Induced subgraphs of hypercubes

Geir Agnarsson *

Abstract

Let Q_k denote the k-dimensional hypercube on 2^k vertices. A vertex in a subgraph of Q_k is full if its degree is k. We apply the Kruskal-Katona Theorem to compute the maximum number of full vertices an induced subgraph on $n \leq 2^k$ vertices of Q_k can have, as a function of k and n. This is then used to determine min $(\max(|V(H_1)|, |V(H_2)|))$ where (i) H_1 and H_2 are induced subgraphs of Q_k , and (ii) together they cover all the edges of Q_k , that is $E(H_1) \cup E(H_2) = E(Q_k)$.

2000 MSC: 05A15, 05C35.

Keywords: hypercube, induced subgraphs, maximin recurrence, Kruskal-Katona Theorem.

1 Introduction

The maximum number f(n) of edges of an induced subgraph on n vertices of the hypercube Q_k , where $k \geq \lceil \lg n \rceil$, has been studied extensively in [8], [14], [5], [4], and [3] to name a few articles. The function f(n) satisfies, and is determined by, the well-known divide-and-conquer maximin recurrence

$$f(n) = \max_{\substack{n_1+n_2=n\\n_1,n_2 \ge 1}} \left(\min(n_1, n_2) + f(n_1) + f(n_2) \right), \tag{1}$$

and can be expressed compactly by the formula $f(n) = \sum_{i=0}^{n-1} s(i)$, where s(i) is the sum of the digits of *i* when expressed as a binary number. The function *f* and its number sequence $(f(n))_{n=0}^{\infty} = (0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, ...)$ is given in [2, A000788], where it is presented by a different recursion. The divide-and-conquer maximin recurrence (1) is one of the most studied recurrences, especially since it occurs naturally when analysing wort-case scenarios in sorting algorithms [13]. The maximin recurrence (1) is also one of the few such maximin recurrences that have a solution f(n) that can be expressed explicitly by a formula.

Clearly the hypercube Q_k is a subgraph of the k-dimensional rectangular grid graph \mathbb{Z}^k . It is interesting to note that for $k \geq \lceil \lg n \rceil$ the maximum number of edges of an induced subgraph on n vertices of \mathbb{Z}^k is the same if we restrict to Q_k , namely f(n). However, if we consider k fixed and consider the maximum number $g_k(n)$ of edges of an induced subgraph on n vertices of the grid graph \mathbb{Z}^k , then the only cases where a formula for $g_k(n)$ is known is for $k \in \{1, 2\}$: trivially $g_1(n) = n-1$, and $g_2(n) = \lceil 2n-2\sqrt{n} \rceil$ as proved in [7]. For $k \geq 3$ no formula for $g_k(n)$ is known, but the first few terms of $(g_3(n))_{n=1}^{\infty} = (0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, ...)$ is given heuristically in [1, A007818]. – In short, considering k fixed (and hence not allowing conveniently large dimensions) makes it harder to solve such maximin problems.

^{*}Department of Mathematical Sciences, George Mason University, MS 3F2, 4400 University Drive, Fairfax, VA 22030, geir@math.gmu.edu

The purpose of this article is to consider a related problem of induced subgraphs on n vertices of the hypercube Q_k where we consider k fixed. A vertex of a subgraph of Q_k is called *full* in the subgraph if its degree is k. If we let $\phi_k(n)$ be the maximum number of full vertices an induced subgraph on n vertices of Q_k can have, then (i) we show that $\phi_k(n)$ satisfies a divide-andconquer maximin recurrence (8), and (ii) we derive its solution, namely the formula for $\phi_k(n)$ given in Theorem 3.2. We then apply the formula for $\phi_k(n)$ to (iii) determine the min-max function $\min(\max(|V(H_1)|, |V(H_2)|))$ where both H_1 and H_2 are induced subgraphs of Q_k , and together they cover all the edges of Q_k . We show that this min-max function is given by the formula in Theorem 4.1.

The remainder of the paper is organized as follows.

In Section 2 we recall the celebrated Katona-Kruskal Theorem that describes when exactly an integral vector of \mathbb{Z}^{d+1} is an *f*-vector of a (d-1)-dimensional simplicial complex. We then derive some helpful tools: Claim 2.5 and Lemmas 2.7, 2.8, and 2.9, that we will use in the following section.

In Section 3 we use what we have derived in Section 2 to derive our main Theorem 3.2 that determines the exact maximum number of full vertices an induced subgraph on n vertices of Q_k can have.

In the final Section 4 we apply Theorem 3.2 from the previous section prove Theorem 4.1, that determines $\min(\max(|V(H_1)|, |V(H_2)|))$, the function of $k \in \mathbb{N}$ where H_1 and H_2 are induced subgraphs of Q_k , and together H_1 and H_2 cover all the edges of Q_k .

Notation and terminology The set of integers will be denoted by \mathbb{Z} and the set of natural numbers $\{1, 2, 3, ...\}$ by \mathbb{N} . For $n \in \mathbb{N}$ let $[n] = \{1, ..., n\}$. For a set X denote the set of all subsets of X by 2^X . Denote the subsets of X of cardinality i by $\binom{X}{i}$, so for X finite we have $\left|\binom{X}{i}\right| = \binom{|X|}{i}$. For $S \subseteq 2^X$ and $y \notin X$, let $S \uplus \{y\} = \{S \cup \{y\} : S \in S\}$.

Unless otherwise stated, all graphs in this article will be finite, simple and undirected. For a graph G, its set of vertices will be denoted by V(G) and its set of edges by E(G). Clearly $E(G) \subseteq \binom{V(G)}{2}$ the set of all 2-element subsets of V(G). We will denote an edge with endvertices uand v by uv instead of the actual 2-set $\{u, v\}$. By an *induced subgraph* H of G we mean a subgraph H such that $V(H) \subseteq V(G)$ in the usual set theoretic sense, and such that if $u, v \in V(H)$ and $uv \in E(G)$, then $uv \in E(H)$. If $U \subseteq V(G)$ then the subgraph of G induced by V will be denoted by G[U].

For $k \in \mathbb{N}$ the hypercube Q_k in our context is a simple graph with the 2^k vertices $\{0,1\}^k$, and where two vertices $\tilde{x}, \tilde{y} \in \{0,1\}^k$ are adjacent iff the Manhattan distance $d(\tilde{x}, \tilde{y}) = \sum_{i=1}^k |x_i - y_i| = 1$. So, two vertices are connected iff they only differ in one coordinate, in which they differ by ± 1 . The vertices of the hypercube Q_k are more commonly viewed as binary strings of length k instead of actually points in the k-dimensional Euclidean space. In that case the Manhattan distance is called the called the Hamming distance. We will not make a specific distinction between these two slightly different presentations of the hypercube Q_k . In many situations it will be convenient to partition the hypercube Q_k into two copies of Q_{k-1} where corresponding vertices in each copy are connected by and edge. If $b \in \{0,1\}$ and $B_b = \{\tilde{x} \in \{0,1\}^k : x_k = b\}$ is the set of binary strings of length k with k-th bit equal to b, then clearly each of $Q_{k-1}^0 := Q_k[B_0]$ and $Q_{k-1}^1 := Q_k[B_1]$ are induced subgraphs isomorphic to Q_{k-1} , and (i) $V(Q_k) = V(Q_{k-1}^0) \cup V(Q_{k-1}^1) = B_0 \cup B_1$ is a partition and (ii) $E(Q_k) = E(Q_{k-1}^0) \cup E(Q_{k-1}^1) \cup C_{k-1}$ is also a partition of the edges where

$$C_{k-1} = \{\{(\tilde{x}, 0), (\tilde{x}, 1)\} : \tilde{x} \in V(Q_{k-1})\}.$$

For $b \in \{0,1\}$ and $\tilde{x} \in V(Q_{k-1})$, the *copy* of $(\tilde{x}, b) \in V(Q_{k-1}^b)$ is the vertex $(\tilde{x}, 1-b) \in V(Q_{k-1}^{1-b})$, and these well be referred as *copies*. This decomposition of Q_k will be denoted by $Q_k = Q_{k-1}^0 \boxplus Q_{k-1}^1$.

