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THE MEDIAN GENOCCHI NUMBERS, Q-ANALOGUES

AND CONTINUED FRACTIONS

EVGENY FEIGIN

Abstract. The goal of this paper is twofold. First, we review the re-
cently developed geometric approach to the combinatorics of the median
Genocchi numbers. The Genocchi numbers appear in this context as
Euler characteristics of the degenerate flag varieties. Second, we prove
that the generating function of the Poincaré polynomials of the degen-
erate flag varieties can be written as a simple continued fraction. As an
application we prove that the Poincaré polynomials coincide with the q-
version of the normalized median Genocchi numbers introduced by Han
and Zeng.

Introduction

The Genocchi numbers appear in many different contexts (see e.g. [B],
[Du], [DR], [DZ], [DV], [G], [V2]). Probably, the most well-known definition
uses the Seidel triangle

155 155
17 17 155 310

3 3 17 34 138 448
1 1 3 6 14 48 104 552

1 1 1 2 2 8 8 56 56 608

By definition, the triangle is formed by the numbers gk,n (k is the number
of a row counted from bottom to top and n is the number of a column from
left to right) with n = 1, 2, . . . and 1 ≤ k ≤ n+1

2 , subject to the relations
g1,1 = 1 and

gk,2n =
∑

i≥k

gi,2n−1, gk,2n+1 =
∑

i≤k

gi,2n.

For example, 138 = 56 + 48 + 34 and 48 = 14 + 17 + 17. The two sequences
of numbers sitting on the edges of the Seidel triangle are called the Genoc-
chi numbers. More precisely, the Genocchi numbers of the first kind are
1, 1, 3, 17, 155, . . . and of the second kind are 1, 2, 8, 56, 608, . . . . The latter
numbers are also referred to as the median Genocchi numbers and are de-
noted by H2n−1. For example, H1 = 1 and H7 = 56. These numbers are
known to be divisible by the powers of 2 (see [B], [Du]): H2n+1 ÷ 2n. The
ratios are called the normalized median Genocchi numbers and are denoted
by hn. Thus the first values h0, h1, h2, . . . are as follows:

1, 1, 2, 7, 38, 295, 3098, . . .
1
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It has been shown recently (see [Fe2]) that the numbers hn are analogues
(”degenerations”) of the numbers n!. More precisely, let Fn be the variety
of flags in an n-dimensional space, i.e. Fn consists of collections of sub-
spaces (V1 ⊂ V2 ⊂ · · · ⊂ Vn−1) of a given n-dimensional space W such that
dimVk = k. It is well known that the Euler characteristics of Fn is equal
to n!. Combinatorially, the number n! appears in this context as the num-
ber of sequences (I1 ⊂ I2 ⊂ · · · ⊂ In−1) of subsets of {1, . . . , n} such that
#Ik = k. The varieties Fn have natural degenerations Fa

n, called the degen-
erate flag varieties (see [Fe1],[Fe2],[FF], [FFL]). In order to define Fa

n we fix
a basis w1, . . . , wn of W and the projection maps prk : W → W mapping
wk to 0 and wi with i 6= k to wi. The degenerate flag varieties consist of
collections (V1, V2, . . . , Vn−1) of subspaces of W such that dimVk = k and
prk+1Vk ⊂ Vk+1. It turns out that the Euler characteristic of Fa

n is equal to
the normalized median Genocchi number:

(0.1) χ(Fa
n) = hn.

Combinatorially this means that the number of sequences (I1, I2, . . . , In−1)
of subsets of {1, . . . , n} such that #Ik = k and Ik ⊂ Ik+1 ∪ {k + 1} is equal
to hn.

In this paper we review (following [Fe2] and [CFR]) the applications of the
observation (0.1) to the combinatorics of hn. We give several new combina-
torial objects counted by the normalized median Genocchi numbers. As an
application the formula for the numbers hn is derived in terms of binomial
coefficients. Using (0.1) we introduce natural q-analogues hn(q) as Poincaré
polynomials of the degenerate flag varieties. We note that the degenerate
flag varieties are singular, but share the following important property with
their classical analogues: the varieties Fa

n can be decomposed into a disjoint
union of complex (even-dimensional real) affine cells. Therefore the Poincaré
polynomials PFa

n
(t) are functions of q = t2 (odd powers do not show up).

