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EQUIVALENCE CLASSES OF PERMUTATIONS UNDER VARIOUS

RELATIONS GENERATED BY CONSTRAINED TRANSPOSITIONS

STEVEN LINTON, JAMES PROPP, TOM ROBY, AND JULIAN WEST

Abstract. We consider a large family of equivalence relations on permutations in Sn

that generalise those discovered by Knuth in his study of the Robinson-Schensted corre-
spondence. In our most general setting, two permutations are equivalent if one can be
obtained from the other by a sequence of pattern-replacing moves of prescribed form;
however, we limit our focus to patterns where two elements are transposed, subject to the
constraint that a third element of a suitable type be in a suitable position. For various
instances of the problem, we compute the number of equivalence classes, determine how
many n-permutations are equivalent to the identity permutation, or characterise this
equivalence class. Although our results feature familiar integer sequences (e.g., Cata-
lan, Fibonacci, and Tribonacci numbers) and special classes of permutations (layered,
connected, and 123-avoiding), some of the sequences that arise appear to be new.

1. Introduction and motivation

We consider a family of equivalence relations on permutations in Sn in which two
permutations are considered to be equivalent if one can be converted into the other by
replacing a short subsequence of (not necessarily adjacent) elements by the same elements
permuted in a specific fashion, or (extending by transitivity) by a sequence of such moves.
These generalise the relations discovered by Knuth in his study of the Robinson-Schensted
correspondence, though the original motivations for this project were unrelated. We begin
the systematic study of such equivalence relations, connecting them with integer sequences
both familiar and (apparently) new.

Consider the following three examples of turning one 7-permutation into another in
which selected 3-subsequences (marked in bold) are re-ordered:

1234567 → 1274563(1)

1274563 → 7214563(2)

7214563 → 7216543(3)

In each of these examples, a subsequence of pattern 123 (i.e., a triple of not necessarily
adjacent entries whose elements are in the same relative order as 123) is replaced by the
same set of elements arranged in the pattern 321. Allowing replacements of a designated
kind to be performed ad libitum, in reverse as well as forward, induces an equivalence
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relation on the symmetric group S7. Accordingly we can say that the permutations
1234567, 1274563, 7214563, and 7216543 are all equivalent under the replacement 123 ↔
321.

Interesting enumerative questions arise when the elements being replaced are allowed
to be in general position (Section 2), when the replacements are constrained to involve
only adjacent elements (Section 3), and when replacements are constrained to affect only
subsequences of consecutive elements representing a run of consecutive values (Section 4).
Each of these respective types of replacements is illustrated in one of the three examples
above. It will be convenient to group subsequences that are allowed to replace one another
into sets, e.g., describing the three permutations above as being “{123, 321}-equivalent”.
We may also wish to allow more than one type of (bi-directional) replacement, such as
both 123 ↔ 321 and 123 ↔ 132. If the intersection of these sets is nonempty, the
new relation can be described simply by the union of the two sets: {123, 132, 321} =
{123, 321}∪{123, 132}. To formalise this more generally we consider collections of disjoint
replacement sets that form a set partition of S3; any two patterns within the same set
may replace one another within the larger permutation to give an equivalent permutation.

Let π ∈ Sn, and let P = {B1, B2, . . . , Bt} be a (set) partition of Sk, where k ≤ n. Each
block Bl of P represents a list of k-length patterns which can replace one another. We
call two permutations P

· ·· · -equivalent if one can be obtained from the other by a sequence
of replacements, each replacing a subsequence of pattern σi with the same elements in
the pattern σj , where σi and σj lie in the same block Bl of P . Let Eq

· ·· · (π, P ) denote
the set of permutations equivalent to π under P

· ·· · -equivalence; e.g., 1234567, 7214563,
and 7216543 ∈ Eq

· ·· ·
(

1274563,
{

{123, 321}
})

. Similarly we denote by P the equiva-

lence relation, and by Eq (π, P ) the equivalence class of π, under replacement within P

only of adjacent elements; e.g., 7214563 and 7216543 ∈ Eq
(

1274563,
{

{123, 321}
})

. We

use P� and Eq�(π, P ) when both positions and values are constrained, e.g., 7214563 ∈
Eq�

(

7216543,
{

{123, 321}
})

. To refer to such classes generically we use the notation
Eq∗(π, P ). The automorphism π 7→ π−1 replaces adjacency of positions with adjacency
of values; hence, for the enumerative questions we treat, there is no need to separately
consider a fourth case where we only constrain values to be adjacent. The set of dis-
tinct equivalence classes into which Sn splits under an equivalence P ∗ is denoted by
Classes∗(n, P ).

The present paper begins the study of these equivalence relations by considering three
types of questions:

(A) Compute the number of equivalence classes, #Classes∗(n, P ), into which Sn is
partitioned.

(B) Compute the size, #Eq∗(ιn, P ), of the equivalence class containing the identity
ιn = 123 · · ·n.

(C) Characterise the set Eq∗(ιn, P ) of permutations equivalent to the identity.
Although the framework above allows for much greater generality, in this paper we will

mainly restrict our attention to replacements by patterns of length k = 3, and usually
to replacement patterns built up from pairs in which one permutation is the identity,
and the other is a transposition (i.e., fixes one of the elements). Omitting some cases
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by symmetry, we have the following possible partitions of S3, where (as usual) we omit
singleton blocks:

P1 =
{

{123, 132}
}

,

P2 =
{

{123, 213}
}

,

P4 =
{

{123, 321}
}

.

We will also consider applying two of these replacement operations simultaneously, and
we will number the appropriate partitions as

P3 =
{

{123, 132, 213}
}

,

P5 =
{

{123, 132, 321}
}

,

P6 =
{

{123, 213, 321}
}

,

following the convention Pi+j := Pi ∨ Pj , the join of these two partitions [EC1, ch.3].
Indeed we can allow all three replacements: P7 =

{

{123, 132, 213, 321}
}

. (In fact, the
cases P1 and P2 are equivalent by symmetry, as are P5 and P6. We list P1 and P2 separately
only in order to consider their join.)

Our motivation for focussing attention on pairs of this form is that we can then think
of an operation, not in terms of replacing one pattern by another, but simply in terms of
swapping two elements within the pattern, with the third serving as a catalyst enabling
the swap. In a followup [PRW11] to the current paper, the authors treat the remaining
(non-swapping) cases for all partitions of S3 consisting of exactly one non-singleton block
which contains the identity 123.

By far the best-known example of constrained swapping in permutations is the Knuth
Relations [Knu70], which allow the swap of adjacent entries provided an intermediate
value lies immediately to the right or left. In the notation of this paper, they correspond
to PK =

{

{213, 231}, {132, 312}
}

. Permutations equivalent under this relation map to
the same first coordinate (P -tableau) under the Robinson-Schensted correspondence.

Mark Haiman introduced the notion of dual equivalence of permutations: π and τ
are dual equivalent if one can be obtained from the other by swaps of adjacent values
from the above PK , i.e., if their inverses are Knuth-equivalent, or (equivalently) if they
map to the same second coordinate (Q-tableau) under the Robinson-Schensted correspon-
dence [Hai92]. For the enumerative problems in this paper, we get the same answers for
Knuth and dual equivalence.

In her dissertation [SA07] Sami Assaf constructed graphs (with some extra structure)
whose vertices are tableaux of a fixed shape (which may be viewed as permutations
via their “reading words”), and whose edges represent (elementary) dual equivalences
between vertices. For this particular relation (equivalently for the Knuth relations), she
was able to characterise the local structure of these graphs, which she later used to give
a combinatorial formula for the Schur expansion of LLT polynomials and MacDonald
Polynomials. She also used these, along with crystal graphs, to give a combinatorial
realization of Schur-Weyl duality [SA08].

