ROBIN'S THEOREM, PRIMES, AND A NEW ELEMENTARY REFORMULATION OF THE RIEMANN HYPOTHESIS

Geoffrey Caveney
7455 North Greenview \#426, Chicago, IL 60626, USA
rokirovka@gmail.com
Jean-Louis Nicolas
Université de Lyon; CNRS; Université Lyon 1; Institut Camille Jordan, Mathématiques,
21 Avenue Claude Bernard, F-69622 Villeurbanne cedex, France
nicolas@math.univ-lyon1.fr
Jonathan Sondow
209 West 97th Street \#6F, New York, NY 10025, USA
jsondow@alumni.princeton.edu

Let Abstract
Let

$$
G(n)=\frac{\sigma(n)}{n \log \log n} \quad(n>1)
$$

where $\sigma(n)$ is the sum of the divisors of n. We prove that the Riemann Hypothesis is true if and only if 4 is the only composite number N satisfying

$$
G(N) \geq \max (G(N / p), G(a N))
$$

for all prime factors p of N and each positive integer a. The proof uses Robin's and Gronwall's theorems on $G(n)$. An alternate proof of one step depends on two properties of superabundant numbers proved using Alaoglu and Erdős's results.

1. Introduction

The sum-of-divisors function σ is defined by

$$
\sigma(n):=\sum_{d \mid n} d
$$

For example, $\sigma(4)=7$ and $\sigma(p n)=(p+1) \sigma(n)$, if p is a prime not dividing n.
In 1913, the Swedish mathematician Thomas Gronwall [5] found the maximal order of σ.

Theorem 1 (Gronwall). The function

$$
G(n):=\frac{\sigma(n)}{n \log \log n} \quad(n>1)
$$

satisfies

$$
\limsup _{n \rightarrow \infty} G(n)=e^{\gamma}=1.78107 \ldots,
$$

where γ is the Euler-Mascheroni constant.
Here γ is defined as the limit

$$
\gamma:=\lim _{n \rightarrow \infty}\left(H_{n}-\log n\right)=0.57721 \ldots,
$$

where H_{n} denotes the $n t h$ harmonic number

$$
H_{n}:=\sum_{j=1}^{n} \frac{1}{j}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} .
$$

Gronwall's proof uses Mertens's theorem [6, Theorem 429], which says that if p denotes a prime, then

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1}=e^{\gamma}
$$

Since $\sigma(n)>n$ for all $n>1$, Gronwall's theorem "shows that the order of $\sigma(n)$ is always 'very nearly' n " (Hardy and Wright [6, p. 350]).

In 1915, the Indian mathematical genius Srinivasa Ramanujan proved an asymptotic inequality for Gronwall's function G, assuming the Riemann Hypothesis (RH). (Ramanujan's result was not published until much later [9] for the interesting reasons, see [9, pp. 119-121] and [7, pp. 537-538].)

Theorem 2 (Ramanujan). If the Riemann Hypothesis is true, then

$$
G(n)<e^{\gamma} \quad(n \gg 1) .
$$

Here $n \gg 1$ means for all sufficiently large n.
In 1984, the French mathematician Guy Robin [10] proved that a stronger statement about the function G is equivalent to the RH .

