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Abstract

The Hultman numbers enumerate permutations whose cycle graph
has a given number of alternating cycles (they are relevant to the
Bafna-Pevzner approach to genome comparison and genome rearrange-
ments). We give two new interpretations of the Hultman numbers: in
terms of polygon gluings and as integrals over the space of complex
matrices, and derive some properties of their generating functions.

Introduction. In the paper [3] on genome comparison and genome rear-
rangements, Bafna and Pevzner raised the problem of decomposing a permu-
tation into the minimal number of “transpositions” (here a transposition is
understood as an exchange of two contiguous intervals of the permutation).
An important tool they introduced to deal with this problem is the cycle
graph of a permutation. We recall that the cycle graph of a permutation
π ∈ Sn, denoted by G(π), is the directed edge-colored graph with vertices
{0, 1, . . . , n} and edges of two colors: grey edges going from i − 1 to i and
black edges going from πi to πi−1, i = 0, . . . , n (throughout this note we
assume that π0 = 0 and consider i modulo n + 1). An alternating cycle in
G(π) is a directed cycle with edges of alternate colors. Notice that at every
vertex of G(π) there is one incoming edge and one outgoing edge of each
color. This means that there is a unique disjoint decomposition of the edge
set of G(π) into alternating cycles, see Fig. 1.

In his thesis [7], Hultman attempted to characterize the number H(n, k)
of permutations in Sn whose cycle graph has exactly k alternating cycles.
These numbers, now carrying his name (see www.oeis.org/A164652), have
later been studied by several authors (cf. [4] and [5] to name just few). As
it is shown in [4], the Hultman numbers are closely related to the (unsigned)
Stirling numbers of the first kind S(n, k) (see www.oeis.org/A008275) that
count permutations in Sn whose disjoint cycle decomposition consists of k
cycles:

H(n, k) =

{

2S(n+2,k)
(n+1)(n+2) if n− k is odd,

0 otherwise.
(1)
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Figure 1: The cycle graph G(π) of the permutation π =
(

1234

2314

)

, where the grey

edges are drawn by dashed arrows and the black edges are drawn by solid arrows.

There are 3 alternating cycles: 0-1-3-4-1-2-0, 2-3-2 and 4-0-4.

A closed formula for the Hultman numbers was obtained in [5].
In this note we give two new interpretations of the Hultman numbers

in the spirit of [6]: as numbers of certain polygon gluings and as integrals
over the space of complex matrices. We also give a recursion relation for the
Hultman numbers and derive some properties of their generating functions.

Polygon gluings. Consider a 2n-sided polygon, whose boundary consists
of n black sides followed by n grey sides; the black sides are oriented in the
counterclockwise direction, and the grey sides are oriented in the clockwise
direction, see Fig. 2.

Figure 2: A 2n-gon (n = 4) with n black sides (solid arrows) and n grey sides

(dashed arrows). The pairs of sides that are glued together by π =
(

1234

2314

)

are

connected with dotted lines.

Pairwise gluing of black sides with grey sides (respecting orientation)
gives an orientable topological surface without boundary of topological genus
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g ≥ 0 (the genus g depends on the gluing). At the same time, the boundary
of the polygon turns into an oriented graph with k ≥ 1 vertices and n
edges. The numbers g and k are related by the Euler characteristic formula
2− 2g = k− n+1, so that k = n+1− 2g. We denote by hg(n) the number
of genus g such gluings of a 2n-gon.

Theorem 1. The Hultman numbers H(n, k) and the numbers hg(n) of genus
g gluings of a 2n-gon described above are related by the fomula

H(n, n+ 1− 2g) = hg(n). (2)

Proof. We start with a slightly different interpretation of the cycle graph
G(π). Consider two oriented cycles (that is, 2-regular oriented graphs) of
length n+1, one colored in grey and the other colored in black. The vertex
set in both cycles is {0, . . . , n}, but in the grey cycle the vertices follow in the
clockwise order, and in the black cycle they follow in the counterclockwise
order. We identify the vertex πi of the grey cycle with the vertex i of the
black cycle (we assume π0 = 0). Obviously, the obtained graph coincides
with the cycle graph G(π), see Fig. 1.

