on this):

(B—i— k)n+1 _ Bn+1

142" (k— 1) =
T2t kel nt+1

(8)

(See Conway and Guy [2, pp. 106-109] for a lucid proof.) Nowkse- p and
n=p-—1in(8). It turns out thaBy = 0 (indeedBz =Bs =B; =Bg=--- = 0;
see [2, p. 109], [17, section 7.9]), and it follows that theg@wences (4) and (7) are
equivalent. This proves the Criterion.

To prove the Test, note that for any odd positive intggehe vanishing 0By 1
for k> 1 implies

P_ P ptn T (P e

Bepr=pepp B 5 ()07 B ©
The von Staudt-Clausen theorem [2, p. 109], [17, sectiof [26, p. 340] says in
part that the denominator & is the product of all primeg for which (q—1) | 2k.
(Forinstance, a2 — 1) | 2 and(3— 1) | 2, the denominator oB; is 2- 3, agreeing
with B, = 1/6.) Thus, if pis an odd prime, then on the right-hand side of (9) only
Bp-1 has denominator divisible by. From this we see, fop > 5, that p* divides
the numerator of each term excqﬁth,l. (For thek = (p—3)/2 term, this uses
p| (pfs) .) Therefore, the congruence

(B+p)P=p°Bp-1 (modp*) (10)
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holds forall primesp > 3. Substituting (10) into Criterion (7) and dividing by,
we arrive at Test (6). O

As a bonus, (10) affords a proof of Glaisher’s congruence.

Corollary 1. The congruence (5) holds. Equivalently, if p isanyprime, then
PBp-1=p+(p—1)! (modp?). (11)

Proof. To see the equivalence, substitute (2) into (5) and mulbglg. To prove (11),
first verify it for p=2 and 3 If p > 3, use (3), (8), and the fact th&} = O to get
(B+p)P=p?+p! (mod p3). Then (10) and division by yield (11). O

Notice that the congruences (6) and (11) are the same, ektaipin (6) the
modulus isp®, while in (11) it isp?. However, one cannot prove Corollary 1 trivially
(by reducing (6) modul@? instead ofp3), because (6) holds only for Lerch primes,
whereas (11) holds for all primes.

2.3 Computing Lerch primes: a surprising crossover

Let us compare two methods of computing Lerch primes: Déimid) and Test (6).
Both require, essentially, computation modp The Test seems simpler, but on
the other hand it requires computiBg_; modulo p2.

To find out which is faster, we used the code

IffMod[Sum[PowerMod[a,p-1,p"3], {a,1,p-1}] - p - (p-1)!, p°3]
== 0, Print[p]]

in aMathematica (version 7.0.0) program for (4), and we used the code

IffMod[Numerator[p * Mod[BernoulliB[p-1],p2] - p - (p-1)1], p°3]
== 0, Print[p]]

in a program for (6). Her&od[a,m] givesa modm, PowerMod[a,b,m] gives
a® modm (and is faster thaMod[a*b,m] ), andBernoulliB[] givesBy.

Table 1 shows the CPU time (on a MacBook Air computer with OS0X6Jand
2.13GHz Intel processor) for each program to decide whaihea Lerch prime.

Note the surprising crossover in the interval 1060p < 20011: before it,
Test (6) is much faster than Definition (4), but after the ivéthe reverse is true.
Notice also that fop > 10* the CPU times of (4) grow at about the same ratg,as
while those of (6) balloon at more than double that rate.

The programs for (4) and (6) searched up t4 kDabout 473 and 06 seconds,
respectively, and found the Lerch primesl83 839, and 2237 (see [29, Sequence
A197632]). There are no others up to®10y the program for (4), which consumed
about 160 hours. (To run the program for (6) that far up wadeadible.)

Marek Wolf, using a modification of (4), has computed that¢ha&re no Lerch
primes in the intervals 1000063 p < 4496113 and 18816869 p < 18977773, as
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well as 3245286 % p < 32602373. His computation took six months of CPU time
on a 64-bit AMD Opteron 2700 MHz processor at the cluster.[18]

CPU time in seconds

p | Definition vs. Test
5| 0.000052 > 0.000040
11{ 0.000069 > 0.000044
101 0.000275 > 0.000064
1009 0.002636 > 0.000156
10007 0.088889 > 0.002733
20011 0.183722 < 0.337514
30011 0.294120 < 0.816416
100003 1.011050 <  10.477100
200003 2.117640 <  49.372000
3000071 3.574630 < 121.383000
100000312.647500 < 1373.750000

Table 1: Time each of two programs takes to compute wheilier Lerch prime.

