Induced subgraphs of hypercubes

Geir Agnarsson *

Abstract

Let Q_{k} denote the k-dimensional hypercube on 2^{k} vertices. A vertex in a subgraph of Q_{k} is full if its degree is k. We apply the Kruskal-Katona Theorem to compute the maximum number of full vertices an induced subgraph on $n \leq 2^{k}$ vertices of Q_{k} can have, as a function of k and n. This is then used to determine $\min \left(\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)\right)$ where (i) H_{1} and H_{2} are induced subgraphs of Q_{k}, and (ii) together they cover all the edges of Q_{k}, that is $E\left(H_{1}\right) \cup E\left(H_{2}\right)=E\left(Q_{k}\right)$.

2000 MSC: 05A15, 05C35.
Keywords: hypercube, induced subgraphs, maximin recurrence, Kruskal-Katona Theorem.

1 Introduction

The maximum number $f(n)$ of edges of an induced subgraph on n vertices of the hypercube Q_{k}, where $k \geq\lceil\lg n\rceil$, has been studied extensively in [8], [14], [5], [4], and [3] to name a few articles. The function $f(n)$ satisfies, and is determined by, the well-known divide-and-conquer maximin recurrence

$$
\begin{equation*}
f(n)=\max _{\substack{n_{1}+n_{2}=n \\ n_{1}, n_{2} \geq 1}}\left(\min \left(n_{1}, n_{2}\right)+f\left(n_{1}\right)+f\left(n_{2}\right)\right), \tag{1}
\end{equation*}
$$

and can be expressed compactly by the formula $f(n)=\sum_{i=0}^{n-1} s(i)$, where $s(i)$ is the sum of the digits of i when expressed as a binary number. The function f and its number sequence $(f(n))_{n=0}^{\infty}=$ $(0,1,2,4,5,7,9,12,13,15,17,20, \ldots)$ is given in [2, A000788], where it is presented by a different recursion. The divide-and-conquer maximin recurrence (11) is one of the most studied recurrences, especially since it occurs naturally when analysing wort-case scenarios in sorting algorithms [13]. The maximin recurrence (1) is also one of the few such maximin recurrences that have a solution $f(n)$ that can be expressed explicitly by a formula.

Clearly the hypercube Q_{k} is a subgraph of the k-dimensional rectangular grid graph \mathbb{Z}^{k}. It is interesting to note that for $k \geq\lceil\lg n\rceil$ the maximum number of edges of an induced subgraph on n vertices of \mathbb{Z}^{k} is the same if we restrict to Q_{k}, namely $f(n)$. However, if we consider k fixed and consider the maximum number $g_{k}(n)$ of edges of an induced subgraph on n vertices of the grid graph \mathbb{Z}^{k}, then the only cases where a formula for $g_{k}(n)$ is known is for $k \in\{1,2\}$: trivially $g_{1}(n)=n-1$, and $g_{2}(n)=\lceil 2 n-2 \sqrt{n}\rceil$ as proved in [7]. For $k \geq 3$ no formula for $g_{k}(n)$ is known, but the first few terms of $\left(g_{3}(n)\right)_{n=1}^{\infty}=(0,1,2,4,5,7,9,12,13,15,17,20, \ldots)$ is given heuristically in [1, A007818]. - In short, considering k fixed (and hence not allowing conveniently large dimensions) makes it harder to solve such maximin problems.

[^0]The purpose of this article is to consider a related problem of induced subgraphs on n vertices of the hypercube Q_{k} where we consider k fixed. A vertex of a subgraph of Q_{k} is called full in the subgraph if its degree is k. If we let $\phi_{k}(n)$ be the maximum number of full vertices an induced subgraph on n vertices of Q_{k} can have, then (i) we show that $\phi_{k}(n)$ satisfies a divide-andconquer maximin recurrence (8), and (ii) we derive its solution, namely the formula for $\phi_{k}(n)$ given in Theorem 3.2. We then apply the formula for $\phi_{k}(n)$ to (iii) determine the min-max function $\min \left(\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)\right)$ where both H_{1} and H_{2} are induced subgraphs of Q_{k}, and together they cover all the edges of Q_{k}. We show that this min-max function is given by the formula in Theorem 4.1

The remainder of the paper is organized as follows.
In Section 2 we recall the celebrated Katona-Kruskal Theorem that describes when exactly an integral vector of \mathbb{Z}^{d+1} is an f-vector of a $(d-1)$-dimensional simplicial complex. We then derive some helpful tools: Claim [2.5 and Lemmas [2.7, 2.8, and 2.9, that we will use in the following section.

In Section 3 we use what we have derived in Section 2 to derive our main Theorem 3.2 that determines the exact maximum number of full vertices an induced subgraph on n vertices of Q_{k} can have.

In the final Section 4 we apply Theorem 3.2 from the previous section prove Theorem 4.1, that determines $\min \left(\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)\right)$, the function of $k \in \mathbb{N}$ where H_{1} and H_{2} are induced subgraphs of Q_{k}, and together H_{1} and H_{2} cover all the edges of Q_{k}.

Notation and terminology The set of integers will be denoted by \mathbb{Z} and the set of natural numbers $\{1,2,3, \ldots\}$ by \mathbb{N}. For $n \in \mathbb{N}$ let $[n]=\{1, \ldots, n\}$. For a set X denote the set of all subsets of X by 2^{X}. Denote the subsets of X of cardinality i by $\binom{X}{i}$, so for X finite we have $\left|\binom{X}{i}\right|=\binom{|X|}{i}$. For $\mathcal{S} \subseteq 2^{X}$ and $y \notin X$, let $\mathcal{S} \uplus\{y\}=\{S \cup\{y\}: S \in \mathcal{S}\}$.

Unless otherwise stated, all graphs in this article will be finite, simple and undirected. For a graph G, its set of vertices will be denoted by $V(G)$ and its set of edges by $E(G)$. Clearly $E(G) \subseteq\binom{V(G)}{2}$ the set of all 2-element subsets of $V(G)$. We will denote an edge with endvertices u and v by $u v$ instead of the actual 2 -set $\{u, v\}$. By an induced subgraph H of G we mean a subgraph H such that $V(H) \subseteq V(G)$ in the usual set theoretic sense, and such that if $u, v \in V(H)$ and $u v \in E(G)$, then $u v \in E(H)$. If $U \subseteq V(G)$ then the subgraph of G induced by V will be denoted by $G[U]$.

For $k \in \mathbb{N}$ the hypercube Q_{k} in our context is a simple graph with the 2^{k} vertices $\{0,1\}^{k}$, and where two vertices $\tilde{x}, \tilde{y} \in\{0,1\}^{k}$ are adjacent iff the Manhattan distance $d(\tilde{x}, \tilde{y})=\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|=1$. So, two vertices are connected iff they only differ in one coordinate, in which they differ by ± 1. The vertices of the hypercube Q_{k} are more commonly viewed as binary strings of length k instead of actually points in the k-dimensional Euclidean space. In that case the Manhattan distance is called the called the Hamming distance. We will not make a specific distinction between these two slightly different presentations of the hypercube Q_{k}. In many situations it will be convenient to partition the hypercube Q_{k} into two copies of Q_{k-1} where corresponding vertices in each copy are connected by and edge. If $b \in\{0,1\}$ and $B_{b}=\left\{\tilde{x} \in\{0,1\}^{k}: x_{k}=b\right\}$ is the set of binary strings of length k with k-th bit equal to b, then clearly each of $Q_{k-1}^{0}:=Q_{k}\left[B_{0}\right]$ and $Q_{k-1}^{1}:=Q_{k}\left[B_{1}\right]$ are induced subgraphs isomorphic to Q_{k-1}, and (i) $V\left(Q_{k}\right)=V\left(Q_{k-1}^{0}\right) \cup V\left(Q_{k-1}^{1}\right)=B_{0} \cup B_{1}$ is a
partition and (ii) $E\left(Q_{k}\right)=E\left(Q_{k-1}^{0}\right) \cup E\left(Q_{k-1}^{1}\right) \cup C_{k-1}$ is also a partition of the edges where

$$
C_{k-1}=\left\{\{(\tilde{x}, 0),(\tilde{x}, 1)\}: \tilde{x} \in V\left(Q_{k-1}\right)\right\} .
$$

For $b \in\{0,1\}$ and $\tilde{x} \in V\left(Q_{k-1}\right)$, the copy of $(\tilde{x}, b) \in V\left(Q_{k-1}^{b}\right)$ is the vertex $(\tilde{x}, 1-b) \in V\left(Q_{k-1}^{1-b}\right)$, and these well be referred as copies. This decomposition of Q_{k} will be denoted by $Q_{k}=Q_{k-1}^{0} \boxplus Q_{k-1}^{1}$.

