Preprint, arXiv:1112.1034

CONGRUENCES FOR FRANEL NUMBERS

ZHI-WEI SUN

Department of Mathematics, Nanjing University Nanjing 210093, People's Republic of China zwsun@nju.edu.cn

http://math.nju.edu.cn/~zwsun

ABSTRACT. The Franel numbers given by $f_n = \sum_{k=0}^n {n \choose k}^3$ (n = 0, 1, 2, ...) play important roles in both combinatorics and number theory. In this paper we initiate the systematic investigation of fundamental congruences for Franel numbers. Let p > 3 be a prime. We mainly establish the following congruences:

$$\sum_{k=0}^{p-1} (-1)^k f_k \equiv \left(\frac{p}{3}\right) \pmod{p^2}, \quad \sum_{k=0}^{p-1} (-1)^k k f_k \equiv -\frac{2}{3} \left(\frac{p}{3}\right) \pmod{p^2},$$

$$\sum_{k=1}^{p-1} \frac{(-1)^k}{k} f_k \equiv 0 \pmod{p^2}, \quad \sum_{k=1}^{p-1} \frac{(-1)^k}{k^2} f_k \equiv 0 \pmod{p}.$$

We also pose several conjectural congruences.

1. Introduction

It is well known that

$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n} \ (n = 0, 1, 2, \dots)$$

and central binomial coefficients play important roles in mathematics. A famous theorem of J. Wolstenholme [W] asserts that

$$\frac{1}{2} \binom{2p}{p} = \binom{2p-1}{p-1} \equiv 1 \pmod{p^3} \text{ for any prime } p > 3.$$

The reader may consult [S11a], [S11b], [ST1] and [ST2] for recent work on congruences involving central binomial coefficients.

²⁰¹⁰ Mathematics Subject Classification. Primary 11A07, 11B65; Secondary 05A10, 11B68, 11E25.

Keywords. Franel numbers, Apéry numbers, binomial coefficients, congruences. Supported by the National Natural Science Foundation (grant 11171140) of China.

In 1895 J. Franel [F] noted that the numbers

$$f_n = \sum_{k=0}^n \binom{n}{k}^3 \quad (n = 0, 1, 2, \dots)$$
 (1.1)

(cf. [Sl, A000172]) satisfy the recurrence relation:

$$(n+1)^2 f_{n+1} = (7n(n+1)+2)f_n + 8n^2 f_{n-1} \ (n=1,2,3,\ldots).$$

Such numbers are now called Franel numbers. For combinatorial interpretations of Franel numbers and Barrucand's identity

$$\sum_{k=0}^{n} \binom{n}{k} f_k = g_n \quad \text{with } g_n = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{k}, \tag{1.2}$$

the reader may consult D. Callan [C]. Recall that Apéry numbers given by

$$A_n = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 = \sum_{k=0}^{n} {n+k \choose 2k}^2 {2k \choose k}^2 \quad (n = 0, 1, 2, \dots)$$

were introduced by Apéry [Ap] (see also [Po]) in his famous proof of the irrationality of $\zeta(3) = \sum_{n=1}^{\infty} 1/n^3$, and they can be expressed in terms of Franel numbers as follows:

$$A_n = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} f_k \tag{1.3}$$

(see V. Strehl [St92]).

The Franel numbers are also related to the theory of modular forms. Let η be the Dedkind eta function given by

$$\eta(\tau) := e^{\pi i \tau / 12} \prod_{n=1}^{\infty} (1 - e^{2\pi i n \tau})$$

with $Im(\tau) > 0$. It is known that

$$\sum_{n=0}^{\infty} f_n \left(\frac{\eta(\tau)^3 \eta(6\tau)^9}{\eta(2\tau)^3 \eta(3\tau)^9} \right)^n = \frac{\eta(2\tau) \eta(3\tau)^6}{\eta(\tau)^2 \eta(6\tau)^3}$$

for any complex number τ with $\text{Im}(\tau) > 0$. (See, e.g., D. Zagier [Z].)

In this paper we study congruences for Franel numbers systematically. As usual, for an odd prime p and integer a, $(\frac{a}{p})$ denotes the Legendre symbol, and $q_p(a)$ stands for the Fermat quotient $(a^{p-1}-1)/p$ if $p \nmid a$.

Now we state our main results.

Theorem 1.1. Let p > 3 be a prime. For any p-adic integer r we have

$$\sum_{k=0}^{p-1} (-1)^k \binom{k+r}{k} f_k \equiv \sum_{k=0}^{p-1} \binom{2k}{k} \binom{k+r}{k}^2 \pmod{p^2}.$$
 (1.4)

In particular,

$$\sum_{k=0}^{p-1} (-1)^k f_k \equiv \left(\frac{p}{3}\right) \pmod{p^2},\tag{1.5}$$

$$\sum_{k=0}^{p-1} (-1)^k k f_k \equiv -\frac{2}{3} \left(\frac{p}{3}\right) \pmod{p^2},\tag{1.6}$$

$$\sum_{k=0}^{p-1} (-1)^k k^2 f_k \equiv \frac{10}{27} \left(\frac{p}{3}\right) \pmod{p^2},\tag{1.7}$$

and

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k} f_k}{(-4)^k} \equiv \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{16^k} \pmod{p^2}.$$
 (1.8)

We also have

$$\sum_{k=1}^{p-1} \frac{(-1)^k}{k} f_k \equiv 0 \pmod{p^2},\tag{1.9}$$

$$\sum_{k=1}^{p-1} \frac{(-1)^k}{k^2} f_k \equiv 0 \pmod{p},\tag{1.10}$$

$$\sum_{k=1}^{p-1} \frac{(-1)^k}{k} f_{k-1} \equiv 3q_p(2) + 3p \, q_p(2)^2 \pmod{p^2},\tag{1.11}$$

and

$$\sum_{k=0}^{p-1} (3k+1) \frac{f_k}{8^k} \equiv p^2 - 2p^3 q_p(2) + 4p^4 q_p(2)^2 \pmod{p^5}.$$
 (1.12)

Remark 1.1. Fix a prime p > 3. As $f_k \equiv (-8)^k f_{p-1-k} \pmod{p}$ for all $k = 0, \ldots, p-1$ by [JV, Lemma 2.6], (1.11) implies that

$$\sum_{k=1}^{p-1} \frac{f_k}{k8^k} \equiv \sum_{k=1}^{p-1} \frac{(-1)^k}{k} f_{p-1-k} = \sum_{k=1}^{p-1} \frac{(-1)^{p-k}}{p-k} f_{k-1} \equiv 3q_p(2) \pmod{p}.$$

Concerning (1.8) the author [S11b, Conj. 5.2(ii)] conjectured that

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{16^k} \equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } p \equiv 1 \pmod{3} \& p = x^2 + 3y^2 \ (x, y \in \mathbb{Z}), \\ 0 \pmod{p^2} & \text{if } p \equiv 2 \pmod{3}. \end{cases}$$

We also have many such conjectures for $\sum_{k=0}^{p-1} {2k \choose k} f_k/m^k \mod p^2$. (1.10) can be extended as

$$\sum_{k=1}^{p-1} \frac{(-1)^{kr}}{k^{r-1}} f_k^{(r)} \equiv 0 \pmod{p}, \tag{1.13}$$

where r is any positive integer and $f_k^{(r)} := \sum_{j=0}^k {k \choose j}^r$. Note that $f_k^{(2)} = {2k \choose k}$ and $\sum_{k=1}^{p-1} {2k \choose k}/k \equiv 0 \pmod{p^2}$ by [ST1].

Let p > 3 be a prime. Similar to (1.5)-(1.7), we are also able to show that

$$\sum_{k=0}^{p-1} (-1)^k k^3 f_k \equiv -\frac{10}{81} \left(\frac{p}{3} \right) \pmod{p^2} \text{ and } \sum_{k=0}^{p-1} (-1)^k k^4 f_k \equiv -\frac{14}{3^5} \left(\frac{p}{3} \right) \pmod{p^2}.$$

In general, for any positive integer r there should be an odd integer a_r such that

$$\sum_{k=0}^{p-1} (-1)^k k^r f_k \equiv \frac{2a_r}{3^{2r-1}} \left(\frac{p}{3}\right) \pmod{p^2}.$$

For example, if p > 5 then

$$\sum_{k=0}^{p-1} (-1)^k k^5 f_k \equiv \frac{322}{37} \left(\frac{p}{3}\right) \pmod{p^2}, \quad \sum_{k=0}^{p-1} (-1)^k k^6 f_k \equiv -\frac{2030}{39} \left(\frac{p}{3}\right) \pmod{p^2}.$$

The Apéry polynomials introduced in [S11c] are those

$$A_n(x) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2 x^k \quad (n=0,1,2,\ldots).$$

Here we define

$$g_n(x) = \sum_{k=0}^n \binom{n}{k}^2 \binom{2k}{k} x^k$$

for all $n = 0, 1, 2, \ldots$ Note that $g_n(1) = g_n$.