Some properties of the upper boundary function 2

The following proposition on the *binomial representation* of an integer is stated in [16] and in [9], and a simple proof by greedy algorithm can be found in the latter citation.

Proposition 2.1 For $m, i \in \mathbb{N}$ there is a unique binomial representation (UBR) of m as

$$m = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \dots + \binom{n_j}{j}$$
(2)

where $n_i > n_{i-1} > \cdots > n_j \ge j \ge 1$.

For $m, i \in \mathbb{N}$ one can use the UBR to define the upper *i*-boundary of m

$$m^{(i)} = \binom{n_i}{i+1} + \binom{n_{i-1}}{i} + \dots + \binom{n_j}{j+1}$$

Proposition 2.2 For a fixed $i \in \mathbb{N}$ the function $m \mapsto m^{(i)}$ is increasing.

Proof. For $m, i \in \mathbb{N}$ consider the UBR of m as in (2).

If $j \geq 2$, then

$$m+1 = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \dots + \binom{n_j}{j} + \binom{j-1}{j-1}$$

is the UBR of m + 1 and so $(m + 1)^{(i)} = m^{(i)} + {j-1 \choose j} = m^{(i)}$. Otherwise j = 1, and hence there is a largest index $\ell \in [i]$ such that $n_h = n_1 + h - 1$ for all $h \in \{1, ..., \ell\}$. In this case we have $n_{\ell+1} > n_{\ell} + 1 = n_1 + \ell$ and

$$m+1 = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \dots + \binom{n_{\ell+1}}{\ell+1} + \binom{n_1+\ell-1}{\ell} + \dots + \binom{n_1}{1} + 1$$
$$= \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \dots + \binom{n_{\ell+1}}{\ell+1} + \binom{n_1+\ell}{\ell}$$

and hence

$$(m+1)^{(i)} - m^{(i)} = \binom{n_1 + \ell}{\ell + 1} - \left[\binom{n_1 + \ell - 1}{\ell + 1} + \dots + \binom{n_1}{2}\right] = \binom{n_1}{1} = n_1.$$

We see from the above proof when exactly the function $m \mapsto m^{(i)}$ is strictly increasing; namely, whenever the last binomial coefficient in the UBR of m has the form $\binom{n_1}{1}$, then $(m+1)^{(i)} = m^{(i)} + n_1 > m^{(i)}$. In particular, for i < n we have

$$\binom{n}{i} - 1 = \binom{n-1}{i} + \binom{n-2}{i-1} + \dots + \binom{n-i}{1}$$

and hence the following observation.

Observation 2.3 For $i, n \in \mathbb{N}$ with i < n then

$$\left(\binom{n}{i} - 1\right)^{(i)} = \binom{n}{i}^{(i)} - (n-i) < \binom{n}{i}^{(i)}$$

In this article the *f*-vector of a (d-1)-dimensional simplicial complex Δ will be given by $\tilde{f}(\Delta) = \tilde{f} = (f_{-1}, f_0, f_1, \dots, f_{d-1}) \in \mathbb{Z}^{d+1}$ where $f_i = f_i(\Delta)$ denotes the number of *i*-dimensional faces of Δ . For convenience we include the empty face \emptyset in Δ . Since by convention dim(\emptyset) = -1 then we always have $f_{-1} = 1$. The following celebrated result proved independently by Kruskal [11], Katona [10] and Schützenberger [15], is usually called the *Kruskal-Katona Theorem*, since it was not realized at first that Schützenberger had the first proof. It is sometimes called the *KKS Theorem* for short.

Theorem 2.4 An integral vector $\tilde{f} = (f_{-1}, f_0, f_1, \dots, f_{d-1}) \in \mathbb{Z}^{d+1}$ is an f-vector of a (d-1)-dimensional simplicial complex Δ if and only if $0 < f_i \leq f_{i-1}^{(i)}$ for each $i \in \{1, \dots, d-1\}$.

Although we will not regurgitate the proof of Theorem 2.4 here, a few comments about it will be useful for us here in this section. – Note that a simplicial complex Δ on vertices $V = \{v_1, \ldots, v_n\}$ can be viewed as an abstract simplicial complex; a collection of subsets of [n] satisfying (1) $\{i\} \in \Delta$ for each $i \in [n]$, and (2) $F \subseteq G \in \Delta \Rightarrow F \in \Delta$. For each i we can linearly order the *i*-element subsets of \mathbb{N} in the *reverse lexicographical order*. So for i = 3 the order would start as follows:

$$\{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,5\}, \{1,3,5\}, \{2,3,5\}, \\ \{1,4,5\}, \{2,4,5\}, \{3,4,5\}, \{1,2,6\}, \{1,3,6\}, \{2,3,6\}, \ldots$$

For an integral vector $\tilde{f} = (f_{-1}, f_0, f_1, \dots, f_{d-1}) \in \mathbb{Z}^{d+1}$ let $\Delta_{\tilde{f}} \subseteq 2^{\mathbb{N}}$ consist of the first f_{i-1} *i*-element subsets of \mathbb{N} in the reverse lexicographical ordering for each $i \in \{0, 1, \dots, d\}$. The proof of Theorem 2.4 is based on proving the equivalence of the following three statements [16].

1. The integral vector \tilde{f} is an *f*-vector of a simplicial complex Δ .

- 2. $\Delta_{\tilde{f}}$ is a simplicial complex.
- 3. $f_i \leq f_{i-1}^{(i)}$ for each $i \in \{1, \dots, d-1\}$.

The hard part of the proof is the implication $1 \Rightarrow 2$.

For a fixed *i* we have a well-defined function $m \mapsto m^{(i)}$ which we will refer to as the *upper* boundary function¹ or the UB function for short. The remainder of this section will be devoted to

¹as a function this has been called the "pseudo power function" [12]. It is similar to the "upper boundary operator" [6].

the derivation of some properties of the UB function. We will, in part, use the above equivalence to prove these properties.

For one such property of the UB function, let $i, m_1, m_2, N \in \mathbb{N}$ be such that $m_1, m_2 \leq {N \choose i}$ and consider two integral vectors in \mathbb{Z}^{i+2}

$$\tilde{f}_1 = \left(\binom{N}{0}, \dots, \binom{N}{i-1}, m_1, m_1^{(i)} \right), \\
\tilde{f}_2 = \left(\binom{N}{0}, \dots, \binom{N}{i-1}, m_2, m_2^{(i)} \right).$$

By Theorem 2.4 both $\Delta_{\tilde{f}_1}$ and $\Delta_{\tilde{f}_1}$ are simplicial complexes. Assume we have disjoint representations $\Delta_{\tilde{f}_1} \subseteq 2^{[N]}$ and $\Delta_{\tilde{f}_2} \subseteq 2^{[2N] \setminus [N]}$ (where in the latter representation N has been added to each element of each set in $\Delta_{\tilde{f}_2}$) and let $\Delta := \Delta_{\tilde{f}_1} \cup \Delta_{\tilde{f}_2}$ be their union. By definition Δ is clearly a simplicial complex with $f_{i-1}(\Delta) = m_1 + m_2$ and $f_i(\Delta) = m_1^{(i)} + m_2^{(i)}$. By Theorem 2.4 we have the following.