Sergey Fomin has a very clear elementary exposition of how Knuth and dual equivalence
are related to the Robinson-Schensted correspondence, Schützenberger’s jeu de taquin,
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and the Littlewood-Richardson rule in [EC2, Ch. 7, App. 1]. For the problems considered
above, the answers for PK are well known to be: (A) the number of involutions in Sn; (B)

1; and (C) {ιn}. In fact one can compute #Eq (π, PK) for any permutation π by using the
Frame-Robinson-Thrall hook-length formula to compute the number of standard Young
tableaux of the shape output by the Robinson-Schensted correspondence applied to π.

Any of the relations we consider can be naturally generalized to operate on W([n]),
the set of words (with repeated entries allowed) on the alphabet [n]: for example, the
relation 123 ↔ 321 would imply also moves of the form 112 ↔ 211 and 122 ↔ 221,
treating letters with the same label within a word as increasing from left to right. In
the case of the Knuth relations, the equivalence classes are simply the elements of the
well-known plactic monoid of Lascoux and Schützenberger: W([n])/PK [LS81, LLT02].
In [CEHKN] the authors study the analogous Chinese monoid, which is W([n])/P3 (up
to the involution that reverses all words), for which they develop an analogue of the
Robinson-Schensted correspondence and count some of the equivalence classes.

Given that the Knuth relations act on adjacent elements, and lead to some deep combi-
natorial results, it is perhaps not surprising that the most interesting problems and proofs
in this paper are to be found in Section 3. A summary of our numbers and results is given
in Figure 1.

An extended abstract of this paper appeared in the proceedings of FPSAC10 [LPRW10].
The third author is grateful to Sami Assaf, Karen Edwards and Stephen Pon for helpful
conversations.

If τ ∈ Eq∗(π, P ) we will say that τ is reachable from π (under P ). If Eq∗(ιn, P ) = Sn,
then every permutation in Sn is reachable from every other, and we will say that Sn is
connected by P . If Eq∗(π, P ) = {π} we will say that π is isolated (under P ).

It is obvious that if Pi refines Pj as partitions of Sk (i.e., Pi ≤ Pj in the lattice of
partitions of Sk), then the partition of Sn induced by Pi refines the one induced by Pj,
because a permutation reachable from π under Pi is also reachable under Pj. This enables
the following simple observations:

Proposition 1. If Pi refines Pj (as partitions of Sk), then for all π ∈ Sn with n ≥ k

Eq∗(π, Pi) ⊆ Eq∗(π, Pj)

#Eq∗(π, Pi) ≤ #Eq∗(π, Pj)

#Classes∗(n, Pi) ≥ #Classes(n, Pj)

2. General pattern equivalence

In this section, we allow moves within an equivalence relation with no adjacency re-
strictions. This case is closely related to the theory of pattern avoidance in permutations:
replacing one pattern with another repeatedly leads eventually to a permutation which
avoids the first pattern.

Some of the equivalence relations in this section are trivial, following immediately from
the following observation. The others lead to familar combinatorial numbers and objects.

Proposition 2. Fix k with 2 ≤ k ≤ n − 1, and let P be any partition of Sk. If
#Classes

· ·· · (n− 1, P ) = 1, then #Classes
· ·· · (n, P ) = 1.
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Figure 1. Summary of Results

These tables give numerical values and names (when available) of the sequences asso-
ciated with enumerative questions (A) and (B). All sequences begin with the value for
n = 3. Results proven in this paper have a gray background; for other cases we lack
even conjectural formulae. Six-digit codes preceded by “A” cite specific sequences in
Sloane [OEIS].

Number of classes

Transpositions § 2 § 3 § 4 indices and
general only indices adjacent values adjacent

(1) 123 ↔ 132 [5, 14, 42, 132, 429]
[5, 16, 62, 284, 1507, 9104] [5, 20, 102, 626, 4458, 36144]

(2) 123 ↔ 213 Catalan

(4) 123 ↔ 321
[5, 10, 3, 1, 1, 1]

[5, 16, 60, 260, 1260, 67442] [5, 20, 102, 626, 4458, 36144]
trivial

(3) 123 ↔ 132 ↔ 213
[4, 8, 16, 32, 64, 128] [4, 10, 26, 76, 232, 764]

[4, 17, 89, 556, 4011, 32843]
powers of 2 involutions

(5) 123 ↔ 132 ↔ 321 [4, 2, 1, 1, 1, 1]
[4, 8, 14, 27, 68, 159, 496] [4, 16, 84, 536, 3912, 32256]

(6) 123 ↔ 213 ↔ 321 trivial

(7)
123 ↔ 132 [3, 2, 1, 1, 1, 1]

[3, 4, 5, 8, 11, 20, 29, 57] [3, 13, 71, 470, 3497]↔ 213 ↔ 321 trivial

Size of class containing identity

Transpositions § 2 § 3 § 4 indices and
general only indices adjacent values adjacent

(1) 123 ↔ 132 [2, 6, 24, 120, 720] [2, 4, 12, 36, 144, 576, 2880] [2, 3, 5, 8, 13, 21, 34, 55]
(2) 123 ↔ 213 (n− 1)! product of two factorials Fibonacci numbers

(4) 123 ↔ 321
[2, 4, 24, 720] [2, 3, 6, 10, 20, 35, 70, 126] [2, 3, 4, 6, 9, 13, 19, 28]
trivial central binomial coefficients A000930

(3) 123 ↔ 132 ↔ 213
[3, 13, 71, 461] [3, 7, 35, 135, 945, 5193] [3, 4, 8, 12, 21, 33, 55, 88]
connected A003319 Chinese Monoid [CEHKN] A052952

(5) 123 ↔ 132 ↔ 321 [3, 23, 120, 720] [3, 9, 54, 285, 2160, 15825] [3, 5, 9, 17, 31, 57, 105, 193]
(6) 123 ↔ 213 ↔ 321 trivial separate formulae for odd/even tribonacci numbers A000213

(7)
123 ↔ 132 [3, 23, 120, 720] [4, 21, 116, 713, 5030] [4, 6, 13, 23, 44, 80, 149, 273]
↔ 213 ↔ 321 trivial tribonacci A000073 −[n even]

Proof. We will show that any π ∈ Sn can be reached from the identity, ιn, under the
supposition that any two permutations in Sn−1 are equivalent, in two stages. If π(1) 6= n,
simply apply the supposition to the elements/positions 1 . . . n − 1 in ιn to obtain any
permutation beginning with π(1); if π(1) = n, we use instead the elements/positions
1, 3, 4, 5, . . . n (omitting 2, which is ≤ n − 1 by hypothesis) to move π(1) = n to the
front of a permutation equivalent to ιn. Then in stage 2 we apply the supposition to the
elements now occupying positions 2, . . . , n to complete the construction of π. �

The following results follow.

Proposition 3. #Classes
· ·· ·
(

n,
{

{123, 321}
})

= 1 for n ≥ 6. While for n ≥ 5, we have

#Classes
· ·· ·
(

n,
{

{123, 132, 321}
})

= 1 and #Classes
· ·· ·
(

n,
{

{123, 132, 213, 321}
})

= 1

Proof. It is easy to verify by hand, or by computer, that all permutations in S5 are
reachable from 12345 by moves in P5 =

{

{123, 132, 321}
}

. (Indeed, all permutations in
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S4 are reachable from 1234 except for 3412, which is isolated.) As S5 is connected, it
follows (by induction) from the preceding proposition that Sn is connected for all n ≥ 5.

