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Abstract

We have calculated on the computer the sum BM of reciprocals of all
47 known Mersenne primes with the accuracy of over 12000000 decimal
digits. Next we developed BM into the continued fraction and calcu-
lated geometrical means of the partial denominators of the continued
fraction expansion of BM . We get values converging to the Khinchin’s
constant. Next we calculated the n-th square roots of the denominators
of the n-th convergents of these continued fractions obtaining values ap-
proaching the Khinchin-Lèvy constant. These two results suggests that
the sum of reciprocals of all Mersenne primes is irrational, supporting
the common believe that there is an infinity of the Mersenne primes. For
comparison we have done the same procedures with slightly modified
set of 47 numbers obtaining quite different results. Next we investigated
the continued fraction whose partial quotients are Mersenne primes and
we argue that it should be transcendental.
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1 Introduction.

The Mersenne primesMn are primes of the form 2p− 1 where p must be a prime, see e.g. [18,
Sect. 2.VII]. The set of Mersenne primes starts with M1 = 22 − 1,M2 = 23 − 1,M3 = 25 − 1
and only 47 primes of this form are currently known, see Great Internet Mersenne Prime
Search (GIMPS) at www.mersenne.org. The largest known Mersenne prime has the value
M47 = 243112609 − 1 = 3.1647026933 . . . × 1012978188. In general the largest known primes are
the Mersenne primes, as the Lucas–Lehmer primality test applicable only to numbers of the
form 2p − 1 needs a multiple of p steps, thus the complexity of checking primality of Mn is
O(log(Mn)). Let us remark that algorithm of Agrawal, Kayal and Saxena (AKS) for arbitrary
prime p works in about O(log7.5(p)) steps and modification by Lenstra and Pomerance has
complexity O(log6(p)).

There is no proof of the infinitude of Mn, but a common belief is that as there are pre-
sumedly infinitely many even perfect numbers thus there is also an infinity of Mersenne primes.
S. S. Wagstaff Jr. in [26] (see also [21, §3.5]) gave heuristic arguments, that Mn grow doubly
exponentially:

log2 log2Mn ∼ ne−γ, (1)

where γ = 0.57721566 . . . is the Euler–Mascheroni constant. In the Fig. 1 we compare the
Wagstaff conjecture with all 47 presently known Mersenne primes Mn. Of these 47 known
Mn = 2p−1 there are 27 with p mod 4 = 1 and 19 with p mod 4 = 3. It is in opposite to the
set of all primes where the phenomenon of Chebyshev bias is known: for initial primes there
are more primes p ≡ 3 (mod 4) than p ≡ 1 (mod 4), [11], [19].

In this paper we are going to exploit two facts about the continued fractions to support
the conjecture on the infinitude of Mersenne primes: the existence of the Khinchin constant
and Khinchin–Lèvy constant. We calculate the sum of reciprocals of the Mersenne primes
BM =

∑
n 1/Mn; if there is infinity of Mersenne primes then this number BM should be

irrational (at least, because it is probably even transcendental, as it is difficult to imagine the
polynomial with some mysterious integer coefficients whose one of roots should be BM).

There exists a method based on the continued fraction expansion which allows to detect
whether a given number r can be irrational or not. Let

r = [a0(r); a1(r), a2(r), a3(r), . . .] = a0(r) +
1

a1(r) +
1

a2(r) +
1

a3(r) +
. . .

(2)

be the continued fraction expansion of the real number r, where a0(r) is an integer and all ak(r)
with k ≥ 1 are positive integers. The quantities ak(r) are called partial quotients or the partial
denominators. Khinchin has proved [13], see also [20], that

lim
n→∞

(
a1(r) . . . an(r)

) 1
n =

∞∏
m=1

{
1 +

1

m(m+ 2)

