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Abstract

With standard algorithms for generating the classical Kolakoski
sequence, the numerical calculation of the digit distribution requires a
linear amount of space. Here, we present an algorithm for calculating
the distribution of the digits in the classical Kolakoski sequence, that
only requires a logarithmic amount of space and still runs in linear time.
The algorithm is easily adaptable to generalised Kolakoski sequences.

1 Introduction

The classical Kolakoski sequence K = (Kn)
∞
n=1 is the unique sequence on

the alphabet {1, 2} defined as the sequence of its own symbols’ run lengths
starting with a 1. The classical Kolakoski sequence is given in [7, 8], and is
in the On-Line Encyclopedia of Integer Sequences [13] with entry number
A000002. The first letters of K are

K = 1 2 2 1 1 2 1 2 2 1 2 2 1 1 . . .

K = 1 2 2 1 1 2 1 2 2 . . .

(1)

There are several interesting questions, answered and unanswered, on the
properties of the classical Kolakoski sequence; Kimberling presents several
of these in [6]. One of the simplest, and yet unresolved, questions is that of
the distribution of digits in K. If we let on be the number of 1s in K up to
and including position n, that is on = |{i : Ki = 1, 1 ≤ i ≤ n}|, then the
conjecture is

Conjecture 1. The limit limn→∞
on
n

exists and equals 1
2
.

Both parts of Conjecture 1, the existence and the value, are still open.
Several aspects of the conjecture (along with other properties and questions

1

http://arxiv.org/abs/1110.4228v2
mailto:jnilsson@math.uni-bielefeld.de
http://oeis.org/A000002


regarding the Kolakoski sequence as well) are considered by Dekking in
[3, 4, 5]; see also the survey by Sing [12] and further references therein.

In [14] Steinsky describes a recursion that generates the letters Kn and
uses it to numerically calculate the distribution of the 1s up to n = 3 ·108. It
is worth noting that a straight-forward implementation of Steinsky’s recur-
sion leads to an algorithm that either runs in exponential time or requires a
linear amount of space. For some time, Steinsky’s result raised doubt as to
the validity of Conjecture 1, however subsequent work by Monteil [9] sugges-
ted once again that the conjecture should hold. Monteil used a brute force
method, requiring linear time and linear space in n, to push the calculation
to n = 1011.

The brute force, or straight-forward, method to find on generates a prefix
of length n of the sequence K, using the intuitive method suggested by (1).
That is, starting from a suitable initial sequence, we step through and read
off the symbols one by one, with each letter telling us what to write in
the sequence beneath, and thus what to append to the end of the current
sequence.

We present here an algorithm which runs in linear time, yet only requires
a logarithmic amount of space to find on. Using our algorithm, we can
easily push the calculation further than the calculation made by Monteil; we
present here values of on up to n = 1013 (Table 1). Our calculation indicates
that Conjecture 1 should hold, but once again gives no definite answer. We
present our algorithm in Section 2 and state and prove the algorithm’s run
time performance in Section 3. In Section 4, we briefly remark on our
algorithm’s adaptability to more general Kolakoski sequences, and finally in
Section 5 we present the results of our calculations.

2 The Algorithm

We present here an algorithm for calculating the number of 1s and 2s in
the classical Kolakoski sequence K up to a position n. Our algorithm is
more memory-efficient than the straight-forward algorithm for finding Kn;
it requires only O(log n) amount of space (Proposition 4) compared to the
O(n) for a brute force algorithm. Here we use the standard asymptotic
notation O(n). That is, we write f(n) = O(g(n)) if there is a constant c

such that f(n) ≤ c g(n) for all n. (For more of this see [2].) The run time
of our algorithm is O(n) to find on (Proposition 5); this is the same as for
the brute force method.

The idea in our algorithm is that if we set out only to find on, we do not
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K = 1 2 2 1 1 2 1 2 2 1 2 2 1 1 . . .