2 Some properties of the upper boundary function

The following proposition on the binomial representation of an integer is stated in [16] and in [9, and a simple proof by greedy algorithm can be found in the latter citation.

Proposition 2.1 For $m, i \in \mathbb{N}$ there is a unique binomial representation (UBR) of m as

$$
\begin{equation*}
m=\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{j}}{j} \tag{2}
\end{equation*}
$$

where $n_{i}>n_{i-1}>\cdots>n_{j} \geq j \geq 1$.
For $m, i \in \mathbb{N}$ one can use the UBR to define the upper i-boundary of m

$$
m^{(i)}=\binom{n_{i}}{i+1}+\binom{n_{i-1}}{i}+\cdots+\binom{n_{j}}{j+1} .
$$

Proposition 2.2 For a fixed $i \in \mathbb{N}$ the function $m \mapsto m^{(i)}$ is increasing.
Proof. For $m, i \in \mathbb{N}$ consider the UBR of m as in (21).
If $j \geq 2$, then

$$
m+1=\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{j}}{j}+\binom{j-1}{j-1}
$$

is the UBR of $m+1$ and so $(m+1)^{(i)}=m^{(i)}+\binom{j-1}{j}=m^{(i)}$.
Otherwise $j=1$, and hence there is a largest index $\ell \in[i]$ such that $n_{h}=n_{1}+h-1$ for all $h \in\{1, \ldots, \ell\}$. In this case we have $n_{\ell+1}>n_{\ell}+1=n_{1}+\ell$ and

$$
\begin{aligned}
m+1 & =\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{\ell+1}}{\ell+1}+\binom{n_{1}+\ell-1}{\ell}+\ldots+\binom{n_{1}}{1}+1 \\
& =\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{\ell+1}}{\ell+1}+\binom{n_{1}+\ell}{\ell}
\end{aligned}
$$

and hence

$$
(m+1)^{(i)}-m^{(i)}=\binom{n_{1}+\ell}{\ell+1}-\left[\binom{n_{1}+\ell-1}{\ell+1}+\cdots+\binom{n_{1}}{2}\right]=\binom{n_{1}}{1}=n_{1}
$$

We see from the above proof when exactly the function $m \mapsto m^{(i)}$ is strictly increasing; namely, whenever the last binomial coefficient in the UBR of m has the form $\binom{n_{1}}{1}$, then $(m+1)^{(i)}=$ $m^{(i)}+n_{1}>m^{(i)}$. In particular, for $i<n$ we have

$$
\binom{n}{i}-1=\binom{n-1}{i}+\binom{n-2}{i-1}+\cdots+\binom{n-i}{1}
$$

and hence the following observation.
Observation 2.3 For $i, n \in \mathbb{N}$ with $i<n$ then

$$
\left(\binom{n}{i}-1\right)^{(i)}=\binom{n}{i}^{(i)}-(n-i)<\binom{n}{i}^{(i)} .
$$

In this article the f-vector of a $(d-1)$-dimensional simplicial complex Δ will be given by $\tilde{f}(\Delta)=\tilde{f}=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{d-1}\right) \in \mathbb{Z}^{d+1}$ where $f_{i}=f_{i}(\Delta)$ denotes the number of i-dimensional faces of Δ. For convenience we include the empty face \emptyset in Δ. Since by convention $\operatorname{dim}(\emptyset)=-1$ then we always have $f_{-1}=1$. The following celebrated result proved independently by Kruskal [11], Katona 10 and Schützenberger [15], is usually called the Kruskal-Katona Theorem, since it was not realized at first that Schützenberger had the first proof. It is sometimes called the KKS Theorem for short.

Theorem 2.4 An integral vector $\tilde{f}=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{d-1}\right) \in \mathbb{Z}^{d+1}$ is an f-vector of a $(d-1)$ dimensional simplicial complex Δ if and only if $0<f_{i} \leq f_{i-1}^{(i)}$ for each $i \in\{1, \ldots, d-1\}$.

Although we will not regurgitate the proof of Theorem 2.4 here, a few comments about it will be useful for us here in this section. - Note that a simplicial complex Δ on vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ can be viewed as an abstract simplicial complex; a collection of subsets of $[n]$ satisfying (1) $\{i\} \in \Delta$ for each $i \in[n]$, and (2) $F \subseteq G \in \Delta \Rightarrow F \in \Delta$. For each i we can linearly order the i-element subsets of \mathbb{N} in the reverse lexicographical order. So for $i=3$ the order would start as follows:

$$
\begin{aligned}
& \{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,5\},\{1,3,5\},\{2,3,5\}, \\
& \{1,4,5\},\{2,4,5\},\{3,4,5\},\{1,2,6\},\{1,3,6\},\{2,3,6\}, \ldots
\end{aligned}
$$

For an integral vector $\tilde{f}=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{d-1}\right) \in \mathbb{Z}^{d+1}$ let $\Delta_{\tilde{f}} \subseteq 2^{\mathbb{N}}$ consist of the first f_{i-1} i-element subsets of \mathbb{N} in the reverse lexicographical ordering for each $i \in\{0,1, \ldots, d\}$. The proof of Theorem 2.4 is based on proving the equivalence of the following three statements [16].

1. The integral vector \tilde{f} is an f-vector of a simplicial complex Δ.
2. $\Delta_{\tilde{f}}$ is a simplicial complex.
3. $f_{i} \leq f_{i-1}^{(i)}$ for each $i \in\{1, \ldots, d-1\}$.

The hard part of the proof is the implication $1 \Rightarrow 2$.
For a fixed i we have a well-defined function $m \mapsto m^{(i)}$ which we will refer to as the upper boundary function 1 or the $U B$ function for short. The remainder of this section will be devoted to

[^1]the derivation of some properties of the UB function. We will, in part, use the above equivalence to prove these properties.

