A combinatorial interpretation of the Catalan transform of the Catalan numbers

DAVID CALLAN
Department of Statistics
University of Wisconsin-Madison
1300 University Ave
Madison, WI 53706-1532
callan@stat.wisc.edu

Abstract

The Catalan transform of a sequence $\left(a_{n}\right)_{n \geq 0}$ is the sequence $\left(b_{n}\right)_{n \geq 0}$ with $b_{n}=\sum_{k=0}^{n} \frac{k}{2 n-k}\binom{2 n-k}{n-k} a_{k}$. Here we show that the Catalan transform of the Catalan numbers has a simple interpretation: it counts functions $f:[1, n] \rightarrow[1, n]$ satisfying the condition that, for all $i<j, f(j)-(j-i)$ is not in the interval $[1, f(i)-1]$.

1 Introduction

The Catalan transform [1] of a sequence $\left(a_{n}\right)_{n \geq 0}$ is the sequence $\left(b_{n}\right)_{n \geq 0}$ with $b_{n}=$ $\sum_{k=0}^{n} \frac{k}{2 n-k}\binom{2 n-k}{n-k} a_{k}$, where $\frac{k}{2 n-k}\binom{2 n-k}{n-k}$ is interpreted as 1 if $n=k=0$. The Catalan number is $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. The purpose of this note is to establish the following combinatorial interpretation.

Theorem 1. The Catalan transform $\left(b_{n}\right)_{n \geq 0}$ of the Catalan numbers $\left(C_{n}\right)_{n \geq 0}$ counts functions $f:[1, n] \rightarrow[1, n]$ satisfying the condition that, for all $i<j, f(j)-(j-i)$ is not in the interval $[1, f(i)-1]$.

We will represent functions $f:[1, n] \rightarrow[1, n]$ as sequences $\left(u_{i}\right)_{i=1}^{n}$ where $u_{i}=f(i)$ and, hence, $1 \leq u_{i} \leq n$ for all i.

In Section 2 we review the Catalan numbers, and in Section 3 we establish some preliminary results about sequences $\left(u_{i}\right)_{i=1}^{n}$ of positive integers that satisfy the key condition

$$
\begin{equation*}
u_{j}-(j-i) \notin\left[1, u_{i}-1\right] \quad 1 \leq i<j \leq n \tag{1}
\end{equation*}
$$

of Theorem 1. In Section 4 we prove the main result and Section 5 presents an extension.

2 Generalized Catalan numbers

The generalized Catalan number $C_{n}^{(k)}$ is defined by $C_{n}^{(k)}=\frac{k+1}{2 n+k+1}\left({ }_{n}^{2 n+k+1}\right)$ with $C_{n}^{(-1)}:=1$ if $n=0$ and $:=0$ if $n \geq 1$. Taking $k=0$ gives the ordinary Catalan number $C_{n}:=C_{n}^{(0)}=$ $\frac{1}{2 n+1}\binom{2 n+1}{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}$. It is well known that C_{n} counts Dyck n-paths [2]. A Dyck n-path has n upsteps and n downsteps and its semilength is n. It is also known [3] that the sequence $\left(C_{n}^{(k)}\right)_{n>0}$ is the k-fold convolution of $\left(C_{n}\right)_{n \geq 0}$ [3]. It follows, as is well known, that $C_{n}^{(k)}$ is the number of Dyck $(k+n)$-paths that start with at least k upsteps - discard the first k upsteps and then consider the decomposition into Dyck paths induced by the last upstep at level $i, i=k, k-1, \ldots, 1$.

We will use an equivalent formulation of the Catalan transform obtained by reversing the order of summation in the expression for b_{n}. Thus

$$
b_{n}=\sum_{k=0}^{n} C_{k}^{(n-1-k)} a_{n-k}
$$

3 Preliminary results

Proposition 2. Fix a nonnegative integer k. Let $\mathcal{B}_{n}^{(k)}$ denote the set of sequences $\left(v_{1}, \ldots, v_{n}\right)$ satisfying $1 \leq v_{i} \leq i+k$ and condition (1). Then $\left|\mathcal{B}_{n}^{(k)}\right|=C_{n}^{(k)}$.