K = 1 2 2 1 1 2 1 2 2 . . .

K = 1 2 2 1 1 2 . . .

K = 1 2 2 1 . . .

Figure 1: The tree structure in the Kolakoski sequence.

have to save the complete sequence up to position n when stepping through
the sequence K. As in the intuitive way of generating K, we look back
at a previous position to see which symbol run to append. However, this
previous position is itself determined by a letter even further back, and so
on. If we keep track only of these positions that we “look back at”, we can
drastically reduce the amount of space needed by the algorithm.

To get a hint of how this can be done, we take as a starting point a
scheme, as in (1). We see that the upper row defines (or conversely, may
be defined as) the run lengths of the symbols in the lower one. We expand
this scheme by adding more rows above and connecting each symbol to the
symbol in the row above that has (via run length) generated it. In this way,
we obtain a tree structure, as illustrated in Figure 1.

We may thus interpret the letters in the classical Kolakoski sequence
K as the leaves of a tree, (the leaves are the symbols in the bottom row in
Figure 1). Each internal node in this tree structure is a symbol in in an upper
row interpreted as a run length. Each letter is connected to the letter above
that has generated it (called an ancestor), and also to the letter(s) below
that it generates, termed children. This tree structure continues upwards
without bound as we step through the symbols of the Kolakoski sequence.
However, we only need to go up in the tree until we find an ancestor, to the
leaf we are currently looking at, at a left most position.

From this point on we shall consider the sequence K ′, defined by K =
1K ′. This simplifies matters somewhat, as we do not then have to deal with
the left most 1s at each height in the tree.

The algorithm for finding on can concisely be described as an “in-order
traverse” of this tree structure, where we start from the lower left, and
where we keep track of the symbols we see in the leaves during the traverse.
While traversing, we add new ancestors when needed; that is we build the
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tree as we traverse it. To reduce the memory requirement, we dynamically
generate and keep track only of the part of the tree that we currently use
for the traverse. While doing so, we store the ancestors along with an
indicator that tells us which of its children we have already traversed. To
this end, we introduce pointers Pk, which are assigned values from the set
S = {1, 2, 11, 22}. Note that here, a run is defined as word from the set S.
At any given time, the pointer P0 holds the current run in the leaves and
P1 holds the ancestor to P0. Similarly, any Pk that has been initiated holds
the ancestor to Pk−1.

We say here that pointers “hold” and not “are” a run because Pk may
contain more than just the single-symbol ancestor of Pk−1, it may also con-
tain a sibling of Pk. Here we refer to the single symbols (that is, 1s or 2s)
of a two symbol run (11 or 22) as siblings.

The algorithm can now be described as follows.

Algorithm 2.

- To increase (or to assign a new value to) the pointer Pk we proceed
as follows. Firstly, if Pk has not been initiated, let Pk = 22. If Pk, for
k > 0, contains two symbols then remove one of the symbols in Pk;
otherwise (if k = 0), increase P1.

If, on the other hand, Pk contains only one symbol, then increase Pk+1

recursively. When this increment is done, the new run to write in Pk

is of the length given by the first symbol in Pk+1 and the run to write
has symbol(s) opposite to the symbol(s) previously held by Pk. Note
that here we do not remove the first symbol of Pk+1 when we return
from the recursion.

- To step throw the sequence K (from its second symbol onwards) and
calculate on, we repeatedly increment the pointer P0 and keep track
of the number of 1s and 2s that we see. ⋄

Note that for a given run contained in P0, the algorithm will generate
only the pointers P1, . . . , PN to P0, where the ancestor in PN is at the
left most position in the sequence K ′. (And it is this height N that we
shall shortly show is of the order of log n when P0 holds the nth letter
in the sequence). As we step through the algorithm, we shall see that the
successive runs held by the pointer P0 (and also for other Pk) are the symbols
in the sequence K ′. nI pseudo-code the increment of P0, (or the step by step
traverse of the leaves), would be done with the recursive call of the procedure
IncrementPointer as presented below.
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// Increments the pointer at height n.