For one such property of the UB function, let $i, m_{1}, m_{2}, N \in \mathbb{N}$ be such that $m_{1}, m_{2} \leq\binom{ N}{i}$ and consider two integral vectors in \mathbb{Z}^{i+2}

$$
\begin{aligned}
& \tilde{f}_{1}=\left(\binom{N}{0}, \ldots,\binom{N}{i-1}, m_{1}, m_{1}^{(i)}\right) \\
& \tilde{f}_{2}=\left(\binom{N}{0}, \ldots,\binom{N}{i-1}, m_{2}, m_{2}^{(i)}\right)
\end{aligned}
$$

By Theorem 2.4 both $\Delta_{\tilde{f}_{1}}$ and $\Delta_{\tilde{f}_{1}}$ are simplicial complexes. Assume we have disjoint representations $\Delta_{\tilde{f}_{1}} \subseteq 2^{[N]}$ and $\Delta_{\tilde{f}_{2}} \subseteq 2^{[2 N] \backslash[N]}$ (where in the latter representation N has been added to each element of each set in $\Delta_{\tilde{f}_{2}}$) and let $\Delta:=\Delta_{\tilde{f}_{1}} \cup \Delta_{\tilde{f}_{2}}$ be their union. By definition Δ is clearly a simplicial complex with $f_{i-1}(\Delta)=m_{1}+m_{2}$ and $f_{i}(\Delta)=m_{1}^{(i)}+m_{2}^{(i)}$. By Theorem 2.4 we have the following.
Claim 2.5 $\left(m_{1}+m_{2}\right)^{(i)} \geq m_{1}^{(i)}+m_{2}^{(i)}$.
Let $\mathcal{F}_{i}(N)$ denote the first N elements of of $\binom{\mathbb{N}}{i}$. We clearly have then (i) $\left|\mathcal{F}_{i}(N)\right|=N$ for $i \geq 1$, (ii) $\mathcal{F}_{i}\left(N_{1}\right) \subseteq \mathcal{F}_{i}\left(N_{2}\right)$ iff $N_{1} \leq N_{2}$, (iii) $\mathcal{F}_{i}\left(\binom{k}{i}\right)=\binom{[k]}{i}$, and by definition of $\Delta_{\tilde{f}}$ here above we have for an f-vector \tilde{f} of a simplicial complex that (iv)

$$
\Delta_{\tilde{f}}=\mathcal{F}_{0}\left(f_{-1}\right) \cup \mathcal{F}_{1}\left(f_{0}\right) \cup \cdots \cup \mathcal{F}_{d}\left(f_{d-1}\right) .
$$

(v) Finally note that if $|X|=i$ and $|Y|=i+1$, then by Theorem [2.4 we have that $X \subseteq Y \in$ $\mathcal{F}_{i+1}\left(N^{(i)}\right)$ implies that $X \in \mathcal{F}_{i}(N)$.

For $N \in \mathbb{N}, m_{1} \leq\binom{ N}{i}$ and $m_{2} \leq\binom{ N}{i-1}$ let $\mu=\min \left(m_{2}^{(i-1)}, m_{1}\right)$ and consider two integral vectors

$$
\begin{aligned}
& \tilde{f}_{1}=\left(\binom{N}{0},\binom{N}{1} \ldots,\binom{N}{i-1}, m_{1}, m_{1}^{(i)}\right) \in \mathbb{Z}^{i+2}, \\
& \tilde{f}_{2}=\left(\binom{N}{0}, \ldots,\binom{N}{i-2}, m_{2}, \mu\right) \in \mathbb{Z}^{i+1} .
\end{aligned}
$$

By the Theorem 2.4 both $\Delta_{\tilde{f}_{1}}$ and $\Delta_{\tilde{f}_{2}}$ are simplicial complexes of dimensions i and $i-1$ respectively. Assume we have abstract representations $\Delta_{\tilde{f}_{1}} \subseteq 2^{[N]}$ and $\Delta_{\tilde{f}_{2}} \subseteq 2^{[N]}$ and let

$$
\begin{equation*}
\Delta=\Delta_{\tilde{f}_{1}} \cup\left(\Delta_{\tilde{f}_{2}} \uplus\{N+1\}\right) \subseteq 2^{[N+1]} . \tag{3}
\end{equation*}
$$

Claim 2.6 Δ from (3) is a simplicial complex of dimension i.

$$
\begin{aligned}
\Delta \cap\binom{[N+1]}{i} & =\mathcal{F}_{i}\left(m_{1}\right) \cup\left(\mathcal{F}_{i-1}\left(m_{2}\right) \uplus\{N+1\}\right) \\
\Delta \cap\binom{[N+1]}{i+1} & =\mathcal{F}_{i+1}\left(m_{1}^{(i)}\right) \cup\left(\mathcal{F}_{i}(\mu) \uplus\{N+1\}\right)
\end{aligned}
$$

We only need to check $F \subseteq G \in \Delta \Rightarrow F \in \Delta$ for $F \in \Delta \cap\binom{[N+1]}{i}$ and $G \in \Delta \cap\binom{[N+1]}{i+1}$. Here there are three cases to consider.
(a) $N+1 \notin F, G$: Here we have $F \subseteq G \in \mathcal{F}_{i+1}\left(m_{1}^{(i)}\right)$ and hence $F \in \mathcal{F}_{i}\left(m_{1}\right) \subseteq \Delta$.
(b) $N+1 \in F, G$: Here $G \in \mathcal{F}_{i}(\mu) \uplus\{N+1\}$ and hence $G \backslash\{N+1\} \in \mathcal{F}_{i}(\mu) \subseteq \mathcal{F}_{i}\left(m_{2}^{(i-1)}\right)$ Since $F \backslash\{N+1\} \subseteq G \backslash\{N+1\} \in \mathcal{F}_{i}\left(m_{2}^{(i-1)}\right)$, we have $F \backslash\{N+1\} \in \mathcal{F}_{i-1}\left(m_{2}\right)$ and hence

(c) $N+1 \notin F$ and $N+1 \in G$: As in (b) we have $G \in \mathcal{F}_{i}(\mu) \uplus\{N+1\}$ and hence $F=$ $G \backslash\{N+1\} \in \mathcal{F}_{i}(\mu) \subseteq \mathcal{F}_{i}\left(m_{1}\right) \subseteq \Delta \cap\left({ }_{[N+1]}^{i}\right)$ and hence $F \in \Delta$.

Therefore we have $F \subseteq G \in \Delta \Rightarrow F \in \Delta$ for all F and G, and this completes the proof of the claim.

For the f-vector of Δ in Claim 2.6 we have

$$
f_{i-1}(\Delta)=\left|\mathcal{F}_{i}\left(m_{1}\right)\right|+\left|\left(\mathcal{F}_{i-1}\left(m_{2}\right) \uplus\{N+1\}\right)\right|=m_{1}+m_{2},
$$

and

$$
f_{i}(\Delta)=\left|\mathcal{F}_{i}\left(m_{1}^{(i)}\right)\right|+\left|\left(\mathcal{F}_{i-1}(\mu) \uplus\{N+1\}\right)\right|=m_{1}^{(i)}+\min \left(m_{2}^{(i-1)}, m_{1}\right) .
$$

By Theorem [2.4 we obtain the following lemma as a corollary.
Lemma 2.7 For $m_{1}, m_{2}, i \in \mathbb{N}$ we have

$$
\left(m_{1}+m_{2}\right)^{(i)} \geq m_{1}^{(i)}+\min \left(m_{2}^{(i-1)}, m_{1}\right)
$$

Let $m_{1}, m_{2}, i, N \in \mathbb{N}$ be such that $m_{1}+m_{2} \leq\binom{ N}{i-1}$. By Lemma 2.7 we get

$$
\left(m_{1}+m_{2}+\binom{N}{i}\right)^{(i)} \geq\binom{ N}{i+1}+\min \left(\left(m_{1}+m_{2}\right)^{(i-1)},\binom{N}{i}\right) .
$$

By assumption and Proposition 2.2 we have $\left(m_{1}+m_{2}\right)^{(i-1)} \leq\binom{ N}{i}$ and hence

$$
\min \left(\left(m_{1}+m_{2}\right)^{(i-1)},\binom{N}{i}\right)=\left(m_{1}+m_{2}\right)^{(i-1)}
$$

By Claim 2.5 we therefore have the following.
Lemma 2.8 For $m_{1}, m_{2}, i, N \in \mathbb{N}$ with $m_{1}+m_{2} \leq\binom{ N}{i-1}$ we have

$$
\left(m_{1}+m_{2}+\binom{N}{i}\right)^{(i)} \geq m_{1}^{(i-1)}+m_{2}^{(i-1)}+\binom{N}{i+1}
$$