Proposition 1 tells us that Sn is connected under P7 =
{

{123, 132, 213, 321}
}

whenever
it is connected under P5 since P7 ≥ P5. (In S4, the permutation 3412 remains isolated.)
Finally, we can check by computer that under P4 =

{

{123, 321}
}

S6 is connected; whence,
Sn is connected for n ≥ 6. �

We remark that under P4, S4 splits into 10 equivalence classes, and S5 into three classes.
The class containing 12345 contains 24 elements. This suggests a possible bar bet. Hand
your mark six cards numbered 1 through 6 and invite him or her to lay them out in any
sequence. By applying moves of the form 123 ↔ 321 (“Interchange two cards if and only
if an intermediate (value) card lies (in any position) between them.”) you will always be
able to put the cards in order. (It may take some practice, however, to become proficient
at doing this quickly.) Now “go easy” on your mark by reducing the number of cards to
5. Even from a random sequence, the mark has only one chance in five of being able to
reach the identity.

Of course from Proposition 3 it immediately follows that:

Corollary 4. #Eq
· ·· ·
(

ιn,
{

{123, 132, 321}
})

= n!, #Eq
· ·· ·
(

ιn,
{

{123, 132, 213, 321}
})

=

n! for n ≥ 5; and #Eq
· ·· ·
(

ιn,
{

{123, 321}
})

= n! for n ≥ 6.

Proposition 5. #Eq
· ·· ·
(

ιn,
{

{123, 213}
})

= (n− 1)! for n ≥ 2.

Proof. Obviously the largest element n cannot be moved away from the end of the per-
mutation. Equally obviously the n, remaining at the far right, enables the other elements
to be freely pairwise transposed, thereby generating any permutation in Sn−1.

�

Proposition 6. For n ≥ 1, #Classes
· ·· ·
(

n,
{

{123, 213}
})

= cn = 2n!
n!(n+1)!

, the nth Catalan

number.

Proof. Let π ∈ Sn. If i < j < k, and π(i) < π(j) < π(k), then π(k) enables the swapping
of π(i) and π(j) to arrive at a permutation π(1) with a strictly larger number of inversions.
We can continue in this way to obtain a sequence π = π(0) → π(1) → · · · → π(n), where
π(n) has no such triples, i.e., π(n) is 123-avoiding. It remains to show that no matter which
sequence of moves we make, the final permutation π(n) is unique.

Call an element in a permutation σ ∈ Sn, a right-to-left maximum if it is greater than
every element that occurs to its right. (More formerly, σk is a right-to-left maximum if
σk > σl for all k < l ≤ n.) The set M(π) of these elements remains fixed under the
relation above, and forms a decreasing subsequence of π(i) for all i. Now a permutation is
123-avoiding if and only if it is a union of at most two decreasing subsequences. So π(n)

must be the unique permutation formed by rearranging the elements of π not in M(π) in
decreasing order. It is clear that the elements of M(π) are positioned so as to enable all
the necessary transpositions.

Thus the “largest” (by number of inversions) elements in each equivalence class are
exactly the 123-avoiding permutations, of which there are cn [Bon06, ch. 14] or [Bon04,
Sec. 4.2]. (Similarly one can show that the “smallest” elements are the 213-avoiding
permutations.) �
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Example 1. Working within S9, we have the following sequence of equivalences, where
elements about to be transformed are indicated in bold. The subsequence of right-to-left
maxima is 976.

382941576 → 582941376 → 584921376 → 584931276 → 584932176 → 854932176

The reader is encouraged to draw corresponding permutation matrices or diagrams, which
clarify visually how the right-to-left maxima facilitate the transformation of the other
elements into a decreasing subsequence.

The next two propositions study an equivalence relation and class whose enumeration
is equivalent under symmetry (reversal or complementation) to Eq

· ·· · (ιn, P3). The first
leads to connected or indecomposable permutations [OEIS, A003319], namely those not
fixing {1, 2, . . . j} for any 1 ≤ j < n. If we define the direct sum of two permutations
so that it corresponds to the direct sum of the corresponding permutation matrices, then
these are simply the permutations which are indecomposable as direct sums in the usual
matrix sense. Some authors use the term plus-indecomposable [AAK03] to describe this
class. The second leads to the layered permutations, namely those which are a direct sum
of decreasing permutations, introduced by W. Stromquist [Stro93], and studied carefully
by A. Price in his thesis [Pri97].

Proposition 7. Let ρn denote the “reverse word” permutation n, n − 1, . . . 1. Then
Eq

· ·· · (ρn,
{

{321, 312, 231}
}

) is the set of indecomposable permutations.

Proof. When viewed as a (0, 1)-matrix, any permutation decomposes as a direct sum of
irreducible blocks along the main diagonal; in particular, the identity ιn decomposes into
n singleton blocks, while ρn is indecomposable and is one large block. A permutation is
connected if and only if it decomposes as a single block.

First note that if any transformation of entries (a1, a2, a3) → (b1, b2, b3) applied within
a block causes it to split into more than one block, then b1 must be in the leftmost/lowest
of the new blocks, and b3 in the rightmost/highest. Therefore b1 must be less than b3,
which is exactly what does not happen with any of our possible transformations, because
the first element is larger than the third in each of 321, 312 and 231. Since all of our
transformations are reversible, this shows also that we cannot combine blocks. Thus, the
irreducible block structure of a permutation does not change under these transformations.
In particular, if we start with an indecomposable permutation such as ρn, successive ap-
plications of the permitted operations will always produce indecomposable permutations.

Next we have to show that all indecomposable permutations are in fact reachable from
ρn. Remembering that our replacement operations are all reversible, we will instead show
that we can always return to ρn from an arbitrary indecomposable permutation. Take
n ≥ 3, and let τ = τ1τ2 · · · τn be an arbitrary indecomposable permutation other than ρn.
We will show that τ always contains at least one of 312 or 231. It’s easy to see that τ must
have an ascent, i.e., there exists k such that τk < τk+1. Now if any element to the right
of τk+1 is less than τk we have a 231, so assume there are none such. Similarly, assume
there is no element to the left of τk and greater than τk+1 (avoiding 312). But there must
be some y to the left of τk which is greater than some x to the right of τk+1, or otherwise
the permutation decomposes between τk and τk+1. These four elements y, τk, τk+1, x form
a 3142, which contains both a 312 (y, τk, x) and a 231 (y, τk+1, x).
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Having now located a 312 or 231, we can then apply either 312 → 321 or 231 → 321,
as appropriate. Each of these operations simply switches a pair of elements, and (as
we have seen in the proof of Proposition 6) strictly increases the number of inversions,
progressing us toward ρn. This completes the proof that all indecomposable permutations
are reachable, and therefore the proof that the reachable permutations are exactly the
indecomposable permutations. �

Proposition 8. #Classes
· ·· ·
(

n,
{

{321, 312, 231}
})

= 2n−1 for n ≥ 1.

Proof. As we saw in the proof of the previous proposition, the irreducible block structure
of a permutation does not change under the transformations we are considering here. By
the arguments already given, we can work within any indecomposable block to restore it
to an anti-identity. Therefore each equivalence class consists of all the permutations with
a given block structure, and contains exactly one permutation which is a direct sum of
anti-identities.