// After initiating P[0] succesive calls to IncrementPointer(0)

// will yield the Kolakoski sequence from the second term onward.

IncrementPointer(int k)

{ if(P[k] has not been initiated)

{ P[k] = 22

}

if(k == 0)

{ IncrementPointer(1)

if(P[0] == 1 or P[0] == 11)

{ P[0] = (P[1] == 1) ? 2 : 22

}else

{ P[0] = (P[1] == 1) ? 1 : 11

}

}else if(P[k] == 1)

{ IncrementPointer(k+1)

P[k] = (P[k+1] == 1 or P[k+1] == 11) ? 2 : 22

}else if(P[k] == 2)

{ IncrementPointer(k+1)

P[k] = (P[k+1] == 1 or P[k+1] == 11) ? 1 : 11

}else if(P[k] == 11)

{ P[k] = 1

}else

{ P[k] = 2

}

}

To illustrate how the algorithm works, we now present through of its
initial steps.

Example 3. Incrementing the pointer P0 once is done through the following
procedure;

K ′ : 2 2 : P0 K ′ : 2 2 : P0

2 2 : P1

K ′ : 2 2 1 1 : P0

2 2 : P1

(a) (b) (c)

Figure 2: The first increment of the pointer P0.

Figure 2 illustrates the first increment of the pointer P0 in the algorithm.
(a) The initiation of P0. The framed symbols 22 are the contents of the

5



pointer P0. (b) To continue our leaf traverse we must generate the next
leaf. This is done by looking at the ancestor of the run held by P0. As this
ancestor does not exist we have to generate it, that is we set P1 = 22. (c)
The first symbol of P1 already has children (that is, it generated the initial
run held by P0). Therefore we step to the second symbol of P1. The new
run to assign to P0 (that is, the new leaf we traverse) is then 11, since the
current symbol in P1 is 2 and P0 currently holds the run 22.

K ′ : 2 2 1 1 : P0

2 2 : P1

2 2 : P2

K ′ : 2 2 1 1 : P0

2 2 1 1 : P1

2 2 : P2

K ′ : 2 2 1 1 2 : P0

2 2 1 1 : P1

2 2 : P2

(a) (b) (c)

Figure 3: The second increment of the pointer P0.

Figure 3 illustrates the second increment of the pointer P0 in the al-
gorithm. (a) To generate the next leaf we have to look at the ancestor of
the run currently held by P0. That is, we look at the pointer P1. But since
we have already used the symbol in P1 we have to recursively look at the
ancestor of P1. This does not exist, so we initiate the ancestor and pointer
P2 = 22. (b) As the first symbol of P2 already has children, we step to its
second symbol. The new run to assign to P1 is then 11, since the relevant
ancestor in P2 is 2 and P1 currently holds the run 22. (c) We have not yet
generated any of the children of any of the symbols held by P1 and therefore
the current one is the first one. This provides the new run of 2 in P0, since
the first symbol in P1 is 1 and P0 currently holds 11.

K ′ : 2 2 1 1 2 : P0

2 2 1 1 : P1

2 2 : P2

K ′ : 2 2 1 1 2 1 : P0

2 2 1 1 : P1

2 2 : P2

(a) (b)

Figure 4: The third increment of the pointer P0.

Figure 4 illustrates the third increment of the pointer P0 in the algorithm.
(a) The status of the pointers after the second increment of P0. Note that
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we have only used the first symbol held by P1. (b) To generate the next leaf
we look at the ancestor of the run currently held by P0, that is P1, which
contains the run 11. The first symbol already has a child, so we use the
second symbol, 1, to generate the new run in P0, which is 2, as P0 currently
holds the run 1.