Hence we define

hn(q) = PFa
n
(q1/2).

Obviously, one has hn(1) = hn. We note also that the degree of hn(q) is
equal to n(n − 1)/2, since the complex dimension of Fa

n is n(n − 1)/2. In
the paper we recall two formulas for the polynomials hn(q): one uses certain
statistic on the set of Dellac configurations (see [De],[Fe2]) and another is
obtained via the geometric arguments (see [CFR]). Various q-analogues of
the Genocchi numbers appear in the literature (see e.g. [HZ1], [HZ2], [ZZ]).
In particular, in [HZ1] Han and Zeng used the q-analogues to give a third
proof of the Barsky theorem ([B], [Du]).

Our new result is the continued fraction presentation of the generating
function of the polynomials hn(q). Namely, it is convenient to introduce the

”reversed” polynomials h̃n(q) = qn(n−1)/2hn(q
−1). Then we have



THE MEDIAN GENOCCHI NUMBERS 3

Theorem 0.1.

∑

n≥0

h̃n(q)s
n =

1

1−
s

1−
qs

1−

(3
2

)

q
s

1−
q
(

3
2

)

q
s

1−

(4
2

)

q
s

1−
q
(

4
2

)

q
s

1− . . .

Using this formula, we prove that h̃n(q) coincide with the q version of
the normalized median Genocchi numbers introduced by Han and Zeng in
[HZ1], [HZ2]. We also show that the Viennot formula (see [V1], [V3], [Du],
[DZ]) for the generating function of the median Genocchi numbers H2n−1

can be derived by specialization at q = 1.
Our paper is organized as follows.

In Section 1 we give several definitions of the normalized median Genocchi
numbers.
In Section 2 we give two formulas for the polynomials hn(q).
In Section 3 we obtain the continued fraction presentation for the generating
function of h̃n(q).

1. Combinatorics of the normalized median Genocchi numbers

The normalized median Genocchi numbers hn, n = 0, 1, 2, . . . form a
sequence which starts with 1, 1, 2, 7, 38, 295. These numbers enjoy many
definitions (see [B], [Du], [De], [G], [K], [Sl], [Fe2]). We recall some of them
now.

1.1. The Seidel triangle. The Seidel triangle [Se] is formed by the num-
bers gk,n with n = 1, 2, . . . and 1 ≤ k ≤ n+1

2 , subject to the relations g1,1 = 1
and

gk,2n =
∑

i≥k

gi,2n−1, gk,2n+1 =
∑

i≤k

gi,2n.

The numbers gn,2n−1 are called the Genocchi numbers of the first kind and
the numbers H2n−1 = g1,2n are called the Genocchi numbers of the second
kind (or the median Genocchi numbers). Barsky [B] and then Dumont
[Du] proved that the number H2n+1 is divisible by 2n. The normalized
median Genocchi numbers hn are defined as the corresponding ratios: hn =
H2n+1/2

n.

1.2. Dellac’s configurations. The earliest definition was given by Dellac
in [De]. Consider a rectangle with n columns and 2n rows. It contains n×2n
boxes labeled by pairs (l, j), where l = 1, . . . , n is the number of a column
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and j = 1, . . . , 2n is the number of a row. A Dellac configuration D is a
subset of boxes, subject to the following conditions:

• each column contains exactly two boxes from D,
• each row contains exactly one box from D,
• if the (l, j)-th box is in D, then l ≤ j ≤ n+ l.

Let DCn be the set of such configurations. Then the number of elements in
DCn is equal to hn.

We list all Dellac’s configurations for n = 3. We specify boxes in a
configuration by putting fat dots inside.

•
•
•
•
•
•

•
•
•

•
•

•

•
•

•
•

•

•

•

•
•

•
•
•

•

•
•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

.