}log2m

≡ K ≈ 2.685452001 (3)

is a constant for almost all real r [8, §1.8] (the term a0 is skipped in (3)). The exceptions are of
the Lebesgue measure zero and include rational numbers, quadratic irrationals and some irra-
tional numbers too, like for example the Euler constant e = limn→∞(1+ 1

n
)n = 2.7182818285 . . .
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for which the n-th geometrical mean tends to infinity like 3
√
n, see [10, §14.3 (p.160)]. The

constant K is called the Khinchin constant. If the sequence

K(r;n) =
(
a1(r)a2(r) . . . an(r)

) 1
n (4)

for a given number r tend toK for n→∞ we can regard it as an indication that r is irrational —
all rational numbers have finite number of partial quotients in the continued fraction expansion
and hence starting with some n0 for all n > n0 will be an = 0. It seems to be possible to
construct a sequence of rational numbers such that the geometrical means of partial quotients
of their continued fraction will tend to the Khinchin constant.

The Khinchin—Lèvy’s constant arises in the following way: Let the rational Pn(r)/Qn(r)
be the n-th partial convergent of the continued fraction of r:

Pn(r)

Qn(r)
= [a0(r); a1(r), a2(r), a3(r), . . . , an(r)]. (5)

In 1935 Khinchin [12] has proved that for almost all real numbers r the denominators of the
finite continued fraction approximations fulfill:

lim
n→∞

(
Qn(r)

)1/n ≡ lim
n→∞

(L(r;n) = L (6)

and in 1936 Paul Levy [14] found an explicit expression for this constant L:

lim
n→∞

n
√
Qn(r) = eπ

2/12 log(2) ≡ L = 3.27582291872 . . . (7)

L is called the Khinchin—Lèvy’s constant [8, §1.8]. Again the set of exceptions to the above
limit is of the Lebesgue measure zero and it includes rational numbers, quadratic irrational etc.

2 First experiment

Let us define the sum of reciprocals of all Mersenne primes:

BM =
∞∑
n=1

1

Mn

, (8)

which can regarded as the analog of the Brun’s constant, i.e. the sum of reciprocals of all twin
primes:

B2 =

(
1

3
+

1

5

)
+

(
1

5
+

1

7

)
+

(
1

11
+

1

13

)
+ . . . . (9)

In 1919 Brun [5] has shown that this constant B2 is finite, thus leaving the problem of infinity
of twin primes not decided. Today’s best numerical value is B2 ≈ 1.90216058, see [16], [22].
Yet it is possible to prove that there is infinity of twins by showing that Brun’s constant is
irrational [27] (we believe it is even transcendental).

Using PARI [24] we have calculated the sum of reciprocals of all known 47 Mersenne primes
BM with accuracy over 12 millions digits:

BM = 0.5164541789407885653304873429715228588159685534154197 . . . . (10)
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This number is not recognized by the Symbolic Inverse Calculator (http://pi.lacim.uqam.ca)
maintained by Simone Plouffe. The bar over BM denotes the finite (at present consisting of 47
terms) approximation to the full sum defined in (8). It is not known, whether there are Mersenne
prime numbers with exponent 20996011 < p < 43112609 — currently confirmed by GIMPS is
that 220996011−1 is the 40-th Mersenne primeM40— it is not known whether any undiscovered
Mersenne primes exist between the 40thM40 and the 47th Mersenne primeM47. We have taken
12000035 digits of BM — it means that we assume that there are no unknown Mersenne primes
with p < 39863137. Using the incredibly fast procedure ContinuedFraction[·] implemented
in Mathematica c© we calculated the continued fraction expansion of BM . The result was built
from 11645012 partial denominators a1 = 1, a2 = 1, a3 = 14, . . . , a11645012 = 4. The n-th
convergent Pn(r)/Qn(r), see (5), approximate the value of r with accuracy at least 1/QkQk+1

[13, Theorem 9, p.9]: ∣∣∣∣r − Pk
Qk

∣∣∣∣ < 1

QkQk+1

<
1

Q2
kak+1

<
1

Q2
k

. (11)

From this it follows that if r is known with precision of d decimal digits we can continue with
calculation of quotients an up to such n that the denominator of the n-th convergent Q2

n < 10d.
We have checked that Q11645012 = 4.291385× 106000016.