Claim 2.5 $(m_1 + m_2)^{(i)} \ge m_1^{(i)} + m_2^{(i)}$.

Let $\mathcal{F}_i(N)$ denote the first N elements of $\binom{\mathbb{N}}{i}$. We clearly have then (i) $|\mathcal{F}_i(N)| = N$ for $i \geq 1$, (ii) $\mathcal{F}_i(N_1) \subseteq \mathcal{F}_i(N_2)$ iff $N_1 \leq N_2$, (iii) $\mathcal{F}_i\binom{k}{i} = \binom{[k]}{i}$, and by definition of $\Delta_{\tilde{f}}$ here above we have for an f-vector \tilde{f} of a simplicial complex that (iv)

$$\Delta_{\tilde{f}} = \mathcal{F}_0(f_{-1}) \cup \mathcal{F}_1(f_0) \cup \cdots \cup \mathcal{F}_d(f_{d-1}).$$

(v) Finally note that if |X| = i and |Y| = i + 1, then by Theorem 2.4 we have that $X \subseteq Y \in \mathcal{F}_{i+1}(N^{(i)})$ implies that $X \in \mathcal{F}_i(N)$.

For $N \in \mathbb{N}$, $m_1 \leq {N \choose i}$ and $m_2 \leq {N \choose i-1}$ let $\mu = \min(m_2^{(i-1)}, m_1)$ and consider two integral vectors

$$\tilde{f}_1 = \left(\binom{N}{0}, \binom{N}{1}, \dots, \binom{N}{i-1}, m_1, m_1^{(i)} \right) \in \mathbb{Z}^{i+2}, \\
\tilde{f}_2 = \left(\binom{N}{0}, \dots, \binom{N}{i-2}, m_2, \mu \right) \in \mathbb{Z}^{i+1}.$$

By the Theorem 2.4 both $\Delta_{\tilde{f}_1}$ and $\Delta_{\tilde{f}_2}$ are simplicial complexes of dimensions i and i-1 respectively. Assume we have abstract representations $\Delta_{\tilde{f}_1} \subseteq 2^{[N]}$ and $\Delta_{\tilde{f}_2} \subseteq 2^{[N]}$ and let

$$\Delta = \Delta_{\tilde{f}_1} \cup (\Delta_{\tilde{f}_2} \uplus \{N+1\}) \subseteq 2^{[N+1]}.$$
(3)

Claim 2.6 Δ from (3) is a simplicial complex of dimension *i*.

Proof. For $\ell \in \{0, 1, \dots, i-1\}$ we have $\binom{[N+1]}{\ell} \subseteq \Delta$ and

$$\Delta \cap \binom{[N+1]}{i} = \mathcal{F}_i(m_1) \cup (\mathcal{F}_{i-1}(m_2) \uplus \{N+1\})$$

$$\Delta \cap \binom{[N+1]}{i+1} = \mathcal{F}_{i+1}(m_1^{(i)}) \cup (\mathcal{F}_i(\mu) \uplus \{N+1\})$$

We only need to check $F \subseteq G \in \Delta \Rightarrow F \in \Delta$ for $F \in \Delta \cap \binom{[N+1]}{i}$ and $G \in \Delta \cap \binom{[N+1]}{i+1}$. Here there are three cases to consider.

(a) $N + 1 \notin F, G$: Here we have $F \subseteq G \in \mathcal{F}_{i+1}(m_1^{(i)})$ and hence $F \in \mathcal{F}_i(m_1) \subseteq \Delta$.

(b) $N + 1 \in F, G$: Here $G \in \mathcal{F}_i(\mu) \uplus \{N + 1\}$ and hence $G \setminus \{N + 1\} \in \mathcal{F}_i(\mu) \subseteq \mathcal{F}_i(m_2^{(i-1)})$ Since $F \setminus \{N + 1\} \subseteq G \setminus \{N + 1\} \in \mathcal{F}_i(m_2^{(i-1)})$, we have $F \setminus \{N + 1\} \in \mathcal{F}_{i-1}(m_2)$ and hence $F \in \mathcal{F}_{i-1}(m_2) \uplus \{N + 1\} \subseteq \Delta \cap \binom{[N+1]}{i}$ and so $F \in \Delta$.

(c) $N + 1 \notin F$ and $N + 1 \in G$: As in (b) we have $G \in \mathcal{F}_i(\mu) \uplus \{N + 1\}$ and hence $F = G \setminus \{N + 1\} \in \mathcal{F}_i(\mu) \subseteq \mathcal{F}_i(m_1) \subseteq \Delta \cap \binom{[N+1]}{i}$ and hence $F \in \Delta$. Therefore we have $F \subseteq G \in \Delta \Rightarrow F \in \Delta$ for all F and G, and this completes the proof of the

claim.

For the f-vector of Δ in Claim 2.6 we have

$$f_{i-1}(\Delta) = |\mathcal{F}_i(m_1)| + |(\mathcal{F}_{i-1}(m_2) \uplus \{N+1\})| = m_1 + m_2$$

and

$$f_i(\Delta) = |\mathcal{F}_i(m_1^{(i)})| + |(\mathcal{F}_{i-1}(\mu) \uplus \{N+1\})| = m_1^{(i)} + \min(m_2^{(i-1)}, m_1).$$

By Theorem 2.4 we obtain the following lemma as a corollary.

Lemma 2.7 For $m_1, m_2, i \in \mathbb{N}$ we have

$$(m_1 + m_2)^{(i)} \ge m_1^{(i)} + \min(m_2^{(i-1)}, m_1).$$

Let $m_1, m_2, i, N \in \mathbb{N}$ be such that $m_1 + m_2 \leq \binom{N}{i-1}$. By Lemma 2.7 we get

$$\left(m_1 + m_2 + \binom{N}{i}\right)^{(i)} \ge \binom{N}{i+1} + \min\left((m_1 + m_2)^{(i-1)}, \binom{N}{i}\right).$$

By assumption and Proposition 2.2 we have $(m_1 + m_2)^{(i-1)} \leq {N \choose i}$ and hence

$$\min\left((m_1 + m_2)^{(i-1)}, \binom{N}{i}\right) = (m_1 + m_2)^{(i-1)}.$$

By Claim 2.5 we therefore have the following.

Lemma 2.8 For $m_1, m_2, i, N \in \mathbb{N}$ with $m_1 + m_2 \leq \binom{N}{i-1}$ we have

$$\binom{m_1 + m_2 + \binom{N}{i}}{i} \ge m_1^{(i-1)} + m_2^{(i-1)} + \binom{N}{i+1}.$$

Our final objective in this section is to prove the following

Lemma 2.9 If $0 \le m, m_1, m_2 \le {\binom{N}{i}}$ and $m_1 + m_2 = m + {\binom{N}{i}}$ then $m_1^{(i)} + m_2^{(i)} \le m^{(i)} + \binom{N}{i+1}.$

To prove Lemma 2.9 we let $\mathbf{P}(i)$ be the statement of Lemma 2.9 for a fixed $i \in \mathbb{N}$.

 $\mathbf{P}(i)$: For all nonnegative integers m, m_1, m_2, N that satisfy $0 \le m, m_1, m_2 \le {N \choose i}$ and $m_1 + m_2 = m + {N \choose i}$ we have $m_1^{(i)} + m_2^{(i)} \le m^{(i)} + {N \choose i+1}$.

We let $\mathbf{Q}(i)$ be the following seemingly weaker statement for a fixed $i \in \mathbb{N}$.