Theorem 3 (Robin). The Riemann Hypothesis is true if and only if

$$
\begin{equation*}
G(n)<e^{\gamma} \quad(n>5040) . \tag{1}
\end{equation*}
$$

r	SA	Factorization	$\sigma(r)$	$\sigma(r) / r$	$G(r)$	$p(r)$	$G(11 r)$
3		3	4	1.333	14.177		1.161
4	\checkmark	2^{2}	7	1.750	5.357		1.434
5		5	6	1.200	2.521		0.943
6	\checkmark	$2 \cdot 3$	12	2.000	3.429	2	1.522
8		2^{3}	15	1.875	2.561	2	1.364
9		3^{2}	13	1.444	1.834	3	1.033
10		$2 \cdot 5$	18	1.800	2.158	2	1.268
12	\checkmark	$2^{2} \cdot 3$	28	2.333	2.563	2	1.605
16		2^{4}	31	1.937	1.899	2	1.286
18		$2 \cdot 3^{2}$	39	2.166	2.041	3	1.419
20		$2^{2} \cdot 5$	42	2.100	1.913	5	1.359
24	\checkmark	$2^{3} \cdot 3$	60	2.500	2.162	3	1.587
30		$2 \cdot 3 \cdot 5$	72	2.400	1.960	3	1.489
36	\checkmark	$2^{2} \cdot 3^{2}$	91	2.527	1.980	2	1.541
48	\checkmark	$2^{4} \cdot 3$	124	2.583	1.908	3	1.535
60	\checkmark	$2^{2} \cdot 3 \cdot 5$	168	2.800	1.986	5	1.632
72		$2^{3} \cdot 3^{2}$	195	2.708	1.863	3	1.556
84		$2^{2} \cdot 3 \cdot 7$	224	2.666	1.791	7	1.514
120	\checkmark	$2^{3} \cdot 3 \cdot 5$	360	3.000	1.915	2	1.659
180	\checkmark	$2^{2} \cdot 3^{2} \cdot 5$	546	3.033	1.841	5	1.632
240	\checkmark	$2^{4} \cdot 3 \cdot 5$	744	3.100	1.822	5	1.638
360	\checkmark	$2^{3} \cdot 3^{2} \cdot 5$	1170	3.250	1.833	5	1.676
720	\checkmark	$2^{4} \cdot 3^{2} \cdot 5$	2418	3.358	1.782	3	1.669
840	\checkmark	$2^{3} \cdot 3 \cdot 5 \cdot 7$	2880	3.428	1.797	7	1.691
2520	\checkmark	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	9360	3.714	1.804	7	1.742
5040	\checkmark	$2^{4} \cdot 3^{2} \cdot 5 \cdot 7$	19344	3.838	1.790	2	1.751

Table 1: The set R of all known numbers r for which $G(r) \geq e^{\gamma}$. (Section 1 defines SA, $\sigma(r)$, and $G(r)$; Section 2 defines $p(r)$.)

The condition (1) is called Robin's inequality. Table 1 gives the known numbers r for which the reverse inequality $G(r) \geq e^{\gamma}$ holds, together with the value of $G(r)$ (truncated).

Robin's statement is elementary, and his theorem is beautiful and elegant, and is certainly quite an achievement.

In 10 Robin also proved, unconditionally, that

$$
\begin{equation*}
G(n)<e^{\gamma}+\frac{0.6483}{(\log \log n)^{2}} \quad(n>1) \tag{2}
\end{equation*}
$$

This refines the inequality $\lim \sup _{n \rightarrow \infty} G(n) \leq e^{\gamma}$ from Gronwall's theorem.
In 2002, the American mathematician Jeffrey Lagarias [7] used Robin's theorem to give another elementary reformulation of the RH.

Theorem 4 (Lagarias). The Riemann Hypothesis is true if and only if

$$
\sigma(n)<H_{n}+\exp \left(H_{n}\right) \log \left(H_{n}\right) \quad(n>1)
$$

Lagarias's theorem is also a beautiful, elegant, and remarkable achievement. It improves upon Robin's statement in that it does not require the condition $n>5040$, which appears arbitrary. It also differs from Robin's statement in that it relies explicitly on the harmonic numbers H_{n} rather than on the constant γ.

Lagarias [8] also proved, unconditionally, that

$$
\sigma(n)<H_{n}+2 \exp \left(H_{n}\right) \log \left(H_{n}\right) \quad(n>1)
$$

The present note uses Robin's results to derive another reformulation of the RH. Before stating it, we give a definition and an example.

Definition 1. A positive integer N is extraordinary if N is composite and satisfies
(i). $G(N) \geq G(N / p)$ for all prime factors p of N, and
(ii). $G(N) \geq G(a N)$ for all multiples $a N$ of N.

The smallest extraordinary number is $N=4$. To show this, we first compute $G(4)=5.357 \ldots$ Then as $G(2)<0$, condition (i) holds, and since Robin's unconditional bound (2) implies

$$
G(n)<e^{\gamma}+\frac{0.6483}{(\log \log 5)^{2}}=4.643 \ldots<G(4) \quad(n \geq 5)
$$

condition (ii) holds a fortiori.
No other extraordinary number is known, for a good reason.
Theorem 5. The Riemann Hypothesis is true if and only if 4 is the only extraordinary number.

This statement is elementary and involves prime numbers (via the definition of an extraordinary number) but not the constant γ or the harmonic numbers H_{n}, which are difficult to calculate and work with for large values of n. On the other hand, to disprove the RH using Robin's or Lagarias's statement would require only a calculation on a certain number n, while using ours would require a proof for a certain number N.