The largest denominator was a9965536 = 716699617. We have checked correctness of the
continued fraction expansion of BM by calculating backwards from [0; 1, 1, 14, . . . , 4] the partial
convergent. The Mathematica c© has build in the procedure FromContinuedFraction[·], but
we have used our own procedure written in PARI and implementing the recurrence:

Pn+1 = anPn + Pn−1, Qn+1 = anQn +Qn−1, n ≥ 1 (12)

with initial values
P0 = a0, Q0 = 1, P1 = a0a1 + 1, Q1 = a1. (13)

We have obtained the ratio of two mutually prime 6000018 decimal digits long integers (it
means denominator was of the order 106000018 and hence its square was smaller than 1012000035,
see eq.(11)):

6000018 digits︷ ︸︸ ︷
2216304109121123313251143869 . . . 2210
4291385759849224534616716035 . . . 2813

whose ratio had 12000033 digits the same as BM . The decimal expansion of BM = P/Q is of
course periodic (recurring), see [9, Th. 135], but the length of the period is much larger than
1.2 × 1012. According to the Theorem 135 from [9] the period r of the decimal expansion of
BM is equal to the order of 10 mod Q, i.e. it is the smallest positive r for which

10r ≡ 1( mod Q). (14)

Because Q being the product of all 47 Mersenne primes is of the order 3.509 . . .× 1086789810, we
expect that the value of r is much larger than 1012. Another argument is that we got over 11
500 000 partial quotients of the continued fraction of BM — the numbers with periodic decimal
expansions have only finite number of partial quotients different from zero.
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From the sequence of partial quotients a1 = 1, a2 = 1, a3 = 14, . . . , a11645012 = 4 we have
calculated running geometrical means

K(n) =

(
n∏
k=1

ak

)1/n

(15)

for n = 11, . . . , 11645012. The obtained numbers K(n) quickly tend to the Khinchine constant
thus in Fig. 2 we have plotted the differences |K(n) − K|. The power fit to the values for
n = 1000 . . . 11645012 gives the decrease of the form |K(n)−K| ∼ n−0.79 and it suggests that
indeed limn→∞K(n) = K and thus BM is irrational. Indices n for which the geometric means
K(n) produce progressively better approximations to Khinchin’s constant are:

1, 3, 2, 16, 17, 21, 24, 26, 29, 412, 788, 1045, 369625, 369636, . . . , 5137093, 10389989; (16)

the smallest value of |K(n) −K| was 4.455957 . . . × 10−11. This sequence can be regarded as
the counterpart to the A048613 at OEIS.org.

Next we calculated running (i.e. for n = 11, . . . , 11645012) partial quotients Pn/Qn and
then the quantities L(n) = n

√
Qn, which for almost all irrational numbers should tend to the

Khinchine–Levy constant. The behaviour of n
√
Qn is shown in Fig.3. Again we see that these

quantities tend to the limit L; the fitting of the power–like dependence for n > 10 gives that
|L(n)−L| ≈ 175.39n−0.92. The shape of the plot in this figure is similar to the plot of |K(n)−K|
in Fig. 2.

Both differences K(n)−K and L(n)−L have a lot sign changes for n < 11645012. Figures
4 and 5 present the plots of these differences together with the number of sign changes.

The data presented in Figures 2 and 3 provide the hints that BM is irrational and hence
that there is infinity of Mersenne primes. But we are convinced BM is in fact transcendental.
In favor of this claim we recall here the result of A. J. van der Poorten and J. Shallit [25] that
the following sum

1

21
+

1

22
+

1

23
+

1

25
+ . . .+

1

2Fn
+ . . . (17)

where Fn are Fibonacci numbers, is transcendental. It is well known that the Liouville number

1

21!
+

1

22!
+

1

23!
+

1

24!
+ · · ·+ 1

2n!
+ . . . (18)

is transcendental see [9, Theorem 192]. In BM , assuming the Wagstaff conjecture, unfortunately

the terms decrease slower: n! > 2n > 2e
−γn for n ≥ 4 but faster than Fn =

⌊
ϕn√
5

+ 1
2

⌋
, where

ϕ = 1+
√
5

2
≈ 1.6180339887 . . . .