 $\mathbf{Q}(i)$: For all nonnegative integers m, m_1, m_2, N that satisfy $0 \le m \le m_1 \le m_2 < \binom{N}{i}$ and $m_1 + m_2 = m + \binom{N}{i}$ we have $m_1^{(i)} + m_2^{(i)} \le x^{(i)} + \binom{y_i+1}{i+1}$, where

$$m_1 = \binom{x_i}{i} + \dots + \binom{x_p}{p}, \quad m_2 = \binom{y_i}{i} + \dots + \binom{y_q}{q}$$
(4)

are their UBR, and $m_1 + m_2 = x + {\binom{y_i+1}{i}}$ where $x \ge 0$.

We now briefly argue the equivalence of $\mathbf{P}(i)$ and $\mathbf{Q}(i)$.

 $\mathbf{P}(i) \Rightarrow \mathbf{Q}(i)$: Let $i \in \mathbb{N}$ be given. Suppose $0 \le m \le m_1 \le m_2 < \binom{N}{i}$ and $m_1 + m_2 = m + \binom{N}{i}$, and the UBR of m_1 and m_2 are given as in (4), then by assumption we have $m_2 < \binom{y_i+1}{i} \le \binom{N}{i}$. Hence $0 \le m_1, m_2 \le \binom{y_i+1}{i}$ and $x \ge 0$. By $\mathbf{P}(i)$ we then obtain $m_1^{(i)} + m_2^{(i)} \le x^{(i)} + \binom{y_i+1}{i+1}$, so we have $\mathbf{Q}(i)$.

 $\mathbf{Q}(i) \Rightarrow \mathbf{P}(i)$: Let $i \in \mathbb{N}$ be given. Suppose $0 \le m, m_1, m_2 \le {N \choose i}$ and $m_1 + m_2 = m + {N \choose i}$. If $m_2 = {N \choose i}$, then $\mathbf{P}(i)$ is trivially true. Also, by symmetry we may assume that $m_1 \le m_2$, and so we may assume $0 \le m \le m_1 \le m_2 < {N \choose i}$ and therefore we can apply $\mathbf{Q}(i)$. Repeated use of $\mathbf{Q}(i)$, say $j \ge 1$ times, will eventually yield

$$m_1^{(i)} + m_2^{(i)} \le x^{(i)} + {y_i + j \choose i+1}$$

where $y_i + j = N$ and $x = m \ge 0$, which is $\mathbf{P}(i)$.

Therefore for each $i \in \mathbb{N}$ the statements $\mathbf{P}(i)$ and $\mathbf{Q}(i)$ are equivalent.

Proof. [Lemma 2.9] We will use induction and prove $\mathbf{P}(i)$ for all $i \in \mathbb{N}$. For i = 1 we have $x^{(1)} = \binom{x}{2}$ for any integer x, so proving $\mathbf{P}(1)$ amounts to showing that $m_1^2 + m_2^2 \leq m^2 + N^2$ when $m, m_1, m_2 \leq N$ and $m_1 + m_2 = m + N$ which is easily established.

We proceed by induction on *i*, assuming the equivalent statements $\mathbf{P}(i-1)$ and $\mathbf{Q}(i-1)$, and prove $\mathbf{Q}(i)$. Assume $0 \le m \le m_1 \le m_2 < \binom{N}{i}$. Let the UBR of m_1 and m_2 be as stated in (4). By assumption we have $x_i \le y_i$.

If $x' = m_1 - \binom{x_i}{i}$ and $y' = m_2 - \binom{y_i}{i}$, assume for a moment that $x' \ge y'$. Then by the UBR of m_1 and m_2 we have $y_i \ge x_i > x_{i-1} \ge y_{i-1}$. If now $m'_1 = \binom{x_i}{i} + y'$ and $m'_2 = \binom{y_i}{i} + x'$, then $m_1 + m_2 = m'_1 + m'_2$ and $m'_1 \le m_1 \le m_2 \le m'_2$. Since $x_i > y_{i-1}$ and $y_i > x_{i-1}$ we have

$$\begin{split} m_1^{(i)} + m_2^{(i)} &= \binom{x_i}{i+1} + x'^{(i-1)} + \binom{y_i}{i+1} + y'^{(i-1)} \\ &= \left(\binom{x_i}{i+1} + y'^{(i-1)} \right) + \left(\binom{y_i}{i+1} + x'^{(i-1)} \right) \\ &= m_1'^{(i)} + m_2'^{(i)}. \end{split}$$

Therefore we may further assume that $x' \leq y'$. We now consider two cases.

FIRST CASE $x' + y' \ge {y_i \choose i-1}$: In this case we have $x' + y' = x'' + {y_i \choose i-1}$ for some $x'' \ge 0$. Since $x' \le y'$ we have $x_{i-1} < x_i \le y_i$ and $y_{i-1} < y_i$ and hence from the UBR of x' and y' we have $x'' < x' \le y' < {y_i \choose i-1}$. By induction hypothesis $\mathbf{Q}(i-1)$ we then have $x'^{(i-1)} + y'^{(i-1)} \le x''^{(i-1)} + {y_i \choose i}$ and hence

$$m_{1}^{(i)} + m_{2}^{(i)} = \left(\binom{x_{i}}{i} + x' \right)^{(i)} + \left(\binom{y_{i}}{i} + y' \right)^{(i)} \\ = \binom{x_{i}}{i+1} + x'^{(i-1)} + \binom{y_{i}}{i+1} + y'^{(i-1)} \\ \leq \binom{x_{i}}{i+1} + x''^{(i-1)} + \binom{y_{i}+1}{i+1}.$$

If $x = \binom{x_i}{i} + x''$, then since x'' < x', we have $x^{(i)} = \binom{x_i}{i+1} + x''^{(i-1)}$ and $x + \binom{y_i+1}{i} = m_1 + m_2$. From above we then have $m_1^{(i)} + m_2^{(i)} \le x^{(i)} + {y_i+1 \choose i+1}$, thereby obtaining $\mathbf{Q}(i)$ in this case. SECOND CASE $x' + y' < {y_i \choose i-1}$: Note that for every $k \in \{1, \ldots, x_i\}$ we have

$$\binom{x_i}{i} = \binom{x_i - k}{i} + \sum_{\ell=1}^k \binom{x_i - \ell}{i-1}.$$

By assumption of $\mathbf{Q}(i)$ we have $m_2 < \binom{N}{i}$ and $m_1 + m_2 \ge \binom{N}{i}$ and hence by the UBR of m_2 we have $m_1 + m_2 \ge \binom{y_i+1}{i}$, or $\binom{x_i}{i} + x' + y' \ge \binom{y_i}{i-1}$. Therefore there is a unique $k \in \{1, \ldots, x_i\}$ such that

$$\sum_{\ell=1}^{k} \binom{x_i - \ell}{i - 1} + x' + y' \ge \binom{y_i}{i - 1} > \sum_{\ell=1}^{k-1} \binom{x_i - \ell}{i - 1} + x' + y'.$$

Hence $\sum_{\ell=1}^{k} {\binom{x_i-\ell}{i-1}} + x' + y' = \delta + {\binom{y_i}{i-1}}$ where $0 \le \delta < {\binom{x_i-k}{i-1}}$. Since $y_i \ge x_i > x_i - k$ we have further ${\binom{y_i}{i-1}} > {\binom{x_i-k}{i-1}}$ and hence

$$0 \le \delta, \quad {\binom{x_i - k}{i - 1}}, \quad \sum_{\ell=1}^{k - 1} {\binom{x_i - \ell}{i - 1}} + x' + y' < {\binom{y_i}{i - 1}}.$$