We label the black sides of the polygon by numbers from 1 to n in the
counterclockwise order, and the grey sides by numbers from 1 to n in the
clockwise order, both times starting from the initial vertex 0. Clearly, a
gluing of a 2n-gon of the type considered above is uniquely described by
a permutation π ∈ Sn, where πi is the number of the grey side identified
with the ith black side. Let us cut the polygon along the diagonal (n, 0),
i.e., we add one black edge and one grey edge connecting the vertex n to
the vertex 0, see Fig. 2. Now we have two n-gons, one with black boundary
and the other with grey boundary, whose sides are pairwise identified by
means of the permutation π (π0 = 0). These two boundaries glued together
give a graph that we denote by Γ(π). The construction is quite similar to
that of the cycle graph G(π), but instead of gluing vetices we now glue
edges according to the same rule. The graphs G(π) and Γ(π) are closely
related to each other: it is straightforward to verify that there is a one-to-
one correspondence between the alternating cycles in the cycle graph G(π)
and the vertices in the polygon gluing graph Γ(π). To complete the proof,
we recall that k = n+1−2g, where k is the number of vertices of Γ(π), and
g is the genus of the glued surface.

Matrix integral. Denote by M(N) = MatC(N × N) the linear space of
complex N × N matrices; the (complex) dimension of M(N) is N2. The
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space M(N) has a natural Gaussian probabilistic measure

dµN =

(

1

2π
√
−1

)N2

e−Tr(XX∗)
N
∧

i,j=1

dxij ∧ dx̄ij , (3)

whereX = {xij}Ni,j=1 ∈ M(N), the star ∗ denotes the Hermitian conjugation
and Tr is the trace. Note that the space M(N) equipped with the measure
µN is also called the complex Ginibre ensemble.

Theorem 2. Put

pn(N) =

[n/2]
∑

g=0

H(n, n+ 1− 2g)Nn−2g+1, (4)

where H(n, k) are the Hultman numbers. Then

pn(N) =

∫

M(N)
Tr(XnX∗n) dµN . (5)

Remark 1. More general matrix integrals over the space M(N) are con-
sidered in [1].

Remark 2. Below is a list of the several first polynomials pn(N):

p0(N) = N,

p1(N) = N2,

p2(N) = N3 +N,

p3(N) = N4 + 5N2,

p4(N) = N5 + 15N3 + 8N,

p5(N) = N6 + 35N4 + 84N2,

p6(N) = N7 + 70N5 + 469N3 + 180N,

p7(N) = N8 + 126N6 + 1869N4 + 3044N2,

p8(N) = N9 + 210N7 + 5985N5 + 26060N3 + 8064N,

p9(N) = N10 + 330N8 + 16401N6 + 152900N4 + 193248N2.

Proof. It is a fairly standard exercise in t’Hooft graphic calculus to reduce
the matrix integral in Eq. (5) to a sum over Feynman diagrams (polygon
gluings), cf. e.g. [8], [9]. We will briefly explain how it works. By definition
we have

Tr(XnX∗n) =
N
∑

i1=1

. . .
N
∑

i2n=1

xi1i2 . . . xinin+1
x̄i1i2n . . . x̄in+2in+1

,
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and a simple computation shows that
∫

M(N)
xij x̄kldµN = δikδjl,

∫

M(N)
xijxkldµN =

∫

M(N)
x̄ijx̄kldµN = 0.

Applying Wick’s formula (cf. [8], [9]), we get
∫

M(N)
xi1i2 . . . xinin+1

x̄i1i2n . . . x̄in+2in+1
dµN

=
∑

π∈Sn

∫

M(N)
xi1i2 x̄iα1+1iα1

dµN · · ·
∫

M(N)
xinin+1

x̄iαn+1iαn
dµN

=
∑

π∈Sn

δi1iα1+1
δi2iα1

· · · δiniαn+1
δin+1iαn

,

where αj = 2n+ 1− πj (we assume that i2n+1 = i1). Therefore,

∫

M(N)
Tr(XnX∗n) dµN =

∑

π∈Sn

N
∑

i1=1

. . .