1.3. Permutations. In [K] Kreweras suggested another description of the
numbers hn. Namely, a permutation σ ∈ S2n+2 is called a normalized Du-
mont permutation of the second kind if the following conditions are satisfied:

• σ(k) < k if k is even,
• σ(k) > k if k is odd,
• σ−1(2k) < σ−1(2k + 1) for k = 1, . . . , n.

According to Kreweras, the number of such permutations is equal to hn (see
also [Fe2], Proposition 3.3).

1.4. A la n!. Let I = (I1, I2, . . . , In−1) be a sequence of subsets of the set
{1, . . . , n}. We cal such a sequence admissible if #Il = l for all l and

(1.1) Il ⊂ Il+1 ∪ {l + 1}, l = 1, . . . , n− 2.

Then the number of admissible sequences is equal to the normalized median
Genocchi number hn.

Remark 1.1. If we replace (1.1) with Il ⊂ Il+1, then the number of admissible
sequences will obviously become n!.

Admissible sequences can be visualized as follows. Consider an oriented
graph Γ with the set of vertices (l, j), 1 ≤ l ≤ n−1, 1 ≤ j ≤ n. Two vertices
(l1, j1) and (l2, j2) are connected by an arrow (l1, j1) → (l2, j2) if and only
if j1 = j2, l2 = l1 + 1, l2 6= j2 (note that in [CFR] this graph appeared as a
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coefficient quiver). For n = 5 the graph is as follows:

(1, 5) // (2, 5) // (3, 5) // (4, 5)

(1, 4) // (2, 4) // (3, 4) (4, 4)

(1, 3) // (2, 3) (3, 3) // (4, 3)

(1, 2) (2, 2) // (3, 2) // (4, 2)

(1, 1) // (2, 1) // (3, 1) // (4, 1)

To a collection I = (I1, . . . , In−1) with #Il = l for all l we associate a subset
SI of vertices of Γ by the formula

SI = {(l, j) : j ∈ Il}.

Then I is admissible if and only if SI is closed in Γ, i.e. if p ∈ SI and p → q
is an arrow in Γ then q ∈ SI.

1.5. Euler characteristic. The admissible sequences label the cells in the
degenerate flag varieties Fa

n (see [Fe2]). Recall that Fa
n consists of sequences

(V1, . . . , Vn−1) of the subspaces of a given n-dimensional space W subject
to the conditions given below. Let w1, . . . , wn be a basis of W and let prk :
W → W be the projection along wk to span(wi : i 6= k): prk(

∑n
i=1 ciwi) =

∑

i 6=k ciwi.

Definition 1.2. A collection (V1, . . . , Vn−1) of subspaces Vk ⊂ W belongs to
F
a
n if and only if dimVk = k for all k and

prk+1Vk ⊂ Vk+1, k = 1, . . . , n − 2.

We recall (see e.g. [Fu]) that the classical flag varieties Fn consist of
collections (V1 ⊂ · · · ⊂ Vn−1) of sequentially embedded subspaces of W with
dimVk = k for all k. These varieties are acted upon by a torus T = (C∗)n.
The action is induced from the natural action of T on W :

(a1, . . . , an) · (c1w1 + · · · + cnwn) = a1c1w1 + · · · + ancnwn.

The varieties Fn enjoy several important properties:

(i) Fn can be decomposed into a disjoint union of complex (even-
dimensional real) cells. Each cell contains exactly one T -fixed point.

(ii) The T -fixed points on Fn are labeled by permutations from Sn. The
fixed point p(σ) attached to σ ∈ Sn is given by

p(σ) = (span(wσ(1)), span(wσ(1), wσ(2)), . . . , span(wσ(1), . . . , wσ(n−1))).

(iii) The (real) dimension of the cell containing p(σ) is equal to 2l(σ)
(twice length of the permutation).

In particular, the Euler characteristic of Fn is equal to n!. The degenerate
flag varieties Fa

n share property (i). However, the labeling set for the T -fixed
points is different: the number of torus fixed points in F

a
n is equal to the
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number of admissible sequences. Namely, an admissible sequence I defines
a point

(1.2) p(I) = (V1, . . . , Vn−1), Vk = span(wi : i ∈ Ik).