By Claim 2.5 and then by induction hypothesis $\mathbf{P}(i-1)$ we have

$$\begin{split} \sum_{\ell=1}^{k} \binom{x_{i}-\ell}{i} + x'^{(i-1)} + y'^{(i-1)} &= \sum_{\ell=1}^{k} \binom{x_{i}-\ell}{i-1}^{(i-1)} + x'^{(i-1)} + y'^{(i-1)} \\ &\leq \left(\sum_{\ell=1}^{k-1} \binom{x_{i}-\ell}{i-1} + x' + y'\right)^{(i-1)} + \binom{x_{i}-k}{i-1}^{(i-1)} \\ &\leq \delta^{(i-1)} + \binom{y_{i}}{i-1}^{(i-1)} \\ &= \delta^{(i-1)} + \binom{y_{i}}{i}. \end{split}$$

Note that by definition of δ and its range, we have $m_1 + m_2 = x + {\binom{y_i+1}{i}}$ where $x = {\binom{x_i-k}{i}} + \delta$ and also

$$x^{(i)} + {\binom{y_i+1}{i}}^{(i)} = {\binom{x_i-k}{i+1}} + \delta^{(i-1)} + {\binom{y_i+1}{i+1}}.$$

Since

$$\binom{x_i}{i+1} = \binom{x_i - k}{i+1} + \sum_{\ell=1}^k \binom{x_i - \ell}{i}$$

we then finally get

$$\begin{split} m_1^{(i)} + m_2^{(i)} &= \binom{x_i}{i+1} + x'^{(i-1)} + \binom{y_i}{i+1} + y'^{(i-1)} \\ &= \binom{x_i - k}{i+1} + \sum_{\ell=1}^k \binom{x_i - \ell}{i} + x'^{(i-1)} + \binom{y_i}{i+1} + y'^{(i-1)} \\ &\leq \binom{x_i - k}{i+1} + \delta^{(i-1)} + \binom{y_i}{i} + \binom{y_i}{i+1} \\ &= \binom{x_i - k}{i+1} + \delta^{(i-1)} + \binom{y_i + 1}{i+1} \\ &= x^{(i)} + \binom{y_i + 1}{i}^{(i)} \end{split}$$

which is $\mathbf{Q}(i)$. This completes the inductive proof that $\mathbf{P}(i-1)$ and $\mathbf{Q}(i-1)$ imply $\mathbf{Q}(i)$, and so this completes the proof of Lemma 2.9.

3 The main theorem

In this section we use results from previous section to prove our main result of this article Theorem 3.2 here below.

Let $k \in \mathbb{N}$ and $S \subseteq V(Q_k)$. Call a vertex/binary string of a subgraph $G = Q_k[S]$ of the kdimensional hypercube Q_k full if its degree is k in G. For $n \in [2^k]$ Let $\phi_k(n)$ denote the maximum number of full vertices of an induced subgraph of Q_k on n vertices:

$$\phi_k(n) = \max_{S \subseteq V(Q_k), |S|=n} |\{ \tilde{x} \in S : d_{Q_k[S]}(\tilde{x}) = k \}.$$

Clearly $\phi_k(2^k) = 2^k$ as every vertex of Q_k is full. If $n < 2^k$ and $S \subseteq V(Q_k)$ contains *n* vertices and induces $\phi_k(n)$ full vertices in Q_k , then we can by symmetry of Q_k (or relabeling of the vertices) assume that the vertex corresponding to the binary string consisting of *k* 1's is not in *S*. In this case a vertex/string in *S* with the maximum number of 1's is not full in $Q_k[S]$. In particular we have $\phi_k(n) < n$ for each $n < 2^k$.

Observation 3.1 For $k \in \mathbb{N}$ we have:

- 1. If $n < 2^k$ then $\phi_k(n) < n$.
- 2. The function $\phi_k : [2^k] \to [2^k]$ is increasing.

REMARK: By Observation 3.1 we see that ϕ_k cannot be strictly increasing.

Note that every $n \in [2^k]$ has a unique hypercube representation (HCR) as $n = \sum_{\ell=0}^{i} {k \choose \ell} + m$ where $0 \le m < {k \choose i+1}$. The main result of this section is the following.

Theorem 3.2 For $k \in \mathbb{N}$ and $n \in [2^k]$ with HCR $n = \sum_{\ell=0}^{i} {k \choose \ell} + m$, then

$$\phi_k(n) = \sum_{\ell=0}^{i-1} \binom{k}{\ell} + m^{(k-i-1)}.$$

We will prove Theorem 3.2 by induction on k. In order to do that, we will first derive a recursive upper bound for $\phi_k(n)$.

Let $S \subseteq V(Q_k)$ be a set of *n* vertices/binary strings, and let $F_k(S) \subset S$ be the vertices of *S* that are full in $Q_k[S]$. Looking at the decomposition $Q_k = Q_{k-1}^0 \boxplus Q_{k-1}^1$ let $S_b = S \cap V(Q_{k-1}^b)$ for b = 0, 1and $n_b = |S_b|$. Clearly $S = S_0 \cup S_1$ is a partition and we have $n_0 + n_1 = n$. Note that for $b \in \{0, 1\}$, a vertex in S_b is full in $Q_k[S]$ iff (i) it is full in $Q_{k-1}^b[S_b]$, and (ii) its copy is contained in S_{1-b} . By (i) and (ii) the number of vertices in S_b that are full in $Q_k[S]$ is at most $\min(\phi_{k-1}(n_b), n_{1-b})$, that is $|F_k(S) \cap S_b| \le \min(\phi_{k-1}(n_b), n_{1-b})$. Since $F_k(S) = (F_k(S) \cap S_0) \cup (F_k(S) \cap S_1)$ is a partition we then have

$$|F_k(S)| = |F_k(S) \cap S_0| + |F_k(S) \cap S_1| \le \min(\phi_{k-1}(n_0), n_1) + \min(\phi_{k-1}(n_1), n_0).$$

By definition we then have the following recursive max-min upper bound

$$\phi_k(n) \le \max_{n_0+n_1=n} (\min(\phi_{k-1}(n_0), n_1) + \min(\phi_{k-1}(n_1), n_0)).$$
(5)

Note that is impossible to have $n_b < \phi_{k-1}(n_{1-b})$ for both b = 0, 1, since then $n_0 < \phi_{k-1}(n_1) < n_1 < \phi_{k-1}(n_0) < n_0$, a blatant contradiction. From this we see that (5) can be written as

$$\phi_k(n) \le \max_{n_0+n_1=n} (\min(\phi_{k-1}(n_0) + \phi_{k-1}(n_1), n_0 + \phi_{k-1}(n_0), n_1 + \phi_{k-1}(n_1))).$$
(6)

Further, by symmetry the maximum in (6) is attained when $n_0 \ge n_1$, in which case we have $n_1 + \phi_{k-1}(n_1) \le n_0 + \phi_{k-1}(n_0)$. Hence we obtain

$$\phi_k(n) \le \max_{n_0+n_1=n, n_0 \ge n_1} (\min(\phi_{k-1}(n_0) + \phi_{k-1}(n_1), n_1 + \phi_{k-1}(n_1))).$$
(7)

Let $f_k(n)$ be the function on the right in the displayed formula in the above Theorem 3.2

$$f_k(n) := \sum_{\ell=0}^{i-1} \binom{k}{\ell} + m^{(k-i-1)}$$

where $n = \sum_{\ell=0}^{i} {k \choose \ell} + m$ is its HCR. We first show that $\phi_k(n) \ge f_k(n)$ by explicitly show that an induced subgraph on *n* vertices of Q_k can have $f_k(n)$ full vertices. Then we will show that $f_k(n)$ satisfies

$$f_k(n) = \max_{n_0+n_1=n, n_0 \ge n_1} (\min(f_{k-1}(n_0) + f_{k-1}(n_1), n_1 + f_{k-1}(n_1))),$$
(8)

which by (7) shows that $f_k(n) \ge \phi_k(n)$.