K ′ : 2 2 1 1 2 1 : P0

2 2 1 1 : P1

2 2 : P2

2 2 : P3

K ′ : 2 2 1 1 2 1 : P0

2 2 1 1 : P1

2 2 1 1 : P2

2 2 : P3

(a) (b)

Figure 5: The first part of the fourth increment of the pointer P0.

Figure 5 illustrates the first part of the fourth increment of the pointer
P0 in the algorithm. (a) To increase P0 we have to look at the ancestors
of the run held by P0. We see that we have used all symbols in all of the
ancestors, therefore we have to initiate the new pointer P3 = 22. (b) We
have already used the first symbol held by P3 and therefore we step to its
second symbol. The new run to assign to P2 is now 11 since P3 = 2 and
P2 = 22.

K ′ : 2 2 1 1 2 1 : P0

2 2 1 1 2 : P1

2 2 1 1 : P2

2 2 : P3

K ′ : 2 2 1 1 2 1 2 2 : P0

2 2 1 1 2 : P1

2 2 1 1 : P2

2 2 : P3

(a) (b)

Figure 6: The second part of the fourth increment of the pointer P0.

Figure 6 illustrates the second part of the fourth increment of the pointer
P0 in the algorithm. (a) We have not yet used any of the symbols held by
P2 and therefore the current one is the first. Then the new symbol in P1 is
2 since the current symbol in P2 is 1 and P1 = 1. (b) The new run to assign
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to P0 is now 22 since the first symbol in P1 is 2 and P0 = 1.

Note that the algorithm does not need to keep track of the tree structure
that it steps through. The algorithm only keeps track of the current contents
of the pointers Pk and how many of each symbol we have seen in P0.

3 Run Time Analysis of the Algorithm

Let tn be the number of 2s in K up to and including position n. That is
tn = |{i : Ki = 1, 1 ≤ i ≤ n}|. Recall that we have already similarly defined
on as the number of ones. By considering words of the form

11211 and 22122

we see that we have the bounds

1

4
≤

on

tn
≤ 4 (2)

for n ≥ 2. For the analysis, let P (n) be the number of pointers used by
Algorithm 2 to calculate on.

Proposition 4. The amount of space used by Algorithm 2 to find on is
logarithmic in n. That is, P (n) = O(log n).

Proof. Let w0 = 122 and w1 = 12211 and similarly let wk be the run length
sequence defining wk+1. Then wk is a prefix of the sequence K for all k ≥ 0.
(The collection of the words wk is known as the Kolakoski fan.) By the
frequency bound (2) it follows that

6

5
≤

|wk+1|

|wk|
≤

9

5

whenever k ≥ 1 and where | · | denotes the length of a word.
This implies that if pointer P0 holds the symbol at position n in K ′

then the pointer P1 is at most at position 5
6
n and at least at position 5

9
n in

the Kolakoski sequence. This argument can now be applied to all pointers.
Therefore we see that we have a bound on the number of pointers

P (n) ≤

⌈

1

log 6
5

log n

⌉

= O(log n),

which completes the proof.
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If Conjecture 1 were shown to be true, it would follow that the number
of pointers needed to find on is P (n) ≈ 1

log 3

2

log n.

Proposition 5. The Algorithm 2 runs in (amortized) linear time. That is,
to find on we have to do an amount of work of order O(n).

Proof. Let us consider the maximal amount of work we have to do to make
n increments of the pointer P0 (to generate n runs). Note that making n

increments of P0 will actually be enough to find at least o 6

5
n
, since in each

step we generate a run of one or two symbols. Hence, as we seek a maximum,
and including the factor 6

5
would decrease the calculated amount of work

by a constant factor, we may simplify our calculation by disregarding this
factor.

Let pk(n) be the number of times we change the contents of pointer Pk

under these n increments. Then the sum of the pks will give us the total
amount of work we have to do. It is clear that p0(n) = n, since we change P0

at each increment, and from the algorithm we see directly that p1(n) = n.
The other pointers do not change every time; for k ≥ 2 we make a change
to Pk only when Pk−1 consists of a single symbol.