Our final objective in this section is to prove the following
Lemma 2.9 If $0 \leq m, m_{1}, m_{2} \leq\binom{ N}{i}$ and $m_{1}+m_{2}=m+\binom{N}{i}$ then

$$
m_{1}^{(i)}+m_{2}^{(i)} \leq m^{(i)}+\binom{N}{i+1}
$$

To prove Lemma 2.9 we let $\mathbf{P}(i)$ be the statement of Lemma 2.9 for a fixed $i \in \mathbb{N}$.
$\mathbf{P}(i)$: For all nonnegative integers m, m_{1}, m_{2}, N that satisfy $0 \leq m, m_{1}, m_{2} \leq\binom{ N}{i}$ and $m_{1}+m_{2}=m+\binom{N}{i}$ we have $m_{1}^{(i)}+m_{2}^{(i)} \leq m^{(i)}+\binom{N}{i+1}$.
We let $\mathbf{Q}(i)$ be the following seemingly weaker statement for a fixed $i \in \mathbb{N}$.
$\mathbf{Q}(i)$: For all nonnegative integers m, m_{1}, m_{2}, N that satisfy $0 \leq m \leq m_{1} \leq m_{2}<\binom{N}{i}$ and $m_{1}+m_{2}=m+\binom{N}{i}$ we have $m_{1}^{(i)}+m_{2}^{(i)} \leq x^{(i)}+\binom{y_{i}+1}{i+1}$, where

$$
\begin{equation*}
m_{1}=\binom{x_{i}}{i}+\cdots+\binom{x_{p}}{p}, \quad m_{2}=\binom{y_{i}}{i}+\cdots+\binom{y_{q}}{q} \tag{4}
\end{equation*}
$$

are their UBR, and $m_{1}+m_{2}=x+\binom{y_{i}+1}{i}$ where $x \geq 0$.
We now briefly argue the equivalence of $\mathbf{P}(i)$ and $\mathbf{Q}(i)$.
$\mathbf{P}(i) \Rightarrow \mathbf{Q}(i)$: Let $i \in \mathbb{N}$ be given. Suppose $0 \leq m \leq m_{1} \leq m_{2}<\binom{N}{i}$ and $m_{1}+m_{2}=m+\binom{N}{i}$, and the UBR of m_{1} and m_{2} are given as in (4), then by assumption we have $m_{2}<\binom{y_{i}+1}{i} \leq\binom{ N}{i}$. Hence $0 \leq m_{1}, m_{2} \leq\binom{ y_{i}+1}{i}$ and $x \geq 0$. By $\mathbf{P}(i)$ we then obtain $m_{1}^{(i)}+m_{2}^{(i)} \leq x^{(i)}+\binom{y_{i}+1}{i+1}$, so we have $\mathbf{Q}(i)$.
$\mathbf{Q}(i) \Rightarrow \mathbf{P}(i)$: Let $i \in \mathbb{N}$ be given. Suppose $0 \leq m, m_{1}, m_{2} \leq\binom{ N}{i}$ and $m_{1}+m_{2}=m+\binom{N}{i}$. If $m_{2}=\binom{N}{i}$, then $\mathbf{P}(i)$ is trivially true. Also, by symmetry we may assume that $m_{1} \leq m_{2}$, and so we may assume $0 \leq m \leq m_{1} \leq m_{2}<\binom{N}{i}$ and therefore we can apply $\mathbf{Q}(i)$. Repeated use of $\mathbf{Q}(i)$, say $j \geq 1$ times, will eventually yield

$$
m_{1}^{(i)}+m_{2}^{(i)} \leq x^{(i)}+\binom{y_{i}+j}{i+1}
$$

where $y_{i}+j=N$ and $x=m \geq 0$, which is $\mathbf{P}(i)$.
Therefore for each $i \in \mathbb{N}$ the statements $\mathbf{P}(i)$ and $\mathbf{Q}(i)$ are equivalent.
Proof. [Lemma [2.9] We will use induction and prove $\mathbf{P}(i)$ for all $i \in \mathbb{N}$. For $i=1$ we have $x^{(1)}=\binom{x}{2}$ for any integer x, so proving $\mathbf{P}(1)$ amounts to showing that $m_{1}^{2}+m_{2}^{2} \leq m^{2}+N^{2}$ when $m, m_{1}, m_{2} \leq N$ and $m_{1}+m_{2}=m+N$ which is easily established.

We proceed by induction on i, assuming the equivalent statements $\mathbf{P}(i-1)$ and $\mathbf{Q}(i-1)$, and prove $\mathbf{Q}(i)$. Assume $0 \leq m \leq m_{1} \leq m_{2}<\binom{N}{i}$. Let the UBR of m_{1} and m_{2} be as stated in (4). By assumption we have $x_{i} \leq y_{i}$.

If $x^{\prime}=m_{1}-\binom{x_{i}}{i}$ and $y^{\prime}=m_{2}-\binom{y_{i}}{i}$, assume for a moment that $x^{\prime} \geq y^{\prime}$. Then by the UBR of m_{1} and m_{2} we have $y_{i} \geq x_{i}>x_{i-1} \geq y_{i-1}$. If now $m_{1}^{\prime}=\binom{x_{i}}{i}+y^{\prime}$ and $m_{2}^{\prime}=\binom{y_{i}}{i}+x^{\prime}$, then $m_{1}+m_{2}=m_{1}^{\prime}+m_{2}^{\prime}$ and $m_{1}^{\prime} \leq m_{1} \leq m_{2} \leq m_{2}^{\prime}$. Since $x_{i}>y_{i-1}$ and $y_{i}>x_{i-1}$ we have

$$
\begin{aligned}
m_{1}^{(i)}+m_{2}^{(i)} & =\binom{x_{i}}{i+1}+{x^{\prime(i-1)}}^{(i)}\binom{y_{i}}{i+1}+y^{\prime(i-1)} \\
& =\left(\binom{x_{i}}{i+1}+y^{\prime(i-1)}\right)+\left(\binom{y_{i}}{i+1}+{x^{\prime}}^{(i-1)}\right) \\
& =m_{1}^{\prime(i)}+{m_{2}^{\prime(i)}}^{\prime} .
\end{aligned}
$$

Therefore we may further assume that $x^{\prime} \leq y^{\prime}$. We now consider two cases.

First case $x^{\prime}+y^{\prime} \geq\binom{ y_{i}}{i-1}$: In this case we have $x^{\prime}+y^{\prime}=x^{\prime \prime}+\binom{y_{i}}{i-1}$ for some $x^{\prime \prime} \geq 0$. Since $x^{\prime} \leq y^{\prime}$ we have $x_{i-1}<x_{i} \leq y_{i}$ and $y_{i-1}<y_{i}$ and hence from the UBR of x^{\prime} and y^{\prime} we have $x^{\prime \prime}<x^{\prime} \leq y^{\prime}<\binom{y_{i}}{i-1}$. By induction hypothesis $\mathbf{Q}(i-1)$ we then have $x^{\prime(i-1)}+y^{(i-1)} \leq x^{\prime \prime(i-1)}+\binom{y_{i}}{i}$ and hence

$$
\begin{aligned}
m_{1}^{(i)}+m_{2}^{(i)} & =\left(\binom{x_{i}}{i}+x^{\prime}\right)^{(i)}+\left(\binom{y_{i}}{i}+y^{\prime}\right)^{(i)} \\
& =\binom{x_{i}}{i+1}+x^{\prime(i-1)}+\binom{y_{i}}{i+1}+y^{\prime(i-1)} \\
& \leq\binom{ x_{i}}{i+1}+x^{\prime \prime(i-1)}+\binom{y_{i}+1}{i+1}
\end{aligned}
$$

If $x=\binom{x_{i}}{i}+x^{\prime \prime}$, then since $x^{\prime \prime}<x^{\prime}$, we have $x^{(i)}=\binom{x_{i}}{i+1}+x^{\prime \prime(i-1)}$ and $x+\binom{y_{i}+1}{i}=m_{1}+m_{2}$. From above we then have $m_{1}^{(i)}+m_{2}^{(i)} \leq x^{(i)}+\binom{y_{i}+1}{i+1}$, thereby obtaining $\mathbf{Q}(i)$ in this case.