Any such point belongs to F
a
n, is T -fixed and all T -fixed points in F

a
n are of

this form.

Corollary 1.3. The Euler characteristic of Fa
n is equal to hn:

χ(Fa
n) = hn.

1.6. Two triangles. We add one more combinatorial description of the
numbers hn obtained in [CFR] using the representation theory of quivers.

Proposition 1.4. The normalized median Genocchi number hn+1 is equal
to the number of pairs of collections of non-negative integers (ri,j), (mi,j),
1 ≤ i ≤ j ≤ n subject to the following conditions for all k = 1, . . . , n:

n
∑

i=k

rk,i ≤ 1,
k

∑

j=1

mj,k ≤ 1,
∑

i≤k≤j

ri,j =
∑

i≤k≤j

mi,j.

1.7. Explicit formula. The following explicit formula for the numbers hn
is available (see [CFR])

(1.3) hn =
∑

f0,...,fn≥0

n−1
∏

k=1

(

1 + fk−1

fk

) n
∏

k=1

(

1 + fk+1

fk

)

with f0 = fn = 0. This formula can be rewritten as a weighted sum of
Motzkin paths. Namely, let Mn be the set of Motzkin paths starting at
(0, 0) and ending at (n, 0). For a Motzkin path f = (f0, . . . , fn) ∈ Mn with
f0 = fn = 0 let l(f) be the number of ”rises” (fi+1 = fi+1) plus the number
of ”falls” (fi+1 = fi − 1). Then we obtain

(1.4) hn =
∑

f∈Mn

∏n
k=0(1 + fk)

2

2l(f)
.

1.8. The Viennot formula. In section 3 we use the q-version of the for-
mula (1.4) to derive the continued fraction presentation of the generating
function of q-Genocchi numbers. We close this section with the continued
fraction form of the generating function of the (non-normalized) median
Genocchi numbers H2n−1 (see subsection 1.1) due to Viennot ([V1], [V3],
[Du], [DZ]):

1 +

∞
∑

n=1

H2n−1x
n =

1

1−
12x

1−
12x

1−
22x

1−
22x

. . .
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2. q-versions

Several q-versions of the median Genocchi numbers can be found in the
literature (see [HZ1], [HZ1], [ZZ]). We briefly recall the definition of the Han-
Zeng polynomials below. In our approach the normalized median Genocchi
numbers appear as the Euler characteristics of the degenerate flag varieties.
Thus we obtain a natural q-analogue defined by the Poincaré polynomials
of Fa

n. We give combinatorial description as well as an explicit formula for
these polynomials below.

2.1. The Han-Zeng polynomials. Consider the polynomials Cn(x, q) in
two variables defined by C1(x, q) = 1 and

Cn(x, q) = (1 + qx)
(1 + qx)Cn−1(1 + qx, q)− xCn−1(x, q)

1 + qx− x
, n ≥ 2.

Define

c̄n(q) =
Cn(1, q)

(1 + q)n−1
, n ≥ 1,

Han and Zeng proved that these are polynomials satisfying c̄n(1) = hn−1

(see formula (17) in [HZ1]). Hence c̄n(q) can be viewed as q-analogues of
the normalized median Genocchi numbers.

2.2. Statistic on the Dellac configurations. For a Dellac configuration
D ∈ DCn (see subsection 1.2) we define the length l(D) of D as the number
of pairs (l1, j1), (l2, j2) such that the boxes (l1, j1) and (l2, j2) are both in D
and l1 < l2, j1 > j2. This definition resembles the definition of the length of
a permutation. We note that in the classical case the complex dimension of
the cell attached to a permutation σ in a flag variety is equal to the number
of pairs j1 < j2 such that σ(j1) > σ(j2), which equals to the length of σ (see
property (iii) of Fn).

Proposition 2.1. The real dimension of the cell in F
a
n containing a point

p(I) (1.2) is equal to 2l(D). Thus the Poincaré polynomial hn(t) = PFa
n
(t)

is given by hn(t) =
∑

D∈DCn
t2l(D).