Let ψn(m) denotes the number of partial quotients ak with k = 1, 2, . . . , n which are equal
to m:

ψn(m) = ]{k : k ≤ n and ak = m}.
Then the Gauss–Kuzmin theorem (for excellent exposition see e.g. [10, §14.3]) asserts that

lim
n→∞

ψn(m)

n
=

log
(

1 + 1
m(m+2)

)
log(2)

(19)
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for continued fractions of almost all real numbers. In other words, the probability to find the
partial quotient ak = m is equal to log2(1 + 1/m(m + 2)). In Fig. 6 we present the plot of

the ψ11645013(m)
11645013

for the continued fraction of BM and m = 1, 2, . . . 1000 together with prediction
given by the Gauss–Kuzmin theorem finding excellent agreement.

Finally let us notice, that the number BM computed with 12000035 digits is normal in the
base 10, see Table I.

TABLE I
Illustration of the normality of BM : the numbers in second row gives the number of digits
0, 1, . . . 9 appearing in the decimal expansion of BM and the third row contains the ratio of

numbers in second row divided by 12000035.

0 1 2 3 4
1200553 1199322 1199420 1200548 1199397

0.1000458 0.0999432 0.0999514 0.1000454 0.0999495

5 6 7 8 9
1198596 1200876 1200056 1201757 1199510

0.0998827 0.1000727 0.1000044 0.1001461 0.0999589

For comparison we have repeated the above procedure for artificial set of 47 numbers of
the size corresponding to known Mersenne primes. We have simply skipped -1 in the Mersenne
primes and using PARI we have computed with over 120000000 digits the sum:

S =
1

22
+

1

23
+ . . .+

1

242643801
+

1

243112609

This number S is the ratio of the form A/243112609, where gcd(A, 243112609) = 1. From
[9, §9.2] we know that S has terminating decimal expansion consisting of 43112609 decimal
digits, thus calculating 12000000 digits of this sum makes sens as it does not contain recurring
periodic patterns of digits. We have developed S into the continued fraction, what resulted in
10550114 partial quotients. The calculated quantities for this case we denote with the subscript
2: Q2(n), K2(n), L2(n) to distinguish them from earlier experiment for BM . We have calculated
the running geometrical averages of the partial quotients K2(n) and the results are presented in
Figure 7. Next we calculated 10550114 partial convergents P2(n)/Q2(n), n = 1, 2, . . . , 10550114
and from them the quantities L2(n) ≡ (Q2(n))1/n, which should tend to the Levy constant L.
In Figure 8 the differences |L2(n) − L| are plotted. Obtained plots are completely different
from those seen in Figures 2 and 3 and they suggest K2(n) as well as L2(n) do not have the
limit. In this artificial case we have encountered the phenomenon of extremely large partial
denominators: there were an of the order 1070548, 1097732 and 10279910. These large partial
denominators are responsible for the smaller number of ak than for BM , see (11).

3 Second experiment

Let us define the supposedly infinite and convergent continued fraction uM by taking an =Mn:

uM = [0; 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, . . .] (20)
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Using all 47 Mersenne primes 3, 7, 31, . . . , 243112609 − 1 in a couple of minutes we have cal-
culated uM with the precision of 10000000 digits; first 50 digits of uM are:

uM = 0.31824815840584486942596202748140694243806236564 . . . (21)

This number is not recognized by the Symbolic Inverse Calculator (http://pi.lacim.uqam.ca).
Because 1/Q2

47(uM) ≈ 1.84313×10−173579621 it follows from (11) that theoretically it is possible
to obtain the value of uM from presently known 47 Mersenne primes with over 170,000,000
decimal digits of accuracy. Of course uM is the exception to the Khinchin and Levy Theorems
in view of the very fast growth of uM — see the Wagstaff [26] conjecture (1).