For $k \in \mathbb{N}$ let $n \in [2^k]$ with HCR $n = \sum_{\ell=0}^i {k \choose \ell} + m$. To show that $\phi_k(n) \ge f_k(n)$ we construct an induced subgraph of Q_k on vertices with $f_k(n)$ full vertices as follows. Let $S \subseteq V(Q_k)$ be the set of *n* vertices containing all $\sum_{\ell=0}^i {k \choose \ell}$ binary strings having at most *i* 1's in their representation, and the first *m* binary strings with exactly i+1 1's in their representation in the lexicographical order. *Note!* Here a binary string represents the *opposite* subset of [k]; where the *j*-th bit is 0 indicates that *j* is included in the subset. In this way the binary strings are ordered as their corresponding subsets of [k] in the reverse lexicographical order. Clearly every vertex in the induced graph $Q_k[S] \subseteq Q_k$ with at most i-1 1's in their representation is full, these amount to $\sum_{\ell=0}^{i-1} {k \choose \ell}$ full vertices. Also note that none of the *m* vertices with exactly i+1 1's in their representation is full, as they are not connected to any vertex with i+2 1's in $Q_k[S]$. Among the ${k \choose i}$ binary strings in *S* containing exactly *i* 1's, we briefly argue that $m^{(k-i-1)}$ of them are full in the following way.

Consider the (k - i - 1)-dimensional simplicial complex $\Delta_{\tilde{f}}$ where

$$\tilde{f} = \left(\binom{k}{0}, \dots, \binom{k}{k-i-2}, m, m^{(k-i-1)} \right) \in \mathbb{Z}^{k-i+1}.$$

Note that $\Delta_{\tilde{f}} \cap \left(\binom{k}{k-i} \cup \binom{k}{k-i-1}\right)$ is represented by the bipartite subgraph G of $Q_k[S]$ induced by the binary strings containing exactly i or i+1 1's, where two stings are adjacent in G iff for their opposite sets the smaller one, with k-i-1 elements, is contained in the other one with k-i elements.

Since each of the $m^{(k-i-1)}$ subsets from $\binom{k}{k-i} \cap \Delta_{\tilde{f}}$ has all of its k-i-1 subsets among the m subsets from $\Delta_{\tilde{f}} \cap \binom{k}{k-i-1}$, then the representing $m^{(k-i-1)}$ opposite binary strings in G, containing exactly i 1's, are each connected to all the k-i opposite binary strings among the m ones in G, that contain exactly i+1 1's. Since each binary string in $G \subseteq Q_k[S]$ with i 1's is clearly connected to all i binary strings with i-1 1's in $Q_k[S]$, we see that each of the mentioned $m^{(k-i-1)}$ opposite binary strings in $G \subseteq Q_k[S]$ are full. This shows that $Q_k[S]$ is an induced subgraph of Q_k with n vertices and at least $f_k(n)$ full vertices. Therefore we have $\phi_k(n) \ge f_k(n)$.

To complete the proof of Theorem 3.2 we show that $f_k(n)$ satisfies (8), which by (7) then implies that $\phi_k(n) \leq f_k(n)$, and hence $\phi_k(n) = f_k(n)$. This will occupy the remainder of this section. To show (8), we will show that $f_k(n) \geq \min(f_{k-1}(n_0) + f_{k-1}(n_1), n_1 + f_{k-1}(n_1))$, whenever $n_0 + n_1 = n$ and $n_0 \geq n_1$. There are all together six cases we will consider to verify this inequality; the first case (A) has two sub-cases (A1) and (A2), the second case (B) has four sub-cases (B11), (B12), (B21) and (B22).

CASE (A) $f_{k-1}(n_0) \ge n_1$: Here we want to show that $f_k(n) \ge n_1 + f_{k-1}(n_1)$. By definition of $f_k(n)$ we have here that $n_0 > f_{k-1}(n_0) \ge n_1$. Since f_{k-1} is increasing there is a critical pair (n_0^*, n_1^*) summing up to n such that (i) $f_{k-1}(n_0^*) \ge n_1^*$, and (ii) $f_{k-1}(n_0^*-1) < n_1^*+1$. Clearly we have $n_0 \ge n_0^*$ and $n_1 \le n_1^*$, and so $n_1 + f_{k-1}(n_1) \le n_1^* + f_{k-1}(n_1^*)$. It therefore suffices to show that $f_k(n) \ge n_1^* + f_{k-1}(n_1^*)$. Let $n = \sum_{\ell=0}^i {k \choose \ell} + m$ be its HCR. Since $0 \le m < {k \choose i+1} = {k-1 \choose i+1} + {k-1 \choose i}$, we consider two sub-cases.

SUB-CASE (A1) $0 \le m < \binom{k-1}{i}$: Here in this case we have a bipartition $n = n'_0 + n'_1$ where

$$n'_{0} = \sum_{\ell=0}^{i} \binom{k-1}{\ell}, \quad n'_{1} = \sum_{\ell=0}^{i-1} \binom{k-1}{\ell} + m$$
(9)

for which

$$f_{k-1}(n'_0) = \sum_{\ell=0}^{i-1} \binom{k-1}{\ell} \le n'_1 \tag{10}$$

and hence, by definition of n_0^* and n_1^* , we have $n_0^* \ge n_0'$, $n_1^* \le n_1'$ and so

$$n_0^* = \sum_{\ell=0}^{i} \binom{k-1}{\ell} + m_0^*, \quad n_1^* = \sum_{\ell=0}^{i-1} \binom{k-1}{\ell} + m_1^*,$$

where $m_0^*, m_1^* \ge 0$ are integers, $m_0^* + m_1^* = m$, and (i) $m_0^{*(k-i-2)} \ge m_1^*$ and (ii) $(m_0^* - 1)^{(k-i-2)} < m_1^* + 1$. Now note that $f_k(n) \ge n_1^* + f_{k-1}(n_1^*)$ is, by definition of f_{k-1} , equivalent to $m^{(k-i-1)} \ge m_1^* + m_1^{*(k-i-1)}$, which is implied by $m^{(k-i-1)} \ge \min(m_1^*, m_0^{*(k-i-2)}) + m_1^{*(k-i-1)}$, which holds by Lemma 2.7 since $m_0^* + m_1^* = m$.

Lemma 2.7 since $m_0^* + m_1^* = m$. SUB-CASE (A2) $\binom{k-1}{i} \leq m < \binom{k}{i+1}$: Similarly to Sub-case (A1) we have here in this case a bipartition $n = n'_0 + n'_1$ where

$$n'_{0} = \sum_{\ell=0}^{i} \binom{k-1}{\ell} + m', \quad n'_{1} = \sum_{\ell=0}^{i} \binom{k-1}{\ell}$$
(11)

where $m' = m - \binom{k-1}{i}$ for which

$$f_{k-1}(n'_0) = \sum_{\ell=0}^{i-1} \binom{k-1}{\ell} + m'^{(k-i-2)} \le n'_1$$
(12)

and hence again, by definition of n_0^* and n_1^* , we have $n_0^* \ge n_0'$, $n_1^* \le n_1'$ and so

$$n_0^* = \sum_{\ell=0}^{i} \binom{k-1}{\ell} + m_0^*, \quad n_1^* = \sum_{\ell=0}^{i-1} \binom{k-1}{\ell} + m_1^*$$

where $m_0^* \ge m'$ and $m_1 < \binom{k-1}{i}$ are integers, $m_0^* + m_1^* = m$, and (i) $m_0^{*(k-i-2)} \ge m_1^*$ and (ii) $(m_0^* - 1)^{(k-i-2)} < m_1^* + 1$. Exactly as in the previous case (A1), we note that $f_k(n) \ge n_1^* + f_{k-1}(n_1^*)$ is by definition of f_{k-1} , equivalent to $m^{(k-i-1)} \ge m_1^* + m_1^{*(k-i-1)}$, which is implied by $m^{(k-i-1)} \ge m_1(m_1^*, m_0^{*(k-i-2)}) + m_1^{*(k-i-1)}$, which again holds by Lemma 2.7 since $m_0^* + m_1^* = m$.