Since the polynomials hn(t) do not contain odd powers of t, it is convenient

to introduce a new variable q = t2 and define hn(q) = PFa
n
(q1/2). The first

four polynomials hn(q) are as follows:

h1(q) = 1, h2(q) = 1 + q,

h3(q) = 1 + 2q + 3q2 + q3,

h4(q) = 1 + 3q + 7q2 + 10q3 + 10q4 + 6q5 + q6.

In general, the degree of hn(q) is equal to n(n−1)/2. Obviously, hn(1) = hn.
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2.3. Explicit formula. Let m ≥ n ≥ 0. Then the q-binomial (Gaussian)
coefficient

(m
n

)

q
is defined as

(

m

n

)

q

=
mq!

nq!(m− n)q!
, mq! =

m
∏

i=1

1− qi

1− q
.

The following formula is obtained in [CFR] using the geometry of quiver
Grassmannians.

Proposition 2.2. The Poincaré polynomial of the degenerate flag variety
F
a
n is equal to

(2.1)
∑

f1,...,fn−1≥0

q
∑

n−1

k=1
(k−fk)(1−fk+fk+1)

n−1
∏

k=1

(

1 + fk−1

fk

)

q

n−1
∏

k=1

(

1 + fk+1

fk

)

q

,

(we assume f0 = fn = 0).

Such kind of formulas are usually referred to as fermionic: these are sums
of products of q-binomial coefficients multiplied by certain powers of q. Ge-
ometrically, formula (2.1) appears as follows. The varieties F

a
n can be cut

into disjoint pieces, such that each piece is fibered over a product of several
Grassmannians with fibers being affine spaces. Since the Poincaré polyno-
mial of a Grassmannian is given by a q-binomial coefficient, we arrive at the
formula as above.

3. Generating function and continued fraction

Our goal in this section is to give an explicit continued fraction form
of the generating function of the Poincaré polynomials hn(q) and to prove
that they coincide with the q-versions of the normalized median Genocchi
numbers defined in [HZ1], [HZ2].

We note that formula (2.1) can be seen as a sum over the set Mn of
Motzkin paths f = (f0, f1, . . . , fn) starting at (0, f0) = (0, 0) and ending at
(n, fn) = (n, 0).

We first recall the formalism of the weighted generating functions of
Motzkin paths due to Flajolet (see [Fl]). Let αn, βn and γn, n ≥ 0 be
sequences of complex numbers called weights. For a nonnegative integer k
we define w(k, k) = γk, w(k, k + 1) = αk and w(k, k − 1) = βk−1 (if k ≥ 1).
We denote by α• the whole collection (αk)

∞
k=0 and similarly for β• and γ•.

The weighted generating function of Motzkin paths is given by the formula

F (s;α•, β•, γ•) =
∑

n≥0

sn
∑

f∈Mn

n−1
∏

k=0

w(fk, fk+1).

The following result is due to Flajolet [Fl].
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Theorem 3.1. The weighted generating sum of the Motzkin paths is given
by the continued fraction

F (s;α•, β•, γ•) =
1

1− γ0s−
α0β0s

2

1− γ1s−
α1β1s

2

1− γ2s− . . .

.

Let us apply this formalism to our situation. Formula (2.1) can be rewrit-
ten as follows.
(3.1)

hn(q) = qn(n−1)/2
∑

f∈Mn

q
∑

n−1

k=1
fk(fk−fk+1−2)

n−1
∏

k=1

(

1 + fk−1

fk

)

q

n−1
∏

k=1

(

1 + fk+1

fk

)

q

.

We introduce three sequences of weights

αm(q) = q−3m

(

m+ 2

2

)

q

, βm(q) = q−m−1

(

m+ 2

2

)

q

, γm(q) = q−2m

(

m+ 1

1

)2

q

and define w(fk, fk+1) using these weights. Then formula (3.1) implies the
following lemma.

Lemma 3.2.

(3.2) q−n(n−1)/2hn(q) =
∑

f∈Mn

n−1
∏

k=0

w(fk, fk+1).