These are exactly the layered permutations, and there are clearly 2n−1 of them, with
a factor of 2 according to whether each consecutive pair of elements is or is not in the
same layer. (Equivalently, any such permutation is determined by the composition of n
representing its block sizes, of which there are 2n−1.) �

Finally we apply the reversal (or complementation) involution on Sn to the above result
to get our result for the partition P3.

Theorem 9. #Classes
· ·· ·
(

n,
{

{123, 132, 213}
})

= 2n−1 for n ≥ 1.

3. Adjacent transformations

As mentioned in the introduction, this section contains our most interesting results and
proofs. The first rediscovers sequence A010551 from Sloane [OEIS].

Theorem 10. #Eq
(

ιn,
{

{123, 213}
})

= ⌊n/2⌋!⌈n/2⌉! for n ≥ 1.

Proof. Generically stated, our rules in this case allow the transposition of any two adjacent
elements if the element immediately to their right is bigger than both of them. Applying
these successively to ιn, we note first that the largest element, n, never comes unglued from
the right end, because there is nothing to enable it; therefore, n− 1 must stay somewhere
in the last three positions (as only n can enable its movement). Similarly, n− 2 remains
somewhere in the last five, n− 3 within the last seven and so on; such restrictions apply
to the largest ⌊n/2⌋ of the elements. This limits the number of permutations potentially
reachable to ⌊n/2⌋!⌈n/2⌉!: placing the elements from largest to smallest, one has a choice
of 1, 2, 3, . . . , ⌊n/2⌋, ⌈n/2⌉, . . . , 3, 2, 1 positions to put each element.

Next we will show that all permutations conforming to these restrictions are indeed
reachable from ιn. We will do this in two stages. In Stage 1 we move each of the large,
constrained elements as far left as it can go. (In the most natural way to achieve this,
the smaller, unconstrained elements remain in their natural increasing order, although we
shall see that this does not matter as they can then be permuted freely.) In Stage 2 we
construct the target permutation two elements at a time, working from left to right.

Stage 1: Maximally spread out the ⌊n/2⌋ largest elements. First move ⌊n/2⌋ + 1
one step left, using a move of type 123 → 213, in which ⌊n/2⌋ + 2 plays the role of the
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facilitating “3”. In the same way, move the element ⌊n/2⌋+2 to the left, continuing until
the entire block ⌊n/2⌋, . . . , n− 1 has been shifted one to the left. The element n− 1 has
now reached its leftmost permitted position, and will remain in place as we now similarly
transform the block ⌊n/2⌋, . . . , n − 2. This moves n − 2 as far left as it will go, and we
now transform the next smaller block, etc. Continue until reaching a permutation which
alternates the subsequences 1, 2, . . . ⌊n/2⌋ and ⌊n/2⌋ + 1, . . . , n (e.g., 15263748 ∈ S8 or
516273849 ∈ S9). This places each constrained element (in the latter subsequence) as far
left as possible. These elements will now serve as a “skeleton” enabling the construction
of the target permutation.

Stage 2: Construct the target permutation. The key observation making this stage
possible is that the small, unconstrained elements can be freely moved about while leaving
the large elements in the skeleton fixed. For if {a, b} < X < Y , we can always execute
the following sequence of moves: aXbY → abXY → baXY → bXaY . In the case where
n is odd, we may consider the leftmost element in the skeleton to be in position 3, and
the two small elements in positions 1 and 2 can be interchanged if desired.

Now we examine the target permutation and move the required element(s) into the
first position (if n is even), or the first two positions (if n is odd). At this point, the
elements occupying the next two positions are reclassified as small, so that the skeleton
terminates two positions further to the right, and we continue by placing and ordering
the next pair of elements. By continuing two elements at a time, we can build the entire
target permutation. �

Example 2. To reach the target permutation 452637819 according to the above scheme
we would apply the following moves. The numbers indicated in bold are about to be trans-
posed, either by a standard 123 → 213 move, or by the move (suppressing intermediate
steps) aXbY → bXaY described above.

123456789 → 123546789 → 123564789 → 123567489 → 123567849 → 125367849

→ 125637849 → 125673849 → 152673849 → 156273849 → 516273849

516273849 → 516274839 → 516472839 → 546172839 → 456172839

→ 456271839 → 452671839 → 452673819 → 452637819

Theorem 11. Let n be an integer ≥ 3, and for any odd positive integer m set m!! =
1 · 3 · · · · ·m, the product of odd natural numbers less than or equal to m. Then

#Eq
(

ιn,
{

{123, 132, 321}
})

=

{

3
2
(k)(k + 1)(2k − 1)! for n = 2k + 1 odd.

3
2
(k)(k − 1

3
)(2k − 2)!− (2k − 3)!! for n = 2k even.

Proof. As in the previous proof, we begin by giving a set of necessary conditions for the
a permutation to be reachable from ιn, then show how to reach each such permutation,
thereby proving that our conditions in fact characterise Eq (ιn).

The first restriction is that the element 1 must occupy a position of odd index, because
it can only participate in a move as a “1”, and every move either leaves it fixed or moves
it by two positions. The second restriction is that the element 2 cannot occupy a position
of odd index to the left of 1, because if it winds up to the left of 1, its last move there was
132 → 321, and since 1 is always in a position of odd index, this places 2 into a position of
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even index. Then it stays on the left of the 1, so it must play the role of “1” in any future
swaps, again preserving the parity of its position. Let us call the class of permutations
thus described An, the class of admissible permutations.

Now in the case where n = 2k+ 1 is odd, this characterization is exact, so we will first
complete the proof for odd n. In the case where n = 2k is even, there are a small number
of exceptional permutations which must be excluded; we will turn to these at the end of
the proof.

Case 1: n is odd. First we count the number of admissible permutations: If the 1 is in
position 1, then the 2 can be in any of n− 1 positions, and the remaining n− 2 elements
can be arranged in (n − 2)! ways. If the 1 is in position 3, then the 2 can be in any of
n − 2 positions; if the 1 is in position 5, then in any of n − 3 positions, and so forth,
while in each case, the remaining n− 2 elements can be placed freely. Summing over the
possible locations for the element 1, we arrive at the given formula for odd n, and also
at the formula for even n upon suppression of the double-factorial correction term. For
example A5 consists of 54 permutations: all 24 of the form 1∗∗∗∗, 18 of the form ∗∗1∗∗
(all but the six of the form 2 ∗ 1 ∗ ∗), and 12 of the form ∗ ∗ ∗ ∗ 1 (all but those of the form
2 ∗ ∗ ∗ 1 or ∗ ∗ 2 ∗ 1).

It remains to show that all admissible permutations are in fact reachable. We do this
in two stages.

Stage 1: First we will show that all permutations beginning with a 1 are reachable
from the identity. We proceed in steps; after each, we will have a monotonically increasing
initial segment, followed by a segment that matches the target permutation. This segment
gets created from right to left, each step increasing the length of the completed segment
by 1 by selecting and moving one element from the increasing segment to the left end of
the completed segment.

Note that within an increasing segment, the concatenation of moves abxy → ayxb →
axyb allows a selected element b > 1 to move two positions rightward while maintaining
that the segment to its left is increasing. So if the target position for b is an even number
of positions away, an appropriate number of such moves will suffice. If b is an odd number
of positions away, first apply the move abxy → axby, then proceed as before. This shows
that we can reach any permutation that starts with a 1 from ιn.

Stage 2: To show that we can get to the identity from an arbitrary admissible permu-
tation, it remains to show that the element 1 can always be moved to the front of such a
permutation. In fact we only need show that the element 1 can always be moved toward
the front (necessarily by two positions), and then we can just move it repeatedly until it
is at the front.