SEcond case $x^{\prime}+y^{\prime}<\binom{y_{i}}{i-1}$: Note that for every $k \in\left\{1, \ldots, x_{i}\right\}$ we have

$$
\binom{x_{i}}{i}=\binom{x_{i}-k}{i}+\sum_{\ell=1}^{k}\binom{x_{i}-\ell}{i-1} .
$$

By assumption of $\mathbf{Q}(i)$ we have $m_{2}<\binom{N}{i}$ and $m_{1}+m_{2} \geq\binom{ N}{i}$ and hence by the UBR of m_{2} we have $m_{1}+m_{2} \geq\left(\begin{array}{c}\binom{y_{i}+1}{i}\end{array}\right)$, or $\binom{x_{i}}{i}+x^{\prime}+y^{\prime} \geq\binom{ y_{i}}{i-1}$. Therefore there is a unique $k \in\left\{1, \ldots, x_{i}\right\}$ such that

$$
\sum_{\ell=1}^{k}\binom{x_{i}-\ell}{i-1}+x^{\prime}+y^{\prime} \geq\binom{ y_{i}}{i-1}>\sum_{\ell=1}^{k-1}\binom{x_{i}-\ell}{i-1}+x^{\prime}+y^{\prime}
$$

Hence $\sum_{\ell=1}^{k}\binom{x_{i}-\ell}{i-1}+x^{\prime}+y^{\prime}=\delta+\binom{y_{i}}{i-1}$ where $0 \leq \delta<\binom{x_{i}-k}{i-1}$. Since $y_{i} \geq x_{i}>x_{i}-k$ we have further $\binom{y_{i}}{i-1}>\binom{x_{i}-k}{i-1}$ and hence

$$
0 \leq \delta, \quad\binom{x_{i}-k}{i-1}, \quad \sum_{\ell=1}^{k-1}\binom{x_{i}-\ell}{i-1}+x^{\prime}+y^{\prime}<\binom{y_{i}}{i-1}
$$

By Claim [2.5 and then by induction hypothesis $\mathbf{P}(i-1)$ we have

$$
\begin{aligned}
\sum_{\ell=1}^{k}\binom{x_{i}-\ell}{i}+x^{\prime(i-1)}+y^{\prime(i-1)} & =\sum_{\ell=1}^{k}\binom{x_{i}-\ell}{i-1}^{(i-1)}+x^{\prime(i-1)}+y^{\prime(i-1)} \\
& \leq\left(\sum_{\ell=1}^{k-1}\binom{x_{i}-\ell}{i-1}+x^{\prime}+y^{\prime}\right)^{(i-1)}+\binom{x_{i}-k}{i-1}^{(i-1)} \\
& \leq \delta^{(i-1)}+\binom{y_{i}}{i-1}^{(i-1)} \\
& =\delta^{(i-1)}+\binom{y_{i}}{i}
\end{aligned}
$$

Note that by definition of δ and its range, we have $m_{1}+m_{2}=x+\binom{y_{i}+1}{i}$ where $x=\binom{x_{i}-k}{i}+\delta$ and also

$$
x^{(i)}+\binom{y_{i}+1}{i}^{(i)}=\binom{x_{i}-k}{i+1}+\delta^{(i-1)}+\binom{y_{i}+1}{i+1} .
$$

Since

$$
\binom{x_{i}}{i+1}=\binom{x_{i}-k}{i+1}+\sum_{\ell=1}^{k}\binom{x_{i}-\ell}{i}
$$

we then finally get

$$
\begin{aligned}
m_{1}^{(i)}+m_{2}^{(i)} & =\binom{x_{i}}{i+1}+x^{\prime(i-1)}+\binom{y_{i}}{i+1}+y^{\prime(i-1)} \\
& =\binom{x_{i}-k}{i+1}+\sum_{\ell=1}^{k}\binom{x_{i}-\ell}{i}+{x^{\prime}}^{(i-1)}+\binom{y_{i}}{i+1}+y^{\prime(i-1)} \\
& \leq\binom{ x_{i}-k}{i+1}+\delta^{(i-1)}+\binom{y_{i}}{i}+\binom{y_{i}}{i+1} \\
& =\binom{x_{i}-k}{i+1}+\delta^{(i-1)}+\binom{y_{i}+1}{i+1} \\
& =x^{(i)}+\binom{y_{i}+1}{i}^{(i)}
\end{aligned}
$$

which is $\mathbf{Q}(i)$. This completes the inductive proof that $\mathbf{P}(i-1)$ and $\mathbf{Q}(i-1)$ imply $\mathbf{Q}(i)$, and so this completes the proof of of Lemma 2.9.

3 The main theorem

In this section we use results from previous section to prove our main result of this article Theorem 3.2 here below.

Let $k \in \mathbb{N}$ and $S \subseteq V\left(Q_{k}\right)$. Call a vertex/binary string of a subgraph $G=Q_{k}[S]$ of the k dimensional hypercube Q_{k} full if its degree is k in G. For $n \in\left[2^{k}\right]$ Let $\phi_{k}(n)$ denote the maximum number of full vertices of an induced subgraph of Q_{k} on n vertices:

$$
\phi_{k}(n)=\max _{S \subseteq V\left(Q_{k}\right),|S|=n} \mid\left\{\tilde{x} \in S: d_{Q_{k}[S]}(\tilde{x})=k\right\} .
$$

Clearly $\phi_{k}\left(2^{k}\right)=2^{k}$ as every vertex of Q_{k} is full. If $n<2^{k}$ and $S \subseteq V\left(Q_{k}\right)$ contains n vertices and induces $\phi_{k}(n)$ full vertices in Q_{k}, then we can by symmetry of Q_{k} (or relabeling of the vertices) assume that the vertex corresponding to the binary string consisting of $k 1$'s is not in S. In this case a vertex/string in S with the maximum number of 1 's is not full in $Q_{k}[S]$. In particular we have $\phi_{k}(n)<n$ for each $n<2^{k}$.

Observation 3.1 For $k \in \mathbb{N}$ we have:

1. If $n<2^{k}$ then $\phi_{k}(n)<n$.
2. The function $\phi_{k}:\left[2^{k}\right] \rightarrow\left[2^{k}\right]$ is increasing.

Remark: By Observation 3.1 we see that ϕ_{k} cannot be strictly increasing.
Note that every $n \in\left[2^{k}\right]$ has a unique hypercube representation (HCR) as $n=\sum_{\ell=0}^{i}\binom{k}{\ell}+m$ where $0 \leq m<\binom{k}{i+1}$. The main result of this section is the following.
Theorem 3.2 For $k \in \mathbb{N}$ and $n \in\left[2^{k}\right]$ with $H C R ~ n=\sum_{\ell=0}^{i}\binom{k}{\ell}+m$, then

$$
\phi_{k}(n)=\sum_{\ell=0}^{i-1}\binom{k}{\ell}+m^{(k-i-1)} .
$$

We will prove Theorem 3.2 by induction on k. In order to do that, we will first derive a recursive upper bound for $\phi_{k}(n)$.

