A permutation pattern that illustrates the strong law of small numbers

DAVID CALLAN
Dept. of Statistics, University of Wisconsin-Madison, Madison, WI 53706
callan@stat.wisc.edu

Abstract

We obtain an explicit formula for the number of permutations of $[n]$ that avoid the barred pattern $\overline{1} 43 \overline{5} 2$. A curious feature of its counting sequence, $1,1,2,5,14,43$, $145,538,2194, \ldots$, is that the displayed terms agree with A122993 in the On-Line Encyclopedia of Integer Sequences, but the two sequences diverge thereafter.

1 Introduction

A permutation π avoids the barred pattern $\overline{1} 43 \overline{5} 2$ if each instance of a not-necessarilyconsecutive 432 pattern in π is part of a 14352 pattern in π, and similarly for other barred patterns. This paper is one of a series of notes counting permutations avoiding a 5 letter pattern with 2 bars that do not yield to Lara Pudwell's method of Enumeration Schemes [3]. The question of whether there may be an automated method to fill in these and other gaps in Pudwell's enumeration remains open. Here we treat the pattern $\overline{1} 43 \overline{5} 2$. A curious feature of the counting sequence is that it agrees through the $n=8$ term with sequence A122993 in the On-Line Encyclopedia of Integer Sequences [4], an instance of the Strong Law of Small Numbers [5, 6].

Our method is to identify the structure of a $\overline{1} 43 \overline{5} 2$-avoider. This permits a direct count as a 5 -summation formula according to five statistics of the permutation, four of which are the first entry a, the immediate predecessor of 1 denoted b, the position of 1 denoted j, and the number of left to right maxima that occur after 1 denoted k. One of these sums can be evaluated, leading to a faster formula.

$2 \quad \overline{1} 43 \overline{5} 2$-Avoiders

A "typical" $\overline{1} 43 \overline{5} 2$-avoider is illustrated in Figure 1 in matrix form. It has first entry $a=5,1$ is in position $j=4$, the immediate predecessor of 1 is $b=16$, and there are $k=5$ left to right maxima that occur after 1 . Here $j \geq 3$ so that $1, a, b$ are all distinct. The special cases $j=1$ or 2 are treated later. There is a vertical blue line through the bullet representing the entry 1 , and yellow vertical lines through the left to right maxima that occur after 1. These k yellow lines divide the the part of the matrix to the right of the blue line into $k+1$ vertical strips (in white, one of which is vacuous in Figure 1).

Furthermore, horizontal lines through $1, a$ and b determine three horizontal strips indexed by $\mathcal{A}=[2, a-1], \mathcal{B}=[a+1, b-1], \mathcal{C}=[b+1, n]$. There are $j-3$ bullets to the left of the blue line in strip \mathcal{B} and none in \mathcal{A} or \mathcal{C}. Hence, to the right of the blue line there are $A:=a-2$ bullets in strip $\mathcal{A}, B:=|\mathcal{B}|-(j-3)=b-a-j+2$ bullets in strip \mathcal{B}, and $C:=n-b$ bullets in $\operatorname{strip} \mathcal{C}$. The following properties of a $\overline{1} 43 \overline{5} 2$-avoider are evident in the illustration and easily proved from the definition.

- The entries to the left of 1 are increasing, else together with 1 , there is a 432 pattern with no available 1. Equivalently, the bullets in the gray vertical strip on the left are rising.
- The entries $2,3, \ldots, a-1$ occur in that order, else together with b, there is a 432 pattern with no available 1. Equivalently, the bullets in horizontal strip \mathcal{A} are rising.
- Entries in the interval (a, b) lie either to the left of 1 or to the right of $a-1$, else together with b, there is a 432 pattern with no available 1. Equivalently, all bullets in horizontal strip \mathcal{B} to the right of 1 are also to the right of $a-1$.
- Every descent initiator after 1 is a left to right maximum, else together with a left to right maximum to its left (there is one), we have a 432 pattern with no available 5. Equivalently, the bullets in each vertical white strip \mathcal{A} are rising.

Conversely, when the position j of 1 is ≥ 3, one can check that a permutation with these properties is $\overline{1} 43 \overline{5} 2$-avoiding.

To count permutations with these four properties, let $i \in[1, k+1]$ denote the left to right position of the first white strip containing an entry in (a, b), that is, containing a bullet in horizontal strip \mathcal{B} (when there is one).