If the 1 is at the very end of the permutation, the 2 must be to its left and in a position
of opposite parity. Move the 2 rightward using moves 123 → 321 or 132 → 321 (the 2
functioning as a “1”) until it is adjacent to the 1; the 1 can then be moved leftward.

We use the term k-factor here and in later proofs as shorthand for “length k subse-
quence of adjacent elements” of a permutation. If the 1 is not at the very end of the
permutation, then consider the 5-factor centred on the 1. (At this point, we are relying
on the assumption that n is odd, because the largest element occupies a position of odd
index, and therefore if it is not at the end of an odd permutation, it must be at least two
positions away from the end, guaranteeing the 5-factor which we need. We will return to
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this point when we consider the even case below.) There are 24 cases. For 18 of these
cases, we know that we can convert this segment to an increasing one (or to any other
permutation beginning with a 1) using the analysis for n = 5, which is easy to check by
hand. The cases which cannot be handled are those of the form 2*1**. We will add a
preprocessing step to make sure that we are not in such a case. Namely, we will locate
the element 2 (the actual 2) and move into one of the spaces indicated by a ∗.

If the 2 is somewhere to the left of the 1 then the same argument used above in the
case of permutations ending in 1 again shows that the 1 can be moved leftward.

If the 2 is somewhere to the right of the 1, we will go and fetch it as follows. Move the
1 to the right until it is either one or two positions left of the 2. We do this by moving it
two positions at a time, using either 123 → 321 or 132 → 321, as required. This leaves
behind a consecutive trail of elements in which each odd-position element is larger than
the even-position element which follows it. We will call these “odd/even descents”.

If the 2 was in an odd position, we will arrive at 1x2, which we correct to 12x. If the
2 was in an even position, we will arrive at 12x directly.

Now we pull both the 1 and the 2 back through the odd/even descents by a sequence
of consecutive moves of the form yx12 → 1xy2 → 1yx2 → 12yx, where y > x > 2. (We
may also apply 12yx → 12xy if we wish, but this isn’t necessary.) This brings us to a
permutation in the same equivalence class, where the 5-factor has been modified to **12*.
But we know that just working within this 5-factor, we can use the n = 5 case to modify
it to the form 12345 (where the 1 and 2 are actual values, the others relative values). In
particular, we have moved the actual 1 two spaces to the left. Doing this repeatedly gets
us to a permutation beginning with 1, which we have seen in Stage 1 is equivalent to ιn.

Case 2: n = 2k is even. In the even case, we need to describe an additional class of
permutations that not reachable from ιn. Let Xn consist of all permutations obtainable as
follows: Fill the positions in order n− 1, n, n− 3, n− 2, n− 5, n− 4 . . . 3, 4, 1, 2, according
to the following rule. When filling positions of odd index, the smallest available element
must be chosen; the subsequent selection of an element to place to its right is then
unconstrained. Thus 1 must be placed in position n−1, and the element placed in position
n could be any other number; however, if it is not 2, then the 2 is immediately placed in
position n−3; otherwise 3 is placed in this position. For example, X4 = {3412, 2413, 2314}
and

X6 =







563412 562413 562314 462315 452316
463512 462513 362514 362415 352416
453612 452613 352614 342615 432516







.

The number of permutations in the class Xn just described is (n− 1)!!. As we will see
next, none of them is reachable. However, it is also true that most of them are not in
An, and therefore have not been included in the enumeration; this is because most of the
permutations in Xn have the 2 in position n−3, which is a position of odd index to the left
of the 1. The only permutations in Xn which we have counted, and which therefore must
be subtracted off, are the ones where the 2 is in position n, of which there are (n− 3)!!.

To see that none of the permutations in Xn is reachable, consider their 3-factors. Every
3-factor centred on a position of odd index is either a 213 or a 312, because the middle
element was placed before either of its neighbours, and was the minimal available element
at the time it was placed. And every 3-factor centred on a position of even index is a 231,
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because the elements in positions of odd index, which are the minimal elements, descend
from left to right. Therefore permutations belonging to Xn contain no factors of form
123, 132, or 321, and are therefore isolated by the relation, each one being a singleton
equivalence class. In particular they are not in the equivalence class of the identity.

Now we have to consider which permutations in An are not in fact reachable. The
proof for odd n almost carries through completely; indeed, as remarked, it only fails when
the element 1 lies in the penultimate position n − 1. We have already seen that the
permutations belonging to Xn ∩ An are not reachable; we will show that all others are.
Take any permutation π 6∈ Xn, but with the minimal element 1 placed in position n− 1.
Checking the conditions from right to left, suppose the element πj = y represents the
last time that we were in compliance with the conditions, and suppose πi = x is the first
minimal element which has not gone where it should go. That is, all odd positions from j
to n−1 are occupied by elements which are left-to-right minima, but the smallest element
situtated in positions 1 through j− 1 is not in position j− 2, as expected, but in position
i with value x.

As before, all we need to do is show that we can move the element 1 to the left. This
exploits two facts: that x is the minimal element in a lefthand region, and the righthand
region is alternating.

Because the righthand portion of π, from position j onwards, is alternating, with every
step from an odd to an even position being an ascent, and every step from even to odd
being a descent, we will have a particular interest in a certain type of 3-factor beginning
in a position of odd index. Namely, we will refer to a 3-factor πh, πh+1, πh+2 as an odd 321
if πh > πh+1 > πh+2 and if h is odd. Note that an odd 321 beginning in position n − 3
is exactly what we need, because either option for replacing it shifts the element 1 from
position n− 1.

First, take the element x and use moves → 321 to shift it rightward, two positions at
a time, until it arrives in position j − 2 or j − 1. This is possible because x is moving
through a region in which it is itself the minimal element.

Now j−2 is an odd position, so if x has reached position j−2 then positions j−4, j−
3, j−2 now form an odd 321. Alternatively, if x has reached position j−1 then positions
j − 2, j − 1, j now form an odd 321, because the second and third of these positions are
occupied by x and y and y < x. We will show that we can propagate either of these odd
321s rightward until they capture the smallest element, which can then be moved.

In either case, we have an odd 321, followed, two positions later, by an element which
is smaller than everything to its left. This gives us, in other words, a configuration
432 − 1, which, filling in the blank, might actually be (a) a 54231, (b) a 53241, or (c) a
43251. Check that the following moves are available in each case: (a) 54231 → 24531; (b)
53241 → 23541; (c) 43251 → 23451 → 25431.

Note that these moves each replace a configuration which begins with an odd 321 by one
which ends with an odd 321. And, because of the placement of the left-to-right minima,
this new odd 321 either terminates with the smallest element 1, or again has another
left-to-right minimum two positions to its right.

Therefore we can propagate the 321 rightward until it reaches the smallest element;
therefore we can move the smallest element; therefore the permutations not belonging to
Xn are in fact reachable.
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This completes the missing step in the proof for even n. �

Theorem 12. #Eq
(

ιn,
{

{123, 321}
})

=

(

n− 1

⌊(n− 1)/2⌋

)

.

Proof. We claim that the permutations in this class are direct sums of singletons and of
blocks of odd size greater than one, where within each block the even elements (with
respect to the block) are on the diagonal, and the odd elements form an indecomposable
321-avoiding permutation.

Let us call the set that we have just described An. Because all the even elements within
a block are fixed points of the permutation, the indecomposability of the odd elements is
equivalent to the indecomposability of the entire block.