Here is a near miss. One can check that the number

$$
\begin{equation*}
\nu:=183783600=2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \tag{3}
\end{equation*}
$$

satisfies condition (i), that is, $G(\nu) \geq G(\nu / p)$ for $p=2,3,5,7,11,13,17$. However, ν is not extraordinary, because $G(\nu)<G(19 \nu)$. Thus 183783600 is not quite a counterexample to the RH!

In [9, Section 59] Ramanujan introduced the notion of a "generalized highly composite number." The terminology was changed to "superabundant number" by the Canadian-American mathematician Leonidas Alaoglu and the Hungarian mathematician Paul Erdős [2].

Definition 2 (Ramanujan and Alaoglu-Erdős). A positive integer s is superabundant (SA) if

$$
\frac{\sigma(n)}{n}<\frac{\sigma(s)}{s} \quad(0<n<s)
$$

For example, the numbers 1,2 , and 4 are SA, but 3 is not SA, because

$$
\frac{\sigma(1)}{1}=1<\frac{\sigma(3)}{3}=\frac{4}{3}<\frac{\sigma(2)}{2}=\frac{3}{2}<\frac{\sigma(4)}{4}=\frac{7}{4} .
$$

For lists of SA numbers, see the links at [11, Sequence A004394] and the last table in [2]. The known SA numbers s for which $G(s) \geq e^{\gamma}$ are indicated in the "SA" column of Table 1 Properties of SA numbers are given in [2, 3, 7, 9, Proposition 1 , and Section 4

As $\sigma(n) / n=G(n) \log \log n$, Gronwall's theorem yields $\lim \sup _{n \rightarrow \infty} \sigma(n) / n=\infty$, implying there exist infinitely many $S A$ numbers.

Let us compare Definition 2 with condition (i) in Definition 1 If $n<s$, then $\sigma(n) / n<\sigma(s) / s$ is a weaker inequality than $G(n)<G(s)$. On the other hand, condition (i) only requires $G(n) \leq G(N)$ for factors $n=N / p$, while Definition 2 requires $\sigma(n) / n<\sigma(s) / s$ for all $n<s$. In particular, the near miss (3) is the smallest $S A$ number greater than 4 that satisfies (i). For more on (i), see Section 5 ,

Amir Akbary and Zachary Friggstad [1] observed that, "If there is any counterexample to Robin's inequality, then the least such counterexample is a superabundant number." Combined with Robin's theorem, their result implies the RH is true if and only if $G(s)<e^{\gamma}$ for all $S A$ numbers $s>5040$.

Here is an analog for extraordinary numbers of Akbary and Friggstad's observation on SA numbers.

Corollary 1. If there is any counterexample to Robin's inequality, then the maximum $M:=\max \{G(n): n>5040\}$ exists and the least number $N>5040$ with $G(N)=M$ is extraordinary.

Using Gronwall's theorem and results of Alaoglu and Erdős, we prove two properties of SA numbers.

Proposition 1. Let S denote the set of superabundant numbers.
SA1. We have

$$
\limsup _{s \in S} G(s)=e^{\gamma} .
$$

SA2. For any fixed positive integer n_{0}, every sufficiently large number $s \in S$ is a multiple of n_{0}.

The rest of the paper is organized as follows. The next section contains three lemmas about the function G; an alternate proof of the first uses Proposition 1 The lemmas are used in the proof of Theorem 5and Corollary [1, which is in Section 3. Proposition 1 is proved in Section 4 . Section 5 gives some first results about numbers satisfying condition (i) in Definition 1 .

We intend to return to the last subject in another paper [4, in which we will also study numbers satisfying condition (ii).

2. Three lemmas on the function G

The proof of Theorem 5 requires three lemmas. Their proofs are unconditional.
The first lemma generalizes Gronwall's theorem (the case $n_{0}=1$).
Lemma 1. If n_{0} is any fixed positive integer, then $\underset{a \rightarrow \infty}{\limsup } G\left(a n_{0}\right)=e^{\gamma}$.
We give two proofs.
Proof 1. Theorem \square implies $\limsup _{a \rightarrow \infty} G\left(a n_{0}\right) \leq e^{\gamma}$. The reverse inequality can be proved by adapting that part of the proof of Theorem [in [6, Section 22.9]. Details are omitted.