In order to use the Flajolet theorem we need to get rid of the factor
qn(n−1)/2 in (3.2). We introduce the notation

h̃n(q) = qn(n−1)/2hn(q
−1)

(note that the degree of hn(q) is exactly n(n−1)/2). Let h̃(q, s) =
∑

n≥0 h̃n(q)s
n.

We note that

γm(q) =

(

m+ 1

1

)2

q−1

, αm(q)βm(q) = q−1

(

m+ 2

2

)2

q−1

.

Using Theorem 3.1 we arrive at the following theorem.

Theorem 3.3. The generating function h̃(q, s) can be written as follows

(3.3) h̃(q, s) =
1

1− s−
qs2

1−
(2
1

)2

q
s−

q
(

3
2

)2

q
s2

1−
(3
1

)2

q
s−

q
(

4
2

)2

q
s2

1−
(

4
1

)2

q
s− . . .

Proof. Follows from Lemma 3.2 and the Flajolet theorem. �
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Corollary 3.4.

(3.4) h̃(q, s) =
1

1−
s

1−
qs

1−

(3
2

)

q
s

1−
q
(

3
2

)

q
s

1−

(4
2

)

q
s

1−
q
(

4
2

)

q
s

1− . . .

Proof. Recall the following formula (see [DZ], Lemma 2)

c0

1− c1s−
c1c2s

2

1− (c2 + c3)s−
c3c4s

2

1− (c4 + c5)s− . . .

=
c0

1−
c1s

1−
c2s

1−
c3s

1− . . .

.

Now our corollary follows from Theorem 3.3. �

Specializing at q = 1 we arrive at formula (1.4) for the normalized median
Genocchi numbers.

Corollary 3.5. The number hn is equal to the weighted sum over the set Mn

of Motzkin paths
∑

f∈Mn

∏n−1
k=0 w(fk, fk+1) with the weights w(·, ·) defined by

αm = (m+ 1)(m + 2)/2 = βm, γm = (m+ 1)2.

The generating function
∑

n≥0 hns
n is given by the continued fraction

(3.5)
1

1−
s

1−
s

1−
3s

1−
3s

1−
6s

1−
6s

1−
10s

1− . . .

Corollary 3.6. h̃n(q) = c̄n+1(q).

Proof. Formula (18) in [HZ1] gives a continued fraction form of the gener-
ating function of the polynomials c̄n(q). Comparing this formula with (3.4)
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and using the equations
(

2n

2

)

q

= (1 + q2 + q4 + · · ·+ q2n−2)(1 + q + q2 + · · ·+ q2n−2),

(

2n+ 1

2

)

q

= (1 + q2 + q4 + · · · + q2n−2)(1 + q + q2 + · · ·+ q2n),

we obtain h̃n(q) = c̄n+1(q). �

We also derive the Viennot formula for the generating function of the
(non-normalized) median Genocchi numbers H2n+1 (see [Du], [DZ], [V1],
[V3]):

Corollary 3.7.

1 +
∞
∑

n=1

H2n−1s
n =

1

1−
12s

1−
12s

1−
22s

1−
22s

. . .

Proof. Recall the formula H2n+1 = 2nhn. Therefore, one has

1 +

∞
∑

n=1

H2n−1s
n = 1 +

∞
∑

n=0

hn2
nsn+1 = 1 + s

∞
∑

n=0

hn(2s)
n.

Specializing (3.3) at q = 1, we obtain that the generating function for the
(non-normalized) median Genocchi numbers is given by

1 +
s

1− 2s−
4s2

1− 2 · 4s−
4 · 32s2

1− 2 · 9s−
4 · 62s2

1− 2 · 16s−
4 · 102s2

1− 2 · 25s − . . .

.

Finally, we use the following formula from [DZ], Lemma 2:

c0 +
c0c1s

1− (c1 + c2)s−
c2c3s

2

1− (c3 + c4)s−
c4c5s

2

1− . . .

=
c0

1−
c1s

1−
c2s

1−
c3s

1− . . .

.

�
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