Let $S \subseteq V\left(Q_{k}\right)$ be a set of n vertices/binary strings, and let $F_{k}(S) \subset S$ be the vertices of S that are full in $Q_{k}[S]$. Looking at the decomposition $Q_{k}=Q_{k-1}^{0} \boxplus Q_{k-1}^{1}$ let $S_{b}=S \cap V\left(Q_{k-1}^{b}\right)$ for $b=0,1$ and $n_{b}=\left|S_{b}\right|$. Clearly $S=S_{0} \cup S_{1}$ is a partition and we have $n_{0}+n_{1}=n$. Note that for $b \in\{0,1\}$, a vertex in S_{b} is full in $Q_{k}[S]$ iff (i) it is full in $Q_{k-1}^{b}\left[S_{b}\right]$, and (ii) its copy is contained in S_{1-b}. By (i) and (ii) the number of vertices in S_{b} that are full in $Q_{k}[S]$ is at $\operatorname{most} \min \left(\phi_{k-1}\left(n_{b}\right), n_{1-b}\right)$, that is $\left.\mid F_{k}(S) \cap S_{b}\right) \mid \leq \min \left(\phi_{k-1}\left(n_{b}\right), n_{1-b}\right)$. Since $F_{k}(S)=\left(F_{k}(S) \cap S_{0}\right) \cup\left(F_{k}(S) \cap S_{1}\right)$ is a partition we then have

$$
\left|F_{k}(S)\right|=\left|F_{k}(S) \cap S_{0}\right|+\left|F_{k}(S) \cap S_{1}\right| \leq \min \left(\phi_{k-1}\left(n_{0}\right), n_{1}\right)+\min \left(\phi_{k-1}\left(n_{1}\right), n_{0}\right)
$$

By definition we then have the following recursive max-min upper bound

$$
\begin{equation*}
\phi_{k}(n) \leq \max _{n_{0}+n_{1}=n}\left(\min \left(\phi_{k-1}\left(n_{0}\right), n_{1}\right)+\min \left(\phi_{k-1}\left(n_{1}\right), n_{0}\right)\right) . \tag{5}
\end{equation*}
$$

Note that is impossible to have $n_{b}<\phi_{k-1}\left(n_{1-b}\right)$ for both $b=0,1$, since then $n_{0}<\phi_{k-1}\left(n_{1}\right)<$ $n_{1}<\phi_{k-1}\left(n_{0}\right)<n_{0}$, a blatant contradiction. From this we see that (5) can be written as

$$
\begin{equation*}
\phi_{k}(n) \leq \max _{n_{0}+n_{1}=n}\left(\min \left(\phi_{k-1}\left(n_{0}\right)+\phi_{k-1}\left(n_{1}\right), n_{0}+\phi_{k-1}\left(n_{0}\right), n_{1}+\phi_{k-1}\left(n_{1}\right)\right)\right) \tag{6}
\end{equation*}
$$

Further, by symmetry the maximum in (6) is attained when $n_{0} \geq n_{1}$, in which case we have $n_{1}+\phi_{k-1}\left(n_{1}\right) \leq n_{0}+\phi_{k-1}\left(n_{0}\right)$. Hence we obtain

$$
\begin{equation*}
\phi_{k}(n) \leq \max _{n_{0}+n_{1}=n, n_{0} \geq n_{1}}\left(\min \left(\phi_{k-1}\left(n_{0}\right)+\phi_{k-1}\left(n_{1}\right), n_{1}+\phi_{k-1}\left(n_{1}\right)\right)\right) . \tag{7}
\end{equation*}
$$

Let $f_{k}(n)$ be the function on the right in the displayed formula in the above Theorem 3.2

$$
f_{k}(n):=\sum_{\ell=0}^{i-1}\binom{k}{\ell}+m^{(k-i-1)}
$$

where $n=\sum_{\ell=0}^{i}\binom{k}{\ell}+m$ is its HCR. We first show that $\phi_{k}(n) \geq f_{k}(n)$ by explicitly show that an induced subgraph on n vertices of Q_{k} can have $f_{k}(n)$ full vertices. Then we will show that $f_{k}(n)$ satisfies

$$
\begin{equation*}
f_{k}(n)=\max _{n_{0}+n_{1}=n, n_{0} \geq n_{1}}\left(\min \left(f_{k-1}\left(n_{0}\right)+f_{k-1}\left(n_{1}\right), n_{1}+f_{k-1}\left(n_{1}\right)\right)\right) \tag{8}
\end{equation*}
$$

which by (77) shows that $f_{k}(n) \geq \phi_{k}(n)$.

For $k \in \mathbb{N}$ let $n \in\left[2^{k}\right]$ with $\operatorname{HCR} n=\sum_{\ell=0}^{i}\binom{k}{\ell}+m$. To show that $\phi_{k}(n) \geq f_{k}(n)$ we construct an induced subgraph of Q_{k} on vertices with $f_{k}(n)$ full vertices as follows. Let $S \subseteq V\left(Q_{k}\right)$ be the set of n vertices containing all $\sum_{\ell=0}^{i}\binom{k}{\ell}$ binary strings having at most i 's in their representation, and the first m binary strings with exactly $i+11$'s in their representation in the lexicographical order. Note! Here a binary string represents the opposite subset of $[k]$; where the j-th bit is 0 indicates that j is included in the subset. In this way the binary strings are ordered as their corresponding subsets of $[k]$ in the reverse lexicographical order. Clearly every vertex in the induced graph $Q_{k}[S] \subseteq Q_{k}$ with at most $i-1$ 1's in their representation is full, these amount to $\sum_{\ell=0}^{i-1}\binom{k}{\ell}$ full vertices. Also note that none of the m vertices with exactly $i+1$ 1's in their representation is full, as they are not connected to any vertex with $i+2$ 1's in $Q_{k}[S]$. Among the $\binom{k}{i}$ binary strings in S containing exactly $i 1$'s, we briefly argue that $m^{(k-i-1)}$ of them are full in the following way.

Consider the $(k-i-1)$-dimensional simplicial complex $\Delta_{\tilde{f}}$ where

$$
\tilde{f}=\left(\binom{k}{0}, \ldots,\binom{k}{k-i-2}, m, m^{(k-i-1)}\right) \in \mathbb{Z}^{k-i+1}
$$

Note that $\Delta_{\tilde{f}} \cap\left(\binom{k}{k-i} \cup\binom{k}{k-i-1}\right)$ is represented by the bipartite subgraph G of $Q_{k}[S]$ induced by the binary strings containing exactly i or $i+1$'s, where two stings are adjacent in G iff for their opposite sets the smaller one, with $k-i-1$ elements, is contained in the other one with $k-i$ elements.

Since each of the $m^{(k-i-1)}$ subsets from $\binom{k}{k-i} \cap \Delta_{\tilde{f}}$ has all of its $k-i-1$ subsets among the m subsets from $\Delta_{\tilde{f}} \cap\binom{k}{k-i-1}$, then the representing $m^{(k-i-1)}$ opposite binary strings in G, containing exactly $i 1$'s, are each connected to all the $k-i$ opposite binary strings among the m ones in G, that contain exactly $i+1$'s. Since each binary string in $G \subseteq Q_{k}[S]$ with i 's is clearly connected to all i binary strings with $i-11$'s in $Q_{k}[S]$, we see that each of the mentioned $m^{(k-i-1)}$ opposite binary strings in $G \subseteq Q_{k}[S]$ are full. This shows that $Q_{k}[S]$ is an induced subgraph of Q_{k} with n vertices and at least $f_{k}(n)$ full vertices. Therefore we have $\phi_{k}(n) \geq f_{k}(n)$.

To complete the proof of Theorem [3.2 we show that $f_{k}(n)$ satisfies (8), which by (7) then implies that $\phi_{k}(n) \leq f_{k}(n)$, and hence $\phi_{k}(n)=f_{k}(n)$. This will occupy the remainder of this section. To show (8), we will show that $f_{k}(n) \geq \min \left(f_{k-1}\left(n_{0}\right)+f_{k-1}\left(n_{1}\right), n_{1}+f_{k-1}\left(n_{1}\right)\right)$, whenever $n_{0}+n_{1}=n$ and $n_{0} \geq n_{1}$. There are all together six cases we will consider to verify this inequality; the first case (A) has two sub-cases (A1) and (A2), the second case (B) has four sub-cases (B11), (B12), (B21) and (B22).

