The Number of $\overline{2}413\overline{5}$ -Avoiding Permutations

DAVID CALLAN

Department of Statistics University of Wisconsin-Madison 1300 University Ave Madison, WI 53706-1532

callan@stat.wisc.edu

Abstract

We answer a question of R. J. Mathar and confirm that the counting sequence for $\overline{2}413\overline{5}$ -avoiding permutations is the Invert transform of the Bell numbers. The proof relies on a simple decomposition of these permutations and the known fact that $\overline{2}413$ -avoiding permutations are counted by the Bell numbers.

1 Introduction

A permutation π avoids the barred pattern $\overline{2}413\overline{5}$ if each instance of a not-necessarilyconsecutive 413 pattern in π is part of a 24135 pattern in π , and similarly for other barred patterns. Lara Pudwell [1] presents a general approach to counting permutations avoiding a given 5-letter barred pattern that often produces a recurrence relation but does not do so in this case. R. J. Mathar observed [2] that the first few terms of the counting sequence for $\overline{2}413\overline{5}$ -avoiding permutations agree with those of the Invert transform of the Bell numbers—Invert $(1, 1, 2, 5, 15, 52, \ldots) = (1, 2, 5, 14, 43, 144, \ldots)$ —and asked if the two sequences coincide. We will show that the answer is yes. Section 2 reviews terminology. Section 3 presents a decomposition for $\overline{2}413\overline{5}$ -avoiding permutations in terms of $\overline{2}413$ avoiding permutations, yielding a bijection that proves the result.

2 Review of terminology

The Invert transform of a sequence $(a_n)_{n\geq 1}$ is $(b_n)_{n\geq 1}$ defined by

$$1 + \sum_{n \ge 1} b_n x^n = \frac{1}{1 - \sum_{n \ge 1} a_n x^n},$$

and has the following combinatorial interpretation [3, 4]. If the counting sequence by size of a class of combinatorial structures, say A-structures, is $(a_n)_{n\geq 1}$, then b_n is the number of lists (of unspecified length) of A-structures whose total size is n. For any barred pattern ρ , we use $S_n(\rho)$ for the set of ρ -avoiding permutations of [n]. A permutation is *standard* if its support set is an initial segment of the positive integers (or empty). To *standardize* a permutation means to replace its smallest entry by 1, next smallest by 2, and so on. We use stand(π) for the result of standardizing π .

3 A decomposition and bijection

We begin with two observations about a $\overline{2}413\overline{5}$ -avoiding permutation π . The entries *after* n in π must decrease, else n would start a 413 pattern with no available "5". If entries c > a occur in that order *before* n, then all elements of the interval [a, c] must occur before n, else an element b of (a, c) would occur after n and cab is a 413 pattern, again with no available "5". From these observations, it follows that π has the form

$$\tau_1 \tau_2 \ldots \tau_r n a_{r-1} a_{r-2} \ldots a_1$$

where

- each τ_i is a subpermutation, possibly empty, with support an interval of integers,
- each a_i is a single entry in π and is the only integer lying (in value) between the support intervals of τ_i and τ_{i+1} , $1 \le i \le r-1$,
- $\tau_1 < \tau_2 < \ldots < \tau_r$ in the sense that each entry of τ_i is less than each entry of τ_{i+1} , $i = 1, 2, \ldots, r-1$,
- $a_{r-1} > a_{r-2} > \ldots > a_1$,
- each τ_i is $\overline{2}413$ -avoiding.

Conversely, any permutation π with a decomposition $\tau_1 \tau_2 \ldots \tau_r n a_{r-1} a_{r-2} \ldots a_1$ satisfying these conditions is $\overline{2}413\overline{5}$ -avoiding.

It is helpful to interpret the bulleted conditions in the setting of a modified permutation matrix where, for a permutation π , the entry in the (i, j) cell, measuring from the southwest corner, is $\pi(i)$ if $j = \pi(i)$ and 0 otherwise. We see that a permutation π has a decomposition that meets all the bulleted conditions if and only if its matrix has the form pictured schematically below for r = 4 with each τ_i a $\overline{2}413$ avoider, each a_i an entry of π , and 0's in all unshaded regions.

				n			
			$ au_4$				
					a_3		
		$ au_3$					
						a_2	
	$ au_2$						
							a_1
$ au_1$							

a $\overline{2}413\overline{5}$ avoider as a permutation matrix

With $a_r := n$, the map $\pi \to (\operatorname{stand}(\tau_1 a_1), \ldots, \operatorname{stand}(\tau_r a_r))$ is a bijection from $S_n(\overline{2}413\overline{5})$ to lists $(\sigma_1, \ldots, \sigma_r)$ with $r \ge 1$ where each σ_i is an *end-max avoider*—a standard $\overline{2}413\overline{5}$ -avoiding permutation that ends at its maximum entry—and the total length of the σ_i 's is n. Clearly, the number of end-max avoiders of length k is the number of $\overline{2}413$ -avoiding permutations of length k - 1 and it is known [5] that $|S_{k-1}(\overline{2}413)| = B_{k-1}$, the Bell number.

Set $a_n = B_{n-1}$, so that a_n is the number of end-max avoiders of length (size) n. Then the Invert transform $(b_n)_{n\geq 1}$ of $(a_n)_{n\geq 1}$ is the number of lists of of end-max avoiders of total size n, which the bijection above shows is $|S_n(\overline{2}413\overline{5})|$. Hence, the counting sequence for $S_n(\overline{2}413\overline{5})$ is the Invert transform of $(a_n)_{n\geq 1} = (1, 1, 2, 5, 15, \ldots)$, the full sequence of Bell numbers.

References

- Lara Pudwell, Enumeration Schemes for Permutations Avoiding Barred Patterns, *Electronic J. Combinatorics*, **17** (1) (2010), R29.
- [2] R. J. Mathar, Comment on sequence <u>A160701</u> in the On-Line Encyclopedia of Integer Sequences.
- [3] M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, *Linear Algebra Appl.* 226–228 (1995) 57–72.

- [4] P.J. Cameron, Some sequences of integers, Discrete Math., 75 (1989) 89102.
- [5] David Callan, A combinatorial interpretation of the eigensequence for composition, J. Integer Sequences, 9, Article 06.1.4, 2006.