Theorem 1.2. Let p > 3 be a prime. Then

$$\sum_{k=0}^{p-1} g_k(x) \equiv p \sum_{k=0}^{p-1} \frac{x^k}{2k+1} \pmod{p^2}.$$
 (1.14)

Consequently,

$$\sum_{k=1}^{p-1} g_k \equiv 0 \pmod{p^2},\tag{1.15}$$

$$\sum_{k=0}^{p-1} g_k(-1) \equiv \left(\frac{-1}{p}\right) \pmod{p^2},\tag{1.16}$$

$$\sum_{k=0}^{p-1} g_k(-3) \equiv \left(\frac{p}{3}\right) \pmod{p^2}.$$
 (1.17)

We also have

$$\sum_{k=1}^{p-1} \frac{g_k(x)}{k} \equiv 0 \pmod{p},\tag{1.18}$$

$$\sum_{k=1}^{p-1} \frac{g_{k-1}}{k} \equiv -\left(\frac{p}{3}\right) 2q_p(3) \pmod{p},\tag{1.19}$$

$$\sum_{k=1}^{p-1} k g_k \equiv -\frac{3}{4} \pmod{p^2},\tag{1.20}$$

$$\sum_{k=1}^{p-1} \frac{g_k(-1)}{k^2} \equiv 0 \pmod{p} \quad \text{if } p > 5.$$
 (1.21)

Moreover,

$$\frac{1}{3n^2} \sum_{k=0}^{n-1} (4k+3)g_k = \sum_{k=0}^{n-1} {n-1 \choose k}^2 C_k$$
 (1.22)

for all $n = 1, 2, 3, \ldots$, where C_k denotes the Catalan number $\binom{2k}{k}/(k+1) = \binom{2k}{k} - \binom{2k}{k+1}$.

Remark 1.2. Let p > 3 be a prime. By [JV, Lemma 2.7], $g_k \equiv (\frac{p}{3})9^k g_{p-1-k} \pmod{p}$ for all $k = 0, \ldots, p-1$. So (1.17) implies that

$$\sum_{k=1}^{p-1} \frac{g_k}{k9^k} \equiv \left(\frac{p}{3}\right) \sum_{k=1}^{p-1} \frac{g_{p-1-k}}{k} = \left(\frac{p}{3}\right) \sum_{k=1}^{p-1} \frac{g_{k-1}}{p-k} \equiv 2q_p(3) \pmod{p}.$$

We also introduce the polynomials

$$f_n(x) = \sum_{k=0}^n \binom{n}{k}^2 \binom{2k}{n} x^k = \sum_{k=0}^n \binom{n}{k} \binom{k}{n-k} \binom{2k}{k} x^k \quad (n = 0, 1, 2, \dots)$$

which play a central role in our proof of Theorem 1.1.

We are going to show Theorem 1.1 in the next section and investigate in Section 3 connections among the polynomials $A_n(x)$, $f_n(x)$ and $g_n(x)$. In Section 4 we will prove Theorem 1.2. In Section 5 we shall raise some conjectures for further research.

2. Proof of Theorem 1.1

Lemma 2.1. For any nonnegative integer n, the integer $f_n(1)$ coincides with the Franel number f_n .

Remark 2.1. This is a known result due to V. Strehl [St94].

Lemma 2.2. For any nonnegative integer k we have

$$\sum_{l=k}^{2k} (-1)^l \binom{l}{k} \binom{k}{l-k} \binom{x+l}{l} = \binom{x+k}{k}^2.$$

Proof. Observe that

$$\sum_{l=k}^{2k} (-1)^l \binom{l}{k} \binom{k}{l-k} \binom{x+l}{l}$$

$$= \sum_{l=k}^{2k} \binom{l}{k} \binom{k}{l-k} \binom{-x-1}{l}$$

$$= \binom{-x-1}{k} \sum_{l=k}^{2k} \binom{-x-1-k}{l-k} \binom{k}{l-k}$$

$$= \binom{-x-1}{k} \sum_{j=0}^{k} \binom{-x-1-k}{j} \binom{k}{k-j} = \binom{-x-1}{k}^2 = \binom{x+k}{k}^2$$

with the help of the Chu-Vandemonde identity (cf. (3.1) of [G, p.22]). We are done. \Box

Lemma 2.3. For each positive integer m we have

$$\sum_{k=0}^{n-1} P_m(k) \binom{2k}{k} = n^m \binom{2n}{n} \quad \text{for all } n = 1, 2, 3, \dots,$$

where

$$P_m(x) := 2(2x+1)(x+1)^{m-1} - x^m.$$

Proof. The desired result follows immediately by induction on n. \square

Remark 2.2. The author thanks Prof. Qing-Hu Hou at Nankai Univ. for his comments on the author's original version of Lemma 2.3.

Lemma 2.4. Let p > 3 be a prime.

(i) ([ST, (1.6)]) We have

$$\sum_{k=0}^{p-1} \binom{2k}{k} \equiv \left(\frac{p}{3}\right) \pmod{p^2}.$$

(ii) ([S11c]) We have

$$\sum_{k=0}^{p-1} (2k+1)A_k \equiv p \pmod{p^4}.$$

Lemma 2.5. Let m be a positive integer. For n = 0, 1, ..., m we have

$$\sum_{k=0}^{n} {x \choose k} {-x \choose m-k} = \frac{m-n}{m} {x-1 \choose n} {-x \choose m-n}.$$

Remark 2.3. This is a known result due to E. S. Andersen, see, e.g., (3.14) of [G, p. 23].

Lemma 2.6 (Sun [S11b, Lemma 2.1]). Let p be an odd prime. For any $k = 1, \ldots, p-1$ we have

$$k \binom{2k}{k} \binom{2(p-k)}{p-k} \equiv (-1)^{\lfloor 2k/p \rfloor -1} 2p \pmod{p^2}.$$

Recall that harmonic numbers are given by

$$H_n = \sum_{0 \le k \le n} \frac{1}{k} \quad (n = 0, 1, 2, \dots).$$

In general. for any positive integer m, harmonic numbers of order m are defined by

$$H_n^{(m)} := \sum_{0 \le k \le n} \frac{1}{k^m} \quad (n = 0, 1, 2, \dots).$$

Let p > 3 be a prime. In 1862 J. Wolstenholme [W] proved that

$$H_{p-1} \equiv 0 \pmod{p^2}$$
 and $H_{p-1}^{(2)} \equiv 0 \pmod{p}$.

Note that

$$H_{(p-1)/2}^{(2)} = \frac{1}{2} \sum_{k=1}^{(p-1)/2} \left(\frac{1}{k^2} + \frac{1}{(p-k)^2} \right) = \frac{1}{2} H_{p-1}^{(2)} \equiv 0 \pmod{p}.$$

In 1938 E. Lehmer [L] showed that

$$H_{(p-1)/2} \equiv -2q_p(2) + p q_p(2)^2 \pmod{p^2}.$$
 (2.1)

These fundamental congruences are quite useful. Recently the author [S12a] proved some further congruences involving harmonic numbers.

Lemma 2.7. Let p > 3 be a prime. Then

$$f_{p-1} \equiv 1 + 3p q_p(2) + 3p^2 q_p(2)^2 \pmod{p^3}.$$
 (2.2)

Proof. For any $k = 1, \ldots, p - 1$, we obviously have

$$(-1)^k \binom{p-1}{k} = \prod_{j=1}^k \left(1 - \frac{p}{j}\right)$$

$$\equiv 1 - pH_k + \frac{p^2}{2} \sum_{1 \le i < j \le k} \frac{2}{ij} = 1 - pH_k + \frac{p^2}{2} \left(H_k^2 - H_k^{(2)}\right) \pmod{p^3}.$$

Thus

$$f_{p-1} - 1 = \sum_{k=1}^{p-1} {p-1 \choose k}^3 \equiv \sum_{k=1}^{p-1} (-1)^k \left(1 - pH_k + \frac{p^2}{2} \left(H_k^2 - H_k^{(2)} \right) \right)^3$$
$$= -3p \sum_{k=1}^{p-1} (-1)^k H_k + \frac{9}{2} p^2 \sum_{k=1}^{p-1} (-1)^k H_k^2 - \frac{3}{2} p^2 \sum_{k=1}^{p-1} (-1)^k H_k^{(2)} \pmod{p^3}.$$

Clearly

$$\sum_{k=1}^{p-1} (-1)^k H_k = \sum_{k=1}^{p-1} \sum_{j=1}^k \frac{(-1)^k}{j} = \sum_{j=1}^{p-1} \frac{\sum_{k=j}^{p-1} (-1)^k}{j} = \sum_{j=1}^{p-1} \frac{1}{j}$$
$$= \frac{1}{2} H_{(p-1)/2} \equiv -q_p(2) + \frac{p}{2} q_p(2)^2 \pmod{p^2} \quad \text{(by (2.1))}$$

and

$$\sum_{k=1}^{p-1} (-1)^k H_k^{(2)} = \sum_{j=1}^{p-1} \frac{\sum_{k=j}^{p-1} (-1)^k}{j^2} = \sum_{i=1}^{(p-1)/2} \frac{1}{(2i)^2} \equiv 0 \pmod{p}.$$