Proof 2. The lemma follows immediately from Proposition 1 .
The remaining two lemmas give properties of the set R of all known numbers r for which $G(r) \geq e^{\gamma}$.

Lemma 2. Let R denote the set

$$
\begin{aligned}
& \qquad \text { R:=\{rડ5040:G(r)} \begin{aligned}
& \text { If } r \in R\left.e^{\gamma}\right\} . \\
& \text { and } r>5 \text {, then } G(r)<G(r / p) \text {, for some prime factor } p \text { of } r .
\end{aligned}
\end{aligned}
$$

Proof. The numbers $r \in R$ and the values $G(r)$ are computed in Table 1 Assuming $G(r)<G(r / p)$ for some prime factor p of r, denote the smallest such prime by

$$
p(r):=\min \{\text { prime } p \mid r: G(r / p)>G(r)\}
$$

Whenever $5<r \in R$, a value of $p(r)$ is exhibited in the " $p(r)$ " column of Table 1 . This proves the lemma.

Lemma 3. If $r \in R$ and $p \geq 11$ is prime, then $G(p r)<e^{\gamma}$.
Proof. Note that if $p>q$ are odd primes not dividing a number n, then

$$
G(p n)=\frac{\sigma(p n)}{p n \log \log p n}=\frac{p+1}{p} \frac{\sigma(n)}{n \log \log p n}<\frac{q+1}{q} \frac{\sigma(n)}{n \log \log q n}=G(q n) .
$$

Also, Table 1 shows that no prime $p \geq 11$ divides any number $r \in R$, and that $G(11 r)<1.76$ for all $r \in R$. As $1.76<e^{\gamma}$, we obtain $G(p r) \leq G(11 r)<e^{\gamma}$.

Note that the inequality $G(p n)<G(q n)$ and its proof remain valid for all primes $p>q$ not dividing n, if $n>1$, since then $\log \log q n \neq \log \log 2<0$ when $q=2$.

3. Proof of Theorem 5 and Corollary 1

We can now prove that our statement is equivalent to the RH.
Proof of Theorem 5 and Corollary 1. Assume $N \neq 4$ is an extraordinary number. Then condition (ii) and Lemma 1 imply $G(N) \geq e^{\gamma}$. Thus if $N \leq 5040$, then $N \in R$, but now since $N \neq 4$ is composite we have $N>5$, and Lemma 2 contradicts condition (i). Hence $N>5040$, and by Theorem 3 the RH is false.

Conversely, suppose the RH is false. Then from Theorems 1 and 3 we infer that the maximum

$$
\begin{equation*}
M:=\max \{G(n): n>5040\} \tag{4}
\end{equation*}
$$

exists and that $M \geq e^{\gamma}$. Set

$$
\begin{equation*}
N:=\min \{n>5040: G(n)=M\} \tag{5}
\end{equation*}
$$

and note that $G(N)=M \geq e^{\gamma}$. We show that N is an extraordinary number.
First of all, N is composite, because if N is prime, then $\sigma(N)=1+N$ and $N>5040$ imply $G(N)<5041 /(5040 \log \log 5040)=0.46672 \ldots$, contradicting $G(N) \geq e^{\gamma}$.

Since (4) and (5) imply $G(N) \geq G(n)$ for all $n \geq N$, condition (ii) holds. To see that (i) also holds, let prime p divide N and set $r:=N / p$. In the case $r>5040$, as $r<N$ the minimality of N implies $G(N)>G(r)$. Now consider the case $r \leq 5040$.

By computation, $G(n)<e^{\gamma}$ if $5041 \leq n \leq 35280$, so that $N>35280=7 \cdot 5040$ and hence $p \geq 11$. Now if $G(r) \geq e^{\gamma}$, implying $r \in R$, then Lemma 3 yields $e^{\gamma}>G(p r)=G(N)$, contradicting $G(N) \geq e^{\gamma}$. Hence $G(r)<e^{\gamma} \leq G(N)$. Thus in both cases $G(N)>G(r)=G(N / p)$, and so (i) holds. Therefore, $N \neq 4$ is extraordinary. This proves both the theorem and the corollary.

Remark 1. The proof shows that Theorem 5 and Corollary 1 remain valid if we replace the inequality in Definition (i) with the strict inequality $G(N)>G(N / p)$.