Proof. As noted in Section 2, $C_{n}^{(k)}$ is the number of Dyck $(k+n)$-paths that start with at least k upsteps. Given such a path, define $v_{i}=1+$ semilength of the longest Dyck subpath immediately preceding the $(i+k)$-th upstep, $1 \leq i \leq n$. This is a bijection to $\mathcal{B}_{n}^{(k)}$. For example, with $k=2$ and $n=6$, the mandatory k upsteps in the Dyck path shown are in blue and the $(i+k)$-th upstep is labeled with the corresponding v_{i}.

The key observation to show this bijection works is that if an upstep in a Dyck path is immediately preceded by a nonempty Dyck subpath and the steps of the maximal such subpath are colored green, as for the $(6+k)$-th upstep in the example, then the Dyck subpath associated with each green upstep is a subpath of the green path.

In particular, for $k=0$ we have
Proposition 3. Let $\mathcal{B}_{n}=\mathcal{B}_{n}^{(0)}$ denote the set of sequences $\left(v_{1}, \ldots, v_{n}\right)$ satisfying $1 \leq v_{i} \leq i$ and condition (1). Then $\left|\mathcal{B}_{n}\right|=C_{n}$.

Remark. The map "reverse and decrement each entry by 1 " is a bijection from \mathcal{B}_{n} to the inversion codes for 231-avoiding permutations of $[n]$. (The inversion code for a permutation $\left(p_{1}, \ldots, p_{n}\right)$ of $[n]$ is the sequence $\left(u_{1}, \ldots, u_{n}\right)$ where u_{i} is the number of $j \in[i+1, n]$ with $p_{i}>p_{j}$.)

Proposition 4. For $s \geq 0$, let $\mathcal{D}_{n}^{(s)}$ denote the set of sequences $\left(u_{1}, \ldots, u_{n}\right)$ satisfying $u_{i} \geq 1$ for all $i, u_{n}=n+s$, and condition (1). Then $\left|\mathcal{D}_{n}^{(s)}\right|=C_{n-1}^{(s)}$.

Proof. Suppose $\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{D}_{n}^{(s)}$. Take $i \in[n-1]$. If $u_{i} \geq 2$, condition (1) applied with $j=n$ implies $s+i \leq 0$ or $s+i \geq u_{i}$. The first inequality cannot hold, so $u_{i} \leq s+i$. But the latter inequality obviously also holds when $u_{i}=1$. Hence, $\left(u_{1}, \ldots, u_{n-1}\right) \in \mathcal{B}_{n-1}^{(s)}$. Apply Proposition 2.

Proposition 5. For $k \geq 0$, let $\mathcal{F}_{n}^{(k)}$ denote the set of sequences $\left(u_{1}, \ldots, u_{n}\right)$ satisfying $1 \leq u_{i} \leq n+k+1$ for all $i, u_{n}>n$, and condition (1). Then $\left|\mathcal{F}_{n}^{(k)}\right|=C_{n}^{(k)}$.

Proof. Clearly, $\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{F}_{n}^{(k)}: u_{n}=n+s\right\} \subseteq \mathcal{D}_{n}^{(s)}$ for $1 \leq s \leq k+1$. On the other hand, for $\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{D}_{n}^{(s)}$, condition (1) implies $u_{i} \leq s+i \leq k+1+i \leq n+k+1$. Hence, the reverse inclusion also holds and $\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{F}_{n}^{(k)}: u_{n}=n+s\right\}=\mathcal{D}_{n}^{(s)}$. The result now follows from Proposition 4 and the identity

$$
\sum_{s=1}^{k+1} C_{n-1}^{(s)}=C_{n}^{(k)}
$$

which can be established, for example, by counting nonnegative paths of $k+n$ upsteps and n downsteps by $s=$ number of steps weakly after the last downstep.

4 Main result

Let \mathcal{A}_{n} denote the set of sequences $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ satisfying $1 \leq u_{i} \leq n$ for all i, and condition (1). The main result, Theorem 1, can now be stated as

Theorem 6. $\left|\mathcal{A}_{n}\right|=\sum_{k=0}^{n-1} C_{k}^{(n-1-k)} C_{n-k}$ for $n \geq 1$.