Observe that

$$\sum_{k=1}^{p-1} (-1)^k H_k^2 = \sum_{k=1}^{p-1} (-1)^{p-k} H_{p-k}^2 = \sum_{k=1}^{p-1} (-1)^{k-1} \left(H_{p-1} - \sum_{0 < j < k} \frac{1}{p-j} \right)^2$$

$$\equiv -\sum_{k=1}^{p-1} (-1)^k \left(H_k - \frac{1}{k} \right)^2$$

$$\equiv -\sum_{k=1}^{p-1} (-1)^k H_k^2 + 2\sum_{k=1}^{p-1} \frac{(-1)^k}{k} H_k - \sum_{k=1}^{p-1} \frac{(-1)^k}{k^2} \pmod{p}.$$

Clearly,

$$\sum_{k=1}^{p-1} \frac{(-1)^k}{k^2} \equiv \sum_{k=1}^{p-1} \frac{1 + (-1)^k}{k^2} = \sum_{j=1}^{(p-1)/2} \frac{2}{(2j)^2} \equiv 0 \pmod{p},$$

and

$$\sum_{k=1}^{p-1} \frac{(-1)^k}{k} H_k = \sum_{\substack{k=1\\2|k}}^{p-1} \frac{H_k}{k} - \sum_{\substack{k=1\\2\nmid k}}^{p-1} \frac{H_k}{k} \equiv \frac{q_p(2)^2}{2} - \left(-\frac{q_p(2)^2}{2}\right) \pmod{p}$$

by [S12a, Lemma 2.3]. Therefore

$$\sum_{k=1}^{p-1} (-1)^k H_k^2 \equiv \sum_{k=1}^{p-1} \frac{(-1)^k}{k} H_k \equiv q_p(2)^2 \pmod{p}.$$

Combining the above, we finally obtain

$$f_{p-1} - 1 \equiv -3p\left(-q_p(2) + \frac{p}{2}q_p(2)^2\right) + \frac{9}{2}p^2q_p(2)^2 \pmod{p^3}$$

and hence (2.2) holds. \square

Proof of Theorem 1.1. (i) Let r be any p-adic integer. Observe that

$$\sum_{l=0}^{p-1} (-1)^l \binom{l+r}{l} f_l(x) = \sum_{l=0}^{p-1} (-1)^l \binom{l+r}{l} \sum_{k=0}^l \binom{l}{k} \binom{k}{l-k} \binom{2k}{k} x^k$$
$$= \sum_{k=0}^{p-1} \binom{2k}{k} x^k \sum_{l=k}^{\min\{2k,p-1\}} (-1)^l \binom{l}{k} \binom{k}{l-k} \binom{l+r}{l}.$$

If $(p-1)/2 < k \leq p-1$ and $k \leq l \leq 2k$, then

$$\binom{2k}{k} = \frac{(2k)!}{(k!)^2} \equiv 0 \pmod{p} \quad \text{and} \quad \binom{l}{k} = \frac{l!}{k!(l-k)!} \equiv 0 \pmod{p}.$$

Therefore

$$\sum_{l=0}^{p-1} (-1)^l \binom{l+r}{l} f_l(x) \equiv \sum_{k=0}^{p-1} \binom{2k}{k} x^k \sum_{l=k}^{2k} (-1)^l \binom{l}{k} \binom{k}{l-k} \binom{l+r}{l} \pmod{p^2}.$$

Applying Lemma 2.2 we obtain

$$\sum_{l=0}^{p-1} (-1)^l \binom{l+r}{l} f_l(x) \equiv \sum_{k=0}^{p-1} \binom{2k}{k} x^k \binom{k+r}{k}^2 \pmod{p^2}. \tag{2.3}$$

In the case x = 1 this yields (1.4).

Taking r = 0 in (1.4) and applying Lemma 2.4(i), we immediately get (1.5). By (2.3) with r = 0, 1,

$$\sum_{k=0}^{p-1} (3(k+1)-1)(-1)^k f_k(x)$$

$$\equiv \sum_{k=0}^{p-1} {2k \choose k} x^k \left(3(k+1)^2 - 1\right) = \sum_{k=0}^{p-1} P_2(k) {2k \choose k} x^k \pmod{p^2}$$

where $P_2(x) = 2(2x+1)(x+1) - x^2 = 3x^2 + 6x + 2$. Thus, with the help of Lemma 2.3, we have

$$\sum_{k=0}^{p-1} (3k+2)(-1)^k f_k \equiv 0 \pmod{p^2}$$
 (2.4)

and hence (1.6) holds in view of (1.5).

Taking r = 2 in (2.3) we get

$$2\sum_{k=0}^{p-1} (k^2 + 3k + 2)(-1)^k f_k(x) \equiv \sum_{k=0}^{p-1} {2k \choose k} x^k ((k+1)(k+2))^2 \pmod{p^2}.$$

In view of (2.4), this yields

$$2\sum_{k=0}^{p-1} (-1)^k k^2 f_k \equiv \sum_{k=0}^{p-1} {2k \choose k} (k^2 + 3k + 2)^2 \pmod{p^2}.$$

Note that

$$27(k^2 + 3k + 2)^2 = 9P_4(k) + 12P_3(k) + 23P_2(k) + 20$$

where $P_m(x)$ is given by Lemma 2.3. Therefore, with the help of Lemma 2.3 and Lemma 2.4(i), we have

$$54\sum_{k=0}^{p-1}(-1)^kk^2f_k \equiv \sum_{k=0}^{p-1}(9P_4(k)+12P_3(k)+23P_2(k)+20)\binom{2k}{k} \equiv 20\left(\frac{p}{3}\right) \pmod{p^2}$$

and hence (1.7) follows.

Putting r = -1/2 in (2.3) and noting that

$$(-1)^k \binom{k-1/2}{k} = \binom{-1/2}{k} = \frac{\binom{2k}{k}}{(-4)^k}$$
 for $k = 0, 1, 2, \dots$

we then obtain

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k} f_k(x)}{(-4)^k} \equiv \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{16^k} x^k \pmod{p^2}.$$
 (2.5)

In the case x = 1 this gives (1.8).

(ii) Now we prove (1.9). Observe that

$$\sum_{l=1}^{p-1} \frac{(-1)^l}{l} \sum_{k=0}^l \binom{l}{k} \binom{k}{l-k} \binom{2k}{k} x^k = \sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k} x^k \sum_{l=k}^{p-1} (-1)^l \binom{l-1}{k-1} \binom{k}{l-k}.$$

If $1 \leqslant k \leqslant (p-1)/2$, then

$$\sum_{l=k}^{p-1} (-1)^l \binom{l-1}{k-1} \binom{k}{l-k} = \sum_{l=k}^{2k} (-1)^l \binom{l-1}{k-1} \binom{k}{l-k}$$

$$= \sum_{j=0}^k (-1)^{k+j} \binom{k+j-1}{j} \binom{k}{j}$$

$$= (-1)^k \sum_{j=0}^k \binom{-k}{j} \binom{k}{k-j} = (-1)^k \binom{0}{k} = 0$$

by the Chu-Vandermonde identity. If $(p+1)/2 \leqslant k \leqslant p-1$, then

$$\sum_{l=k}^{p-1} (-1)^l \binom{l-1}{k-1} \binom{k}{l-k} = \sum_{j=0}^{p-1-k} (-1)^{k+j} \binom{k+j-1}{j} \binom{k}{j}$$
$$= (-1)^k \sum_{j=0}^{p-1-k} \binom{-k}{j} \binom{k}{k-j}$$

and hence applying Lemma 2.5 we get

$$\sum_{l=k}^{p-1} (-1)^l \binom{l-1}{k-1} \binom{k}{l-k}$$

$$= (-1)^k \frac{k - (p-1-k)}{k} \binom{-k-1}{p-1-k} \binom{k}{k-(p-1-k)}$$

$$= (-1)^{p-1} \left(\frac{p-k}{k}\right)^2 \binom{p-1}{k-1} \binom{k}{p-k}$$

$$= (-1)^{k-1} \binom{k}{p-k} = \binom{p-2k-1}{p-k}$$

$$= \binom{2(p-k)-1}{p-k-1} = \frac{1}{2} \binom{2(p-k)}{p-k} \pmod{p}.$$

Note that $\binom{2k}{k} \equiv 0 \pmod{p}$ for $k = (p+1)/2, \ldots, p-1$. So we have

$$\sum_{l=1}^{p-1} \frac{(-1)^l}{l} f_l(x) \equiv \sum_{k=(p+1)/2}^{p-1} \frac{\binom{2k}{k}}{k} x^k \frac{\binom{2(p-k)}{p-k}}{2} \equiv p \sum_{k=(p+1)/2}^{p-1} \frac{x^k}{k^2} \pmod{p^2}$$
 (2.6)

with the help of Lemma 2.6. Clearly

$$2\sum_{k=(p+1)/2}^{p-1} \frac{1}{k^2} \equiv \sum_{k=(p+1)/2}^{p-1} \left(\frac{1}{k^2} + \frac{1}{(p-k)^2}\right) = \sum_{k=1}^{p-1} \frac{1}{k^2} \equiv 0 \pmod{p}$$

since $\sum_{k=1}^{p-1} 1/(2k)^2 \equiv \sum_{k=1}^{p-1} 1/k^2 \pmod{p}$. Therefore (1.9) is valid. Instead of proving (1.10) we show its extension (1.13). Clearly,

$$\sum_{k=1}^{p-1} \frac{(-1)^{kr}}{k^{r-1}} = \sum_{k=1}^{(p-1)/2} \left(\frac{(-1)^{kr}}{k^{r-1}} + \frac{(-1)^{(p-k)r}}{(p-k)^{r-1}} \right) \equiv 0 \pmod{p}.$$