CASE (B) $f_{k-1}(n_0) < n_1$: Here we want to show that $f_k(n) \ge f_{k-1}(n_0) + f_{k-1}(n_1)$. By definition of $f_k(n)$ we have here that $n_0 \ge n_1 > f_{k-1}(n_0)$. Let $n = \sum_{\ell=0}^{i} \binom{k}{\ell} + m$ be its HCR. Since $0 \le m < \binom{k}{i+1} = \binom{k-1}{i+1} + \binom{k-1}{i}$, we consider the two cases of whether $0 \le m < \binom{k-1}{i}$ or $\binom{k-1}{i} \le m < \binom{k}{i+1}$.

SUB-CASE (B1) $0 \le m < \binom{k-1}{i}$: As in case (A1), we have a partition $n = n'_0 + n'_1$ given by (9) such that we have (10). The two sub-cases here, (B11) and (B12), depend on whether $n_0 \ge n'_0$ or $n_0 \le n'_0$.

SUB-SUB-CASE (B11) $n_0 \ge n'_0$ in (9): Considering the critical pair (n_0^*, n_1^*) from Case (A), we have here that $n'_0 \le n_0 < n_0^*$ and hence

$$n_0 = \sum_{\ell=0}^{i} \binom{k-1}{\ell} + m_0, \quad n_1 = \sum_{\ell=0}^{i-1} \binom{k-1}{\ell} + m_1$$

where $0 \le m_0 < m_0 *, m_1^* < m_1 \le m$, and $m_0 + m_1 = m$. Now note that $f_k(n) \ge f_{k-1}(n_0) + f_{k-1}(n_1)$ is by definition of f_{k-1} , equivalent to

$$m^{(k-i-1)} \ge m_0^{(k-i-2)} + m_1^{(k-i-1)}.$$
 (13)

By definition of m_0^* we have $m_0^{(k-i-2)} \leq m_0^{*(k-i-2)} \leq m_1^* < m_1$ and hence (13) is equivalent to $(m_1 + m_0)^{(k-i-1)} \geq m_1^{(k-i-1)} + \min(m_0^{(k-i-2)}, m_1)$, which is implied by Lemma 2.7.

SUB-SUB-CASE (B12) $n_0 \leq n'_0$ in (9): Here we then have $n/2 \leq n_0 \leq n'_0$ and $n'_1 \leq n_1 \leq n/2$, and hence

$$n_0 = \sum_{\ell=0}^{i-1} \binom{k-1}{\ell} + m_0, \quad n_1 = \sum_{\ell=0}^{i-1} \binom{k-1}{\ell} + m_1$$

where $0 \leq m_1 \leq m_0$ and $m_0 + m_1 = m + \binom{k-1}{i}$, and hence $\left(m + \binom{k-1}{i}\right)/2 \leq m_1 \leq m_0 < \binom{k-1}{i}$. Here $f_k(n) \geq f_{k-1}(n_0) + f_{k-1}(n_1)$ is by definition of f_{k-1} , equivalent to $\binom{k-1}{i-1} + m^{(k-i-1)} \leq m_0^{(k-i-1)} + m_0^{(k-i-1)}$, which holds by Lemma 2.9. SUB-CASE (B2) $\binom{k-1}{i} \leq m < \binom{k}{i+1}$: As in case (A2), we have a partition $n = n'_0 + n'_1$ given by

SUB-CASE (B2) $\binom{k-1}{i} \leq m < \binom{k}{i+1}$: As in case (A2), we have a partition $n = n'_0 + n'_1$ given by (11) such that we have (12). As in the case (B1), the two sub-cases here, (B21) and (B22), depend on whether $n_0 \geq n'_0$ or $n_0 \leq n'_0$.

SUB-SUB-CASE (B21) $n_0 \ge n'_0$ in (11): Considering the critical pair (n_0^*, n_1^*) from Case (A), we have here that $n'_0 \le n_0 < n_0^*$ and hence

$$n_0 = \sum_{\ell=0}^{i} \binom{k-1}{\ell} + m_0, \quad n_1 = \sum_{\ell=0}^{i-1} \binom{k-1}{\ell} + m_1$$

where $m' := m - \binom{k-1}{i} \le m_0 < m_0 *$, $m_1^* < m_1 \le \binom{k-1}{i}$, and $m_0 + m_1 = m$. Now note that $f_k(n) \ge f_{k-1}(n_0) + f_{k-1}(n_1)$ is by definition of f_{k-1} , equivalent to

$$m^{(k-i-1)} \ge m_0^{(k-i-2)} + m_1^{(k-i-1)}.$$
 (14)

Since $m_0 \leq m_0^* - 1$ we have by definition of m_0^* that $m_0^{(k-i-2)} \leq (m_0^* - 1)^{(k-i-2)} < m_1^* + 1 \leq m_1$ and hence (14) is equivalent to $(m_1 + m_0)^{(k-i-1)} \geq m_1^{(k-i-1)} + \min(m_0^{(k-i-2)}, m_1)$, which is implied by Lemma 2.7.

SUB-SUB-CASE (B22) $n_0 \le n'_0$ in (11): Here we then have $n/2 \le n_0 \le n'_0$ and $n'_1 \le n_1 \le n/2$, and hence

$$n_0 = \sum_{\ell=0}^{i} \binom{k-1}{\ell} + m_0, \quad n_1 = \sum_{\ell=0}^{i} \binom{k-1}{\ell} + m_1$$

where $m'/2 \leq m_0 \leq m'$ and $0 \leq m_1 \leq m'/2$, and $m_0 + m_1 = m' = m - \binom{k-1}{i}$. Here $f_k(n) \geq f_{k-1}(n_0) + f_{k-1}(n_1)$ is by definition of f_{k-1} , equivalent to $m^{(k-i-1)} \geq m_0^{(k-i-2)} + m_0^{(k-i-2)} + \binom{k-1}{i-1}$. Since $m = m_0 + m_1 + \binom{k-1}{k-i-1}$ this follows from Lemma 2.8.

In all the above six cases (A1), (A2), and (B11), (B12), (B21) and (B22), we have that $f_k(n) \ge \min(f_{k-1}(n_0) + f_{k-1}(n_1), n_1 + f_{k-1}(n_1))$ whenever $n_0 + n_1 = n$ and $n_0 \ge n_1$. This shows that $f_k(n)$ satisfies (8) and therefore that $\phi_k(n) \le f_k(n)$, which completes the proof of Theorem 3.2.

4 An application

In this section we apply the main result of the previous section, Theorem 3.2, to determine the value $\min(\max(|V(H_1)|, |V(H_2)|))$ where (i) H_1 and H_2 are induced subgraphs of Q_k , and (ii) together H_1 and H_2 cover all the edges of Q_k . The main (and the only) theorem in this section is the following.

Theorem 4.1 For $k \in \mathbb{N}$ we have

$$\min_{E(H_1)\cup E(H_2)=E(Q_k)} (\max(|V(H_1)|, |V(H_2)|)) = \sum_{\ell=0}^{\lfloor k/2 \rfloor} {k \choose \ell} + (k \mod 2) {k-1 \choose \lfloor k/2 \rfloor}.$$

The rest of this final section will be devoted to prove Theorem 4.1.