4. Proof of Proposition 1

We prove the two parts of Proposition 1 separately.
Proof of $S A 1$. It suffices to construct a sequence $s_{1}, s_{2}, \ldots \rightarrow \infty$ with $s_{k} \in S$ and $\limsup \operatorname{sum}_{k \rightarrow \infty} G\left(s_{k}\right) \geq e^{\gamma}$. By Theorem [1, there exist positive integers $\nu_{1}<\nu_{2}<\cdots$ with $\lim _{k \rightarrow \infty} G\left(\nu_{k}\right)=e^{\gamma}$. If $\nu_{k} \in S$, set $s_{k}:=\nu_{k}$. Now assume $\nu_{k} \notin S$, and set $s_{k}:=\max \left\{s \in S: s<\nu_{k}\right\}$. Then $\left\{s_{k}+1, s_{k}+2, \ldots, \nu_{k}\right\} \cap S=\emptyset$, and we deduce that there exists a number $r_{k} \leq s_{k}$ with $\sigma\left(r_{k}\right) / r_{k} \geq \sigma\left(\nu_{k}\right) / \nu_{k}$. As $s_{k} \in S$, we obtain $\sigma\left(s_{k}\right) / s_{k} \geq \sigma\left(\nu_{k}\right) / \nu_{k}$, implying $G\left(s_{k}\right)>G\left(\nu_{k}\right)$. Now since $\lim _{k \rightarrow \infty} \nu_{k}=\infty$ and $\# S=\infty$ imply $\lim _{k \rightarrow \infty} s_{k}=\infty$, we get $\lim \sup _{k \rightarrow \infty} G\left(s_{k}\right) \geq e^{\gamma}$, as desired.

Proof of SA2. We use the following three properties of a number $s \in S$, proved by Alaoglu and Erdős [2].

AE1. The exponents in the prime factorization of s are non-increasing, that is, $s=2^{k_{2}} \cdot 3^{k_{3}} \cdot 5^{k_{5}} \cdots p^{k_{p}}$ with $k_{2} \geq k_{3} \geq k_{5} \geq \cdots \geq k_{p}$.
AE2. If $q<r$ are prime factors of s, then $\left|\left\lfloor k_{q} \frac{\log q}{\log r}\right\rfloor-k_{r}\right| \leq 1$.
AE 3 . If q is any prime factor of s, then $q^{k_{q}}<2^{k_{2}+2}$.

To prove SA2, fix an integer $n_{0}>1$. Let K denote the largest exponent in the prime factorization of n_{0}, and set $P:=P\left(n_{0}\right)$, where $P(n)$ denotes the largest prime factor of n. As n_{0} divides $(2 \cdot 3 \cdot 5 \cdots P)^{K}$, by AE1 it suffices to show that the set

$$
F:=\left\{s \in S: s \text { is not divisible by } P^{K}\right\}=\left\{s \in S: 0 \leq k_{P}=k_{P}(s)<K\right\}
$$

is finite.
From AE2 with $q=2$ and $r=P$, we infer that $k_{2}=k_{2}(s)$ is bounded, say $k_{2}(s)<B$, for all $s \in F$. Now if q is any prime factor of s, then AE1 implies $k_{q}=k_{q}(s)<B$, and AE3 implies $q^{k_{q}}<2^{B+2}$. The latter with $q=P(s)$ forces $P(s)<2^{B+2}$. Therefore, $s<\left(2^{B+2}!\right)^{B}$ for all $s \in F$, and so F is a finite set.

Remark 2. We outline another proof of SA2. Observe first that, if p^{k+1} does not divide n, then (compare the proof of [6, Theorem 329])

$$
\frac{\sigma(n)}{n} \leq \frac{n}{\varphi(n)}\left(1-\frac{1}{p^{k+1}}\right)
$$

where $\varphi(n)$ is Euler's totient function. Together with the classical result [6, Theorem 328]

$$
\limsup _{n \rightarrow \infty} \frac{n}{\varphi(n) \log \log n}=e^{\gamma}
$$

this implies that there exists $\epsilon=\epsilon\left(n_{0}\right)>0$ such that, if $n \gg 1$ is not multiple of n_{0}, then

$$
G(n) \leq e^{\gamma}-\epsilon,
$$

so that, by SA1, n cannot be SA.

5. GA numbers of the first kind

Let us say that a positive integer n is a GA number of the first kind (GA1 number) if n is composite and satisfies condition (i) in Definition with N replaced by n, that is, $G(n) \geq G(n / p)$ for all primes p dividing n. For example, 4 is GA1, as are all other extraordinary numbers, if any. Also, the near miss 183783600 is a GA number of the first kind. By Lemma 2 if $4 \neq r \in R$, then r is not a GA1 number.