Thus

$$\sum_{l=1}^{p-1} \frac{(-1)^{lr}}{l^{r-1}} f_l^{(r)} \equiv \sum_{l=1}^{p-1} \frac{(-1)^{lr}}{l^{r-1}} \sum_{k=1}^{l} \binom{l}{k}^r = \sum_{k=1}^{p-1} \frac{1}{k^{r-1}} \sum_{l=k}^{p-1} (-1)^{lr} \binom{l-1}{k-1}^{r-1} \binom{l}{k}$$

$$= \sum_{k=1}^{p-1} \frac{1}{k^{r-1}} \sum_{j=0}^{p-1-k} (-1)^{(k+j)r} \binom{k+j-1}{j}^{r-1} \binom{k+j}{j}$$

$$= \sum_{k=1}^{p-1} \frac{(-1)^{kr}}{k^{r-1}} \sum_{j=0}^{p-1-k} \binom{-k}{j}^{r-1} \binom{-k-1}{j}$$

$$\equiv \sum_{k=1}^{p-1} \frac{(-1)^{kr}}{k^{r-1}} \sum_{j=0}^{p-k-1} \binom{p-k}{j}^{r-1} \binom{p-k-1}{j} \pmod{p}.$$

For any positive integer n, we have

$$f_n^{(r)} = \sum_{k=0}^n \left(\frac{k}{n} + \frac{n-k}{n}\right) \binom{n}{k}^r = 2\sum_{k=0}^n \frac{n-k}{n} \binom{n}{k}^r = 2\sum_{k=0}^{n-1} \binom{n}{k}^{r-1} \binom{n-1}{k}.$$

Therefore.

$$\sum_{l=1}^{p-1} \frac{(-1)^{lr}}{l^{r-1}} f_l^{(r)} \equiv \sum_{k=1}^{p-1} \frac{(-1)^{kr}}{k^{r-1}} \cdot \frac{f_{p-k}}{2} = \frac{1}{2} \sum_{k=1}^{p-1} \frac{(-1)^{(p-k)r} f_k}{(p-k)^{r-1}}$$
$$\equiv -\frac{1}{2} \sum_{k=1}^{p-1} \frac{(-1)^{kr}}{k^{r-1}} f_k^{(r)} \pmod{p}$$

and hence (1.10) follows.

(iii) Next we show (1.11). Note that

$$\frac{1}{p} \sum_{n=0}^{p-1} (2n+1) A_n = \frac{1}{p} \sum_{n=0}^{p-1} (2n+1) \sum_{k=0}^n \binom{n+k}{2k} \binom{2k}{k} f_k
= \frac{1}{p} \sum_{k=0}^{p-1} \binom{2k}{k} f_k \sum_{n=k}^{p-1} (2n+1) \binom{n+k}{2k}
= \sum_{k=0}^{p-1} \binom{2k}{k} f_k \frac{p-k}{k+1} \binom{p+k}{2k} = \sum_{k=0}^{p-1} \frac{pf_k}{k+1} \binom{p-1}{k} \binom{p+k}{k}
= f_{p-1} \binom{2p-1}{p-1} + \sum_{k=0}^{p-2} \frac{pf_k}{k+1} \prod_{0 < j \le k} \binom{p^2}{j^2} - 1$$

$$\equiv f_{p-1} + p \sum_{k=0}^{p-2} \frac{(-1)^k f_k}{k+1} \pmod{p^3}.$$

Combining this with Lemma 2.4(ii) and (2.2) we obtain

$$\sum_{k=0}^{p-2} \frac{(-1)^{k-1} f_k}{k+1} \equiv \frac{f_{p-1} - 1}{p} \equiv 3q_p(2) + 3p \, q_p(2)^2 \pmod{p^2},$$

which is equivalent to (1.11).

(iv) Finally we prove (1.12). For any positive integer n we have the identity

$$\begin{split} \sum_{k=0}^{n-1} (3k+1) f_k 8^{n-1-k} &= n^2 \sum_{k=0}^{n-1} \binom{n-1}{k} \left(\binom{n-1}{k}^2 - \binom{n-1}{k} \binom{n}{k+1} + \binom{n}{k+1}^2 \right) \\ &= n^2 \sum_{k=0}^{n-1} \binom{n-1}{k}^3 \left(1 - \frac{n}{k+1} + \frac{n^2}{(k+1)^2} \right), \end{split}$$

which can be easily proved via the Zeilberger algorithm (cf. [PWZ]) since both sides satisfy the same recurrence relation with respect to n.

Putting n = p in the above identity, we get

$$\frac{1}{p^2} \sum_{k=0}^{p-1} (3k+1) \frac{f_k}{8^k}$$

$$= (1+pq_p(2))^{-3} \left(f_{p-1} - 1 - \sum_{k=0}^{p-2} {p-1 \choose k}^3 \frac{p}{k+1} + 1 + \sum_{k=0}^{p-2} {p-1 \choose k}^3 \frac{p^2}{(k+1)^2} \right)$$

$$\equiv (1-pq_p(2) + p^2 q_p(2)^2)^3 \left(f_{p-1} - p \sum_{k=0}^{p-2} \frac{(-1)^k (1-pH_k)^3}{k+1} + p^2 \sum_{k=0}^{p-2} \frac{(-1)^k}{(k+1)^2} \right)$$

$$\equiv (1-3pq_p(2) + 6p^2 q_p(2)^2) \left(f_{p-1} - p \sum_{k=0}^{p-2} \frac{(-1)^k (1-3pH_k)}{k+1} \right) \pmod{p^3}$$

since

$$\sum_{k=0}^{p-2} \frac{(-1)^{k+1}}{(k+1)^2} = \sum_{k=1}^{(p-1)/2} \left(\frac{(-1)^k}{k^2} + \frac{(-1)^{p-k}}{(p-k)^2} \right) \equiv 0 \pmod{p}$$

In view of the proof of Lemma 2.7,

$$\sum_{k=0}^{p-2} \frac{(-1)^{k+1}(1-3pH_k)}{k+1} = \sum_{k=1}^{p-1} \frac{(-1)^k}{k} (1-3pH_{k-1})$$

$$= \sum_{k=1}^{p-1} \frac{1+(-1)^k}{k} - H_{p-1} - 3p \sum_{k=1}^{p-1} \frac{(-1)^k}{k} H_k + 3p \sum_{k=1}^{p-1} \frac{(-1)^k}{k^2}$$

$$\equiv H_{(p-1)/2} - 3p q_p(2)^2 \pmod{p^2}$$

Thus, with the helps of (2.1) and (2.2) we deduce from the above our desired congruence (1.12).

So far we have completed the proof of Theorem 1.1. \square

Remark 2.3. Let p > 3 be a prime. By (2.3) in the case r = 0, we have

$$\sum_{k=0}^{p-1} (-1)^k f_k(x) \equiv \sum_{k=0}^{p-1} {2k \choose k} x^k \pmod{p^2}.$$

Note that

$$\sum_{k=0}^{p-1} {2k \choose k} x^k \equiv \sum_{k=0}^{(p-1)/2} {-1/2 \choose k} (-4x)^k$$

$$\equiv \sum_{k=0}^{(p-1)/2} {(p-1)/2 \choose k} (-4x)^k = (1-4x)^{(p-1)/2} \pmod{p}.$$

Thus

$$\sum_{k=0}^{p-1} (-1)^k f_k(x) \equiv \left(\frac{1-4x}{p}\right) \pmod{p} \quad \text{for all } x \in \mathbb{Z}. \tag{2.7}$$

In view of (2.5) we also have many conjectures on $\sum_{k=0}^{p-1} {2k \choose k} f_k(x)/m^k \mod p^2$ related to the representation of p or 4p by certain binary quadratic form.

3. Relations among $A_n(x)$, $f_n(x)$ and $g_n(x)$

Lemma 3.1. For any nonnegative integers m and n we have the combinatorial identity

$$\sum_{k=0}^{n} {m-x+y \choose k} {n+x-y \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}.$$
 (3.1)

Remark 3.1. (3.1) is due to Nanjundiah, see, e.g., (4.17) of [G, p. 53].

Our following theorem presents the polynomial forms of some known identities.

Theorem 3.1. Let n be any nonnegative integer. Then

$$\sum_{k=0}^{n} \binom{n}{k} f_n(x) = g_n(x), \quad f_n(x) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} g_k(x), \tag{3.2}$$

and

$$A_n(x) = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} f_k(x) = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} (-1)^{n-k} g_k(x).$$
 (3.3)

Proof. By the binomial inversion formula, the two identities in (3.2) are equivalent. Observe that

$$\sum_{l=0}^{n} \binom{n}{l} f_l(x) = \sum_{l=0}^{n} \binom{n}{l} \sum_{k=0}^{l} \binom{l}{k} \binom{k}{l-k} \binom{2k}{k} x^k$$

$$= \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} x^k \sum_{l=k}^{n} \binom{n-k}{n-l} \binom{k}{l-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} x^k \binom{n}{n-k} = g_n(x)$$

with the help of the Chu-Vandermonde identity. Thus (3.2) holds.