First we will show that An is closed under 123 ↔ 321; since the identity is in An this
will establish that the equivalence class of the identity is a subset of An. Then we will
show that we can return to the identity from any permutation in An, which will establish
that the two sets are identical. Finally we will use generating functions to enumerate An.

Let π be an arbitrary permutation belonging to An. By definition, π is a direct sum
of singleton blocks and of larger blocks having a specific form. We will call any non-
singleton block of π large. Unless π is the identity, it contains at least one large block.
Note that large blocks always begin with descents: for if the first element of the block
were on the diagonal, we could split the block immediately after it to obtain a direct sum
decomposition; therefore, the first element is below the diagonal (i.e., is an excedance)
but the second element is on the diagonal. For symmetric reasons, large blocks end with
descents as well.

First we show that any application of 123 → 321 to π produces an element π′ in An.
Consider the different ways that a 3-factor πi, πi+1, πi+2 of form 123 might occur within
π.

Case (a) All three elements are in singleton blocks; then the result is the unique large

block of size 3 permissible within elements of An, namely





0 0 1
0 1 0
1 0 0



.

Case (b) Exactly two of the elements (necessarily the first two or the last two) are in
singleton blocks. Assume without loss of generality that it is the last two, i.e., πi+1 = i+1
and πi+2 = i + 2, and that πi < i belongs to a large block B of size 2k + 1. Since πi

is the last element of B, it must be an odd element within the block. The replacement
produces a larger block B′ of size 2k + 3. The k even elements of B, along with πi+1 are
diagonal elements that remain unchanged by the transformation, so all the even elements
of B′ lie on the diagonal. The block B′ must be indecomposable, because any breakpoint
before π′

i would already have been a breakpoint for B itself, and no breakpoint can occur
thereafter since π′

i > π′
i+1 > π′

i+2.
Finally, π′

i is the largest element of the block, so could only play the role of “3” in a 321
pattern, but there is only one odd element to its right in the block. So any 321 pattern of
odd elements in B′ that did not already exist in B must use π′

i+2 as “1” and odd elements
to the left of π′

i for “3” and “2”. But then these elements (which haven’t moved) together
with πi would have formed a 321 in B, which wasn’t allowed.
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Case (c) Just one element is in a singleton block. This can’t be the third (or, symmet-
rically, the first) element, because if πi and πi+1 are the final two elements of a large block,
then πi > πi+1, so our 3-factor is not a 123. So it must be πi+1 which is the singleton,
while the other two elements belong to two large blocks. The replacement merges these
three blocks into one; the even elements, including πi+1, remain on the diagonal, and as in
the previous case any point at which the new block split would also imply a decomposition
of one of the old blocks at the same position. The odd elements of π′ are 321-avoiding
because if a 321 contained just one of π′

i or π
′
i+2 then it would be pre-existing (with πi+2

or πi respectively). If it contained both, then the third element in the pattern would be
either on the left and too large for the old lefthand block, or on the right and too small
for the old righthand block.

Case (d) The three elements are all within a single large block B.
First we claim that the middle element, πi+1 must be in an even position (within B).

Otherwise, πi and πi+2 would be in even positions, hence on the diagonal, and the 123
form of the 3-factor would mean πi+1 was also on the diagonal; thus, B would have to be
of size at least 5. Now if all elements to the left of πi were smaller than it, B would split
into summands before position i. But if some πj is greater than πi (for some odd j < i)
it must be greater than πi+2, forcing a compensatory πk < πi for some odd k > i + 2.
But then πj , πi+1, πk formed a 321-pattern of odd positions within the block, contrary to
hypothesis. The claim follows.

Now the replacement πiπi+1πi+2 → πi+2πi+1πi cannot create a new direct sum decom-
position since it is increasing the left element and decreasing the right one. Suppose that
somehow this move created a 321 among the odd elements (within B). If it only used one
of πi, πi+2, then it must have been pre-existing with the other one, contrary to hypothesis.
If it used both, then without loss of generality assume B contains an element x to the
left of the replaced 3-factor, but larger than πi+2. Because x is also greater than πi+1, it
uses up one of the odd values greater than the diagonal element πi+1, meaning that there
must be a y to the right of πi+1 but smaller than it, and then x, πi+2, y is a pre-existing
321. The case where B contains an element y to the right of the replaced 3-factor, but
smaller than πi follows by symmetry.

Non-Case (e) The last possibility to consider is that the 3-factor is split across two
adjacent large blocks, necessarily with two elements at the start or end of one of the large
blocks. But this is ruled out because large blocks begin and end with descents.

Note that in each of these cases the replacement 123 → 321 winds up gluing together
all the blocks of π which it straddles, leaving the same number or fewer blocks in π′. In
particular, the replacement may glue together blocks, but never splits any apart.

Now consider applications of 321 → 123 within a permutation ρ ∈ An to obtain a new
permutation ρ̂. Clearly, any adjacent 321 must lie within a single block, as in any two
blocks, all the elements in the block to the right are larger than all the elements in the
block to the left. Because the even elements within a block increase monotonically, the 321
is composed of odd, even, odd elements. An analysis similar to that given above shows
that any such transformation is simply the reverse of one of the cases (a–d) described
above, so ρ̂ is always in An.

Now we need to show that we can use these transformations to return to the identity
from any permutation σ in An. We first claim that every large block of σ contains a 321
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as a factor. For the first element of the block must lie below the diagonal and the last
element must lie above it; therefore, there are two consecutive odd elements in the block
with the first below and the second above the diagonal. Together with the even element
which separates them, and which lies on the diagonal, this forms a 321.

Unless ρ is itself the identity, it contains a large block, and therefore a 321. Replacing
this 321 with a 123 yields a permutation ρ̂ having strictly fewer inversions than ρ. But as
An is closed under such replacements, we know that ρ̂ also belongs to An, and therefore
is either the identity or else contains a 321. By iterating this process, we must eventually
arrive at a permutation having no inversions, namely the identity.

This establishes that Eq
(

ιn,
{

{123, 321}
})

= An, so all that is left is the enumeration
of these classes. It is an easy exercise [CatAdd, (n6)] or [CK08, p. 15] that the number
of indecomposable 321-avoiding permutations on m + 1 elements is the Catalan number
cm = 1

m+1

(

2m
m

)

. This is also the number of possible blocks of size 2m + 1. We define
the following three generating functions, which enumerate central binomial coefficients of
even order (E), of odd order (O), and the Catalan numbers (C).

E(x) = 1√
1−4x

= 1 + 2x+ 6x2 + 20x3 + 70x4 + . . .

O(x) =
1

√

1−4x
−1

2x
= 1 + 3x+ 10x2 + 35x3 + 126x4 + . . .

C(x) = 1−
√
1−4x
2x

= 1 + x+ 2x2 + 5x3 + 14x4 + . . .

The statement of the theorem is equivalent to showing that E(x) =
∑

n≥0A2n+1x
n and

O(x) =
∑

n≥0A2n+2x
n, where we set An := #An.

Now a reachable permutation of even size 2n+2 is the direct sum of an indecomposable
block of size 2i + 1 (i ≥ 0) and a reachable permutation of odd size 2(n − i) + 1. This
translates into the recursion/convolution

A2n+2 =
n

∑

i=0

ckA2(n−i)+1

which is equivalent to O(x) = E(x)C(x), and which is also easily verified from the
closed-form expressions for these generating functions. Similarly, a reachable permutation
of odd-size 2n+1 is the direct sum of an indecomposable block of size 2i+1 and a reachable
permutation of even size 2(k−i), corresponding to the easily-verified equality of generating
functions E(x) = (1 + xO(x))C(x). This completes the proof. �

Although the above proof seems natural enough from the structure of the equivalence
class An, the simple form of the enumeration as a single binomial coefficient begs the
question of whether there is a more direct (perhaps bijective) argument.