There is a vast literature concerning the transcendentality of continued fractions. For ex-
ample the continued fraction

[0; 21!, 22!, 23!, . . . , 2n!, . . .] (22)

is transcendental, see [9, Theorem 192], [23, Example 4].
The Theorem of H. Davenport and K.F. Roth [7] states, that if the denominators Qn of

convergents of the continued fraction r = [a0; a1, a2, . . .] fulfill

lim sup
n

√
log(n) log(log(Qn(r)))

n
=∞ (23)

then r is transcendental. This theorem requires for the transcendence of r very fast increase of
denominators of the convergents: at least doubly exponential growth is required for (23). The
set of continued fractions which can satisfy the Theorem of H. Davenport and K.F. Roth is of
measure zero, as it follows from the Theorem 31 from the Khinchin’s book [13], which asserts
there exists an absolute constant B such that for almost all real numbers r and sufficiently
large n the denominators of its continued fractions satisfy:

Qn(r) < eBn. (24)

The paper of A. Baker [4] from 1962 contains a few theorems on the transcendentality of
Maillet type continued fractions [15], i. e. continued fractions with bounded partial quotients
which have transcencendental values. Besides Maillet continued fractions there are some spe-
cific families of other continued fractions of which it is known that they are transcendental.
In the papers [17], [2] it was proved that the Thue–Morse continued fractions with bounded
partial quotients are transcendental. Quite recently there appeared the preprint [6] where the
transcendence of the Rosen continued fractions was established. For more examples see [3].

In the paper [1] B. Adamczewski and Y. Bugeaud, among others, have improved (23) to the
form:

If lim sup
n

log(log(Qn(r)))

n2/3 log(n)2/3 log(log(n))
=∞ (25)

then r is transcendental.
Assuming the Wagstaff conjecture Mn ∼ 22ne

−γ
mentioned in the Introduction we obtain

that for large n

Qn > 2c2
(n+1)e−γ

, c =
1

2e−γ − 1
= 2.101893933 . . . (26)
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and thus the transcendence of uM will follow from the Davenport–Roth Theorem (23):√
log(n) log(log(Qn(r)))

n
∼
√

log(n)→∞. (27)

We illustrate the inequality (26) in Figure 9 — the values of labels on the y–axis give an idea of
the order of the fast grow of Qn(uM): the largest for n = 47 is of the order Q47 = e1.9984...×10

8
=

2.32928 . . .× 1086789810, see also Table II.

TABLE II
A sample of values of inverses of the squares of the n-th convergents of uM giving an idea of

the speed of convergence of [0;M1,M2, . . . ,Mn] to uM.

n 1/Q2
n

3 2.131173743× 10−6

4 1.320662319× 10−10

5 1.968416969× 10−18

6 1.145786956× 10−28

7 4.168364565× 10−40

8 9.038699842× 10−59

9 1.699990496× 10−95

...
...

17 9.32543401× 10−4439

18 1.38891910× 10−6375

19 3.81534516× 10−8936

20 4.67942175× 10−11599

...
...

40 4.50116310× 10−31553835

41 5.02100786× 10−46025300

42 3.36434042× 10−61657758

43 3.38166968× 10−79961861

44 2.17906011× 10−99578575

45 5.32688381× 10−121949118

46 1.84595823× 10−147623244

47 1.84313029× 10−173579621

One of the transcendence criterion is the Thue-Siegel-Roth Theorem, which we recall here
in the following form:

Thue-Siegel-Roth Theorem: If there exist such ε > 0 that for infinitely many fractions
An/Bn the inequality ∣∣∣∣r − An

Bn

∣∣∣∣ < 1

B2+ε
n

, n = 1, 2, 3, ..., (28)

holds, then r is transcendental.
Let us stress, that ε here does not depend on n — it has to be the same for all fractions