Next we show (3.3). Clearly

$$\sum_{l=0}^{n} \binom{n}{l} \binom{n+l}{l} f_l(x) = \sum_{l=0}^{n} \binom{n}{l} \binom{n+l}{l} \sum_{k=0}^{l} \binom{l}{k} \binom{k}{k-k} \binom{2k}{k} x^k$$

$$= \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} x^k \sum_{l=k}^{n} \binom{n-k}{l-k} \binom{k}{l-k} \binom{n+l}{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} x^k \sum_{j=0}^{k} \binom{n-k}{j} \binom{k}{k-j} \binom{n+k+j}{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \binom{2k}{k} x^k \binom{n+k}{n-k} \binom{n+k}{k} \text{ (by Lemma 2.1)}.$$

This proves the first identity in (3.3). Observe that

$$\sum_{l=0}^{n} \binom{n}{l} \binom{n+l}{l} (-1)^{l} g_{l}(x)$$

$$= \sum_{l=0}^{n} \binom{n}{l} \binom{-n-1}{l} \sum_{k=0}^{l} \binom{l}{k} f_{k}(x)$$

$$= \sum_{k=0}^{n} \binom{n}{k} f_{k}(x) \sum_{l=k}^{n} \binom{n-k}{n-l} \binom{-n-1}{l}$$

$$= \sum_{k=0}^{n} \binom{n}{k} f_{k}(x) \binom{-k-1}{n} \text{ (by the Chu-Vandermonde identity)}$$

and hence the second identity of (3.3) follows.

The proof of Theorem 3.1 is now complete. \square

For $n \in \mathbb{N} = \{0, 1, 2, \dots\}$ we set

$$[n]_q = \frac{1 - q^n}{1 - q} = \sum_{0 \le k \le n} q^k,$$

this is the usual q-analogue of n. For any $n, k \in \mathbb{N}$, if $k \leq n$ then we call

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{\prod_{0 < r \leqslant n} [r]_q}{(\prod_{0 < s \leqslant k} [s]_q)(\prod_{0 < t \leqslant n-k} [t]_q)}$$

a *q-binomial coefficient*; if k > n then we let $\begin{bmatrix} n \\ k \end{bmatrix}_q = 0$. Obviously we have $\lim_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q = \binom{n}{k}$. It is easy to see that

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_q + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q \quad \text{for all } k, n = 1, 2, 3, \dots.$$

By this recursion, each q-binomial coefficient is a polynomial in q with integer coefficients.

For $n \in \mathbb{N}$ we define

$$A_n(x;q) := \sum_{k=0}^{n} q^{2n(n-k)} {n \brack k}_q^2 {n+k \brack k}_q^2 x^k$$

and

$$g_n(x;q) := \sum_{k=0}^n q^{2n(n-k)} {n \brack k}_q^2 {2k \brack k}_q x^k.$$

Clearly

$$\lim_{q \to 1} A_n(x;q) = A_n(x) \text{ and } \lim_{q \to 1} g_n(x;q) = g_n(x).$$

Those identities in Theorem 3.1 have their q-analogues. For example, the following theorem gives a q-analogue of the identity

$$A_n(x) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \binom{n+k}{k} g_k(x).$$

Theorem 3.2. Let $n \in \mathbb{N}$. Then we have

$$A_n(x;q) = \sum_{k=0}^{n} (-1)^{n-k} q^{(n-k)(5n+3k+1)/2} \begin{bmatrix} n \\ k \end{bmatrix}_q \begin{bmatrix} n+k \\ k \end{bmatrix}_q g_k(x;q).$$
 (3.4)

Proof. Let $j \in \{0, ..., n\}$. By the q-Chu-Vandermonde identity (see, e.g., Ex. 4(b) of [AAR, p. 542]),

$$\sum_{k=j}^{n} q^{(k-j)^2} \begin{bmatrix} -n-1-j \\ k-j \end{bmatrix}_q \begin{bmatrix} n-j \\ n-k \end{bmatrix}_q = \begin{bmatrix} -2j-1 \\ n-j \end{bmatrix}_q.$$

This, together with

$$\begin{bmatrix} -n-1 \\ k \end{bmatrix}_q \begin{bmatrix} k \\ j \end{bmatrix}_q = \begin{bmatrix} -n-1 \\ j \end{bmatrix}_q \begin{bmatrix} -n-1-j \\ k-j \end{bmatrix}_q,$$

yields that

$$\sum_{k=j}^{n} q^{(k-j)^2} \begin{bmatrix} -n-1 \\ k \end{bmatrix}_q \begin{bmatrix} k \\ j \end{bmatrix}_q \begin{bmatrix} n-j \\ k-j \end{bmatrix}_q = \begin{bmatrix} -n-1 \\ j \end{bmatrix}_q \begin{bmatrix} -2j-1 \\ n-j \end{bmatrix}_q.$$

It is easy to see that

$$\begin{bmatrix} -m-1 \\ k \end{bmatrix}_q = (-1)^k q^{-km-k(k+1)/2} \begin{bmatrix} m+k \\ k \end{bmatrix}_q.$$

So we are led to the identity

$$\sum_{k=j}^{n} (-1)^{n-k} q^{\binom{n-k+1}{2} + 2j(n-k)} {n+k \brack k}_q {k \brack j}_q {n-j \brack k-j}_q = {n+j \brack j}_q {n+j \brack 2j}_q. (3.5)$$

Since

$$\begin{bmatrix} n \\ k \end{bmatrix}_q \begin{bmatrix} k \\ j \end{bmatrix}_q = \begin{bmatrix} n \\ j \end{bmatrix}_q \begin{bmatrix} n-j \\ k-j \end{bmatrix}_q \text{ and } \begin{bmatrix} n \\ j \end{bmatrix}_q \begin{bmatrix} n+j \\ j \end{bmatrix}_q = \begin{bmatrix} n+j \\ 2j \end{bmatrix}_q \begin{bmatrix} 2j \\ j \end{bmatrix}_q,$$

Multiplying both sides of (3.5) by $\binom{n}{j}_q \binom{2j}{j}_q x^j$ we get

$$\sum_{k=j}^{n} (-1)^{n-k} q^{\binom{n-k+1}{2} + 2j(n-k)} {n \brack k}_q {n+k \brack k}_q {k \brack j}_q^2 {2j \brack j}_q x^j = {n \brack j}_q^2 {n+j \brack j}_q^2 x^j.$$

In view of the last identity we can easily deduce the desired (3.4). \square

Theorem 3.3. Let p be an odd prime. Then

$$\sum_{k=0}^{p-1} A_k(x) \equiv p \sum_{k=0}^{p-1} \frac{(-1)^k f_k(x)}{2k+1} \pmod{p^2}$$
 (3.6)

and

$$\sum_{k=0}^{p-1} (-1)^k A_k(x) \equiv p \sum_{k=0}^{p-1} \frac{g_k(x)}{2k+1} \pmod{p^2}.$$
 (3.7)

Proof. Observe that

$$\sum_{l=0}^{p-1} A_l(x) = \sum_{l=0}^{p-1} \sum_{k=0}^{l} {k+l \choose 2k} {2k \choose k} f_k(x) = \sum_{k=0}^{p-1} {2k \choose k} f_k(x) \sum_{l=k}^{p-1} {k+l \choose 2k}$$

$$= \sum_{k=0}^{p-1} {2k \choose k} f_k(x) {p+k \choose 2k+1} = \sum_{k=0}^{p-1} {2k \choose k} f_k(x) \frac{p}{(2k+1)!} \prod_{0 < j \le k} (p^2 - j^2)$$

$$\equiv \sum_{k=0}^{p-1} {2k \choose k} f_k(x) \frac{p}{2k+1} (-1)^k \pmod{p^2}.$$

Similarly,

$$\sum_{l=0}^{p-1} (-1)^l A_l(x) = \sum_{l=0}^{p-1} \sum_{k=0}^l \binom{k+l}{2k} \binom{2k}{k} (-1)^k g_k(x)$$

$$= \sum_{k=0}^{p-1} \binom{2k}{k} (-1)^k g_k(x) \binom{p+k}{2k+1}$$

$$\equiv \sum_{k=0}^{p-1} \binom{2k}{k} g_k(x) \frac{p}{2k+1} \pmod{p^2}.$$

This concludes the proof of Theorem 3.3. \square

Remark 3.2. In [S11c] the author investigated $\sum_{k=0}^{p-1} (\pm 1)^k A_k(x) \mod p^2$ (where p is an odd prime) and made some conjectures.

