The Number of $\overline{2} 413 \overline{5}$-Avoiding Permutations

DAVID CALLAN
Department of Statistics
University of Wisconsin-Madison
1300 University Ave
Madison, WI 53706-1532
callan@stat.wisc.edu

Abstract

We answer a question of R. J. Mathar and confirm that the counting sequence for $\overline{2} 413 \overline{5}$-avoiding permutations is the Invert transform of the Bell numbers. The proof relies on a simple decomposition of these permutations and the known fact that $\overline{2} 413$-avoiding permutations are counted by the Bell numbers.

1 Introduction

A permutation π avoids the barred pattern $\overline{2} 413 \overline{5}$ if each instance of a not-necessarilyconsecutive 413 pattern in π is part of a 24135 pattern in π, and similarly for other barred patterns. Lara Pudwell [1] presents a general approach to counting permutations avoiding a given 5 -letter barred pattern that often produces a recurrence relation but does not do so in this case. R. J. Mathar observed [2] that the first few terms of the counting sequence for $\overline{2} 413 \overline{5}$-avoiding permutations agree with those of the Invert transform of the Bell numbers-Invert $(1,1,2,5,15,52, \ldots)=(1,2,5,14,43,144, \ldots)$-and asked if the two sequences coincide. We will show that the answer is yes. Section 2 reviews terminology. Section 3 presents a decomposition for $\overline{2} 413 \overline{5}$-avoiding permutations in terms of $\overline{2} 413-$ avoiding permutations, yielding a bijection that proves the result.

2 Review of terminology

The Invert transform of a sequence $\left(a_{n}\right)_{n \geq 1}$ is $\left(b_{n}\right)_{n \geq 1}$ defined by

$$
1+\sum_{n \geq 1} b_{n} x^{n}=\frac{1}{1-\sum_{n \geq 1} a_{n} x^{n}}
$$

and has the following combinatorial interpretation [3, 4]. If the counting sequence by size of a class of combinatorial structures, say A-structures, is $\left(a_{n}\right)_{n \geq 1}$, then b_{n} is the number of lists (of unspecified length) of A -structures whose total size is n.

For any barred pattern ρ, we use $S_{n}(\rho)$ for the set of ρ-avoiding permutations of $[n]$. A permutation is standard if its support set is an initial segment of the positive integers (or empty). To standardize a permutation means to replace its smallest entry by 1 , next smallest by 2 , and so on. We use stand (π) for the result of standardizing π.

3 A decomposition and bijection

We begin with two observations about a $\overline{2} 413 \overline{5}$-avoiding permutation π. The entries after n in π must decrease, else n would start a 413 pattern with no available " 5 ". If entries $c>a$ occur in that order before n, then all elements of the interval $[a, c]$ must occur before n, else an element b of (a, c) would occur after n and $c a b$ is a 413 pattern, again with no available " 5 ". From these observations, it follows that π has the form

$$
\tau_{1} \tau_{2} \ldots \tau_{r} n a_{r-1} a_{r-2} \ldots a_{1}
$$

where

- each τ_{i} is a subpermutation, possibly empty, with support an interval of integers,
- each a_{i} is a single entry in π and is the only integer lying (in value) between the support intervals of τ_{i} and $\tau_{i+1}, 1 \leq i \leq r-1$,
- $\tau_{1}<\tau_{2}<\ldots<\tau_{r}$ in the sense that each entry of τ_{i} is less than each entry of $\tau_{i+1}, i=1,2, \ldots, r-1$,
- $a_{r-1}>a_{r-2}>\ldots>a_{1}$,
- each τ_{i} is $\overline{2} 413$-avoiding.

Conversely, any permutation π with a decomposition $\tau_{1} \tau_{2} \ldots \tau_{r} n a_{r-1} a_{r-2} \ldots a_{1}$ satisfying these conditions is $\overline{2} 413 \overline{5}$-avoiding.

It is helpful to interpret the bulleted conditions in the setting of a modified permutation matrix where, for a permutation π, the entry in the (i, j) cell, measuring from the southwest corner, is $\pi(i)$ if $j=\pi(i)$ and 0 otherwise. We see that a permutation π has a decomposition that meets all the bulleted conditions if and only if its matrix has the form pictured schematically below for $r=4$ with each τ_{i} a $\overline{2} 413$ avoider, each a_{i} an entry of π, and 0 's in all unshaded regions.

				n			
			τ_{4}				
					a_{3}		
		τ_{3}					
						a_{2}	
	τ_{2}						
							a_{1}
τ_{1}							

a $\overline{2} 413 \overline{5}$ avoider as a permutation matrix

With $a_{r}:=n$, the map $\pi \rightarrow\left(\operatorname{stand}\left(\tau_{1} a_{1}\right), \ldots, \operatorname{stand}\left(\tau_{r} a_{r}\right)\right)$ is a bijection from $S_{n}(\overline{2} 413 \overline{5})$ to lists $\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ with $r \geq 1$ where each σ_{i} is an end-max avoider-a standard $\overline{2} 413 \overline{5}$ avoiding permutation that ends at its maximum entry-and the total length of the σ_{i} 's is n. Clearly, the number of end-max avoiders of length k is the number of $\overline{2} 413$-avoiding permutations of length $k-1$ and it is known [5] that $\left|S_{k-1}(\overline{2} 413)\right|=B_{k-1}$, the Bell number.

Set $a_{n}=B_{n-1}$, so that a_{n} is the number of end-max avoiders of length (size) n. Then the Invert transform $\left(b_{n}\right)_{n \geq 1}$ of $\left(a_{n}\right)_{n \geq 1}$ is the number of lists of of end-max avoiders of total size n, which the bijection above shows is $\left|S_{n}(\overline{2} 413 \overline{5})\right|$. Hence, the counting sequence for $S_{n}(\overline{2} 413 \overline{5})$ is the Invert transform of $\left(a_{n}\right)_{n \geq 1}=(1,1,2,5,15, \ldots)$, the full sequence of Bell numbers.

References

[1] Lara Pudwell, Enumeration Schemes for Permutations Avoiding Barred Patterns, Electronic J. Combinatorics, 17 (1) (2010), R29.
[2] R. J. Mathar, Comment on sequence A160701 in the On-Line Encyclopedia of Integer Sequences.
[3] M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra Appl. 226-228 (1995) 57-72.
[4] P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989) 89102.
[5] David Callan, A combinatorial interpretation of the eigensequence for composition, J. Integer Sequences, 9, Article 06.1.4, 2006.

