
Construction of 2-factors in the middle layer of the discrete cube

Torsten Mütze Franziska Weber

Institute of Theoretical Computer Science
ETH Zürich, 8092 Zürich, Switzerland

muetzet@inf.ethz.ch, frweber@student.ethz.ch

Abstract. Define the middle layer graph as the graph whose vertex set consists of
all bitstrings of length 2n + 1 that have exactly n or n + 1 entries equal to 1, with an
edge between any two vertices for which the corresponding bitstrings differ in exactly
one bit. In this work we present an inductive construction of a large family of 2-factors
in the middle layer graph for all n ≥ 1. We also investigate how the choice of certain
parameters used in the construction affects the number and lengths of the cycles in the
resulting 2-factor.

1. Introduction

Consider the n-dimensional cube Qn, the graph with vertex set {0, 1}n (the set of all bitstrings
of length n) and an edge between any two vertices for which the corresponding bitstrings differ
in exactly one bit. The cube has been studied extensively, and it is straightforward to exhibit e.g.
perfect matchings or Hamiltonian cycles in this graph for all n ≥ 1. The situation gets more involved
if we consider subgraphs of Qn, such as the graph induced by all vertices whose bitstrings contain
exactly k or k + 1 entries equal to 1, where 0 ≤ k ≤ n − 1. We denote this graph by Qn(k, k + 1),
and refer to it as a layer of Qn. The graph Qn(k, k + 1) is clearly bipartite, and a straightforward
application of Hall’s theorem proves the existence of a matching that saturates all the vertices in the
smaller of the two partition classes. However, it takes considerable effort to come up with explicit
descriptions of such matchings [Aig73, GK76, KT88, DKS94]. The existence of a Hamiltonian path
or cycle in the middle layer graph Q2n+1(n, n+ 1) for all n ≥ 1 is asserted by the well-known (and
still unproven) middle levels conjecture (also known as revolving door conjecture). An even more
general conjecture due to Lovász [Lov70] asserts that in fact every connected vertex-transitive graph
contains a Hamiltonian path. The middle levels conjecture originated probably with Havel [Hav83]
and Buck and Wiedemann [BW84], but has also been attributed to Dejter, Erdős, Trotter [KT88],
and various others. With the help of a computer it has been verified that Q2n+1(n, n + 1) indeed
contains a Hamiltonian cycle for n ≤ 19 [SSS09, SA11]. It is also known that the middle layer graph
contains a cycle that visits a (1 − o(1))-fraction of all vertices [Joh04]. Unfortunately, attempts to
obtain a Hamiltonian cycle from the union of two perfect matchings have not been successful so far
[DSW88, KT88].

1.1. Our results. In this work we present an inductive construction of a large family of 2-factors in
the middle layer graph Q2n+1(n, n+ 1) for all n ≥ 1 (a 2-factor of a graph G is a 2-regular spanning
subgraph, or equivalently, a family of disjoint cycles visiting all the vertices of G). Our construction
is parametrized by a sequence of parameters (α2i)1≤i≤n, where α2i ∈ {0, 1}i−1, and each of the∏n
i=1 2i−1 = 2(n2) = 2Θ(n2) different parameter sequences yields a different 2-factor in Q2n+1(n, n+1)

(see Theorem 6 below). For comparison, by combining two perfect matchings from the families of
matchings described in [KT88, DKS94], we only obtain at most Θ((n · (2n)!)2) = 2Θ(n logn) different
2-factors.
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By changing the parameter sequence (α2i)1≤i≤n we may control the number and lengths of the
cycles in the resulting 2-factor. We prove that for any choice of the parameter sequence the length
of all cycles in the resulting 2-factor in Q2n+1(n, n + 1) is a multiple of 4n + 2. In particular, the
length of a shortest cycle is at least 4n + 2 (see Theorem 10 below). We also prove that for one
particular choice of the parameter sequence, the resulting 2-factor in Q2n+1(n, n + 1) has |Tn+1|
many cycles, where Tn+1 denotes the set of all plane trees on n+ 1 vertices (we have (|Tn+1|)n≥1 =
(1, 1, 2, 3, 6, 14, 34, 95, 280, 854, . . .), see [OEI11b]). For n ≥ 4, the length of a shortest cycle in this
2-factor is 2(4n+2), the length of a longest cycle is 2n(4n+2), and a (1−o(1))-fraction of all cycles
have length 2n(4n+ 2) (see Theorem 13 below).

When aiming for a 2-factor with few cycles (ideally only a single cycle, which would then be a
Hamiltonian cycle), the advantage of our construction compared to simply combining two perfect
matchings in the middle layer graph, is that the building blocks in our construction are paths, not
just single edges. In fact, with the help of a computer we explored a small fraction of the parameter
space for all n ≤ 14 and thus found many Hamiltonian paths and cycles in Q2n+1(n, n+ 1) for those
values of n (see Section 6 below). Those experiments suggest that the family of 2-factors arising
from our construction is large enough to prove the middle levels conjecture for many more values of
n, if not for infinitely many.

1.2. Organization of this paper. We begin by describing our construction in Section 2. The
proof of a key lemma (Lemma 1 below) which ensures that the construction works as claimed, is
deferred to Section 3. In Section 4 we analyze how different 2-factors arising from different parameter
sequences are. In Section 5 we investigate the number and lengths of the cycles in the 2-factors from
our construction. In Section 6 we briefly discuss the results of our computer experiments.

2. Construction of a 2-factor in the middle layer of Q2n+1

2.1. Definitions and notation. We start by collecting a few basic definitions that will be used
throughout the paper.

Reversing, inverting and concatenating bitstrings. For any bitstring x = (x1, x2, . . . , xn), xi ∈
{0, 1}, we define rev(x) := (xn, xn−1, . . . , x1). Furthermore, setting 0 := 1, 1 := 0, we define
x := (x1, x2, . . . , xn). For bitstrings x and y we denote by x ◦ y the concatenation of x and y. For
any bitstring x we define x0 := () and xk := x ◦ xk−1 for any integer k ≥ 1. For a set of bitstrings
X and a bitstring y we define X ◦ y := {x ◦ y | x ∈ X}. We extend this notion to graphs G whose
vertex set is a set of bitstrings: For any bitstring y we let G ◦ y denote the graph obtained from
G by attaching the bitstring y to every vertex of G (so we have V (G ◦ y) = V (G) ◦ y). Let G be
a family of graphs, all of whose vertex sets are sets of bitstrings. For any bitstring y we define
G ◦ y := {G ◦ y | G ∈ G}, and for any set of bitstrings Y we define G ◦ Y := {G ◦ y | G ∈ G ∧ y ∈ Y }.
The discrete cube and its layers. For any integer n ≥ 1 we let Bn := {0, 1}n denote the set of all
bitstrings of length n. Recall that we defined the n-dimensional cube Qn as the graph with vertex
set Bn and an edge between any two vertices for which the corresponding bitstrings differ in exactly
one bit. For any integer 0 ≤ k ≤ n we let Bn(k) ⊆ Bn denote the set of all bitstrings of length n
with exactly k entries equal to 1 (and the other n − k entries equal to 0). Recall that we defined
the graph Qn(k, k + 1), 0 ≤ k ≤ n − 1, as the subgraph of Qn induced by the vertex sets Bn(k)
and Bn(k + 1), and that we refer to Qn(k, k + 1) as a layer of Qn. In particular, we will refer to
Q2n(k, k + 1) for all k = n, n+ 1, . . . , 2n− 1 as the upper layers of Q2n, and to Q2n+1(n, n+ 1) as
the middle layer of Q2n+1.

Inductive decomposition of the discrete cube. Beside the decomposition of Qn into layers, there is
another important inductive decomposition of this graph. Note that Qn is obtained by taking two
copies of Qn−1, attaching a 0 to all bitstrings in one copy (this yields a copy of the graph Qn−1◦(0)),
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Figure 1. Decomposition of Q2n+2 into four copies of Q2n plus two perfect match-
ings (the top part shows a concrete example, the lower part a schematic representation
of the general structure). The light grey regions show the upper layers of Q2n and
Q2n+2 and the dark grey region the middle layer of Q2n+1 ◦ (1).

attaching a 1 to all bitstrings in the other copy (this yields a copy of the graph Qn−1 ◦ (1)) and
connecting corresponding vertices by a perfect matching Mn (so the bitstrings corresponding to the
end vertices of every edge of Mn differ exactly in the last bit). Unrolling this inductive construction
for another step, Qn is obtained from copies ofQn−2◦(0, 0), Qn−2◦(1, 0), Qn−2◦(0, 1) andQn−2◦(1, 1)
plus two perfect matchings Mn and M ′n := Mn−1 ◦ (0) ∪Mn−1 ◦ (1). As we shall see, our inductive
construction of a 2-factor in the middle layer of Q2n+1 is based on this inductive decomposition of
Q2n+2 into four copies of Q2n plus the two perfect matchings M2n+2 and M ′2n+2 (see Figure 1).

Oriented paths, dangling paths. In our approach we construct certain paths as subgraphs of layers
of the cube. The order of vertices along those paths is important for us, i.e., P = (v1, v2, . . . , vl) is
a different oriented path than P ′ = (vl, vl−1, . . . , v1). For an oriented path P = (v1, v2, . . . , vl) we
define F (P ) := v1, S(P ) := v2 and L(P ) := vl, as the first, second and last vertex of P , respectively.
We extend this notion to a family P of oriented paths by setting F (P) := {F (P ) | P ∈ P},
S(P) := {S(P ) | P ∈ P} and L(P) := {L(P ) | P ∈ P}.
We refer to a path P in Qn(k, k+ 1) that starts and ends at a vertex in the set Bn(k) as a dangling
path. As Qn(k, k + 1) is bipartite, every second vertex of such a path P is contained in the set
Bn(k + 1) (and P has even length).

2.2. Our construction. The construction is parametrized by some sequence (α2i)i≥1, α2i ∈ {0, 1}i−1.
Given this sequence, we inductively construct a family P2n(k, k + 1) of disjoint dangling oriented
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paths in Q2n(k, k+1) for all n ≥ 1 and all k = n, n+1, . . . , 2n−1 such that the following conditions
hold:

(i) The paths in P2n(n, n+ 1) visit all vertices in the sets B2n(n+ 1) and B2n(n).
(ii) For k = n+1, . . . , 2n−1, the paths in P2n(k, k+1) visit all vertices in the set B2n(k+1), and the

only vertices not visited in the set B2n(k) are exactly the elements in the set S(P2n(k− 1, k)).