The next theorem provides independent proofs of two results which appeared 10 years
ago in [CEHKN].

Theorem 13. (a) #Classes
(

n,
{

{123, 132, 213}
})

= invn, the number of involutions of
order n.

(b) #Eq
(

π,
{

{123, 132, 213}
})

is odd for all n and for each π ∈ Sn.
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Proof. Write each involution in τ ∈ Invn ⊆ Sn canonically as a product of 1-cycles
and 2-cycles, with the elements increasing within each 2-cycle, and with the cycles in
decreasing order of largest element. Omitting the parentheses, we view the resulting
word D(τ) as a permutation. Let Dn := D(Invn) be the image of this map (which
is easily reversible by placing parentheses around the ascents of σ ∈ Dn). We claim
that this is a canonical set of representatives for the equivalence classes of Sn under
P3 = {{123, 132, 213}} transformations.

Each permutation π ∈ Sn can be transformed to an element of Dn as follows: if n is at
the front of π, it must stay there. (This corresponds to having n as a fixed point of the
involution.) Otherwise, use 123 → 132 and 213 → 132 (at least one of which is possible
at each step) to push n leftward into position 2, which is as far as it will go. The element
which is thus pushed into position 1 is the minimal element m which was to the left of n to
begin with. This is because m can never trade places with n under the given operations,
as 1 is left of 3 in all of 123, 132 and 213. Leaving the leftmost 1-factor n or 2-factor
mn fixed, proceed inductively among the remaining elements, at each step moving the
maximal remaining element as far left as possible. The end result of this deterministic
procedure is a permutation L(π) ∈ Dn. This shows that the number of P3-equivalence
classes is at most invn = #Dn.

To show that they are the same, it remains to show that each π can be transformed to
a unique member of Dn, or equivalently that it is not possible to move from one member
of Dn to another using P3-moves. We will prove this by induction on n. At the same time
we will prove statement (b) of the theorem. Assume as an induction hypothesis that both
statements have been demonstrated for n − 1 and n − 2. It is straightforward to check
the base cases by hand. For n = 3 the four equivalence classes are P3 and three singleton
classes. For n = 4 the classes are {1234, 1243, 1324, 2134, 1423, 1342, 2143, 3142, 2314},
{1342, 3124, 1432, 3142, 3214}, {4123, 4132, 4213}, {2341, 2431, 3241}, and six single-
tons: {2413}, {3412}, {4312}, 4231, 3421, 4321. (The elements in bold are the class
representatives within Dn.)

First note that if the largest element, n, is at the front of a permutation, then it
is immobile under P3-moves. Thus the equivalence classes split into two kinds: special
equivalence classes, in which n is at the front of each permutation in the class, and
ordinary equivalence classes, in which n is never at the front. Moreover it is obvious that
the special equivalence classes for Sn correspond exactly to all the equivalence classes for
Sn−1 upon deletion of the first elements; therefore, the truth of both (a) and (b) as they
apply to the special equivalence classes follows by induction.

Next we will look at the ordinary equivalence classes. For convenience of exposition,
consider a (directed) graph in which the vertices correspond to the permutations in Sn,
and there is a blue (directed) edge from π to π′ if π′ can be obtained from π by applying
123 → 132, and similarly a red edge for each 213 → 132, and a green edge for each
123 → 213. A blue edge just corresponds to a green edge followed by a red one, and
indeed the edges always appear in matched sets: the appearance of a 213 in a permutation
implies an incident green edge pointing in and a red edge pointing out, and also a blue
edge making the chord of this triangle (and similarly for appearances of 123 and 132). The
equivalence classes in which we are interested are the (undirected) connected components
of this graph.
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Now consider the forest of rooted trees which one obtains by taking only those red and
blue edges in which the element n plays the role of the “3”. The roots (i.e., sinks) of these
trees are exactly the permutations in which the n has moved to position 2, which is as far
left as it will go within an ordinary equivalence class. More generally, if πk = n, then π lies
on level k−2 of the tree. (We can say that it has energy E(π) = k−2 = π−1(n)−2.) Note
that blue and red edges reduce the energy by one, while green edges leave it unchanged.
Each vertex in this forest has either zero or two children, because if it has a blue child
(obtained by travelling backwards along a blue edge) then it also has a red child, and vice
versa.

Each permutation π lies on a unique directed path to the root of its tree, which we will
call the ground state of π, g(π). Note that g(π)2 = n, while g(π)1 is the smallest element
m to the left of n in π. Because each node has either zero or two children, each rooted
tree has an odd number of nodes; indeed all of its level-sums are even except the zeroth
level sum, which corresponds to the root vertex (i.e., ground state).

Now we will create larger classes as follows: declare two ground states τ and σ similar
if τ1 = σ1 and τ3 · · · τn is P3-equivalent to σ3 · · ·σn regarded (in the obvious way) as
members of Sn−2. For m ∈ [n − 1] and ν ∈ Dn−2, let K(m, ν) be the (disjoint!) union
of all trees with similar ground states τ , where τ1 = m and τ3 · · · τn is P3-equivalent to
ν. Note that this gives us a total of (n− 1)invn−2 equivalence classes, in agreement with
the well-known recursion: invn = invn−1+(n− 1)invn−2. (The special equivalence classes
account for the first summand.)

We claim that these larger classes K(m, ν) are exactly (the vertex sets of) the connected
components of our directed graph; that is, there are no directed edges in the graph which
escape from one class to another. Once this is shown, then by induction there is a unique
member of the class Dn−2 of canonical permutations among the ground states in a large
component, to which we prepend mn to obtain the unique representative of K(m, ν)
within Dn.

Furthermore, each K(m, ν) will then be of odd size, because each rooted tree has odd
size, having all level-sums even except the one corresponding to the ground states, and
because the number of rooted trees in the union is odd by the induction hypothesis for
n− 2.

So suppose there is an edge (of any colour) from a π ∈ K(m, ν) to π′ ∈ K(m′, ν ′). Since
this move does not involve moving the largest element n, π and π′ have the same energy.
Our goal is to show that m = m′ and ν is P3-equivalent to ν ′. The former follows from
our earlier description of m as the minimum element lying to the left of n in π, because
π and π′ have the same set of elements to the left of n. The latter requires an analysis of
the cases that can arise as π and π′ move towards their ground states in their respective
trees.

As the n moves leftward through each of the two permutations (following red and/or
blue edges toward their respective ground states) then it sometimes encounters identical
elements and therefore has the same effect; eventually it encounters the positions where
the difference lies, having swept before it the minimal intervening element, b. What
happens from this point forward depends on how π and π′ differ, and the relative value
of b.
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To clarify the cases, let the three values where the difference was applied be d < f < h,
and designate b by one of C,E,G or I (where C < d < E < f < G < h < I), depending
on its relative order within the factor. For example, at some point along the path from π
to g(π) we may see a permutation containing the factor dfhCn, while at the same energy
level on the path from π′ to g(π′) we see instead dhfCn (having followed a blue edge), the
two permutations being otherwise identical. Advancing the element n three further steps
to the left, we arrive in the first instance at Cndfh and in the second instance at Cndhf ;
the n then continues forward all the way to position 2 (zero energy), making identical
moves in each case. The resulting ground states g(π) and g(π′) differ only by a (blue)
move dfh → dhf , so ν = ν ′.