N
∑

i2n=1

δi1iα1+1
δi2iα1

· · · δiniαn+1
δin+1iαn

.

We note that the pairs of indices {ikik+1} correspond to the black edges of
the polygon on Fig. (2), and the pairs of indices {iαk+1iαk

} correspond to
the grey edges, so there is a one-to one correspondence between the pairings
of indices and polygon gluings. Moreover, it is not hard to see that for a
given π ∈ SN

N
∑

i1=1

. . .

N
∑

i2n=1

δi1iα1+1
δi2iα1

· · · δiniαn+1
δin+1iαn

= Nn−2g+1,

where g denotes the genus of the surface glued from the 2n-gon by means
of π. This yields

∫

M(N)
Tr(XnX∗n) dµN =

[n/2]
∑

g=0

hg(n)N
n−2g+1,

and Eq. (5) now follows from Theorem 1.

Generating functions and recursions. Here we collect some simple
facts about the recursive relations and generating functions for the Hultman
numbers that we did not find in the literature.

Consider the generating functions

F (x,N) =

∞
∑

g=0

∞
∑

n=2g

H(n, n+ 1− 2g)Nn−2g+1 x
n

n!
(6)

and

Hg(x) =

∞
∑

n=2g

H(n, n+ 1− 2g)xn. (7)
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Theorem 3. We have

(i)

F (x,N) =
1

x2

(

1

(1− x)N
− (1 + x)N

)

;

(ii) H(n, n+ 1− 2g) = hg(n) satisfy the recursion

(n+2)hg(n) = (2n+1)hg(n−1)−(n−1)hg(n−2)+n2(n−1)hg−1(n−2);

(iii) the polynomials pn(N) defined by Eq. (4) satisfy the recursion

(n+ 2)pn(N) = (2n + 1)Npn−1(N) + (n− 1)(n2 −N2)pn−2(N)

with p0 = N, p1 = N2;

(iv)

H0(x) =
1

1− x
, Hg(x) =

Pg(x)

(1− x)1+4g
, g ≥ 1,

where Pg(x) =
∑4g−2

i=2g ag,ix
i is a polynomial with integer coefficients,

ag,2g = (2g)!
g+1 , ag,4g−2 = 1, and Pg(1) =

(4g−1)!!
2g+1 .

Remark 3. Several first polynomials Pg(x) are listed below:

P0(x) =1,

P1(x) =x2,

P2(x) =x4(8 + 12x + x2),

P3(x) =x6(180 + 704x + 528x2 + 72x3 + x4),

P4(x) =x8(8064 + 56160x + 98124x2 + 53792x3 + 8760x4 + 324x5 + x6),

P5(x) =x10(604800 + 6356160x + 19083456x2 + 21676144x3+

+ 9936360x4 + 1759520x5 + 103040x6 + 1344x7 + x8).

Remarkably, all polynomials Pg(x) have positive integer coefficients. More-
over, the integers Pg(1) are well known (see www.http://oeis.org/A035319)
– they enumerate genus g orientable gluings of a 2g-gon [6], or the per-
mutations in S4g−1 whose cycle graph alternating cycles are all of length 2
[5].

Proof. Part (i) follows from Eq. (1) and the fact that

(1 + x)N =
∞
∑

n=0

n
∑

k=0

(−1)n+kS(n, k)Nk x
n

n!
,

6
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where S(n, k) are the Stirling numbers of the first kind. Similarly, the recur-
sion S(n+1, k) = S(n, k−1)+nS(n, k) for the Stirling numbers immediately
implies (ii). Part (iii) is a direct consequence of (ii). The proof of (iv) is by
induction on g and follows the proof of Theorem 1 in [2]. The cases g = 0, 1
being easy, assume that the statements of part (iv) of the theorem hold for
g − 1, g ≥ 2. Put H̃g(x) = x2Hg(x), then the recursion (ii) is equivalent to
the ODE

(1− x)2H̃ ′

g(x) + (1− x)H̃g(x) = x4H̃ ′′′

g−1(x) + 2x3H̃ ′′

g−1(x)

with initial condition H̃g(0) = 0. Therefore, we have

H̃g(x) = (1− x)