For simplicity we do not make the dependence of the families P2n(k, k + 1) from the parameters
α2, α4, . . . explicit, but we will discuss those dependencies in detail in Section 2.3 below.

Induction basis n = 1 (Q2): For the induction basis we define

P2(1, 2) := {((1, 0), (1, 1), (0, 1))} (1)

(the family P2(1, 2) consists only of a single oriented path on three vertices). It is easily checked
that this family of paths in the upper layer of Q2 satisfies the conditions (i) and (ii) (condition (ii)
is satisfied trivially).

Induction step n → n + 1 (Q2n → Q2n+2), n ≥ 1: The inductive construction consists of two
intermediate steps. For the reader’s convenience those steps are illustrated in Figure 2.

First intermediate step: Construction of a 2-factor in the middle layer of Q2n+1. Using only the
paths in the family P2n(n, n+ 1) and the parameter α2n = (α2n(1), . . . , α2n(n− 1)) ∈ {0, 1}n−1 we
first construct a 2-factor in the middle layer of Q2n+1.

Note that the layer graphs Q2n(n, n+ 1) and Q2n(n− 1, n) are isomorphic to each other. We define
an isomorphism fα2n between these graphs as follows: Let πα2n denote the permutation on the set
B2n = {0, 1}2n that swaps any two adjacent bits at positions 2i and 2i+ 1 for all i = 1, . . . , n− 1, if
and only if α2n(i) = 1, and that maps the bits at position 1 and 2n to itself. If e.g. α2n = (0, . . . , 0),
then no bits are swapped and πα2n is simply the identity permutation. For any bitstring x ∈ B2n

we then define
fα2n(x) := rev(πα2n(x)) . (2)

The fact that this mapping is indeed an isomorphism between the graphs Q2n(n, n+1) and Q2n(n−
1, n) follows easily by observing that rev(πα2n(•)) is an automorphism of the graph Q2n(n, n + 1)
(this mapping just permutes the bits).

We will later prove the following crucial lemma (see the left hand side of Figure 2).

Lemma 1. For any n ≥ 1 and any α2n ∈ {0, 1}n−1, we have

fα2n(F (P2n(n, n+ 1))) = F (P2n(n, n+ 1)) and fα2n(L(P2n(n, n+ 1))) = L(P2n(n, n+ 1)) , (3)

where P2n(n, n + 1) is the family of paths in Q2n(n, n + 1) constructed in previous steps for an
arbitrary sequence of parameters α2, α4, . . . , α2n−2, α2i ∈ {0, 1}i−1.

By the decomposition of Q2n+1 into two copies of Q2n plus the perfect matching M2n+1 described
in Section 2.1, the middle layer of Q2n+1 can be decomposed into the graphs Q2n(n, n + 1) ◦ (0)
and Q2n(n− 1, n) ◦ (1) plus the edges from M2n+1 that connect the vertices in the set B2n(n) ◦ (0)
in the first graph to the vertices in the set B2n(n) ◦ (1) in the second graph (see the right hand
side of Figure 2). Denoting by MFL

2n+1 the edges from M2n+1 that have one end vertex in the set(
F (P2n(n, n+ 1)) ∪ L(P2n(n, n+ 1))

)
◦ (0) ⊆ B2n(n) ◦ (0) (and the other in the set

(
F (P2n(n, n+

1)) ∪ L(P2n(n, n+ 1))
)
◦ (1) ⊆ B2n(n) ◦ (1)), by Lemma 1 the graph

C2n+1 := P2n(n, n+ 1) ◦ (0) ∪ fα2n(P2n(n, n+ 1)) ◦ (1) ∪MFL
2n+1 (4)

is a 2-factor in the middle layer of Q2n+1, with the additional property that on every cycle of C2n+1,
every edge of the form (F (P ), S(P ))◦ (0) for some P ∈ P2n(n, n+1) is oriented the same way. Even
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MFL

2n+1 ◦ (1)

MS
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Figure 2. Schematic illustration of the induction step. The light grey regions show
the upper layers of Q2n and Q2n+2 and the dark grey region the middle layer of
Q2n+1 ◦ (1). For each dangling oriented path P = (v1, v2, . . . , vl) contained in one
of the families of paths in one of the layers, only the vertices F (P ) = v1 (black),
S(P ) = v2 (grey) and L(P ) = vl (white) are shown, and the path between the
vertices S(P ) = v2 and L(P ) = vl is represented by a dotted black line (even if
this path contains more than one edge). The crossed-out edges are deleted from the
2-factor in the middle layer of Q2n+1◦(1) to construct the paths in P2n+2(n+1, n+2).

though we are eventually only interested in the 2-factor C2n+1 defined in (4), we need to specify how
to proceed with the inductive construction of the families of paths P2n+2(k, k + 1).

Second intermediate step: Splitting up the 2-factor into dangling paths. We now desribe how the
families of paths P2n+2(k, k + 1) for all k = n + 1, n + 2, . . . , 2n + 1 satisfiying the conditions (i)
and (ii) are defined, using the previously constructed families P2n(k, k + 1) and the 2-factor C2n+1

defined in the first intermediate step.

Consider the decomposition of Q2n+2 into copies of Q2n◦(0, 0), Q2n◦(1, 0), Q2n◦(0, 1) and Q2n◦(1, 1)
plus the two perfect matchings M2n+2 and M ′2n+2 as described in Section 2.1. For all k = n +
2, . . . , 2n+ 1 we define

P2n+2(k, k + 1) := P2n(k, k + 1) ◦ (0, 0) ∪ P2n(k − 1, k) ◦ (1, 0)

∪ P2n(k − 1, k) ◦ (0, 1) ∪ P2n(k − 2, k − 1) ◦ (1, 1) , (5)

where we use the convention P2n(2n, 2n+ 1) := ∅ and P2n(2n+ 1, 2n+ 2) := ∅ to unify treatment
of the two uppermost layers P2n+2(2n, 2n+ 1) and P2n+2(2n+ 1, 2n+ 2) (see Figure 2). Note that
so far none of the edges from the matchings M2n+2 or M ′2n+2 is used.

The definition of the family P2n+2(n+ 1, n+ 2) is slightly more involved. Note that the layer graph
Q2n+2(n + 1, n + 2) can be decomposed into Q2n+1(n + 1, n + 2) ◦ (0) and Q2n+1(n, n + 1) ◦ (1)
plus the edges from M2n+2 that connect the vertices in the set B2n+1(n + 1) ◦ (0) in the first
graph to the vertices in the set B2n+1(n + 1) ◦ (1) in the second graph. The first graph can be
further decomposed into Q2n(n + 1, n + 2) ◦ (0, 0) and Q2n(n, n + 1) ◦ (1, 0) plus some matching
edges that are not relevant here. The second graph is the middle layer of Q2n+1 ◦ (1). Let C−2n+1

denote the graph obtained from the 2-factor C2n+1 defined in (4) by removing every edge of the form
(F (P ), S(P )) ◦ (0) for some P ∈ P2n(n, n + 1) (those edges are crossed out in Figure 2). As on
every cycle of C2n+1 every such edge is oriented the same way, C−2n+1 is a family of paths (visiting
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all vertices of the middle layer of Q2n+1), with the property that each of those paths starts at a
vertex of the form S(P ) ◦ (0) and ends at a vertex of the form F (P ′) ◦ (0) for two (not necessarily
distinct) paths P, P ′ ∈ P2n(n, n + 1). Letting MS

2n+2 denote the edges from M2n+2 that have
one end vertex in the set S(P2n(n, n + 1)) ◦ (0, 0) ⊆ B2n(n + 1) ◦ (0, 0) (and the other in the set
S(P2n(n, n+ 1)) ◦ (0, 1) ⊆ B2n(n+ 1) ◦ (0, 1)), it follows that

P ′2n+2 := MS
2n+2 ∪ C−2n+1 ◦ (1) (6)

is a family of dangling oriented paths, where we choose the orientation of each path such that the
edge from the set MS

2n+2 is the first edge (see Figure 2). Note that we have

F (P ′2n+2) = S(P2n(n, n+ 1)) ◦ (0, 0) , (7a)

S(P ′2n+2) = S(P2n(n, n+ 1)) ◦ (0, 1) , (7b)

L(P ′2n+2) = F (P2n(n, n+ 1)) ◦ (0, 1) . (7c)

We then define

P2n+2(n+ 1, n+ 2) := P2n(n+ 1, n+ 2) ◦ (0, 0) ∪ P2n(n, n+ 1) ◦ (1, 0) ∪ P ′2n+2 , (8)

where in the case n = 1 we use the convention P2(2, 3) := ∅.
We now argue that the families of paths P2n+2(k, k+ 1), k = n+ 1, n+ 2, . . . , 2n+ 1, defined in (5)
and (8) satisfy the conditions (i) and (ii). For every k = n + 3, . . . , 2n + 1, by the definition in (5)
and by induction, the paths in P2n+2(k, k + 1) visit all vertices in the set

B2n(k + 1) ◦ (0, 0) ∪B2n(k) ◦ (1, 0) ∪B2n(k) ◦ (0, 1) ∪B2n(k − 1) ◦ (1, 1) = B2n+2(k + 1) ,

and the only vertices not visited in the set B2n+2(k) are exactly the elements in the set

S(P2n(k − 1, k)) ◦ (0, 0) ∪ S(P2n(k − 2, k − 1)) ◦ (1, 0)

∪ S(P2n(k − 2, k − 1)) ◦ (0, 1) ∪ S(P2n(k − 3, k − 2)) ◦ (1, 1) .

As for those k the family of paths P2n+2(k − 1, k) in the layer below is also defined via (5), this set
is equal to S(P2n+2(k − 1, k)), proving that P2n+2(k, k + 1) indeed satisfies condition (ii).

By the definition in (5) and by induction, the paths in the family P2n+2(n+2, n+3) visit all vertices
in the set B2n+2(n + 3), and the only vertices not visited in the set B2n+2(n + 2) are exactly the
elements in the set

S(P2n(n+ 1, n+ 2)) ◦ (0, 0) ∪ S(P2n(n, n+ 1)) ◦ (1, 0) ∪ S(P2n(n, n+ 1)) ◦ (0, 1) .

By the definition in (8) and by (7b) this set is equal to S(P2n+2(n + 1, n + 2)), proving that
P2n+2(n+ 2, n+ 3) indeed satisfies condition (ii).