Theorem 3.4. Let n be any positive integer. Then

$$\frac{1}{n} \sum_{k=0}^{n-1} (-1)^{n-k} (6k^3 + 9k^2 + 5k + 1) A_k(x)$$

$$= \sum_{k=0}^{n-1} {n-1 \choose k} {n+k \choose k} (3k+2-3n^2) f_k(x), \tag{3.8}$$

and also

$$\frac{1}{n} \sum_{k=0}^{n-1} (-1)^{n-k} P(k) A_k(x)$$

$$= -\sum_{k=0}^{n-1} {n-1 \choose k} {n+k \choose k} (9n^4 - 2n^2(9k+11) + 18k^2 + 31k + 14) f_k(x).$$
(3.9)

where

$$P(x) = 18x^5 + 45x^4 + 46x^3 + 24x^2 + 7x + 1. (3.10)$$

Proof. In view of (3.3), we have

$$\frac{1}{n} \sum_{k=0}^{n-1} (-1)^{n-k} (6k^3 + 9k^2 + 5k + 1) A_k(x)$$

$$= \frac{(-1)^n}{n} \sum_{k=0}^{n-1} (-1)^k (6k^3 + 9k^2 + 5k + 1) \sum_{j=0}^k {k+j \choose 2j} {2j \choose j} f_j(x)$$

$$= \frac{(-1)^n}{n} \sum_{j=0}^{n-1} {2j \choose j} f_j(x) \sum_{k=j}^{n-1} (-1)^k (6k^3 + 9k^2 + 5k + 1) {k+j \choose 2j}$$

$$= \frac{(-1)^n}{n} \sum_{j=0}^{n-1} {2j \choose j} f_j(x) (-1)^{n-1} (n-j) (3n^2 - 3j - 2) {n+j \choose 2j}$$

$$= \sum_{k=0}^{n-1} {n-1 \choose k} {n+k \choose k} (3k+2-3n^2) f_k(x).$$

This proves (3.8). Similarly,

$$\begin{split} &\frac{1}{n}\sum_{m=0}^{n-1}(-1)^{n-m}P(m)A_m(x) \\ &= \frac{(-1)^n}{n}\sum_{m=0}^{n-1}(-1)^mP(m)\sum_{k=0}^m\binom{k+m}{2k}\binom{2k}{k}f_k(x) \\ &= \frac{(-1)^n}{n}\sum_{k=0}^{n-1}\binom{2k}{k}f_k(x)\sum_{m=k}^{n-1}(-1)^mP(m)\binom{m+k}{2k} \\ &= \frac{(-1)^n}{n}\sum_{k=0}^{n-1}\binom{2k}{k}f_k(x)(-1)^{n-1}(n-k) \\ &\times (9n^4 - 2n^2(9k+11) + 18k^2 + 31k + 14)\binom{n+k}{2k} \\ &= -\sum_{k=0}^{n-1}\binom{n-1}{k}\binom{n+k}{k}(9n^4 - 2n^2(9k+11) + 18k^2 + 31k + 14)f_k(x). \end{split}$$

So (3.9) holds. \square

The author [S11c] conjectured that for any prime p > 3 we have

$$\sum_{k=0}^{p-1} (2k+1)(-1)^k A_k \equiv p\left(\frac{p}{3}\right) \pmod{p^3},\tag{3.11}$$

and this has been confirmed by Guo and Zeng [GZ].

Corollary 3.1. Let p > 3 be a prime. Then

$$\sum_{k=0}^{p-1} (2k+1)^3 (-1)^k A_k \equiv -\frac{p}{3} \left(\frac{p}{3}\right) \pmod{p^3}$$
 (3.12)

and

$$\sum_{k=0}^{p-1} (2k+1)^5 (-1)^k A_k \equiv -\frac{13}{27} p\left(\frac{p}{3}\right) \pmod{p^3}.$$
 (3.13)

Proof. Clearly

$$3(2k+1)^3 = 4(6k^3 + 9k^2 + 5k + 1) - (2k+1)$$

and

$$9(2k+1)^5 + 2(2k+1)^3 + 5(2k+1) = 16(18k^5 + 45k^4 + 46k^3 + 24k^2 + 7k + 1).$$

Combining these with (3.11), it suffices to show that

$$\sum_{k=0}^{p-1} (-1)^k (6k^3 + 9k^2 + 5k + 1) A_k \equiv 0 \pmod{p^2}$$
 (3.14)

and

$$\sum_{k=0}^{p-1} (-1)^k P(k) A_k \equiv 0 \pmod{p^2}, \tag{3.15}$$

where P(x) is given by (3.10).

Taking n = p in (3.8) we get

$$\frac{1}{p} \sum_{k=0}^{p-1} (-1)^{k-1} (6k^3 + 9k^2 + 5k + 1) A_k$$

$$= \sum_{k=0}^{p-1} (3k + 2 - 3p^2) f_k \prod_{0 < j \le k} \left(\frac{p^2}{j^2} - 1 \right)$$

$$\equiv \sum_{k=0}^{p-1} (3k + 2) (-1)^k f_k \equiv 0 \pmod{p^2}$$

with the help of (1.5) and (1.6). Similarly, (3.9) with n = p yields (3.15) since

$$\sum_{k=0}^{p-1} (18k^2 + 31k + 14)(-1)^k f_k \equiv 0 \pmod{p^2}.$$

by (1.5)-(1.7). We are done.

Remark 3.3. Let p > 3 be a prime. We can also prove that

$$\sum_{k=0}^{p-1} (2k+1)^7 (-1)^k A_k \equiv \frac{5}{9} p\left(\frac{p}{3}\right) \pmod{p^3}.$$
 (3.16)

In general, for each r = 0, 1, 2, ... there is a p-adic integer c_r only depending on r such that

$$\sum_{k=0}^{p-1} (2k+1)^{2r+1} (-1)^k A_k \equiv c_r p\left(\frac{p}{3}\right) \pmod{p^3}.$$

4. Proof of Theorem 1.2

Lemma 4.1. For any positive integer n, we have

$$\frac{(-1)^{n-1}}{n} \sum_{k=0}^{n-1} (2k+1)A_k(x) = \sum_{k=0}^{n-1} \binom{n-1}{k} \binom{n+k}{k} (-1)^k g_k(x). \tag{4.1}$$

For any odd prime p and integer x, we have

$$\frac{1}{p} \sum_{k=0}^{p-1} (2k+1) A_k(x) \equiv \sum_{k=0}^{p-1} g_k(x) \pmod{p^2}.$$
 (4.2)

Proof. Let n be any positive integer. In view of (1.15),

$$\sum_{m=0}^{n-1} (2m+1)A_m(x) = \sum_{m=0}^{n-1} (2m+1) \sum_{k=0}^m \binom{m+k}{2k} \binom{2k}{k} (-1)^{m-k} g_k(x)$$

$$= \sum_{k=0}^{n-1} \binom{2k}{k} (-1)^k g_k(x) \sum_{m=k}^{n-1} (-1)^m (2m+1) \binom{m+k}{2k}$$

$$= \sum_{k=0}^{n-1} \binom{2k}{k} (-1)^k g_k(x) (-1)^{n-1} (n-k) \binom{n+k}{2k}$$

$$= (-1)^{n-1} n \sum_{k=0}^{n-1} \binom{n-1}{k} \binom{n+k}{k} (-1)^k g_k(x).$$

This proves (4.1).

Now let p be an odd prime and let $x \in \mathbb{Z}$. As

$$\binom{p-1}{k}\binom{p+k}{k} = \prod_{0 < j \leqslant k} \left(\frac{p^2}{j^2} - 1\right) \equiv (-1)^k \pmod{p^2}$$

for every $k=0,\ldots,p-1,$ (4.2) follows from (4.1) with n=p.

Lemma 4.2. Let p > 3 be a prime. Then

$$g_{p-1} \equiv \left(\frac{p}{3}\right) (1 + 2p \, q_p(3)) \pmod{p^2}.$$
 (4.3)

Proof. For $k = 0, \ldots, p - 1$, clearly

$$\binom{p-1}{k}^2 = \prod_{0 \le j \le k} \left(1 - \frac{p}{j} \right)^2 \equiv \prod_{0 \le j \le k} \left(1 - \frac{2p}{j} \right) = (-1)^k \binom{2p-1}{k} \pmod{p^2}.$$

Thus, with the help of [S12b] we obtain

$$g_{p-1} \equiv \sum_{k=0}^{p-1} {2p-1 \choose k} (-1)^k {2k \choose k} \equiv \left(\frac{p}{3}\right) \left(2 \times 3^{p-1} - 1\right) \pmod{p^2}.$$

and hence (4.3) holds. \square

Lemma 4.3. For any odd prime p, we have

$$p\sum_{k=0}^{p-1} \frac{(-3)^k}{2k+1} \equiv \left(\frac{p}{3}\right) \pmod{p^2}.$$
 (4.4)

Proof. Clearly (4.4) holds for p = 3. Below we assume p > 3. Observe that

$$\sum_{k=0}^{p-1} \frac{(-3)^k}{2k+1} = \sum_{k=1}^{(p-1)/2} \left(\frac{(-3)^{(p-1)/2-k}}{2((p-1)/2-k)+1} + \frac{(-3)^{(p-1)/2+k}}{2((p-1)/2+k)+1} \right)$$

$$\equiv \left(\frac{-3}{p} \right) \frac{1}{2} \sum_{k=1}^{(p-1)/2} \left(\frac{(-3)^k}{k} - \frac{1}{3} \cdot \frac{(-3)^{p-k}}{p-k} \right)$$

$$= \frac{1}{2} \left(\frac{p}{3} \right) \left(\frac{4}{3} \sum_{k=1}^{(p-1)/2} \frac{(-3)^k}{k} - \frac{1}{3} \sum_{k=1}^{p-1} \frac{(-3)^k}{k} \right)$$

$$= -2 \left(\frac{p}{3} \right) \sum_{k=1}^{(p-1)/2} \frac{(-3)^{k-1}}{k} + \frac{1}{2} \left(\frac{p}{3} \right) \sum_{k=1}^{p-1} \frac{(-3)^{k-1}}{k} \pmod{p^2}.$$