Here is a table of the cases that arise given the four possible relative values of b; blue
edges are the composition of green with red.

Input : dfhCn → fdhCn → dhfCn

Output : Cndfh → Cnfdh → Cndhf

Input : dfhEn → fdhEn → dhfEn

Output : dnEfh → dnfEh → dnEhf

Input : dfhGn → fdhGn → dhfGn

Output : dnfGh = dnfGh → dnfhG

Input : dfhIn → fdhIn → dhfIn

Output : dnfhI = dnfhI = dnfhI

Examining this table shows that the classes K(m, ν) containing π and K(m′, ν ′) con-
taining π and π′ have ν P3-equivalent to ν ′, which completes the proof. �

This result is particularly striking because the equivalence relation has the same num-
ber of classes as Knuth equivalence, yet the two relations are materially different. For
example, for n = 3, the equivalence classes for PK have sizes 1,1,2,2, whereas for P3 =
{

{123, 132, 213}
}

the sizes are 1,1,1,3. In fact the authors in [CEHKN] show that the
corresponding monoids (plactic and Chinese) share the same graded Hilbert series, and

they obtain a partial recurrence for the numbers #Eq (ιn, P3).

Proposition 14 ([CEHKN], Cor. 4.3). For n odd, #Eq (ιn, P3) = n ·#Eq (ιn−1, P3).

The recurrence for n even appears still to be open.

4. Doubly adjacent transformations

For completeness we include a brief treatment of the situation where both indices and
values are simultaneously constrained to be adjacent. In this highly constrained situation,
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the permutations reachable from the identity are easy to classify and enumerate in all
cases. Since all the treatments are similar, we can wrap them up in one proposition.

As in the previous section, we have as yet no results related to the enumeration of
equivalence classes.

The statement of this proposition makes use of the Iverson bracket : [S] is equal to 1 if
the statement S is true, and 0 otherwise.

Proposition 15. #Eq�(ιn, P1) obeys the recurrence a(n) = a(n − 1) + a(n − 2) with
a1 = a2 = 1. (Fibonacci numbers F (n), [OEIS, A000045]).

#Eq�(ιn, P4) obeys the recurrence a(n) = a(n− 1) + a(n− 3) with a0 = 0, a1 = a2 = 1
([OEIS, A000930]).

#Eq�(ιn, P3) = F (n+ 1)− [n is even].
#Eq�(ιn, P5) obeys the recurrence a(n) = a(n − 1) + a(n − 2) + a(n − 3) with a(0) =

a(1) = a(2) = 1 (Tribonacci numbers, [OEIS, A000213]).
#Eq�(ιn, P7) = T (n+ 2)− [n is even], where T (n) obeys the recurrence T (n) = T (n−

1) + T (n − 2) + T (n − 3) with T (0) = T (1) = 0, T (2) = 1. (Tribonacci numbers (with
different initial conditions), [OEIS, A000073]).

Proof. We begin by characterizing the various equivalence classes of ιn. In each case, no
element can move any further from its starting position then it could via a single move.
The resulting classes are subsets of those layered permutations which are direct sums of
anti-identities of dimensions either 1, 2 or 3, as follows:

P1 (123 ↔ 132): any direct sum of ρ1 and ρ2 beginning with ρ1;
P4 (123 ↔ 321): any direct sum of ρ1 and ρ3;
P3 (123 ↔ 132 ↔ 213): any direct sum of ρ1 and ρ2 including at least one ρ1;
P5 (123 ↔ 132 ↔ 321): any direct sum of ρ1, ρ2 and ρ3 not beginning with ρ2;
P7 (123 ↔ 132 ↔ 213 ↔ 321): any direct sum of ρ1, ρ2, ρ3 with at least one of odd

dimension;
In each case it is easy to see that the given class remains closed under application

of the appropriate operations. It is also easy in general to see how to reach a given
target permutation from ιn, especially if we cast the block sizes in the language of regular
expressions. The notation {xy} means a single block of size either x or y. An asterisk
following a number means zero or more copies of that number. An asterisk following a
string within [ ] (not to be confused with the Iverson brackets in the statement of the
proposition) indicates zero or more copies of that string.

P1: The block sizes are 1{12}∗ = [12∗]∗. Build each string of blocks of the form 12∗
from right to left.

P4: The block sizes are {13}∗; build each block freely.
P3: From any non-identity permutation with block sizes as described, there is at least

one instance of 21 or 12, which can be transformed by one of the rules into a 111. The
resulting permutation has one fewer ρ2. Proceed inductively to transform all the ρ2’s (i.e.,
2-blocks) to consecutive 1-blocks until the identity is reached.

P5: The block sizes are [{13}2∗]∗. First use 123 → 132 to build all the 2-blocks from
right to left. Then use 123 → 321 to place the 3-blocks.

P7: Build the 2-blocks first, as in the case of P3, and then place the 3-blocks.
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One now verifies all the necessary base cases, as trivially a1 = 1, a2 = 1, and a3 = the
size of the non-singleton block of Pj.

As for the recurrences, for n > 3:
P1: an = an−1 + an−2, by appending respectively a ρ1 or a ρ2.
P4: an = an−1 + an−3, by appending respectively a ρ1 or a ρ3.
P5: an = an−1 + an−2 + an−3, by appending ρ1, ρ2 or ρ3.
P3: Count all direct sums of ρ1 and ρ2 (obviously Fibonacci) and then subtract 1 from

the even terms to remove the special case 2∗ (all blocks of size 2).
P7: Count all direct sums of ρ1, ρ2, ρ3 to get tribonacci numbers [A000073], and subtract

1 from the even terms because block structure 2∗ is disallowed. Alternatively, verify the
recurrence an = an−2 + Un, where Un is the P5-recurrence [A000213], by noting that a
permutation in Eq�(ιn, P7) is either a ρ2 prepended to a permutation in Eq�(ιn−2, P7), or
else belongs to Eq�(ιn, P5). �

5. Final Remarks & Open Questions

Our results in this paper are just a tractable subset of questions that could be explored
within these families of equivalence relations. We created the framework to easily allow
for a number of extensions. The connections with familiar integer sequences, pattern-
avoidance in permutations, and important combinatorial bijections indicate the value of
further work. Possible directions for further study include:

(1) Study the sizes (and characterise if possible) all equivalence classes Eq∗(π, P ), not
just for the case π = ιn. Corresponding to each equivalence relation is the multiset
of sizes of the equivalences classes, perhaps best considered as an integer partition
of n!. Is the study of these of interest?

(2) Allow for more generality among the (set) partition P of S3 which defines our
relations. The authors in [PRW11] allow substitution of patterns in S3 where
no element is fixed, but still restrict to partitions P consisting of exactly one
non-singleton block containing the identity 123. Although it seems unwieldy to
work with all B(6) = 203 possible partitions of S4, perhaps a different restriction
that forces greater symmetry among the relations would be useful. For example,
the Knuth relations PK =

{

{213, 231}, {132, 312}
}

are closed under reversal and
complementation.

(3) Consider relations generated by partitions P of Sk for k > 3. Here one definitely
needs some conditions to restrict focus to relations of particular interest, since the
Bell number B(4!) is already far too large to handle all cases.

(4) Study in greater detail the structure of the graphs defined by these relations.
What can one say about their degree sequences or diameters? How many moves
are necessary in order to transform a given π to the identity?
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