It remains to show that the family P2n+2(n + 1, n + 2) satisfies condition (i). This follows directly
from the definitions in (6) and (8) and by induction, using that the paths in C−2n+1 ◦ (1) visit all
vertices in the middle layer of Q2n+1 ◦ (1) (recall that those paths were obtained from a 2-factor
in this graph), and that the only vertices in Q2n(n + 1, n + 2) ◦ (0, 0) not visited by the paths in
P2n(n+ 1, n+ 2) ◦ (0, 0) are exactly the first vertices of the paths P ′2n+2 (cf. (7a)).

2.3. Dependence on the parameter sequence. It follows inductively from our construction that
for all k = n, . . . , 2n−1, the family of paths P2n(k, k+1) depends on all parameters α2, α4, . . . , α2(2n−1−k),
and that the 2-factor C2n+1 defined in (4) depends on all parameters α2, α4, . . . , α2n. As α2i ∈
{0, 1}i−1, our construction therefore yields at most

∏n
i=1 2i−1 = 2(n2) different 2-factors in the mid-

dle layer of Q2n+1. We will show later (see Theorem 6 below) that all of those 2-factors are indeed
different. The most interesting question is of course how the chosen parameter sequence affects the
number and lengths of the cycles in the 2-factor C2n+1 (see Section 5 below). Of course, the number
and/or the lengths of the cycles might be the same even for different parameter sequences.
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Even though the paths in the families P2n(k, k + 1) depend on the parameter sequence (α2i)i≥1, it
follows from Lemma 1 that the sets of first, second and last vertices of paths from those families do
not depend on the sequence (α2i)i≥1. In particular, the number of paths in the families P2n(k, k+1)
is independent of (α2i)i≥1 (those numbers are already fixed by the conditions (i) and (ii) from
Section 2.2 and the cardinalities of the sets B2n(k), k = n, n + 1, . . . , 2n). Note moreover that the
pairs (F (P ), S(P )) for all paths P ∈ P2n(k, k + 1) are the same regardless of the sequence (α2i)i≥1

(which last vertex L(P ) from the set of all last vertices belongs to this path does of course depend on
the chosen parameter sequence). As we will see later, even the length of those paths is independent
of the parameter sequence (see Lemma 9 below).

3. Correctness of the construction

In this section we prove Lemma 1, thus showing that our construction described in the last section
indeed works as claimed. Our proof strategy is as follows: After setting up some machinery that
relates bitstrings to another family of combinatorial objects, namely lattice paths, we consider an
abstract recursion over sets of bitstrings and show that the solutions of this recursion correspond
to certain families of lattice paths. It will then be easy to convince ourselves that the sets of first,
second and last vertices of the oriented paths in the families P2n(k, k+1) arising in our construction
satisfy exactly this abstract recursion, which allows us to apply our knowledge from the world of
lattice paths and to derive Lemma 1.

3.1. Bitstrings and lattice paths. In this section we introduce some terminology related to lattice
paths in Z2, explain the relation of those combinatorial objects to bitstrings (these are the vertex
labels of Qn and thus the objects our construction works with), and establish an invariance property
of certain families of lattice paths (Lemma 2 below).

Various families of lattice paths. For any integer n ≥ 0 we denote by Pn the set of lattice paths
in Z2 that start at (0, 0) and move n steps, each of which changes the current coordinate by either
(+1,+1) or (+1,−1). We refer to such a step as an upstep or downstep, respectively. For any
integers n, k ≥ 0 we let Dn(k) denote the set of lattice paths from Pn that never move below the line
y = 0 and that have exaktly k upsteps1. Note that such a path has n− k downsteps and therefore
ends at (n, 2k− n). We define D>0

n (k) ⊆ Dn(k) as the set of lattice paths that have no point of the
form (x, 0), 1 ≤ x ≤ n, and D=0

n (k) ⊆ Dn(k) as the set of lattice paths that have at least one point
of the form (x, 0), 1 ≤ x ≤ n. We clearly have Dn(k) = D=0

n (k) ∪ D>0
n (k). Furthermore, we let

D−n (k) denote the set of lattice paths from Pn that move below y = 0 exactly once and that have
exactly k upsteps. Note that such a path has exactly one point of the form (x,−1) and ends at
(n, 2k − n). Depending on the values of n and k the sets of lattice paths we just defined might be
empty. E.g., we have D>0

2n (n) = ∅ and therefore D2n(n) = D=0
2n (n).

Given two lattice paths p and q, we denote by p ◦ q the lattice path obtained by gluing the first
point of q onto the last point of p (the first point of p ◦ q is the same as the first point of p). For a
set of lattice paths P and a lattice path q we define P ◦ q := {p ◦ q | p ∈ P}. We sometimes identify
a lattice path p ∈ Pn with its step sequence p = (p1, . . . , pn), pi ∈ {↗,↘}, where pi =↗ if the i-th
step of p is an upstep and pi =↘ if the i-th step of p is a downstep. Using these notations we clearly

1Our notation is motivated by the fact that the lattice paths in the set D2n(n), which start at (0, 0), end at (2n, 0)
and never move below the line y = 0, are commonly known as Dyck paths in the literature.
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have for ∗ ∈ {= 0,−}, all n ≥ 1 and all k = n+ 2, . . . , 2n+ 1 that

D∗2n+2(k) = D∗2n(k) ◦ (↘,↘) ∪D∗2n(k − 1) ◦ (↗,↘)

∪D∗2n(k − 1) ◦ (↘,↗) ∪D∗2n(k − 2) ◦ (↗,↗) , (9a)

D>0
2n+2(k + 1) = D>0

2n (k + 1) ◦ (↘,↘) ∪D>0
2n (k) ◦ (↗,↘)

∪D>0
2n (k) ◦ (↘,↗) ∪D>0

2n (k − 1) ◦ (↗,↗) . (9b)

Similarly, for all n ≥ 0 we have

D=0
2n+2(n+ 1) =

(
D=0

2n (n+ 1) ∪D>0
2n (n+ 1)

)
◦ (↘,↘) ∪D=0

2n (n) ◦ (↗,↘) , (9c)

D>0
2n+2(n+ 2) = D>0

2n (n+ 2) ◦ (↘,↘) ∪D>0
2n (n+ 1) ◦ (↗,↘) ∪D>0

2n (n+ 1) ◦ (↘,↗) , (9d)

D−2n+2(n+ 1) = D−2n(n+ 1) ◦ (↘,↘) ∪D−2n(n) ◦ (↗,↘) ∪D=0
2n (n) ◦ (↘,↗) . (9e)

Note that all the unions in (9) are disjoint and that some of the sets participating in the unions
might be empty.

Bijection ϕ between bitstrings and lattice paths. For any x ∈ Bn = {0, 1}n, x = (x1, . . . , xn), we
define ϕ(x) as the lattice path from Pn whose i-th step is an upstep if xi = 1 and a downstep if
xi = 0. Note that the step sequence of ϕ(x) is obtained from (x1, . . . , xn) by replacing every entry
1 by ↗ and every entry 0 by ↘. This mapping is clearly a bijection between Bn and Pn.

We extend the operation of reversing and inverting a bitstring to lattice paths by defining the
mapping rev : Pn → Pn as

rev := ϕ ◦ rev ◦ ϕ−1 (10)
(we write the composition of mappings g and h as g ◦h, where (g ◦h)(x) := g(h(x))). Note that rev
as defined in (10) simply mirrors every lattice path from the set P2n with endpoint (2n, 0) along the
axis x = n.

In a similar fashion we also extend the mappings πα2n and fα2n , defined around (2) as mappings on
the set B2n, to mappings on the set P2n, by defining for any α2n ∈ {0, 1}n−1

πα2n := ϕ ◦ πα2n ◦ ϕ−1 (11)

and
fα2n := ϕ ◦ fα2n ◦ ϕ−1(2)

=ϕ ◦ rev ◦ πα2n ◦ ϕ−1(10),(11)
= rev ◦ πα2n . (12)

Note that πα2n as defined in (11) swaps the order of any two adjacent steps 2i and 2i + 1, i =
1, . . . , n− 1, of a given lattice path from the set P2n, if and only if α2n(i) = 1.

Lemma 2. For any n ≥ 1 and any α2n ∈ {0, 1}n−1 the mapping fα2n : P2n → P2n defined in (12)
maps each of the sets D=0

2n (n) and D−2n(n) onto itself. Furthermore, for any lattice path p ∈ D−2n(n),
denoting by x and x′ the abscissas where p and fα2n(p) touch the line y = −1, respectively, we have
x′ = 2n− x.

Note that even though the sets D=0
2n (n) and D−2n(n) are invariant under the mapping fα2n , changing

the parameter α2n will of course change the images of certain lattice paths from those sets.

Proof. The first part of the lemma follows from (12) if we can show that each of the mappings
rev : P2n → P2n and πα2n : P2n → P2n maps each of the sets D=0

2n (n) and D−2n(n) onto itself.

For the mapping rev this is trivial, as rev simply mirrors every lattice path from the set P2n with
endpoint (2n, 0) along the axis x = n.

Note that the mapping πα2n leaves the y-coordinates of a given lattice path at all odd abscissas
x = 1, 3, . . . , 2n − 1 invariant, and decreases the y-coordinates at all even abscissas x = 2i, i =
1, . . . , n − 1, by −2 if and only if α2n(i) = 1 and the steps 2i and 2i + 1 of the path are an upstep
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and a downstep, respectively. This mapping clearly leaves the y-coordinates at the abscissas x = 0
and x = 2n invariant as well.

Observe that for every lattice path from the set D=0
2n (n) or from the set D−2n(n), the y-coordinates

at all odd abscissas x = 1, 3, . . . , 2n − 1 are odd, and the y-coordinates at all even abscissas x =
0, 2, . . . , 2n are even (in particular, the abscissa where a lattice path from the set D−2n(n) touches
the line y = −1 is odd). This property implies that for any pair 2i and 2i + 1, 1 ≤ i ≤ n − 1, of
an upstep and a downstep on such a path, the point (2i, y′) on the path satisfies y′ ≥ 2 (y′ must
be even, and if it were 0 or less, then this path would have at least two points with a negative
y-coordinate). Using these observations and the above-mentioned properties how the mapping πα2n

affects the y-coordinates at the odd and even abscissas, it follows that this mapping indeed maps
each of the sets D=0

2n (n) and D−2n(n) onto itself. This proves the first part of the lemma.

The second part of the lemma follows immediately from the observation that the point (x,−1),
0 ≤ x ≤ 2n, on a lattice path p ∈ D−2n(n) must have an odd abscissa and is therefore invariant under
the mapping πα2n . �

3.2. An abstract recursion. In this section we define an abstract recursion over sets of bitstrings
and show that the solutions of this recursion correspond to certain families of lattice paths (Lemma 3
below).