∫ x

0

t4H̃ ′′′

g−1(t) + 2t3H̃ ′′

g−1(t)

(1− t)3
dt. (8)

The elementary formula

(

xα

(1− x)β

)

′

=
αxα−1 + (β − α)xα

(1− x)β+1
(9)

immediately yields

x4
(

xα

(1− x)β

)

′′′

+ 2x3
(

xα

(1− x)β

)

′′

=
α2(α− 1)xα+1 + · · ·+ (β − α)2(β − α+ 1)xα+4

(1− x)β+3
. (10)

Since, by assumption,

H̃g−1(x) =
x2Pg−1(x)

(1− x)4g−3
=

∑4g−6
i=2g−2 ag−1,i x

i+2

(1− x)4g−3
,

applying Eq. (10) we get that

x4H̃ ′′′

g−1(x) + 2x3H̃ ′′

g−1(x)

(1− x)3
=

Qg(x)

(1− x)4g+3
, (11)

where Qg(x) =
∑4g

i=2g+1 qg,ix
i is a polynomial with integer coefficients,

qg,2g+1 = (2g)2(2g − 1)ag−1,2g−2 = 2(2g)!,

qg,4g = 2ag−1,4g−6 = 2.

Consider the Laurent expansion

Qg(x)

(1− x)4g+3
=

4g+3
∑

i=3

rg,i
(1− x)i

, (12)
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then we have

H̃g(x)

1− x
=

4g+2
∑

i=2

rg,i+1

i(1− x)i
+ C,

where the initial condition H̃g(0) = 0 implies that

C = −
4g+2
∑

i=2

rg,i+1

i
.

Now put

P̃g(z) =

4g+2
∑

i=2

rg,i+1

i
((1− x)4g+2−i − (1− x)4g+2) =

4g+2
∑

i=0

pg,ix
i. (13)

By construction, we have pg,0 = 0, therefore H̃g(x) = P̃g(x)/(1−x)4g+1 since
they both satisfy the same first order ODE with the same initial condition.
Moreover, since hg(1) = . . . = hg(2g − 1) = 0, we also have pg,1 = . . . =
pg,2g+1 = 0. Inverting (9), we see that

ag,2g = pg,2g+2 = qg,2g+1/(2g + 2) = (2g)!/(g + 1),

ag,4g−2 = pg,4g = qg,4g/2 = 1

as claimed. We also see that Pg(x) = P̃g(x)/x
2 = (1 − x)4g+1Hg(x) must

have integral coefficients because Hg(x) does.
To complete the proof it is sufficient to show that

Pg(1) =
(4g − 1)(4g − 3)(2g − 1)

2g + 1
Pg−1(1)

(note that P0(1) = P1(1) = 1). We have

H̃ ′

g−1(x) =
(1− x)P̃ ′

g−1(x) + (4g − 3)P̃g−1(x)

(1− x)4g−2
=

Pg,1(x)

(1− x)4g−2
,

H̃ ′′

g−1(x) =
(1− x)P ′

g,1(x) + (4g − 2)Pg,1(x)

(1− x)4g−1
=

Pg,2(x)

(1− x)4g−1
,

H̃ ′′′

g−1(x) =
(1− x)P ′

g,2(x) + (4g − 1)Pg,2(x)

(1− x)4g
,

and from Eq. (11) it then follows that

Qg(x) = (1− x)(x4P ′

g,2(x) + 2x3Pg,2(x)) + (4g − 1)x4Pg,2(x).

From here we easily get

Pg,1(1) = (4g − 3)Pg−1(1),

Pg,2(1) = (4g − 2)Pg,1(1) = (4g − 2)(4g − 3)Pg−1(1),

Qg,1(1) = (4g − 1)Pg,2(1) = (4g − 1)(4g − 2)(4g − 3)Pg−1(1).
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Clearly, Qg,1(1) = rg,4g+3 in the Laurent expansion (12), and from Eq. (13)

we obtain Pg(1) =
1

4g+2 Qg,1(1) =
(4g−1)(4g−2)(4g−3)

4g+2 Pg−1(1) as claimed.
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