Let ak(n) be the number of times the pointer Pk holds a single symbol
under n increments of P0. Similarly let bk(n) be the number of times that
Pk holds two symbols under the n increments of P0. From the algorithm
we see that to find the maximal amount of work, we have to look for the
maximal number of single-symbol pointer contents, since this is what forces
us to go recursively higher in the tree. For the pointer P0 it follows from (2)
that we have the bounds

1

4
≤

a0(n)

b0(n)
≤ 4

for n ≥ 1. For pointers higher up, we have that the number of times Pk

holds a single symbol is at most four times the number of times it holds two
symbols plus the number of times it holds two symbols, since in the latter
case Pk will hold a single symbol in the next step of the algorithm. This
gives

ak(n) ≤ 4bk(n) + bk(n) = 5bn(k)

Therefore, our upper bound on the number of times a pointer holds a single
symbol gives the bound on the amount of work we have to do with a pointer
Pk compared to the amount of work for the pointer holding the children of
Pk. This is

pk+1(n) ≤
5

6
pk(n) (3)
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for k ≥ 1. The total amount of work we now have to do to increment the
pointer P0 n times is therefore bounded by the initial amount of work plus
the convergent geometric series obtained from (3) We have

P (n) =
∞
∑

i=0

pi(n) ≤ n+ c log n+ n

∞
∑

i=0

(

5

6

)i

≤ (7 + C)n, (4)

where c log n is the initial amount of work for each pointer before we can
apply our estimates above.

4 Generalised Kolakoski Sequences

In this this section we remark that our algorithm is also applicable to a
general Kolakoski sequence. By a generalised Kolakoski sequence we mean
a sequence that is defined as its symbols’ run length, as for the classical
Kolakoski sequence, but the symbols may be taken from any alphabet {r, s},
where r and s are natural numbers, as discussed in [4]. We denote a gener-
alised Kolakoski sequence over r and s with K(r, s) and shall assume that
K(r, s) starts with the symbol r. The classical Kolakoski sequence is then
K = K(1, 2).

It is known that if r + s is an even number, then the letter frequency
in K(r, s) can be calculated; see [1, 10, 11, 12]. When r + s is odd, the
existence and the value of the letter frequencies are still unknown, but are
believed to exist and equal 1

2
.

Our algorithm easily adopts to count the letters in a generalised Kola-
koski sequence; we may only have to change the initiation of new pointers.
By applying the same idea as in the proof of Proposition 4 we see that
the algorithm in this case with a generalised Kolakoski sequence uses fewer
pointers than for the classical Kolakoski sequence, and therefore the space
requirement must again be at most logarithmic.

Similarly, by looking at the proof of Proposition 5 we see that the number
of times we use a pointer for a general Kolakoski sequence before having to
consider its ancestor is longer than for the classical Kolakoski sequence.
Therefore the bounding factor for the quoted amount of work between two
consecutive levels (3) must be smaller than the 5

6
given for the classical

Kolakoski sequence. This gives then, by summing up as in (4), that the
total amount of work for the generalised Kolakoski sequence is also linear in
n.
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5 Calculations

In Table 1 we present a short output from an implementation in Java of
our Algorithm 2 for calculating the number of 1s in the classical Kolakoski
sequence. The program was run on a standard PC. In Table 2 we present
results of a calculation of the number of 2s in the generalised Kolakoski
sequence K(2, 3), the sequence A071820 in the On-Line Encyclopedia of
Integer Sequences [13].

We denote for the classical Kolakoski sequence the maximal deviation of
the proportion of 1s from 1

2
in a logarithmic decade by

D(n) = max
1

10
n<i≤n

∣

∣

∣

∣

1

2
−

oi

i

∣

∣

∣

∣

,

where oi is the number of 1s up to position i. We can similarly define the
deviation for the generalised Kolakoski sequence K(2, 3).
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