For all n ≥ 1 and all k = n, n + 1, . . . , 2n − 1 we define sets of bitstrings F2n(k, k + 1) ⊆ B2n(k),
S2n(k, k + 1) ⊆ B2n(k + 1) and L2n(k, k + 1) ⊆ B2n(k) recursively as follows:

For n = 1 we define

F2(1, 2) := {(1, 0)} , S2(1, 2) := {(1, 1)} , L2(1, 2) := {(0, 1)} . (13)

For any n ≥ 1 and all k = n+ 2, . . . , 2n+ 1 we define

F2n+2(k, k + 1) := F2n(k, k + 1) ◦ (0, 0) ∪ F2n(k − 1, k) ◦ (1, 0)

∪ F2n(k − 1, k) ◦ (0, 1) ∪ F2n(k − 2, k − 1) ◦ (1, 1) , (14a)
S2n+2(k, k + 1) := S2n(k, k + 1) ◦ (0, 0) ∪ S2n(k − 1, k) ◦ (1, 0)

∪ S2n(k − 1, k) ◦ (0, 1) ∪ S2n(k − 2, k − 1) ◦ (1, 1) , (14b)
L2n+2(k, k + 1) := L2n(k, k + 1) ◦ (0, 0) ∪ L2n(k − 1, k) ◦ (1, 0)

∪ L2n(k − 1, k) ◦ (0, 1) ∪ L2n(k − 2, k − 1) ◦ (1, 1) , (14c)

where we use the convention F2n(2n, 2n + 1) := S2n(2n, 2n + 1) := L2n(2n, 2n + 1) := ∅ and
F2n(2n+ 1, 2n+ 2) := S2n(2n+ 1, 2n+ 2) := L2n(2n+ 1, 2n+ 2) := ∅.
Furthermore, for any n ≥ 1 we define

F2n+2(n+ 1, n+ 2) := F2n(n+ 1, n+ 2) ◦ (0, 0) ∪ F2n(n, n+ 1) ◦ (1, 0) ∪ S2n(n, n+ 1) ◦ (0, 0) ,
(15a)

S2n+2(n+ 1, n+ 2) := S2n(n+ 1, n+ 2) ◦ (0, 0) ∪ S2n(n, n+ 1) ◦ (1, 0) ∪ S2n(n, n+ 1) ◦ (0, 1) ,
(15b)

L2n+2(n+ 1, n+ 2) := L2n(n+ 1, n+ 2) ◦ (0, 0) ∪ L2n(n, n+ 1) ◦ (1, 0) ∪ F2n(n, n+ 1) ◦ (0, 1) ,
(15c)

where in the case n = 1 we use the convention F2(2, 3) := S2(2, 3) := L2(2, 3) := ∅.
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Lemma 3. For any n ≥ 1 and all k = n, n+ 1, . . . , 2n− 1 we have

ϕ(F2n(k, k + 1)) = D=0
2n (k) , (16a)

ϕ(S2n(k, k + 1)) = D>0
2n (k + 1) , (16b)

ϕ(L2n(k, k + 1)) = D−2n(k) , (16c)

where the sets F2n(k, k + 1), S2n(k, k + 1) and L2n(k, k + 1) are defined in (13), (14) and (15).

Note that all unions in (14) and (15) are disjoint: This is obvious for the definitions in (14), (15b)
and (15c), as the two-bit strings appended to the bitstrings in the sets participating in each of the
unions are distinct. For the definition in (15a) this follows from Lemma 3, noting that by (16a) and
(16b) the sets F2n(n+ 1, n+ 2) and S2n(n, n+ 1) participating in the union correspond to the sets
D=0

2n (n+ 1) and D>0
2n (n+ 1) and are therefore disjoint.

Proof. We argue by induction over n. The fact that all three claimed relations hold for n = 1 follows
immediately from (13). For the induction step let n ≥ 1 be fixed. We prove that the statement of
the lemma holds for n+ 1 assuming that it holds for n. We distinguish the cases n+ 2 ≤ k ≤ 2n+ 1
and k = n+ 1.

For k = n+ 2, . . . , 2n+ 1 we have

ϕ(F2n+2(k, k + 1))
(14a)
= ϕ(F2n(k, k + 1) ◦ (0, 0)) ∪ ϕ(F2n(k − 1, k) ◦ (1, 0))

∪ ϕ(F2n(k − 1, k) ◦ (0, 1)) ∪ ϕ(F2n(k − 2, k − 1)) ◦ (1, 1))

(16a)
= D=0

2n (k) ◦ (↘,↘) ∪D=0
2n (k − 1) ◦ (↗,↘)

∪D=0
2n (k − 1) ◦ (↘,↗) ∪D=0

2n (k − 2) ◦ (↗,↗)
(9a)
= D=0

2n+2(k) ,

where we used the induction hypothesis in the second step. The proof that also the last two relations
stated in the lemma hold in this case goes along very similar lines, using (14b), (16b) and (9b) in
the first, second and third step, or (14c), (16c) and (9a), respectively. We omit the details here.

For the case k = n+ 1 we obtain

ϕ(F2n+2(n+ 1, n+ 2))

(15a)
= ϕ(F2n(n+ 1, n+ 2) ◦ (0, 0)) ∪ ϕ(F2n(n, n+ 1) ◦ (1, 0)) ∪ ϕ(S2n(n, n+ 1)) ◦ (0, 0))

(16a),(16b)
=

(
D=0

2n (n+ 1) ∪D>0
2n (n+ 1)

)
◦ (↘,↘) ∪D=0

2n (n) ◦ (↗,↘)
(9c)
= D=0

2n+2(n+ 1) ,

where we used the induction hypothesis in the second step. In a similar fashion we obtain

ϕ(S2n+2(n+ 1, n+ 2))

(15b)
= ϕ(S2n(n+ 1, n+ 2) ◦ (0, 0)) ∪ ϕ(S2n(n, n+ 1) ◦ (1, 0)) ∪ ϕ(S2n(n, n+ 1) ◦ (0, 1))

(16b)
= D>0

2n (n+ 2) ◦ (↘,↘) ∪D>0
2n (n+ 1) ◦ (↗,↘) ∪D>0

2n (n+ 1) ◦ (↘,↗)
(9d)
= D>0

2n+2(n+ 2)

and
ϕ(L2n+2(n+ 1, n+ 2))

(15c)
= ϕ(L2n(n+ 1, n+ 2) ◦ (0, 0)) ∪ ϕ(L2n(n, n+ 1) ◦ (1, 0)) ∪ ϕ(F2n(n, n+ 1) ◦ (0, 1))

(16a),(16c)
= D−2n(n+ 1) ◦ (↘,↘) ∪D−2n(n) ◦ (↗,↘) ∪D=0

2n (n) ◦ (↘,↗)
(9e)
= D−2n+2(n+ 1) .

This completes the proof. �
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3.3. Proof of Lemma 1. We introduce the abbreviations

F2n(k, k + 1) := F (P2n(k, k + 1)) , (17a)
S2n(k, k + 1) := S(P2n(k, k + 1)) , (17b)
L2n(k, k + 1) := L(P2n(k, k + 1)) (17c)

for the sets of first, second and last vertices of the oriented paths in the families P2n(k, k+1) arising
in our construction.

Proof. Observe that the sets F2n(k, k + 1), S2n(k, k + 1) and L2n(k, k + 1) defined in (17) satisfy
exactly the recursive relations in (13), (14) and (15) (recall that those sets are independent of the
parameter sequence (α2i)i≥1 used in our construction): This can be seen by comparing (1) with
(13), (5) with (14) and finally (8) with (15), in the last step also using (7).

We may thus apply Lemma 3, and using the relations (16a) and (16c) for k = n, we obtain that
proving (3) is equivalent to proving that the mapping fα2n defined in (12) satisfies

fα2n(D=0
2n (n)) = D=0

2n (n) and fα2n(D−2n(n)) = D−2n(n) ,

which is exactly the assertion of Lemma 2. �

Remark 4. Using the abbreviations defined in (17) we may and will from now on use Lemma 3 as
a statement about the sets of first, second and last vertices of the oriented paths in the families
P2n(k, k + 1) arising in our construction (rather than as a statement about abstractly defined sets
of bitstrings).

Remark 5. It is not hard to deduce from the proof of Lemma 1 and Lemma 2 that the mappings fα2n

defined in (2) and parametrized by α2n ∈ {0, 1}n−1 are in fact the only isomorphisms between the
graphs Q2n(n, n+ 1) and Q2n(n− 1, n) that satisfy the invariance condition in (3) which is crucial
for our construction. In fact, these mappings are even the only isomorphisms satisfying the slightly
weaker invariance condition

fα2n

(
F (P2n(n, n+ 1)) ∪ L(P2n(n, n+ 1))

)
= F (P2n(n, n+ 1)) ∪ L(P2n(n, n+ 1))

which could potentially also be exploited for the construction. In this sense our parametrization
already captures the maximum possible freedom inherent in the construction.

4. How different are the 2-factors from different parameter sequences?

In this section we first show that different parameter sequences used in our construction indeed yield
different 2-factors in the middle layer of Q2n+1 (Theorem 6 below). We then consider the question
which 2-factors obtained from our construction are mapped onto each other under automorphisms
of Q2n+1(n, n+ 1) (Proposition 7 below).

Theorem 6. For any n ≥ 1 and any two different parameter sequences (α2i)1≤i≤n, (α′2i)1≤i≤n,
α2i, α

′
2i ∈ {0, 1}i−1, the 2-factors C2n+1 and C′2n+1 defined in Section (2.2) for these parameter

sequences, respectively, are different subgraphs of Q2n+1(n, n+ 1).

Proof. For the reader’s convenience, Figure 3 illustrates the notations used in the proof.

We first assume that the sequences (α2i)1≤i≤n and (α′2i)1≤i≤n differ only in their respective last
entry α2n and α′2n, and show that the resulting 2-factors C2n+1 and C′2n+1 are different. We then
show that this difference propagates through all further construction steps (when both parameter
sequences are extended arbitrarily), which is enough to prove the statement of the lemma in full
generality.
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Q2n ◦ (0) Q2n ◦ (1)Q2n+1

MS
2n+2

MFL
2n+1P2n(n, n+ 1) ◦ (0)

B2n(n) ◦ (0)

B2n(n) ◦ (1)
e

C C ′

v = fα2n(F (P )) ◦ (1)

fα2n(P ) ◦ (0)

fα2n(P ) ◦ (1)

fα′
2n
(P ′) ◦ (0)

fα′
2n
(P ′) ◦ (1)

fα′
2n
(P2n(n, n+ 1)) ◦ (0)

fα′
2n
(P2n(n, n+ 1)) ◦ (1)

Figure 3. Notations used in the proof of Theorem 6.