2.4 Generalizations

Euler and Gauss extended Fermat’s little theorem and Wdsbeorem, respec-
tively, to congruences with a composite modutussee [17, Theorems 71 and 129].
The corresponding generalizations of Fermat and Wilsontigots and Wilson
primes are calle@uler quotients q(a), generalized WIson quotients wy, andWI-
son numbers n | w, (see [29, sequences A157249 and A157250]). (Where not
called “Gauss quotients;” that term appears in the theoryypiergeometric func-
tions.) In 1998 Agoh, Dilcher, and Skula [1, Proposition]Zske also Dobson [9]
and Cosgrave and Dilcher [3]) extended Lerch’s formula t@magtuence between
thegn(a) andwy.

Armed with these facts, one can defgemeralized Lerch quotients ¢, andLerch
numbersn | 5. But that's another story for another time.

2.5 Open Problems

To conclude this section, we pose some open problems.
1.1s ¢5 = 13 the only prime Lerch quotient?
2.1s there a fifth Lerch prime? Are there infinitely many?

Of the 78498 primep < 10°, only four are Lerch primes. Thus the answer to the
next question is clearly yes; the only thing lacking is a ffroo
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3. Do infinitely manynon-Lerch primes exist?

As the known Lerch primes,303 839, 2237 are distinct from the known Wilson
primes 513,563 we may ask:

4. s it possible for a number to be a Lerch prime and a Wilson prgimultane-
ously?

Denoting thenth prime by pn, the known Wilson primes ares, ps, p1o3. The
primes among the indices® 103 namely, 3 and 103are Lerch primes. This leads
to the question:

5.If pn is a Wilson prime and is prime, mush be a Lerch prime?

The answer to the converse question-ri$ a Lerch prime, musp, be a Wilson
prime?—is nopgag andpa»37lie strictly between 563 and510°, where according
to [5] there are no Wilson primes.

In connection with Problem 5, compare Davis’s “Are therenc@dences in math-
ematics?” [6] and Guy’s “The strong law of small numbers”][15

3 Fermat-Wilson quotients and the WW primes 2, 3, 14771

Suppose that a primgis not a Wilson prime, so thai does not divide its Wilson
quotientwp. Then in the Fermat quotienp(a) of p basea, we may takea = wy,.

Definition 3. If p is a non-Wilson prime, then thieermat-Wlson quotient of p is
the integer

p—1
wp —1
W =
dp(Wp) 0
For short we write
gp = dp(Wp).

The first five non-Wilson primes are2 7,11, 17. Sincenv, =w3 =1, w7 = 103
andwi; = 329891 the first four Fermat-Wilson quotients age = gz = 0,

S
g7 = 71037 ! _ 170578899504
and

32089101
11 = 11

= 13877524055806959780989143689893161318527010639200 2

[29, Sequence A197633]. The fifth or7, is a 193-digit number.
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3.1 The GCD of all Fermat-Wilson quotients

We saw that at least one Lerch quotient and seven Wilsonentstare prime num-
bers. What about Fermat-Wilson quotients?

Theorem 2. The greatest common divisor of all Fermat-Wlson quotientsis 24. In
particular, qp(Wp) isnever prime.

Proof. The prime factorizations ajp(wp) = gp for p=7 and 11 are
g7 =2%.32.13.17-19-79-3571
and

g11 = 23.3.52.37-61-71-271- 743- 2999. 89671 44876831
- 7434172799817989680529881

Sinceg, = g3 = 0, we thus have
GCD(g2,93,97,911) = 2°-3=24.
To complete the proof, we show that 24 dividgswheneverp > 3. Since
pwp = (p—1)!+1,

it is clear that ifp > 5, thenpw,, and hencevy, is not divisible by 2 or 3As even
powers of such numbers atel (mod 8 and=1 (mod 3), and so= 1 (mod 24,

it follows thatpg, (= wg* —1), and hencey, is divisible by 24 O

3.2 Wieferich primesbase a

Given an integea, a primep is called aMeferich prime base a if the supercongru-
ence
aPl=1 (modp?) (12)

holds. For instance, 11 is a Wieferich prime basb&cause
310_1—=59048=112-488

Paraphrasing Ribenboim [26, p. 264], it should be noted ttatrary to the
congruenc&P~! =1 (mod p) which is satisfied by every primg not dividinga,
the Wieferich supercongruence (12) is very rarely satisfied

When it is, p cannot dividea, and so the Fermat quotiegp(a) is an integer. In
fact, (1) shows that a primgis a Wieferich prime base if and only if p does not
divide a but does dividep(a).
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In 1909 while still a graduate student at the University of MinsteGermany,
Wieferich created a sensation with a result related to Fesnhast Theoremif
xP+yP =2zP where p is an odd prime not dividing any of the integers x,y, or z
then p isa Weferich prime base 2. One year later, Mirimanoff proved thatis also
aWeferich prime base 3. (See [7, pp. 110-111], [27, Chapter 8], and [31, p. 163].)