Writing $p^{k} \| n$ when $p^{k} \mid n$ but $p^{k+1} \nmid n$, we have the following criterion for GA1 numbers.

Proposition 2. A composite number n is a $G A$ number of the first kind if and only if prime $p \mid n$ implies

$$
\frac{\log \log n}{\log \log \frac{n}{p}} \leq \frac{p^{k+1}-1}{p^{k+1}-p} \quad\left(p^{k} \| n\right)
$$

Proof. This follows easily from the definitions of GA1 and $G(n)$ and the formulas

$$
\sigma(n)=\prod_{p^{k} \| n}\left(1+p+p^{2}+\cdots+p^{k}\right)=\prod_{p^{k} \| n} \frac{p^{k+1}-1}{p-1}
$$

The next two propositions determine all GA1 numbers with exactly two prime factors.

Proposition 3. Let p be a prime. Then $2 p$ is a $G A$ number of the first kind if and only if $p=2$ or $p>5$.

Proof. As $G(2)<0<G(2 p)$, the number $2 p$ is GA1 if and only if $G(2 p) \geq G(p)$. Thus $2 p$ is GA1 for $p=2$, but, by computation, not for $p=3$ and 5 . If $p>5$, then since $3 \log \log x>2 \log \log 2 x$ for $x \geq 7$, we have

$$
\frac{G(2 p)}{G(p)}=\frac{\sigma(2 p)}{2 p \log \log 2 p} \div \frac{\sigma(p)}{p \log \log p}=\frac{3(p+1)}{2 p \log \log 2 p} \cdot \frac{p \log \log p}{p+1}=\frac{3 \log \log p}{2 \log \log 2 p}>1
$$

Thus $2 p$ is GA1 for $p=7,11,13, \ldots$ This proves the proposition.
Proposition 4. Let $p \geq q$ be odd primes. Then $p q$ is not a GA1 number.
Proof. As $(x+1) \log \log y<x \log \log x y$ when $x \geq y \geq 3$, it follows that if $p>q \geq 3$ are primes, then

$$
\frac{G(p q)}{G(q)}=\frac{(p+1)(q+1)}{p q \log \log p q} \div \frac{q+1}{q \log \log q}=\frac{(p+1) \log \log q}{p \log \log p q}<1
$$

and if $p \geq 3$ is prime, then

$$
\frac{G\left(p^{2}\right)}{G(p)}=\frac{p^{2}+p+1}{p^{2} \log \log p^{2}} \div \frac{p+1}{p \log \log p}=\frac{\left(p^{2}+p+1\right) \log \log p}{\left(p^{2}+p\right) \log \log p^{2}}<1
$$

Hence $p q$ is not GA1 for odd primes $p \geq q$.

6. Concluding remarks

Our reformulation of the RH, like Lagarias's, is attractive because the constant e^{γ} does not appear. Also, there is an elegant symmetry to the pair of conditions (i) and (ii): the value of the function G at the number N is not less than its values at the quotients N / p and at the multiples $a N$. The statement reformulates the Riemann Hypothesis in purely elementary terms of divisors, prime factors, multiples, and logarithms.

References

[1] A. Akbary and Z. Friggstad, Superabundant numbers and the Riemann hypothesis, Amer. Math. Monthly 116 (2009), 273-275.
[2] L. Alaoglu and P. Erdős, On highly composite and similar numbers, Trans. Amer. Math. Soc. 56 (1944), 448-469.
[3] K. Briggs, Abundant numbers and the Riemann hypothesis, Experiment. Math. 15 (2006), 251-256.
[4] G. Caveney, J.-L. Nicolas, and J. Sondow, On SA, CA, and GA numbers, Ramanujan J. (to appear); available at http://arxiv.org/abs/1112.6010.
[5] T. H. Gronwall, Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc. 14 (1913), 113-122.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, D. R. Heath-Brown and J. H. Silverman, eds., 6th ed., Oxford University Press, Oxford, 2008.
[7] J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002), 534-543.
[8] —, Problem 10949, Amer. Math. Monthly 109 (2002), 569.
[9] S. Ramanujan, Highly composite numbers, annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J. 1 (1997), 119-153.
[10] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.
[11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org 2010.