So let P2n(k, k + 1), k = n, n + 1, . . . , 2n − 1, denote the families of oriented paths as defined by
our construction from Section 2.2 for the parameter sequence (α2i)1≤i≤n−1 = (α′2i)1≤i≤n−1. By
Lemma 3 we have ϕ(S(P2n(n, n + 1))) = D>0

2n (n + 1) (recall Remark 4), implying that there is a
path P ∈ P2n(n, n+ 1) with S(P ) = (1) ◦ (1, 0)n−1 ◦ (1). Note that P satisfies the condition

fα2n(S(P )) /∈ fα′2n(S(P2n(n, n+ 1))) (18)

(recall the definition in (2)). Consider the vertex v := fα2n(F (P )) ◦ (1) ∈ B2n(n) ◦ (1) and let C
and C ′ denote the cycles from C2n+1 or C′2n+1, respectively, that contain the edge e from MFL

2n+1

which ends at v (cf. (4)). So C and C ′ share the edge e, the next edge on C incident to v is
fα2n((F (P ), S(P )))◦ (1), and the next edge on C ′ incident to v is given by fα′2n((F (P ′), S(P ′)))◦ (1)

for some P ′ ∈ P2n(n, n + 1) with fα′2n(F (P ′)) ◦ (1) = v (recall (3)). But by (18) those edges are
different in C and C ′, proving that C2n+1 and C′2n+1 are different subgraphs of Q2n+1(n, n+ 1).

Suppose the 2-factors C2n+1 and C′2n+1 are used for further construction steps by splitting them up
as described in Section 2.2, and consider the respective families of oriented paths defined in (6).
Note that both of these families contain an oriented path whose last edge is e ◦ (1), but whose
second to last edge is different, namely fα2n((F (P ), S(P ))) ◦ (1, 1) and fα′2n((F (P ′), S(P ′))) ◦ (1, 1),
respectively. By the definition in (8) this difference propagates to the path families in the layer
Q2n+2(n+ 1, n+ 2), and hence also through all further construction steps (regardless of how the two
parameter sequences are extended). �

The next proposition identifies pairs of parameter sequences for which the resulting 2-factors are
mapped onto each other under automorphisms of Q2n+1(n, n + 1) (in particular, the number and
lengths of the cycles in each of the 2-factors are the same). Note however that even if no such
automorphism exists, the number and/or the lengths of the cycles in certain 2-factors from our
construction could nevertheless be the same.

Proposition 7. Let n ≥ 1 and let (α2i)1≤i≤n and (α′2i)1≤i≤n, α2i, α
′
2i ∈ {0, 1}i−1, be two parameter

sequences satisfying α2i = α′2i for all 1 ≤ i ≤ n−1 and rev(α2n) = α′2n. Let C2n+1 and C′2n+1 denote
the 2-factors defined in Section 2.2 for these parameter sequences, respectively. Then the mapping
τα′2n : B2n+1 → B2n+1, defined by

(x1, . . . , x2n, x2n+1) 7→
(
fα′2n(x1, . . . , x2n), x2n+1

)
, (19)

where fα′2n is defined in (2), is an automorphism of Q2n+1(n, n+ 1) that maps C2n+1 onto C′2n+1.
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For any parameter sequence (α2i)1≤i≤n with rev(α2n) = α2n, Proposition 7 implies that the mapping
τα2n is an automorphism of Q2n+1(n, n+ 1) that maps the 2-factor C2n+1 defined for this parameter
sequence onto itself.

Proof. The mapping τα′2n is clearly an automorphism of Q2n+1(n, n+1) (this mapping just permutes
and inverts the bits). It remains to show that τα′2n maps C2n+1 onto C′2n+1.

By the definition in (4) every cycle C ∈ C2n+1 has the form

C =
(
P 1 ◦ (0), fα2n(P̂ 1) ◦ (1), P 2 ◦ (0), fα2n(P̂ 2) ◦ (1), . . . , P k ◦ (0), fα2n(P̂ k) ◦ (1)

)
, (20)

for oriented paths P 1, . . . , P k, P̂ 1, . . . , P̂ k ∈ P2n(n, n + 1), where for all i = 1, . . . , k the vertices of
each subpath P i ◦ (0) ⊆ Q2n(n, n + 1) ◦ (0) are visited in the order given by the orientation of P i

and the vertices of each subpath fα2n(P̂ i)◦ (1) ⊆ Q2n(n−1, n)◦ (1) are visited in the order opposite
to the orientation of P̂ i. Using that by the definition in (2) and the assumption rev(α2n) = α′2n the
mapping fα′2n ◦ fα2n is the identity mapping, we obtain from (19) and (20) that

τα′2n(C) =
(
fα′2n(P 1) ◦ (1), P̂ 1 ◦ (0), fα′2n(P 2) ◦ (1), P̂ 2 ◦ (0), . . . , fα′2n(P k) ◦ (1), P̂ k ◦ (0)

)
,

which by the definition in (4) is a cycle in C′2n+1. �

Remark 8. Computer experiments suggest that apart from the automorphisms mentioned in Propo-
sition 7, there are no other nontrivial automorphisms of Q2n+1(n, n+ 1) that map certain 2-factors
from our construction onto each other, with the following exceptions: The 2-factor C5 in Q5(2, 3)
obtained for the parameter sequence α2 = (), α4 = (1) is mapped onto itself under six additional
automorphisms of Q5(2, 3) (apart from the trivial one and the one given by Proposition 7). Fur-
thermore, the 2-factor C2n+1 in Q2n+1(n, n + 1) obtained for the parameter sequence (α2i)1≤i≤n,
α2i = (0, 0, . . . , 0) ∈ {0, 1}i−1 is mapped onto itself under all 2(2n+ 1) automorphisms given by bit
shifts and bit shifts plus reversal and inversion.

5. The number and lengths of cycles in the 2-factor

In this section we investigate the number and lengths of the cycles in the 2-factor C2n+1 defined
in Section (2.2). We identify a few properties that hold for any choice of the parameter sequence
(α2i)i≥1 (Theorem 10 below) and then focus on one particular parameter sequence, namely α2i =
(0, 0, . . . , 0) ∈ {0, 1}i−1 for all i ≥ 1, for which the resulting 2-factor has several nice combinatorial
properties related to plane trees (Theorem 13 below).

As we have seen in Section 3, in order to understand why our inductive construction indeed works
as claimed, we only needed to consider the sets of first, second and last end vertices of the paths in
the families P2n(k, k + 1) (and could neglect all the other vertices on these paths). Note also that
so far we did not use any knowledge about which of those vertices actually lie on the same paths.
This knowledge will however be crucial in the following.

5.1. Subpaths of lattice paths. We begin by extending some of the notation introduced in Sec-
tion 3.1.

For any lattice path p ∈ Pn and any two abscissas 0 ≤ x ≤ x′ ≤ n we define p[x, x′] as the subpath
of p between (and including) the abscissas x and x′.

For any lattice path p in one of the sets D=0
2n (k), D>0

2n (k+1) and D−2n(k), k = n, n+1, . . . , 2n−1, we
define disjoint subpaths `(p) and r(p) of p that cover all but two steps of p as follows (see Figure 4):
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Figure 4. Illustration of the definitions in (21).

• If p ∈ D=0
2n (k) we define

`(p) := p[1, x− 1] and r(p) := p[x, 2n] , (21a)

where x is the smallest strictly positive abscissa where p touches the y-axis.
• If p ∈ D>0

2n (k + 1) we define

`(p) := p[1, x] and r(p) := p[x+ 1, 2n] , (21b)

where x is the largest abscissa where p touches the line y = 1 (the first time p touches it is at
(1, 1)).
• If p ∈ D−2n(k) we define

`(p) := p[0, x− 1] and r(p) := p[x+ 1, 2n] , (21c)

where x is the abscissa where p touches the line y = −1.

With those definitions, depending on whether p is contained in the setD=0
2n (k), D>0

2n (k+1) orD−2n(k),
we have

p = (↗) ◦ `(p) ◦ (↘) ◦ r(p) , (22a)
p = (↗) ◦ `(p) ◦ (↗) ◦ r(p) , (22b)
p = `(p) ◦ (↘,↗) ◦ r(p) ,

respectively. In all cases, the subpath `(p) starts and ends at the same ordinate and never moves
below this ordinate in between. Furthermore, the ordinate of the endpoint of the subpath r(p) is by
2(k − n) higher than the ordinate of its starting point and also this subpath never moves below the
ordinate of its starting point.

5.2. Properties that are independent of the parameter sequence. The next lemma relates
the lattice paths ϕ(F (P )), ϕ(S(P )) and ϕ(L(P )) corresponding to the first, second and last vertex
on each of the paths P ∈ P2n(k, k + 1) arising in our construction and characterizes the length of
P by those lattice paths. In the following we will repeatedly use that by Lemma 3 those lattice
paths satisfy ϕ(F (P )) ∈ D=0

2n (k), ϕ(S(P )) ∈ D>0
2n (k + 1) and ϕ(L(P )) ∈ D−2n(k). Note that all

statements of the next lemma hold independently of the parameter sequence (α2i)i≥1 chosen for the
construction. In particular, the length of the paths in the families P2n(k, k + 1) is independent of
this parameter sequence (cf. the remarks in Section 2.3).

For any graph G we denote by e(G) the number of edges of G. Moreover, for any lattice path p we
denote by |p| the number of steps of p.

Lemma 9. For any n ≥ 1, the families of paths P2n(k, k + 1), k = n, n+ 1, . . . , 2n− 1, defined in
Section 2.2 have the following properties: For any path P ∈ P2n(k, k+ 1), defining pF := ϕ(F (P )) ∈
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D=0
2n (k), pS := ϕ(S(P )) ∈ D>0

2n (k + 1) and pL := ϕ(L(P )) ∈ D−2n(k), we have

(`(pF ), r(pF )) = (`(pS), r(pS)) , (23)
(|`(pS)|, |r(pS)|) = (|`(pL)|, |r(pL)|) , (24)

e(P ) = 2|`(pF )|+ 2 , (25)

where `(pF ) and r(pF ) are defined in (21a), `(pS) and r(pS) in (21b), and `(pL) and r(pL) in (21c).

With the equality in (23) we mean that the step sequences of the lattice paths `(pF ) and `(pS), and
the step sequences of the lattice paths r(pF ) and r(pS) are the same. The absolute coordinates of
those subpaths of pF and pS might be different.