CASE (A) $f_{k-1}\left(n_{0}\right) \geq n_{1}$: Here we want to show that $f_{k}(n) \geq n_{1}+f_{k-1}\left(n_{1}\right)$. By definition of $f_{k}(n)$ we have here that $n_{0}>f_{k-1}\left(n_{0}\right) \geq n_{1}$. Since f_{k-1} is increasing there is a critical pair $\left(n_{0}^{*}, n_{1}^{*}\right)$ summing up to n such that (i) $f_{k-1}\left(n_{0}^{*}\right) \geq n_{1}^{*}$, and (ii) $f_{k-1}\left(n_{0}^{*}-1\right)<n_{1}^{*}+1$. Clearly we have $n_{0} \geq n_{0}^{*}$ and $n_{1} \leq n_{1}^{*}$, and so $n_{1}+f_{k-1}\left(n_{1}\right) \leq n_{1}^{*}+f_{k-1}\left(n_{1}^{*}\right)$. It therefore suffices to show that $f_{k}(n) \geq n_{1}^{*}+f_{k-1}\left(n_{1}^{*}\right)$. Let $n=\sum_{\ell=0}^{i}\binom{k}{\ell}+m$ be its HCR. Since $0 \leq m<\binom{k}{i+1}=\binom{k-1}{i+1}+\binom{k-1}{i}$, we consider two sub-cases.

SUB-CASE (A1) $0 \leq m<\binom{k-1}{i}$: Here in this case we have a bipartition $n=n_{0}^{\prime}+n_{1}^{\prime}$ where

$$
\begin{equation*}
n_{0}^{\prime}=\sum_{\ell=0}^{i}\binom{k-1}{\ell}, \quad n_{1}^{\prime}=\sum_{\ell=0}^{i-1}\binom{k-1}{\ell}+m \tag{9}
\end{equation*}
$$

for which

$$
\begin{equation*}
f_{k-1}\left(n_{0}^{\prime}\right)=\sum_{\ell=0}^{i-1}\binom{k-1}{\ell} \leq n_{1}^{\prime} \tag{10}
\end{equation*}
$$

and hence, by definition of n_{0}^{*} and n_{1}^{*}, we have $n_{0}^{*} \geq n_{0}^{\prime}, n_{1}^{*} \leq n_{1}^{\prime}$ and so

$$
n_{0}^{*}=\sum_{\ell=0}^{i}\binom{k-1}{\ell}+m_{0}^{*}, \quad n_{1}^{*}=\sum_{\ell=0}^{i-1}\binom{k-1}{\ell}+m_{1}^{*},
$$

where $m_{0}^{*}, m_{1}^{*} \geq 0$ are integers, $m_{0}^{*}+m_{1}^{*}=m$, and (i) $m_{0}^{*(k-i-2)} \geq m_{1}^{*}$ and (ii) $\left(m_{0}^{*}-1\right)^{(k-i-2)}<$ $m_{1}^{*}+1$. Now note that $f_{k}(n) \geq n_{1}^{*}+f_{k-1}\left(n_{1}^{*}\right)$ is, by definition of f_{k-1}, equivalent to $m^{(k-i-1)} \geq$ $m_{1}^{*}+m_{1}^{*(k-i-1)}$, which is implied by $m^{(k-i-1)} \geq \min \left(m_{1}^{*}, m_{0}^{*(k-i-2)}\right)+m_{1}^{*(k-i-1)}$, which holds by Lemma 2.7 since $m_{0}^{*}+m_{1}^{*}=m$.

SUB-CASE (A2) $\binom{k-1}{i} \leq m<\binom{k}{i+1}$: Similarly to Sub-case (A1) we have here in this case a bipartition $n=n_{0}^{\prime}+n_{1}^{\prime}$ where

$$
\begin{equation*}
n_{0}^{\prime}=\sum_{\ell=0}^{i}\binom{k-1}{\ell}+m^{\prime}, \quad n_{1}^{\prime}=\sum_{\ell=0}^{i}\binom{k-1}{\ell} \tag{11}
\end{equation*}
$$

where $m^{\prime}=m-\binom{k-1}{i}$ for which

$$
\begin{equation*}
f_{k-1}\left(n_{0}^{\prime}\right)=\sum_{\ell=0}^{i-1}\binom{k-1}{\ell}+m^{(k-i-2)} \leq n_{1}^{\prime} \tag{12}
\end{equation*}
$$

and hence again, by definition of n_{0}^{*} and n_{1}^{*}, we have $n_{0}^{*} \geq n_{0}^{\prime}, n_{1}^{*} \leq n_{1}^{\prime}$ and so

$$
n_{0}^{*}=\sum_{\ell=0}^{i}\binom{k-1}{\ell}+m_{0}^{*}, \quad n_{1}^{*}=\sum_{\ell=0}^{i-1}\binom{k-1}{\ell}+m_{1}^{*}
$$

where $m_{0}^{*} \geq m^{\prime}$ and $m_{1}<\binom{k-1}{i}$ are integers, $m_{0}^{*}+m_{1}^{*}=m$, and (i) $m_{0}^{*(k-i-2)} \geq m_{1}^{*}$ and (ii) $\left(m_{0}^{*}-1\right)^{(k-i-2)}<m_{1}^{*}+1$. Exactly as in the previous case (A1), we note that $f_{k}(n) \geq n_{1}^{*}+f_{k-1}\left(n_{1}^{*}\right)$ is by definition of f_{k-1}, equivalent to $m^{(k-i-1)} \geq m_{1}^{*}+m_{1}^{*(k-i-1)}$, which is implied by $m^{(k-i-1)} \geq$ $\min \left(m_{1}^{*}, m_{0}^{*(k-i-2)}\right)+m_{1}^{*(k-i-1)}$, which again holds by Lemma 2.7 since $m_{0}^{*}+m_{1}^{*}=m$.
$\operatorname{CASE}(\mathrm{B}) f_{k-1}\left(n_{0}\right)<n_{1}$: Here we want to show that $f_{k}(n) \geq f_{k-1}\left(n_{0}\right)+f_{k-1}\left(n_{1}\right)$. By definition of $f_{k}(n)$ we have here that $n_{0} \geq n_{1}>f_{k-1}\left(n_{0}\right)$. Let $n=\sum_{\ell=0}^{i}\binom{k}{\ell}+m$ be its HCR. Since $0 \leq m<\binom{k}{i+1}=\binom{k-1}{i+1}+\binom{k-1}{i}$, we consider the two cases of whether $0 \leq m<\binom{k-1}{i}$ or $\binom{k-1}{i} \leq m<\binom{k}{i+1}$.

SUB-CASE (B1) $0 \leq m<\binom{k-1}{i}$: As in case (A1), we have a partition $n=n_{0}^{\prime}+n_{1}^{\prime}$ given by (9) such that we have (10). The two sub-cases here, (B11) and (B12), depend on whether $n_{0} \geq n_{0}^{\prime}$ or $n_{0} \leq n_{0}^{\prime}$.