Since

$$\frac{1}{p} \binom{p}{k} = \frac{1}{k} \binom{p-1}{k-1} \equiv \frac{(-1)^{k-1}}{k} \pmod{p} \quad \text{for } k = 1, \dots, p-1,$$

we have

$$\sum_{k=1}^{p-1} \frac{(-3)^{k-1}}{k} \equiv \frac{1}{3p} \sum_{k=1}^{p-1} \binom{p}{k} 3^k = \frac{4^p - 1 - 3^p}{3p} = 4(2^{p-1} + 1) \frac{2^{p-1} - 1}{3p} - \frac{3^{p-1} - 1}{p}$$
$$\equiv \frac{8}{3} q_p(2) - q_p(3) \pmod{p}.$$

Note also that

$$\sum_{k=1}^{(p-1)/2} \frac{(-3)^{k-1}}{k} = \sum_{k=1}^{(p-1)/2} \int_0^1 (-3x)^{k-1} dx = \int_0^1 \frac{1 - (-3x)^{(p-1)/2}}{1 + 3x} dx$$

$$= \int_0^1 \sum_{k=1}^{(p-1)/2} \binom{(p-1)/2}{k} (-1 - 3x)^{k-1} dx$$

$$= \sum_{k=1}^{p-1} \binom{(p-1)/2}{k} \frac{(-1 - 3x)^k}{-3k} \Big|_{x=0}^1$$

$$\equiv \sum_{k=1}^{p-1} \binom{-1/2}{k} \frac{(-1)^k - (-4)^k}{3k} = \frac{1}{3} \sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k4^k} - \frac{1}{3} \sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k}$$

$$\equiv \frac{2}{3} q_p(2) \pmod{p}$$

since

$$\sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k4^k} \equiv 2q_p(2) \pmod{p} \text{ and } \sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k} \equiv 0 \pmod{p^2}$$

by [ST1, (1.12)] and (1.20). Thus, in view of the above, we get

$$\sum_{\substack{k=0\\k\neq (p-1)/2}}^{p-1} \frac{(-3)^k}{2k+1} \equiv -2\left(\frac{p}{3}\right) \frac{2}{3} q_p(2) + \frac{1}{2} \left(\frac{p}{3}\right) \left(\frac{8}{3} q_p(2) - q_p(3)\right) = -\frac{q_p(3)}{2} \pmod{p}$$

It follows that

$$p \sum_{k=0}^{p-1} \frac{(-3)^k}{2k+1} \equiv (-3)^{(p-1)/2} - \frac{3^{p-1} - 1}{2}$$

$$= (-3)^{(p-1)/2} - \frac{(-3)^{(p-1)/2} + (\frac{-3}{p})}{2} \left((-3)^{(p-1)/2} - \left(\frac{-3}{p} \right) \right)$$

$$\equiv (-3)^{(p-1)/2} - \left((-3)^{(p-1)/2} - \left(\frac{-3}{p} \right) \right) = \left(\frac{p}{3} \right) \pmod{p^2}.$$

We are done. \square

Proof of Theorem 1.2. (i) By [S11c, (1.5)],

$$\frac{1}{p} \sum_{k=0}^{p-1} (2k+1) A_k(x)$$

$$= \sum_{k=0}^{p-1} {p-1 \choose k} {p+k \choose k} {p+k \choose 2k+1} {2k \choose k} x^k$$

$$= \sum_{k=0}^{p-1} \prod_{0 < j \leq k} {p^2 \choose j^2} - 1 \times \frac{p}{(2k+1)!} \prod_{0 < j \leq k} (p^2 - j^2) \times {2k \choose k} x^k$$

$$\equiv \sum_{k=0}^{p-1} \frac{p(k!)^2}{(2k+1)!} {2k \choose k} x^k = p \sum_{k=0}^{p-1} \frac{x^k}{2k+1} \pmod{p^2}.$$

Combining this with (4.2) we immediately get (1.14). Since

$$p\sum_{k=0}^{p-1} \frac{1}{2k+1} = 1 + p\sum_{k=0}^{(p-3)/2} \left(\frac{1}{2k+1} + \frac{1}{2(p-1-k)+1}\right) \equiv 1 = g_0 \pmod{p^2},$$

(1.12) in the case x = 1 yields (1.15). As

$$p\sum_{k=0}^{p-1} \frac{(-1)^k}{2k+1} = (-1)^{(p-1)/2} + p\sum_{k=0}^{(p-3)/2} \left(\frac{(-1)^k}{2k+1} + \frac{(-1)^{p-1-k}}{2(p-1-k)+1}\right)$$
$$\equiv \left(\frac{-1}{p}\right) \pmod{p^2},$$

(1.16) follows from (1.14) with x = -1. Combining (1.14) with (4.4) we obtain (1.17).

(ii) Note that

$$\sum_{l=1}^{p-1} \frac{g_l(x)}{l} = \sum_{l=1}^{p-1} \frac{1}{l} \sum_{k=0}^{l} \binom{l}{k} f_k(x) = H_{p-1} + \sum_{l=1}^{p-1} \sum_{k=1}^{l} \frac{f_k}{l} \binom{l}{k}$$

$$\equiv \sum_{k=1}^{p-1} \frac{f_k(x)}{k} \sum_{l=k}^{p-1} \binom{l-1}{k-1} = \sum_{k=1}^{p-1} \frac{f_k(x)}{k} \binom{p-1}{k}$$

$$\equiv \sum_{k=1}^{p-1} \frac{(-1)^k}{k} f_k(x) (1 - pH_k) \pmod{p^2}.$$

In view of (2.6), this implies (1.18). Clearly,

$$\sum_{n=0}^{p-1} (-1)^n (2n+1) A_n = \sum_{n=0}^{p-1} (2n+1) \sum_{k=0}^n \binom{n+k}{2k} \binom{2k}{k} (-1)^k g_k$$

$$= \sum_{k=0}^{p-1} \binom{2k}{k} (-1)^k g_k \sum_{n=k}^{p-1} (2n+1) \binom{n+k}{2k}$$

$$= \sum_{k=0}^{p-1} \binom{2k}{k} (-1)^k g_k \frac{p(p-k)}{k+1} \binom{p+k}{2k}$$

$$= p^2 \sum_{k=0}^{p-1} \frac{(-1)^k g_k}{k+1} \binom{p-1}{k} \binom{p+k}{k}$$

$$= p g_{p-1} \binom{2p-1}{p-1} + p^2 \sum_{k=0}^{p-2} \frac{g_k}{k+1} \prod_{j=1}^k \left(1 - \frac{p^2}{j^2}\right)$$

$$\equiv p g_{p-1} + p^2 \sum_{k=0}^{p-2} \frac{g_k}{k+1} \pmod{p^4}.$$

Combining this with (3.11) and (4.3), we obtain

$$p\left(\frac{p}{3}\right) \equiv p\left(\frac{p}{3}\right) (1 + 2p \, q_p(3)) + p^2 \sum_{k=1}^{p-1} \frac{g_{k-1}}{k} \pmod{p^3}$$

and hence (1.19) follows.

(1.20) follows from a combination of (1.15) and (1.22) in the case n = p. If we let u_n denote the left-hand side or the right-hand side of (1.22), then by applying the Zeilgerber algorithm (cf. [PWZ]) via Mathematica (version 7) we get the recurrence relation

$$(n+2)(n+3)^{2}(2n+3)u_{n+3}$$

$$=(n+2)(22n^{3}+121n^{2}+211n+120)u_{n+2}$$

$$-(n+1)(38n^{3}+171n^{2}+229n+102)u_{n+1}+9n^{2}(n+1)(2n+5)u_{n}$$

for $n = 1, 2, 3, \ldots$ Thus (1.22) can be proved by induction.

(iii) Finally we show (1.21). Observe that

$$\sum_{l=1}^{p-1} \frac{g_l(x)}{l^2} = \sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k^2} x^k \sum_{l=k}^{p-1} \binom{l-1}{k-1}^2$$

$$= \sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k^2} x^k \sum_{j=0}^{p-1-k} \binom{k+j-1}{j}^2 = \sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k^2} x^k \sum_{j=0}^{p-1-k} \binom{-k}{j}^2$$

$$\equiv \sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k^2} x^k \sum_{j=0}^{p-1-k} \binom{p-k}{j}^2 \pmod{p}.$$

For any $k = 1, \ldots, p - 1$, we have

$$\sum_{j=0}^{p-1-k} {p-k \choose j}^2 = \sum_{j=0}^{p-k} {p-k \choose j} {p-k \choose p-k-j} - 1 = {2(p-k) \choose p-k} - 1$$

by the Chu-Vandermonde identity. Thus

$$\sum_{k=1}^{p-1} \frac{g_k(x)}{k^2} \equiv \sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k^2} x^k \left(\binom{2(p-k)}{p-k} - 1 \right) \equiv -\sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k^2} x^k \pmod{p}$$

(Note that $\binom{2k}{k}\binom{2(p-k)}{p-k} \equiv 0 \pmod{p}$ for $k = 1, \ldots, p-1$.) It is known that if p > 5 then

$$\sum_{k=1}^{p-1} \frac{(-1)^k}{k^2} {2k \choose k} \equiv 0 \pmod{p}$$

(cf. [T]). So (1.21) is valid.