Note that by (23) and (24) the relation (25) can also be written as e(P ) = 2|`(pF )|+2 = 2|`(pS)|+2 =
2|`(pL)|+ 2.

Proof. We argue by induction over n. By the definition in (1), for n = 1 the families of paths
P2n(k, k + 1) consist only of a single family P2(1, 2), which contains only a single path P :=
((1, 0), (1, 1), (0, 1)) (P has two edges). We clearly have pF := ϕ(F (P )) = (↗,↘) ∈ D=0

2 (1),
pS := ϕ(S(P )) = (↗,↗) ∈ D>0

2 (2) and pL := ϕ(L(P )) = (↘,↗) ∈ D−2 (1), and by the definitions
in (21) the subpaths `(pF ), r(pF ), `(pS), r(pS), `(pL) and r(pL) of those lattice paths all consist
only of a single point (and zero steps), showing that all three claims of the lemma hold. This settles
the induction basis.

For the induction step n→ n+ 1 let n ≥ 1 be fixed. We consider a fixed path P+ from one of the
families P2n+2(k, k+ 1), k = n+ 1, n+ 2, . . . , 2n+ 1, and define the lattice paths p+

F := ϕ(F (P+)) ∈
D=0

2n+2(k), p+
S := ϕ(S(P+)) ∈ D>0

2n+2(k + 1) and p+
L := ϕ(L(P+)) ∈ D−2n+2(k). By the definitions in

(5) and (8), P+ is either contained in the set

P2n(n, n+ 1) ◦ {(1, 0), (1, 1)} ∪
2n−1⋃

k′=n+1

P2n(k′, k′ + 1) ◦ {(0, 0), (1, 0), (0, 1), (1, 1)} (26)

or in the set P ′2n+2 defined in (6) (in the latter case we have k = n+ 1).

We first consider the case that P+ is contained in (26), i.e., P+ is obtained from some path P ∈
P2n(k′, k′+ 1), n ≤ k′ ≤ 2n− 1, by extending each vertex label of P by two bits x1, x2 ∈ {0, 1}. We
know by induction that the lattice paths pF := ϕ(F (P )) ∈ D=0

2n (k′), pS := ϕ(S(P )) ∈ D>0
2n (k′ + 1)

and pL := ϕ(L(P )) ∈ D−2n(k′) satisfy the relations

(`(pF ), r(pF )) = (`(pS), r(pS)) , (27)
(|`(pS)|, |r(pS)|) = (|`(pL)|, |r(pL)|) , (28)

e(P ) = 2|`(pF )|+ 2 . (29)

Moreover, we clearly have

p+
F = pF ◦ ϕ((x1, x2)) , (30a)

p+
S = pS ◦ ϕ((x1, x2)) , (30b)

p+
L = pL ◦ ϕ((x1, x2)) . (30c)

Using (30a) and the fact that pF is contained in the set D=0
2n (k′), the definition in (21a) yields

(`(p+
F ), r(p+

F )) =
(
`(pF ), r(pF ) ◦ ϕ((x1, x2))

)
. (31)

Similarly, using (30c) and the fact that pL is contained in the set D−2n(k′), the definition in (21c)
yields

(`(p+
L ), r(p+

L )) =
(
`(pL), r(pL) ◦ ϕ((x1, x2))

)
. (32)



16

Using that pS ∈ D>0
2n (k′ + 1), it follows that if k′ = n, then the y-coordinate of the last point of pS

is 2, whereas if k′ ≥ n+ 1, then the y-coordinate of the last point of pS is at least 4. Combined with
(26) and (30b) it follows that the last two steps of p+

S do not move below the line y = 2. By the
definition in (21b) and by (30b) we therefore have

(`(p+
S ), r(p+

S )) =
(
`(pS), r(pS) ◦ ϕ((x1, x2))

)
. (33)

Combining (27), (31) and (33) yields (`(p+
F ), r(p+

F )) = (`(p+
S ), r(p+

S )) and thus proves (23). Com-
bining (28), (32) and (33) yields (|`(p+

S )|, |r(p+
S )|) = (|`(p+

L )|, |r(p+
L )|) and thus proves (24). Using

e(P+) = e(P ) and (31) we obtain from (29) that e(P+) = 2|`(p+
F )|+ 2, proving (25).

We now consider the case that P+ is contained in the set P ′2n+2. For the reader’s convenience,
Figure 5 illustrates the notations used in this part of the proof. By the definition in (6), there are
two (not necessarily distinct) paths P, P ′ ∈ P2n(n, n+ 1) with

F (P+) = S(P ) ◦ (0, 0) , (34a)

S(P+) = S(P ) ◦ (0, 1) , (34b)

L(P+) = F (P ′) ◦ (0, 1) (34c)

(cf. (7)). Defining pS := ϕ(S(P )) ∈ D>0
2n (n+ 1) and p′F := ϕ(F (P ′)) ∈ D=0

2n (n) we obtain from (34)
that

p+
F = pS ◦ (↘,↘) , (35a)

p+
S = pS ◦ (↘,↗) , (35b)

p+
L = p′F ◦ (↘,↗) . (35c)

The lattice path pS ∈ D>0
2n (n+1) clearly ends at (2n, 2). From (35a) it follows that p+

F ∈ D=0
2n+2(n+1)

and that the smallest strictly positive abscissa where this lattice path touches the y-axis is 2n + 2
(see Figure 5). By the definition in (21a) and by (35a) we therefore have

(`(p+
F ), r(p+

F )) =
(
pS [1, 2n] ◦ (↘), ()

)
(36)

(r(p+
F ) consists only of a single point). From (35b) it follows that p+

S ∈ D>0
2n+2(n + 2) and that the

largest abscissa where this lattice path touches the line y = 1 is 2n + 1. By the definition in (21b)
and by (35b) we therefore have

(`(p+
S ), r(p+

S )) =
(
pS [1, 2n] ◦ (↘), ()

)
, (37)

which together with (36) shows that (23) also holds in this case.

From (35c) it follows that p+
L ∈ D−2n+2(n + 1) and that the only abscissa where this lattice path

touches the line y = −1 is 2n+ 1. By the definition in (21c) and by (35c) we therefore have

(`(p+
L ), r(p+

L )) =
(
p′F , ()

)
. (38)

Together with (37) it follows that (|`(p+
S )|, |r(p+

S )|) = (2n, 0) = (|`(p+
L )|, |r(p+

L )|), proving (24) in
this case.

It remains to prove (25) in this case. Note that we have

`(p+
F )

(36)
= pS [1, 2n] ◦ (↘)

(22b)
= `(pS) ◦ (↗) ◦ r(pS) ◦ (↘) . (39)

By induction we have for pF := ϕ(F (P )) ∈ D=0
2n (n) that

(|`(pF )|, |r(pF )|)(23)
= (|`(pS)|, |r(pS)|) (40)

and for pL := ϕ(L(P )) ∈ D−2n(n) that

(|`(pS)|, |r(pS)|)(24)
= (|`(pL)|, |r(pL)|) . (41)
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By Lemma 1 there is a path P̂ ∈ P2n(n, n + 1) (which is not necessarily distinct from P or P ′)
satisfying

fα2n(L(P̂ )) = L(P ) . (42)
This path is relevant for us, as by the definitions in (4) and (6) we have

e(P+) = 1 + (e(P )− 1) + 2 + e(P̂ ) , (43)

where the +1 counts the edge in P+ that originates from the matchingMS
2n+2, the +2 the two edges

originating from the matching MFL
2n+1, and the −1 accounts for the fact that the edge (F (P ), S(P ))

is not contained in P+ (see Figure 5). Note that the path P̂ also satisfies

fα2n(F (P̂ )) = F (P ′) (44)

(we do not use this relation here, though).

We define the lattice paths p̂F := ϕ(F (P̂ )) ∈ D=0
2n (n), p̂S := ϕ(S(P̂ )) ∈ D>0

2n (n + 1) and p̂L :=

ϕ(L(P̂ )) ∈ D−2n(n).

Using the second part of Lemma 2 and the definition in (21c) we obtain from (42) that

(|r(p̂L)|, |`(p̂L)|) = (|`(pL)|, |r(pL)|) (45)

(recall that both pL and p̂L are contained in the set D−2n(n)).

By induction we have

(|`(p̂F )|, |r(p̂F )|)(23)
= (|`(p̂S)|, |r(p̂S)|)(24)

= (|`(p̂L)|, |r(p̂L)|) . (46)

Applying the induction hypothesis, we may continue (43) as follows:

e(P+) = e(P ) + e(P̂ ) + 2
(25)
= (2 |`(pF )|︸ ︷︷ ︸

(40)
= |`(pS)|

+2) + (2 |`(p̂F )|︸ ︷︷ ︸
(41),(45),(46)

= |r(pS)|

+2) + 2

= 2(|`(pS)|+ |r(pS)|+ 2) + 2

(39)
= 2|`(p+

F )|+ 2 .

(47)

This completes the proof. �

The following theorem states an expression for the length of the cycles in the 2-factor C2n+1 in the
middle layer of Q2n+1 arising from our construction.

Theorem 10. For any n ≥ 1, the family of paths P2n(n, n + 1) and the 2-factor C2n+1 defined
in Section 2.2 have the following property: For any cycle in C2n+1, the distance (along the cycle)
between any two neighboring vertices of the form F (P ) ◦ (0), F (P ′) ◦ (0) with P, P ′ ∈ P2n(n, n+ 1)
on the cycle equals 4n+ 2. Consequently, for any cycle C ∈ C2n+1 we have

e(C) = (4n+ 2) · |{P ∈ P2n(n, n+ 1) | F (P ) ◦ (0) ∈ C}| . (48)

In particular, the length of all cycles in C2n+1 is a multiple of 4n + 2, and the length of a shortest
cycle is at least 4n+ 2.

Even though Theorem 10 holds for any choice of the parameter sequence (α2i)i≥1, the cardinality
of the set on the right hand side of (48) does of course depend on the parameter sequence.