Assume k is even and that $|V(H_1)| < \sum_{\ell=0}^{k/2} {k \choose \ell}$. In this case we have

$$|V(H_1)| \le \sum_{\ell=0}^{k/2} \binom{k}{\ell} - 1 = \sum_{\ell=0}^{k/2-1} \binom{k}{\ell} + \binom{k}{k/2} - 1.$$

By Observation 3.1, Theorem 4.1 and Observation 2.3 we obtain the following.

$$\begin{split} \phi_{k}(|V(H_{1})|) &\leq \phi_{k}\left(\sum_{\ell=0}^{k/2-1} \binom{k}{\ell} + \binom{k}{k/2} - 1\right) \\ &= \sum_{\ell=0}^{k/2-2} \binom{k}{\ell} + \binom{k}{k/2} - 1^{(k/2)} \\ &= \sum_{\ell=0}^{k/2-2} \binom{k}{\ell} + \binom{k}{k/2+1} - k/2 \\ &= \sum_{\ell=0}^{k/2-1} \binom{k}{\ell} - k/2 \\ &< \sum_{\ell=0}^{k/2-1} \binom{k}{\ell}. \end{split}$$

Since every vertex in Q_k that is not full in H_1 is incident to an edge in H_2 and is therefore a vertex in H_2 we have that

$$|V(H_2)| \ge |Q_k| - \phi_k(|V(H_1)|) > 2^k - \sum_{\ell=0}^{k/2-1} \binom{k}{\ell} = \sum_{\ell=0}^{k/2} \binom{k}{\ell}$$

and hence $\max(|V(H_1)|, |V(H_2)|) > \sum_{\ell=0}^{k/2} {k \choose \ell}$. On the other hand, if H_1 and H_2 are the subgraph of Q_k induced by binary strings of length k with at most k/2 0's and with at most k/2 1s respectively, then $|V(H_1)| = |V(H_2)| = \sum_{\ell=0}^{k/2} {k \choose \ell}$ and hence $\max(|V(H_1)|, |V(H_2)|) = \sum_{\ell=0}^{k/2} {k \choose \ell}$. Hence, as H_1 and H_2 cover all the edges of Q_k , then Theorem 4.1 is valid for even k.

Assume k is odd and that

$$|V(H_1)| < \sum_{\ell=0}^{\lfloor k/2 \rfloor} \binom{k}{\ell} + \binom{k-1}{\lfloor k/2 \rfloor},$$

and hence

$$|V(H_1)| \le \sum_{\ell=0}^{(k-1)/2} \binom{k}{\ell} + \left(\binom{k-1}{\frac{k-1}{2}} - 1\right).$$

As in the even case, we obtain here by Observation 3.1, Theorem 4.1 and Observation 2.3 that

$$\begin{aligned} \phi_k(|V(H_1)|) &\leq \phi_k \left(\sum_{\ell=0}^{(k-1)/2} \binom{k}{\ell} + \left(\binom{k-1}{\frac{k-1}{2}} - 1 \right) \right) \\ &= \sum_{\ell=0}^{(k-3)/2} \binom{k}{\ell} + \left(\binom{k-1}{\frac{k-1}{2}} - 1 \right)^{\left(\frac{k-1}{2}\right)} \\ &= \sum_{\ell=0}^{(k-3)/2} \binom{k}{\ell} + \binom{k-1}{\frac{k+1}{2}} - \frac{k-1}{2} \\ &< \sum_{\ell=0}^{(k-3)/2} \binom{k}{\ell} + \binom{k-1}{\frac{k+1}{2}}. \end{aligned}$$

Again, since every vertex in Q_k that is not full in H_1 is incident to an edge in H_2 and is therefore a vertex in H_2 we have that

$$|V(H_2)| \ge |Q_k| - \phi_k(|V(H_1)|) > 2^k - \sum_{\ell=0}^{(k-3)/2} \binom{k}{\ell} - \binom{k-1}{\frac{k+1}{2}} = \sum_{\ell=0}^{(k-1)/2} \binom{k}{\ell} + \binom{k-1}{\frac{k-1}{2}}$$

and hence

$$\max(|V(H_1)|, |V(H_2)|) > \sum_{\ell=0}^{\lfloor k/2 \rfloor} \binom{k}{\ell} + \binom{k-1}{\lfloor k/2 \rfloor}$$

On the other hand, considering the subgraphs H_1 and H_2 of Q_k induced by binary strings of length k, where H_1 is induced by the strings with at most (k-1)/2 1's among the first k-1 bits, and H_2 is induced by the strings with at most (k-1)/2 0's among the first k-1 bits, we have that $|V(H_1)| = |V(H_2)| = 2\left(\sum_{\ell=0}^{(k-1)/2} {k-1 \choose \ell}\right)$ and hence

$$\max(|V(H_1)|, |V(H_2)|) = 2\left(\sum_{\ell=0}^{(k-1)/2} \binom{k-1}{\ell}\right) = \sum_{\ell=0}^{\lfloor k/2 \rfloor} \binom{k}{\ell} + \binom{k-1}{\lfloor k/2 \rfloor}.$$

Hence, as H_1 and H_2 cover all the edges of Q_k , then Theorem 4.1 is valid for odd k. This completes the proof of Theorem 4.1.

Acknowledgments

Sincere thanks to the anonymous referees for ...

References

- [1] Sequence A007818, The On-Line Encyclopedia of Integer Sequences (OEIS): http://oeis.org/A007818.
- [2] Sequence A000788, The On-Line Encyclopedia of Integer Sequences (OEIS): http://oeis.org/A000788.
- [3] Geir Agnarsson: On the number of hypercubic bipartitions of an integer. arXiv:1106.4997v1 [math.CO]
- [4] Hubert Delange: Sur la fonction sommatoire de la fonction "somme des chiffres". (French), Enseignement Math., (2) 21, no. 1, 31 – 47, (1975).
- [5] Daniel H. Greene; Donald E. Knuth: Mathematics for the analysis of algorithms. Third edition, Progress in Computer Science and Applied Logic, 1. *Birkhäuser Boston, Inc.*, Boston, MA, (1990).
- Branko Grünbaum: Convex polytopes, 2nd ed. Graduate Texts in Mathematics (GTM) 221, Springer-Verlag, New York, (2003).
- [7] Frank Harary; Heiko Harborth: Extremal animals, J. Combinatorics Information Syst. Sci., 1, no. 1, 1 – 8, (1976),
- [8] Sergiu Hart: A note on the edges of the n-cube, Discrete Math., 14, no. 2, 157 163, (1976).
- [9] Takayuki Hibi: Algebraic combinatorics on convex polytopes, *Glebe: Carslaw Publications*, (1992).
- [10] Gyula O. H. Katona: A theorem of finite sets. Theory of graphs, (Proc. Colloq., Tihany, 1966), Academic Press, New York, 187 207, (1968).
- [11] Joseph B. Kruskal: The number of simplices in a complex. 1963 Mathematical optimization techniques, Univ. of California Press, Berkeley, Calif., 251 – 278, (1963).
- [12] James Lawrence: personal communication.
- [13] Zhiyuan Li; Edward M. Reingold: Solution of a divide-and-conquer maximin recurrence, SIAM J. Comput., 18 no. 6, 1188 – 1200, (1989).
- [14] M. D. McIlroy: The number of 1's in binary integers: bounds and extremal properties, SIAM J. Comput., 3, 255 – 261, (1974).
- [15] Marcel Paul Schützenberger: A characteristic property of certain polynomials of E. F. Moore and C. E. Shannon, RLE Quarterly Progress Report. No. 55, *Research Laboratory of Elec*tronics, M.I.T., 117 – 118, (1959).
- [16] Richard P. Stanley: Combinatorics and commutative algebra. Second edition. Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, (1996).

December 14, 2011