An/Bn. We can test the criterion (28) for uM using as the rational approximations An/Bn the
convergents Pn/Qn of the continued fraction (20).
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In [23] J. Sondow has given the estimation for ε appearing in r.h.s.of (28); namely he proved
that for irrational numbers with continued fraction expansion [a0; a1, a2, . . .] and convergents
Pn/Qn:

ε ≤ lim sup
n→∞

log an+1

logQn

. (29)

Let us denote δ ≡ 2 + ε. From the Wagstaff conjecture we obtain that the exponent δ of Bδ

appearing in on the r.h.s. of (28) should be of the order

δ ≈ 2 + 2e
−γ − 1 = 2.47477 . . . (i.e. ε ≈ 0.47477 . . .) (30)

implying transcendence of uM. In Fig.10 we present actual values of δ(uM;n) = − log |uM −
Pn/Qn|/ log(Qn) for n = 3, 4, . . . , 45 and indeed the values oscillate around 1+2e

−γ
= 2.47477 . . ..

First we have calculated uM using all 47 Mersenne primes with accuracy 140000000 digits and
for n = 3, 4, . . . , 45 we have calculated convergents Pn/Qn and next the differences |uM−Pn/Qn|
with accuracy 1/Q2

n (see Table II), from which we determined the δ(uM;n). The arithmetic
average of 43 values δ(uM;n) is 2.5002 . . ., quite close to the estimated value (30). It took
a few months of CPU time to collect data presented in Fig. 10: It took 12 days of CPU
time on the AMD Opteron 2700 MHz processor to collect data for n ≤ 40; the point n = 40
needed precision of almost 40,000,000 digits, as |uM − P40/Q40| = 1.5033 × 10−38789567, while
1/Q2

40 = 4.501 . . .× 10−31553835. To calculate the difference |uM−Pn/Qn| for n = 41, 42, 43 the
precision of 100000000 digits was needed. For n = 44 and n = 45 the difference |uM − Pn/Qn|
was calculated with the precision 130000000 digits (see Table II for n = 44 and n = 45) and it
took about one month of CPU time for each point.
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Figure 1: The plot of log log(Mn) and the Wagstaff conjecture (1). The fit was made to all
known Mn and it is 0.3854n+ 0.6691, while ne−γ log(2)− log log(2) ≈ 0.3892n+ 0.3665. The
rather good coincidence of log log(Mn) and (1) is seeming, as to get original Mn’s the errors
are amplified to huge values by double exponentiation.
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Figure 2: The plot showing the distance to K of the running geometrical averages K(n) =
(a1a2 · · · an)1/n for the continued fraction of BM .
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Figure 3: The plot showing the distance to L of the (Q(n))1/n obtained from the partial
convergents of the continued fraction of BM for n = 11, . . . , 11645012.
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Figure 4: The plot of K(n) in black approaching the Khinchine constant K = 2.685452 . . . (in
red) with values presented on left y-axis. In green are presented numbers of sign changes of
K(n)−K up to n — the right y-axis is for this plot.

Figure 5: The plot of L(n) in black approaching the Khinchine–Levy constant L =
3.27582291872 . . . (in red) with values presented on left y-axis. In green are presented numbers
of sign changes of L(n)− L up to n — the right y-axis is for this plot.
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Figure 6: The plot of the measured for the continued fraction of BM probability to find the
partial quotient ak = m for the continued fraction of BM .
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Figure 7: The plot showing the distance to K of the running geometrical averages K2(n) for
the continued fraction of S for n = 11, . . . , 10550114.

Figure 8: The plot showing the distance to L of the (Q2(n))1/n obtained from the partial
convergents of the continued fraction of S for n = 11, . . . , 10550114.
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Figure 9: Illustration of the inequality (26) for 3 ≤ n ≤ 47. Although the last points seem

to coincide in fact Q47 = 2.32928 . . . × 1086789810, while 2c2
48e−γ

= 1.21513 . . . × 1082034318 —
hundreds thousands orders of difference!

Figure 10: The plot of − log |uM − Pn/Qn|/ log(Qn) fluctuating around the estimation (30).
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