Proof. Fix a cycle C in C2n+1 and recall from the definition in (4) that C contains at least one vertex
of the form F (P ) ◦ (0) with P ∈ P2n(n, n + 1). We fix another path P ′ ∈ P2n(n, n + 1) such that
F (P ′) ◦ (0) is the closest vertex to F (P ) ◦ (0) of this form on C when walking along the cycle in
the direction of the edge (F (P ), S(P )) ◦ (0) (if C contains only one vertex of this form, then we
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Figure 5. Notations used in the proofs of Lemma 9, Theorem 10, Lemma 11 and
Theorem 13. The figure illustrates the relations between various lattice paths corre-
sponding to certain vertices used in our construction in the inductive step n→ n+ 1
(Q2n → Q2n+2) when the parameter sequence (α2i)i≥1, α2i = (0, 0, . . . , 0) ∈ {0, 1}i−1,
is used. Even though for general parameter sequences certain subpaths of those lat-
tice paths are not identical anymore, the length of those subpaths is still the same
(this is exploited in the proofs of Lemma 9 and Theorem 10).

set P ′ := P ). By the definition in (4) there is a path P̂ ∈ P2n(n, n + 1) (which is not necessarily
distinct from P or P ′) satisfying fα2n(L(P̂ )) = L(P ) and fα2n(F (P̂ )) = F (P ′) (cf. (42) and (44) in
the proof of Lemma 9), and the distance between F (P ) ◦ (0) and F (P ′) along the cycle C is

e(P ) + e(P̂ ) + 2 , (49)

where the +2 counts the edges in C that originate from the matching MFL
2n+1 (see Figure 5). In the

proof of Lemma 9 we have already analyzed an expression of the form (49). Combining (39) and
(47) shows that (49) evaluates to 4n+ 2, as claimed. �

5.3. The all-zero parameter sequence. By the second part of Lemma 9, certain subpaths of
the lattice paths ϕ(S(P )) and ϕ(L(P )) corresponding to the second and last vertex on each of the
paths P ∈ P2n(k, k+ 1) arising in our construction have the same length (by Lemma 3 those lattice
paths satisfy ϕ(S(P )) ∈ D>0

2n (k + 1) and ϕ(L(P )) ∈ D−2n(k)). The following lemma states that if
the all-zero parameter sequence is used for the construction, those subpaths not only have the same
length, but are in fact the same (more specifically, their respective step sequences are the same).

Lemma 11. Let n ≥ 1 and consider the parameter sequence (α2i)1≤i≤n−1 with α2i = (0, 0, . . . , 0) ∈
{0, 1}i−1 for all i = 1, . . . , n−1. The families of paths P2n(k, k+1), k = n, n+1, . . . , 2n−1, defined in
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Section 2.2 for this parameter sequence have the following property: For any path P ∈ P2n(k, k+ 1),
defining pS := ϕ(S(P )) ∈ D>0

2n (k + 1) and pL := ϕ(L(P )) ∈ D−2n(k), we have

(`(pS), r(pS)) = (`(pL), r(pL)) , (50)

where `(pS) and r(pS) are defined in (21b), and `(pL) and r(pL) in (21c).

Proof. We argue by induction over n. To settle the induction basis n = 1 we argue exactly as in the
proof of Lemma 9.

For the induction step n→ n+ 1 let n ≥ 1 be fixed. We consider a fixed path P+ from one of the
families P2n+2(k, k+ 1), k = n+ 1, n+ 2, . . . , 2n+ 1, and define the lattice paths p+

S := ϕ(S(P+)) ∈
D>0

2n+2(k + 1) and p+
L := ϕ(L(P+)) ∈ D−2n+2(k). As argued in the proof of Lemma 9, P+ is either

contained in the set (26) or in the set P ′2n+2 defined in (6) (in the latter case we have k = n+ 1).

The case that P+ is contained in the set (26) can be treated analogously as in the proof of Lemma 9:
Replacing (28) by the modified induction hypothesis (`(pS), r(pS)) = (`(pL), r(pL)) and using this
relation together with (32) and (33) yields (`(p+

S ), r(p+
S )) = (`(p+

L ), r(p+
L )) and thus proves (50). (In

fact, this part of the argument does not use that α2n = (0, 0, . . . , 0) ∈ {0, 1}n−1, but only that all
other elements of the parameter sequence used in previous construction steps are zero vectors as
well.)

We now focus on the more interesting case that P+ is contained in the set P ′2n+2. For the reader’s
convenience, Figure 5 illustrates the notations used in this part of the proof. We let P, P ′ ∈ P2n(n, n+
1), pS ∈ D>0

2n (n+ 1), pL ∈ D−2n(n) and p′F ∈ D=0
2n (n) be defined as in the proof of Lemma 9. By (37)

and (38), to complete the proof of the lemma we need to show that p′F = pS [1, 2n] ◦ (↘).

By the definition in (2), for α2n = (0, 0, . . . , 0) ∈ {0, 1}n−1 we have

fα2n = rev , (51)

so fα2n just reverses and inverts all bits.

By induction we have
(`(pS), r(pS)) = (`(pL), r(pL)) (52)

(cf. (41)).

We let P̂ ∈ P2n(n, n + 1), p̂F ∈ D=0
2n (n), p̂S ∈ D>0

2n (n + 1) and p̂L ∈ D−2n(n) be defined as in the
proof of Lemma 9. Using (51) the relations (42) and (44) simplify to

rev(L(P̂ )) = L(P ) (53)

and
rev(F (P̂ )) = F (P ′) . (54)

Using the definition in (10) we obtain from (53) that

rev(p̂L) = pL ,

which by the definition in (21c) implies that
(
rev(r(p̂L)), rev(`(p̂L))

)
= (`(pL), r(pL)) (55)

(recall that both pL and p̂L are contained in the set D−2n(n); cf. (45)).

By Lemma 9 and by induction we have

(`(p̂F ), r(p̂F ))
(23)
= (`(p̂S), r(p̂S))

(50)
= (`(p̂L), r(p̂L)) (56)

(cf. (46)).
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Using the definition in (10) we obtain from (54) that

p′F = rev(p̂F )
(22a)
= rev

(
(↗) ◦ `(p̂F )) ◦ (↘) ◦ r(p̂F )

)

(56)
= rev

(
(↗) ◦ `(p̂L) ◦ (↘) ◦ r(p̂L)

)

= rev(r(p̂L)) ◦ (↗) ◦ rev(`(p̂L)) ◦ (↘)

(52),(55)
= `(pS) ◦ (↗) ◦ r(pS) ◦ (↘)

(22b)
= pS [1, 2n] ◦ (↘) ,

(57)

completing the proof. �

In order to determine the number and lengths of the cycles in the 2-factor C2n+1 for the all-zero
parameter sequence, we first introduce some terminology.

Ordered rooted trees and plane trees. An ordered rooted tree is a rooted tree with a specified left-to-
right ordering for the children of each vertex. We denote the set of all ordered rooted trees on n+ 1
vertices (and n edges) by T ∗n+1. It is well known that |T ∗n+1| = Cn, the n-th Catalan number, so we
have (|T ∗n+1|)n≥1 = (1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .) (see [OEI11a]).

A plane tree is a tree embedded in the plane. We denote the set of all plane trees on n+ 1 vertices
by Tn+1. The number of plane trees is given by

|Tn+1| = rn+1 −
1

2

(
Cn − Cn−1

2
· 1n∈2Z+1

)
, (58a)

where 1n∈2Z+1 ∈ {0, 1} denotes the indicator function for n being odd and

rn+1 :=
1

2n

∑

d|n
φ(n/d)

(
2d

d

)
(58b)

with the Euler totient function φ. We have (|Tn+1|)n≥1 = (1, 1, 2, 3, 6, 14, 34, 95, 280, 854, . . .) and

|Tn+1| = (1 + o(1))
4n

2
√
πn5/2

(see [OEI11b]).

Rotation of ordered rooted trees. We say that a tree T ′ ∈ T ∗n+1 is obtained by a rotation operation
from a tree T ∈ T ∗n+1 with root vertex r and children v1, . . . , vl (v1 is the leftmost child and vl
the rightmost child), if T ′ is obtained from T by making v1 the new root vertex, and the subtree
rooted at r without v1 and its descendants (this subtree only contains r and the subtrees rooted
at v2, . . . , vl) a new rightmost child of v1. Intuitively, this operation rotates a tree to the right by
shifting the root vertex to the left.

For two trees T, T ′ ∈ T ∗n+1 we write T y T ′, if T ′ can be obtained from T by a sequence of rotation
operations. Note that y defines an equivalence relation on the set T ∗n+1 × T ∗n+1. For any T ∈ T ∗n+1

we denote by [T ]y := {T ′ ∈ T ∗n+1 | T y T ′} the corresponding equivalence class. Observe that two
ordered rooted trees are equivalent in this sense, if and only if they represent the same plane tree
when we embed them into the plane and unmark the root vertices (where for an ordered rooted tree
we first embed the root vertex and then recursively all children from left to right according to the
specified ordering).

We say that a plane tree T ∈ Tn+1 is asymmetric if |[T ∗]y| = 2n, where T ∗ ∈ T ∗n+1 is obtained by
rooting T arbitrarily. Equivalently, T is asymmetric if there is no nontrivial rotation operation of
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the plane that maps T onto itself. We denote the set of all asymmetric plane trees on n+ 1 vertices
by T asym

n+1 . The number of asymmetric plane trees is given by

|T asym
n+1 | = r̂n+1 −

1

2

(
Cn + Cn−1

2
· 1n∈2Z+1

)
,

where

r̂n+1 :=
1

2n

∑

d|n
µ(n/d)

(
2d

d

)

with the Möbius function µ. We have (|T asym
n+1 |)n≥1 = (0, 0, 0, 1, 3, 9, 28, 85, 262, 827, . . .) and

|T asym
n+1 | = (1− o(1))|Tn+1| (59)

(see [OEI11c]).

Bijection ψ between lattice paths and ordered rooted trees. We define an ordered rooted tree with an
active vertex as a pair (T, v), where T is an ordered rooted tree and v is a vertex of T . If v equals
the root of T , then (T, v) can be identified with the ordinary ordered rooted tree T .

We inductively define a mapping ψ that assigns to any lattice path in one of the sets Dn(k), n ≥ 0,
0 ≤ k ≤ n, defined in Section 3.1 an ordered rooted tree with an active vertex, as follows: If n = 0,
then D0(0) contains only the lattice path p that consists of the single point (0, 0). For this p we
define ψ(p) to be the ordered root tree that consists only of a single vertex, and we define the active
vertex to be the root vertex. If n ≥ 1, then for any 0 ≤ k ≤ n and any lattice path p ∈ Dn(k),
p = (p1, . . . , pn−1, pn), we define p− := (p1, . . . , pn−1) and consider the tree ψ(p−) =: (T, v) (v is the
active vertex of this tree). We distinguish the cases whether the last step of the path p is an upstep,
pn =↗, or a downstep, pn =↘. If pn =↗, then we define T + w as the tree that is obtained from
T by adding a new vertex w as the rightmost child of v, and define ψ(p) := (T + w,w). If pn =↘,
then we define ψ(p) := (T, u), where u is the parent vertex of v.