The only known Wieferich primes base 2 (also simply calddferich primes)
are 1093 and 351Miscovered by Meissner in 1913 and Beeger in 1922, respec-
tively. In 2011 Dorais and Klyve [10] computed that there aceothers up to
6.7 x 10%°. It is unknown whether infinitely many exist. (Neither is itdwn whether
there are infinitely manyon-Wieferich primes base 2. However, Silverman has
proved it assuming thabc-conjecture—see his pleasantly-written paper [28].) Like
wise, only two Wieferich primes base 3 (also knownMisimanoff primes) have
been found, namely, 11 and 1006003. The second one was uadoye Kloss
in 1965. An unanswered question is whether it is possibleafoumber to be a
Wieferich prime base 2 and base 3 simultaneously. (See §bios A3] and [26,
pp. 263-276, 333-334].)

For tables of all Wieferich primeg baseawith 2 < p < 232 and 2< a < 99, see
Montgomery [23].

3.3 The Wieferich-non-Wilson primes 2, 3, 14771

Let us consider Wieferich primgsbasea wherea is the Wilson quotient op.

Definition 4. Let p be a non-Wilson prime, so that its Fermat-Wilson quotient
gp(Wp) is an integer. Ifp dividesqp(wp)—equivalently, if the supercongruence

whbt=1 (modp?) (13)

holds—thenp is a Wieferich prime baswyp, by definition (12). In that case, we
call p aWeferich-non-WlIson prime, or WW prime for short.

For the non-Wilson primep = 2,3,7,11,17,19,23,29,31,37,41,43 47,53,59,
61,67,71,73,79,83,..., the Fermat-Wilson quotients,(wp) = gp are congruent
modulopto

9p=0,0,6,7,9,7,1,6,18,17,30,11,25,30,24,46,64,16,18,4,29,... (mod p)

[29, Sequence A197634]. In particular, 2 and 3 are WW prirBes.they are triv-
ially so, becausg, andgs areegual to zero.

Is there a “non-trivial” WW prime? Perhaps surprisinglyetanswer is yes but
the smallest one is 14771. In the next subsection, we gives sttails on using a
computer to show that 14771 is a WW prime. Itis “non-trivieBcaus@ 147717 0.
In fact, taking logarithms, one finds that
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( 14770.41) 14770
14771

_ 8x 108
Q14771= 14771 >10 ;

so that the numbeg14771has more than 800 million decimal digits.

3.4 Computer search

To search for WW primes, one can use a computer to calculagghshor not a
given primep satisfies condition (13). Explicitly, if the number

(p—1t+1\P? 5
(7p ) mod p (14)

is equal to 1, themp is a WW prime.

Mathematica’s function Moda, m| can compute (14) whep is small. But ifp
is large, an “Overflow” message results. However, it is eassee that in (14) one
may replacé p— 1)! with (p— 1)! mod p3, a much smaller number.

For example, it takes just a few seconds for a program usiegatle

If[PowerMod[(Mod[(p-1)!, p"3] + 1)/p, p-1, p2] == 1, Print )]

to test the first 2000 primes and print the WW prime8,24771 (see [29, Sequence
A197635]).

Michael Mossinghoff, employing the GMP library [13], haswputed that there
are no other WW primes up to 10

3.5 More open problems

We conclude with three more open problems.

6. Can one prove that 14771 is a WW prime (i.e., that 14771 dagdg;77) without
using a computer?

Such a proof would be analogous to those given by Landau aeddéB¢hat 1093
and 3511respectively, are Wieferich primes basg2ee Theorem 91 and the notes
on Chapter VI in [17], and “History and search status” in [32Jowever, proofs
for Wieferich primes are comparatively easy, because (hmiwers are easy to
calculate in modular arithmetic, whereas factorials arikaly to be calculable in
logarithmic time.

7. 1s there a fourth WW prime? Are there infinitely many?

Comments similar to those preceding Problem 3 also applydméxt question.

8. Do infinitely manynon-WW primes exist?
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Is it possible to solve Problem 3 or Problem 8 assumingbiteconjecture? (See
the remark in Section 3.2 about Silverman’s proof.)
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