In view of the above, we have completed the proof of Theorem 1.2. \Box

5. Open conjectural congruences

In this section we include various related conjectural congruences, some of which are refinements of our results in earlier sections.

Conjecture 5.1. Let p > 3 be a prime. Then

$$\sum_{k=0}^{p-1} \frac{f_k}{8^k} \equiv \left(\frac{p}{3}\right) \pmod{p^2}, \qquad \sum_{k=1}^{p-1} \frac{f_k}{k8^k} \equiv -\frac{3}{2} H_{(p-1)/2} \pmod{p^2},$$

and

$$\sum_{n=0}^{p-1} (-1)^n \sum_{k=0}^n \binom{n}{k}^3 (-8)^k \equiv \left(\frac{p}{3}\right) \pmod{p^2}.$$

Also,

$$\sum_{k=1}^{p-1} \frac{g_{k-1}}{k} \equiv -\left(\frac{p}{3}\right) \frac{9^{p-1} - 1}{p} \pmod{p^2} \text{ and } \sum_{k=0}^{p-1} \frac{g_k}{9^k} \equiv \left(\frac{p}{3}\right) \pmod{p^2}.$$

If p > 5, then

$$\sum_{k=1}^{p-1} \frac{g_k(-1)}{k} \equiv 0 \pmod{p^2}.$$

Conjecture 5.2. For any positive integer n, we have

$$\frac{1}{2n^2} \sum_{k=0}^{n-1} (3k+2)(-1)^k f_k \in \mathbb{Z}, \quad \frac{1}{n^2} \sum_{k=0}^{n-1} (4k+1)g_k 9^{n-1-k} \in \mathbb{Z},$$

and

$$\frac{1}{n} \sum_{k=0}^{n-1} (4k+3)g_k(x) \in \mathbb{Z}[x].$$

If n is a power of two, then

$$\frac{1}{n^2} \sum_{k=0}^{n-1} (3k+1) f_k(x) 8^{n-1-k} \in \mathbb{Z}[x] \text{ and } \frac{1}{n} \sum_{k=0}^{n-1} (4k+1) g_k(x) 9^{n-1-k} \in \mathbb{Z}[x].$$

Moreover, for any prime p > 3 we have

$$\sum_{k=0}^{p-1} (3k+2)(-1)^k f_k \equiv 2p^2 (2^p - 1)^2 \pmod{p^5},$$

$$\sum_{k=0}^{p-1} (4k+1) \frac{g_k}{9^k} \equiv \frac{p^2}{2} \left(3 - \left(\frac{p}{3} \right) \right) - 3p^3 q_p(3) \pmod{p^4},$$

and

$$\sum_{k=0}^{p-1} (4k+3)g_k(x) \equiv p \pmod{p^2} \quad \text{for any integer } x \not\equiv 1 \pmod{p}.$$

Conjecture 5.3. (i) For any integer n > 1, we have

$$\sum_{k=0}^{n-1} (9k^2 + 5k)(-1)^k f_k \equiv 0 \pmod{(n-1)n^2},$$

$$\sum_{k=0}^{n-1} (12k^4 + 25k^3 + 21k^2 + 6k)(-1)^k f_k \equiv 0 \pmod{4(n-1)n^3},$$

$$\sum_{k=0}^{n-1} (12k^3 + 34k^2 + 30k + 9)g_k \equiv 0 \pmod{3n^3}.$$

(ii) For each odd prime p we have

$$\sum_{k=0}^{p-1} (9k^2 + 5k)(-1)^k f_k \equiv 3p^2(p-1) - 16p^3 q_p(2) \pmod{p^4},$$

$$\sum_{k=0}^{p-1} (12k^4 + 25k^3 + 21k^2 + 6k)(-1)^k f_k \equiv -4p^3 \pmod{p^4},$$

$$\sum_{k=0}^{p-1} (12k^3 + 34k^2 + 30k + 9)g_k \equiv \frac{3p^3}{2} \left(1 + 3\left(\frac{p}{3}\right)\right) \pmod{p^4}.$$

For a 3-adic number x we let $\nu_3(x)$ denote the 3-adic valuation of x.

Conjecture 5.4. Let n be any positive integer. Then

$$\nu_3 \left(\sum_{k=0}^{n-1} (-1)^k k f_k \right) \geqslant 2\nu_3(n),$$

and

$$\nu_3 \left(\sum_{k=0}^{n-1} (-1)^k f_k^{(r)} \right) \geqslant 2\nu_3(n) \quad \text{if } r \equiv 2, 3 \pmod{6}.$$

We also have

$$\nu_3\left(\sum_{k=0}^{n-1}(2k+1)(-1)^kA_k\right) = 3\nu_3(n) \leqslant \nu_3\left(\sum_{k=0}^{n-1}(2k+1)^3(-1)^kA_k\right).$$

If n is a positive multiple of 3, then

$$\nu_3 \left(\sum_{k=0}^{n-1} (2k+1)^3 (-1)^k A_k \right) = 3\nu_3(n) + 2.$$

Conjecture 5.5. (i) For any positive integer n, we have

$$\sum_{k=0}^{n-1} (6k^3 + 9k^2 + 5k + 1)(-1)^k A_k \equiv 0 \pmod{n^3},$$

$$\sum_{k=0}^{n-1} (18k^5 + 45k^4 + 46k^3 + 24k^2 + 7k + 1)(-1)^k A_k \equiv 0 \pmod{n^4}.$$

(ii) Let p > 3 be a prime. Then

$$\sum_{k=0}^{p-1} (6k^3 + 9k^2 + 5k + 1)A_k \equiv p^3 + 2p^4 H_{p-1} - \frac{2}{5}p^8 B_{p-5} \pmod{p^9}.$$

If p > 5, then

$$\sum_{k=0}^{p-1} (18k^5 + 45k^4 + 46k^3 + 24k^2 + 7k + 1)(-1)^k A_k$$

$$\equiv -2p^4 + 3p^5 + (6p - 8)p^5 H_{p-1} - \frac{12}{5}p^9 B_{p-5} \pmod{p^{10}},$$

where B_0, B_1, B_2, \ldots are Bernoulli numbers.

References

- [AAR] G. Andrews, R. Askey and R. Roy, *Special Functions*, Cambridge Univ. Press, Cambridge, 1999.
- [Ap] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$. Journees arithmétiques de Luminy, Astérisque **61** (1979), 11–13.
- [B] P. Barrucand, A combinatorial identity, problem 75-4, SIAM Review 17 (1975), 168.
- [BEW] B. C. Berndt, R. J. Evans and K. S. Williams, *Gauss and Jacobi Sums*, John Wiley & Sons, 1998.
- [C] D. Callan, A combinatorial interpretation for an identity of Barrucand, J. Integer Seq. 11 (2008), Article 08.3.4, 3pp.
- [G] H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., 1972.
- [GZ] V. J. W. Guo and J. Zeng, Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials, preprint, http://arxiv.org/abs/1101.0983.
- [JV] F. Javis and H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J. 22 (2010), 171–186.
- [L] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350–360.
- [O] K. Ono, Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, Amer. Math. Soc., Providence, R.I., 2003.
- [PWZ] M. Petkovšek, H. S. Wilf and D. Zeilberger, A=B, A K Peters, Wellesley, 1996.
- [Po] A. van der Poorten, A proof that Euler missed... Apéry's proof of the irrationality of $\zeta(3)$, Math. Intelligencer 1 (1978/79), 195–203.
- [Sl] N. J. A. Sloane, Sequence A000172 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org/A000172.

- [St92] V. Strehl, Recurrences and Legendre transform, Sém. Lothar. Combin. 29 (1992), 1-22.
- [St94] V. Strehl, Binomial identities-combinatorial and algorithmic aspects, Discrete Math. 136 (1994), 309–346.
- [S11a] Z. W. Sun, On congruences related to central binomial coefficients, J. Number Theory 131 (1011), in press.
- [S11b] Z. W. Sun, Super congruences and Euler numbers, Sci. China Math. **54** (2012), 2509-2535.
- [S11c] Z. W. Sun, On sums of Apéry polynomials and related congruences, submitted, arXiv:1101.1946. http://arxiv.org/abs/1101.1946.
- [S12a] Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc. 140 (2012), 415–428.
- [S12b] Z. W. Sun, On sums of binomial coefficients modulo p^2 , Colloq. Math., revised. http://arxiv.org/abs/0910.5667.
- [ST1] Z. W. Sun and R. Tauraso, New congruences for central binomial coefficients, Adv. in Appl. Math. 45 (2010), 125–148.
- [ST2] Z. W. Sun and R. Tauraso, On some new congruences for binomial coefficients, Int.
 J. Number Theory 7 (2011), 645–662.
- [T] R. Tauraso, More congruences for central binomial congruences, J. Number Theory 130 (2010), 2639–2649.
- [W] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Appl. Math. 5 (1862), 35–39.
- [Z] D. Zagier, Integral solutions of Apéry-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349–366.