Note that for any p ∈ Dn(k), the tree ψ(p) has k edges, k + 1 vertices and the active vertex is at
depth 2k − n in the rightmost branch. It follows that the mapping ψ|Dn(k) is a bijection between
Dn(k) and all ordered rooted trees with k + 1 vertices and an active vertex at depth 2k − n in the
rightmost branch. In particular, ψ|D=0

2n (n) is a bijection between D=0
2n (n) and T ∗n+1.

Lemma 12. Let n ≥ 1 and consider the parameter sequence (α2i)1≤i≤n with α2i = (0, 0, . . . , 0) ∈
{0, 1}i−1 for all i = 1, . . . , n. The family of paths P2n(n, n + 1) and the 2-factor C2n+1 defined in
Section 2.2 for this parameter sequence have the following property: For any cycle in C2n+1 and any
two neighboring vertices of the form F (P ) ◦ (0), F (P ′) ◦ (0) with P, P ′ ∈ P2n(n, n+ 1) on the cycle,
we have for pF := ϕ(F (P )) ∈ D=0

2n (n) and p′F := ϕ(F (P ′)) ∈ D=0
2n (n) that the corresponding ordered

rooted trees ψ(pF ) and ψ(p′F ) from the set T ∗n+1 differ by exactly one rotation operation.

Proof. Fix a cycle C in C2n+1 and recall from the definition in (4) that C contains at least one vertex
of the form F (P ) ◦ (0) with P ∈ P2n(n, n + 1). We fix another path P ′ ∈ P2n(n, n + 1) such that
F (P ′) ◦ (0) is the closest vertex to F (P ) ◦ (0) of this form on C when walking along the cycle in
the direction of the edge (F (P ), S(P )) ◦ (0) (if C contains only one vertex of this form, then we set
P ′ := P ). By the definition in (4) there is a path P̂ ∈ P2n(n, n+1) (which is not necessarily distinct
from P or P ′) satisfying fα2n(L(P̂ )) = L(P ) and fα2n(F (P̂ )) = F (P ′) (cf. (42) and (44) in the proof
of Lemma 9). As in the proof of Lemma 11, for α2n = (0, 0, . . . , 0) ∈ {0, 1}n−1 those relations can be
simplified to show that the lattice paths pS := ϕ(S(P )) ∈ D>0

2n (n+1) and p′F := ϕ(F (P ′)) ∈ D=0
2n (n)

satisfy
p′F = `(pS) ◦ (↗) ◦ r(pS) ◦ (↘) (60)
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(cf. (57)). Defining pF := ϕ(F (P )) ∈ D=0
2n (n) and applying the first part of Lemma 9 shows that

(60) can be written as
p′F = `(pF ) ◦ (↗) ◦ r(pF ) ◦ (↘) . (61)

We also know that

pF
(22a)
= (↗) ◦ `(pF ) ◦ (↘) ◦ r(pF ) . (62)

Note that by the definition in (21a), the subpaths `(pF ) and r(pF ) of pF start and end at the ordinate
y = 1 or y = 0, respectively, and never move below this ordinate in between. It follows that for
both ordered rooted trees ψ(`(pF )) and ψ(r(pF )) the active vertex equals the root vertex. Using
this observation and the relations (61) and (62) shows that ψ(p′F ) can be obtained from ψ(pF ) by
one rotation operation (see the bottom part of Figure 5), as claimed. �

The next theorem shows that for the all-zero parameter sequence, the cycles in the 2-factor C2n+1

are intimately related to the set T ∗n+1 of ordered rooted trees under the equivalence relation y. We
thus obtain very precise information about the number and lengths of those cycles.

Theorem 13. Let n ≥ 1 and consider the parameter sequence (α2i)1≤i≤n with α2i = (0, 0, . . . , 0) ∈
{0, 1}i−1 for all i = 1, . . . , n. The 2-factor C2n+1 defined in Section 2.2 for this parameter sequence
has the following property: There is a bijection between the cycles in C2n+1 and the trees in the set
Tn+1 such that any cycle C ∈ C2n+1 and any tree T ∈ Tn+1 that are mapped onto each other satisfy
the relation

e(C) = (4n+ 2) · |[T ∗]y| , (63)

where T ∗ ∈ T ∗n+1 is obtained by rooting T arbitrarily.

Consequently, the length of a shortest cycle in C2n+1 is 2(4n + 2) for all n ≥ 2 and the length of a
longest cycle is 2n(4n+ 2) for all n ≥ 4. Furthermore, the total number of cycles in the 2-factor is
|C2n+1| = |Tn+1|, and the number of cycles of length 2n(4n+ 2) is |T asym

n+1 | = (1− o(1))|Tn+1|.

Proof. Fix a cycle C ∈ C2n+1 and consider the set of paths P(C) := {P ∈ P2n(n, n+1) | F (P )◦(0) ∈
C}. By Lemma 12 the corresponding set T ∗(C) := {ψ(ϕ(F (P ))) | P ∈ P(C)} forms an equivalence
class of ordered rooted trees from the set T ∗n+1 under the rotation operation y, i.e., when embedding
the trees from T ∗(C) into the plane and unmarking the root vertices these trees all represent the
same plane tree T ∈ Tn+1. Put differently, we have T ∗(C) = [T ∗]y, where T ∗ ∈ T ∗n+1 is obtained by
rooting T arbitrarily. We define the desired mapping by assigning to the cycle C the plane tree T .

Using Theorem 10 it follows that e(C) = (4n+ 2) · |P(C)| = (4n+ 2) · |T ∗(C)| = (4n+ 2) · |[T ∗]y|,
proving the first part of the theorem.

To conclude that the above mapping between the cycles in C2n+1 and the trees in the set Tn+1 is
indeed a bijection it remains to show that all plane trees from Tn+1 indeed appear as images: To see
this, observe that by the definition in (4) for every path P ∈ P2n(n, n+ 1), the vertex F (P ) ◦ (0) is
contained in some cycle in C2n+1. As by Lemma 3 we have ϕ(F (P2n(n, n+ 1))) = D=0

2n (n), it follows
that for every ordered rooted tree T ∗ ∈ T ∗n+1, there is a cycle C ∈ C2n+1 such that T ∗(C) = [T ∗]y.

The claims about the length of a shortest and a longest cycle in C2n+1 follow immediately from this
one-to-one correspondence and from (63) by observing that the smallest equivalence class [T ∗]y for
some T ∗ ∈ T ∗n+1 has exactly 2 elements for all n ≥ 2 (for T ∗ being a star with n rays), and the
largest equivalence class has exactly 2n elements for all n ≥ 4 (e.g. for T ∗ being the graph obtained
from a star with 3 rays by extending one of the rays by a path on n− 3 edges).

The claims about the total number of cycles in the 2-factor and the number of cycles of length
2n(4n+ 2) also follow from this one-to-one-correspondence and from (59). �
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n # of sequences # of sequences
with |C2n+1| = 1 with |C2n+1| = 2

1 1 0
2 1 1
3 2 3
4 6 12
5 44 100
6 614 1580
7 0 113438
8 ≥ 100 ≥ 100
9 ≥ 100 ≥ 100
10 ≥ 100 ≥ 100
11 0 ≥ 100
12 ≥ 100 ≥ 100
13 0 ≥ 100
14 0 ≥ 100

Table 1. Number of parameter sequences (α2i)1≤i≤n, α2i ∈ {0, 1}i−1, for which the
2-factor C2n+1 defined in Section 2.2 yields a Hamiltonian cycle (|C2n+1| = 1) or a
Hamiltonian path (|C2n+1| = 2) in the middle layer graph Q2n+1(n, n+ 1).

6. Computer experiments

With the help of a computer we systematically explored the effect of the parameter sequence
(α2i)1≤i≤n, α2i ∈ {0, 1}i−1, on the number and lengths of the cycles in the 2-factor C2n+1 de-
fined in Section 2.2. Our focus here is primarily on finding parameters for which C2n+1 consists of a
single cycle, which is a Hamiltonian cycle, or of two cycles, which can always be connected to form a
Hamiltonian path in the middle layer graph Q2n+1(n, n+ 1). As there are in total

∏n
i=1 2i−1 = 2(n2)

parameter sequences, searching the entire parameter space quickly becomes infeasible. Consequently,
we searched the entire parameter space only for every n ≤ 7, and for every 8 ≤ n ≤ 14 we searched
a small fraction of it until we found 100 parameter sequences for which the 2-factor C2n+1 yields a
Hamiltonian cycle or path. Those experimental results are summarized in Table 1.

As the table shows, our construction indeed yields many Hamiltonian paths and cycles inQ2n+1(n, n+
1) for n ≤ 14. However, as we can see from the second column, for n ∈ {7, 11, 13, 14} we did not
find any 2-factor C2n+1 consisting of a single cycle. The next theorem explains this phenomenon
by stating an explicit expression for the parity of the number of cycles in C2n+1 for all n ≥ 1 (see
[Hei11] for a proof).

To state the result we need the following definition: For any n ≥ 1 define βn = (βn(1), . . . , βn(n −
1)) ∈ {0, 1}n−1 by setting for all i = 1, . . . , n− 1

βn(i) :=

{
1 if {i, n− i} ⊆ {2k | k ≥ 0} ,
0 otherwise .

(64)

Note that βn is symmetric, that it contains at most 2 entries equal to 1, and that it is the zero vector
for all n that are not a sum of two powers of 2 (those are n ∈ {7, 11, 13, 14, 15, 19, . . .}).

Theorem 14. Let n ≥ 1 and (α2i)1≤i≤n, α2i ∈ {0, 1}i−1, an arbitrary parameter sequence. The
number of cycles in the 2-factor C2n+1 defined in Section 2.2 for this parameter sequence satisfies

|C2n+1| ≡ α2n · βn + 1n∈{2k|k≥0} (mod 2) , (65)



24

where βn is defined in (64), α2n · βn denotes the scalar product of the vectors α2n and βn, and
1n∈{2k|k≥0} ∈ {0, 1} the indicator function for n being a power of 2.

By Theorem 14 the parity of |C2n+1| is controlled by only very few bits from the parameter vector
α2n (which is used in the last step of the construction of C2n+1, cf. (2) and (4)). In particular, if βn
is the zero vector, the number of cycles in C2n+1 is even regardless of the choice of the parameter
sequence, which explains the zeros in the second column of Table 1.

The term 1n∈{2k|k≥0} in (65) originates from the parity of the number of plane trees on n+1 vertices
|Tn+1|, as for the all-zero parameter sequence we have |C2n+1| = |Tn+1| (recall Theorem 13 and (58)).
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