Proof. Define the statistic X on $\mathbf{u} \in \mathcal{A}_{n}$ by $X=$ largest $i \in[n]$ such that $u_{i}>i$, with $X=0$ if there is no such i. Set $\mathcal{A}_{n, k}=\left\{\mathbf{u} \in \mathcal{A}_{n}: X(\mathbf{u})=k\right\}, 0 \leq k \leq n-1$. We claim $\left|\mathcal{A}_{n, k}\right|=C_{k}^{(n-1-k)} C_{n-k}$, from which the Theorem follows. To see the claim, we have $\mathcal{A}_{n, 0}=\mathcal{B}_{n}$ and Proposition (3) says $\left|\mathcal{B}_{n}\right|=C_{n}$. So the claim holds for $k=0$. Now suppose $k \geq 1$ and $\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{A}_{n, k}$. We have $u_{k}>k$ and, applying condition (1) with $i=k$ and $j \in[k+1, n]$, we have

$$
u_{j}-(j-k) \notin\left[1, u_{k}-1\right] .
$$

Hence, $u_{j}-(j-k) \leq 0$ or $u_{j}-(j-k) \geq u_{k}$, that is, $u_{j} \leq j-k$ or $u_{j} \geq j+u_{k}-k>j$. We can't have $u_{j}>j$, by the maximality in the definition of $X(\mathbf{u})=k$, and so $u_{j} \leq j-k$ for $j \in[k+1, n]$. Now $\left(v_{1}, \ldots, v_{n-k}\right):=\left(u_{k+1}, \ldots, u_{n}\right)$ inherits condition (1) and $v_{i} \leq i$ for $1 \leq i \leq n-k$. Thus $\left(u_{k+1}, \ldots, u_{n}\right) \in \mathcal{B}_{n-k}$.

Also, for $1 \leq i \leq k$, we have $u_{i} \leq n=k+(n-k-1)+1$ and $u_{k}>k$, in other words, $\left(u_{1}, \ldots, u_{k}\right) \in \mathcal{F}_{k}^{(n-k-1)}$. The map $\left(u_{1}, \ldots, u_{n}\right) \rightarrow\left\{\left(u_{1}, \ldots, u_{k}\right),\left(u_{k+1}, \ldots, u_{n}\right)\right\}$ is in fact a bijection from $\mathcal{A}_{n, k}$ to the Cartesian product $\mathcal{F}_{k}^{(n-k-1)} \times \mathcal{B}_{n-k}$. The claim now follows from the counting results of Propositions 3 and 5 .

5 Extensions

Similar methods establish a combinatorial interpretation for the k-shifted Catalan sequence $(0,0, \ldots, 0,1,1,2,5,14, \ldots)$ with k initial 0 's.

Theorem 7. Let $\left(b_{n}\right)_{n \geq 0}$ be the Catalan transform of the k-shifted Catalan sequence. Then $b_{n}=0$ for $n \leq k-1, b_{k}=1$ and, for $n \geq k+1, b_{n}$ is the number of sequences (u_{1}, \ldots, u_{n-k}) satisfying $1 \leq u_{i} \leq n$ and condition (1).

Stefan Forcey [4] gives a combinatorial interpretation for the Catalan transform of the 1-shifted Catalan sequence (A121988 in The On-Line Encyclopedia of Integer Sequences [5]): b_{n} is the number of vertices of the n-th multiplihedron.

References

[1] Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.4, 24 pages.
[2] Richard P. Stanley, Enumerative Combinatorics Vol. 2, Cambridge University Press, 1999. Exercise 6.19 and related material on Catalan numbers are available online at http://www-math.mit.edu/~rstan/ec/ .
[3] Wen-jin Woan, Uniform partitions of lattice paths and Chung-Feller generalizations. Amer. Math. Monthly 108, Issue 6 (2001), 556-559.
[4] Stefan Forcey, Convex hull realizations of the multiplihedra, Topology and its Applications 156, Issue 2 (2008), 326-347.
[5] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