The subpermutation of entries in $\mathcal{C}=[b+1, n]$, when split at its left to right maxima, forms a partition in a canonical form: in each block, the largest entry occurs first and the rest of the block is increasing, and the blocks are ordered by increasing first entry. This yields $\left\{\begin{array}{l}C \\ k\end{array}\right\}$ choices to determine the relative positions of entries in \mathcal{C}.

Next, choose $j-3$ elements from $[a+1, b-1]$ to precede $1-\binom{b-a-1}{j-3}$ choices. The entries in \mathcal{B} following 1 must be distributed into boxes (white strips) labeled $i, i+1, \ldots, k+1$ in such a way that box i is nonempty- $(k-i+2)^{B}-(k-i+1)^{B}$ choices when $B>0$. The bullets for entries in \mathcal{A} must be distributed into boxes $1,2, \ldots, i-\binom{A+i-1}{i-1}$ choices when $B>0$. In case $B=0$, we merely distribute the bullets for entries in \mathcal{A} into $k+1$ boxes- $\binom{A+k}{k}$ choices.

Recalling that $A=a-2, B=b-a-j+2, C=n-b$, the contribution of the case $j \geq 3$ to the desired count is now seen to be

$$
\begin{array}{r}
\sum_{a=2}^{n-1} \sum_{b=a+1}^{n} \sum_{j=3}^{b-a+1} \sum_{k=1}^{n-b} \sum_{i=1}^{k+1}\left\{\begin{array}{c}
n-b \\
k
\end{array}\right\}\binom{b-a-1}{j-3}\left((k-i+2)^{b-a-j+2}-(k-i+1)^{b-a-j+2}\right) \times \\
\binom{a+i-3}{i-1}+\sum_{a=2}^{n-1} \sum_{b=a+1}^{n}\left\{\begin{array}{c}
n-b \\
k
\end{array}\right\}\binom{a+i-3}{i-1} \tag{1}
\end{array}
$$

When $j=1$, the map "delete first entry" is a bijection to $43 \overline{5} 2$-avoiding permutations of size $n-1$, counted by the Bell number B_{n-1} [7]. When $j=2$, we have $a=b$ in Figure 1, and the count reduces to $\sum_{a=2}^{n} \sum_{k=0}^{n-a}\binom{k+a-2}{a-2}\left\{\begin{array}{c}n-a \\ k\end{array}\right\}$ where $\left\{\begin{array}{l}0 \\ 0\end{array}\right\}:=1$.

The sum over j in (1) can be evaluated using the binomial theorem, and putting it all together we have, after minor simplifications, the following result.

Theorem. For $n \geq 2$, the number of permutations of [n] avoiding the barred pattern $\overline{1} 43 \overline{5} 2$ is

$$
\begin{aligned}
& B_{n-1}+1+2^{n-2}-n+ \\
& \sum_{a=0}^{n-3} \sum_{b=0}^{a-1} \sum_{k=0}^{a-b}\left(\sum_{i=0}^{k}\binom{n-4-a+k-i}{k-i}(i+2)^{b}-\binom{n-3-a+k}{k}\right)\left\{\begin{array}{c}
a-b \\
k
\end{array}\right\}+ \\
& \sum_{a=0}^{n-2} \sum_{k=0}^{n-2-a}\binom{k+a+1}{k+1}\left\{\begin{array}{c}
n-2-a \\
k
\end{array}\right\} .
\end{aligned}
$$

The first few terms of the counting sequence, starting at $n=1$, are $1,2,5,14,43,145$, 538, 2194, 9790, 47491, 248706.

References

[1] David Callan, The number of $\overline{2} 413 \overline{5}$-avoiding permutations, preprint, arXiv:1110.6884, 4pp.
[2] David Callan, The number of $\overline{3} \overline{1} 542$-avoiding permutations, preprint, arXiv:1111.3088, 5pp.
[3] Lara Pudwell, Enumeration Schemes for Permutations Avoiding Barred Patterns, Electronic J. Combinatorics 17 (1) (2010), R29, 27 pp.
[4] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.
[5] Guy, Richard K., The Strong Law of Small Numbers, American Mathematical Monthly 95 Issue 8 (1988), 697-712.
[6] Guy, Richard K., The Second Strong Law of Small Numbers, Mathematics Magazine 63 (1990), 3-20.
[7] David Callan, A combinatorial interpretation of the eigensequence for composition, J. Integer Sequences 9 (2006) Article 06.1.4, 12 pp.