SUB-SUB-CASE (B11) $n_{0} \geq n_{0}^{\prime}$ in (9): Considering the critical pair $\left(n_{0}^{*}, n_{1}^{*}\right)$ from Case (A), we have here that $n_{0}^{\prime} \leq n_{0}<n_{0}^{*}$ and hence

$$
n_{0}=\sum_{\ell=0}^{i}\binom{k-1}{\ell}+m_{0}, \quad n_{1}=\sum_{\ell=0}^{i-1}\binom{k-1}{\ell}+m_{1}
$$

where $0 \leq m_{0}<m_{0^{*}}, m_{1}^{*}<m_{1} \leq m$, and $m_{0}+m_{1}=m$. Now note that $f_{k}(n) \geq f_{k-1}\left(n_{0}\right)+f_{k-1}\left(n_{1}\right)$ is by definition of f_{k-1}, equivalent to

$$
\begin{equation*}
m^{(k-i-1)} \geq m_{0}^{(k-i-2)}+m_{1}^{(k-i-1)} \tag{13}
\end{equation*}
$$

By definition of m_{0}^{*} we have $m_{0}^{(k-i-2)} \leq m_{0}^{*(k-i-2)} \leq m_{1}^{*}<m_{1}$ and hence (13) is equivalent to $\left(m_{1}+m_{0}\right)^{(k-i-1)} \geq m_{1}^{(k-i-1)}+\min \left(m_{0}^{(k-i-2)}, m_{1}\right)$, which is implied by Lemma 2.7.

Sub-Sub-CASE (B12) $n_{0} \leq n_{0}^{\prime}$ in (99): Here we then have $n / 2 \leq n_{0} \leq n_{0}^{\prime}$ and $n_{1}^{\prime} \leq n_{1} \leq n / 2$, and hence

$$
n_{0}=\sum_{\ell=0}^{i-1}\binom{k-1}{\ell}+m_{0}, \quad n_{1}=\sum_{\ell=0}^{i-1}\binom{k-1}{\ell}+m_{1}
$$

where $0 \leq m_{1} \leq m_{0}$ and $m_{0}+m_{1}=m+\binom{k-1}{i}$, and hence $\left(m+\binom{k-1}{i}\right) / 2 \leq m_{1} \leq m_{0}<$ $\binom{k-1}{i}$. Here $f_{k}(n) \geq f_{k-1}\left(n_{0}\right)+f_{k-1}\left(n_{1}\right)$ is by definition of f_{k-1}, equivalent to $\binom{k-1}{i-1}+m^{(k-i-1)} \leq$ $m_{0}^{(k-i-1)}+m_{0}^{(k-i-1)}$, which holds by Lemma 2.9,

Sub-CASE (B2) $\binom{k-1}{i} \leq m<\binom{k}{i+1}$: As in case (A2), we have a partition $n=n_{0}^{\prime}+n_{1}^{\prime}$ given by (11) such that we have (12). As in the case (B1), the two sub-cases here, (B21) and (B22), depend on whether $n_{0} \geq n_{0}^{\prime}$ or $n_{0} \leq n_{0}^{\prime}$.

Sub-Sub-CASE (B21) $n_{0} \geq n_{0}^{\prime}$ in (11): Considering the critical pair (n_{0}^{*}, n_{1}^{*}) from Case (A), we have here that $n_{0}^{\prime} \leq n_{0}<n_{0}^{*}$ and hence

$$
n_{0}=\sum_{\ell=0}^{i}\binom{k-1}{\ell}+m_{0}, \quad n_{1}=\sum_{\ell=0}^{i-1}\binom{k-1}{\ell}+m_{1}
$$

where $m^{\prime}:=m-\binom{k-1}{i} \leq m_{0}<m_{0} *, m_{1}^{*}<m_{1} \leq\binom{ k-1}{i}$, and $m_{0}+m_{1}=m$. Now note that $f_{k}(n) \geq f_{k-1}\left(n_{0}\right)+f_{k-1}\left(n_{1}\right)$ is by definition of f_{k-1}, equivalent to

$$
\begin{equation*}
m^{(k-i-1)} \geq m_{0}^{(k-i-2)}+m_{1}^{(k-i-1)} . \tag{14}
\end{equation*}
$$

Since $m_{0} \leq m_{0}^{*}-1$ we have by definition of m_{0}^{*} that $m_{0}^{(k-i-2)} \leq\left(m_{0}^{*}-1\right)^{(k-i-2)}<m_{1}^{*}+1 \leq m_{1}$ and hence (14) is equivalent to $\left(m_{1}+m_{0}\right)^{(k-i-1)} \geq m_{1}^{(k-i-1)}+\min \left(m_{0}^{(k-i-2)}, m_{1}\right)$, which is implied by Lemma 2.7.

Sub-Sub-CASE (B22) $n_{0} \leq n_{0}^{\prime}$ in (11): Here we then have $n / 2 \leq n_{0} \leq n_{0}^{\prime}$ and $n_{1}^{\prime} \leq n_{1} \leq n / 2$, and hence

$$
n_{0}=\sum_{\ell=0}^{i}\binom{k-1}{\ell}+m_{0}, \quad n_{1}=\sum_{\ell=0}^{i}\binom{k-1}{\ell}+m_{1}
$$

where $m^{\prime} / 2 \leq m_{0} \leq m^{\prime}$ and $0 \leq m_{1} \leq m^{\prime} / 2$, and $m_{0}+m_{1}=m^{\prime}=m-\binom{k-1}{i}$. Here $f_{k}(n) \geq$ $f_{k-1}\left(n_{0}\right)+f_{k-1}\left(n_{1}\right)$ is by definition of f_{k-1}, equivalent to $m^{(k-i-1)} \geq m_{0}^{(k-i-2)}+m_{0}^{(k-i-2)}+\binom{k-1}{i-1}$. Since $m=m_{0}+m_{1}+\binom{k-1}{k-i-1}$ this follows from Lemma 2.8.

In all the above six cases (A1), (A2), and (B11), (B12), (B21) and (B22), we have that $f_{k}(n) \geq$ $\min \left(f_{k-1}\left(n_{0}\right)+f_{k-1}\left(n_{1}\right), n_{1}+f_{k-1}\left(n_{1}\right)\right)$ whenever $n_{0}+n_{1}=n$ and $n_{0} \geq n_{1}$. This shows that $f_{k}(n)$ satisfies (8) and therefore that $\phi_{k}(n) \leq f_{k}(n)$, which completes the proof of Theorem 3.2.

4 An application

In this section we apply the main result of the previous section, Theorem 3.2, to determine the value $\min \left(\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)\right)$ where (i) H_{1} and H_{2} are induced subgraphs of Q_{k}, and (ii) together H_{1} and H_{2} cover all the edges of Q_{k}. The main (and the only) theorem in this section is the following.

Theorem 4.1 For $k \in \mathbb{N}$ we have

$$
\min _{E\left(H_{1}\right) \cup E\left(H_{2}\right)=E\left(Q_{k}\right)}\left(\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)\right)=\sum_{\ell=0}^{\lfloor k / 2\rfloor}\binom{k}{\ell}+(k \bmod 2)\binom{k-1}{\lfloor k / 2\rfloor} .
$$

The rest of this final section will be devoted to prove Theorem 4.1.
Assume k is even and that $\left|V\left(H_{1}\right)\right|<\sum_{\ell=0}^{k / 2}\binom{k}{\ell}$. In this case we have

$$
\left|V\left(H_{1}\right)\right| \leq \sum_{\ell=0}^{k / 2}\binom{k}{\ell}-1=\sum_{\ell=0}^{k / 2-1}\binom{k}{\ell}+\left(\binom{k}{k / 2}-1\right) .
$$

By Observation 3.1, Theorem 4.1 and Observation 2.3 we obtain the following.

$$
\begin{aligned}
\phi_{k}\left(\left|V\left(H_{1}\right)\right|\right) & \leq \phi_{k}\left(\sum_{\ell=0}^{k / 2-1}\binom{k}{\ell}+\left(\binom{k}{k / 2}-1\right)\right) \\
& =\sum_{\ell=0}^{k / 2-2}\binom{k}{\ell}+\left(\binom{k}{k / 2}-1\right)^{(k / 2)} \\
& =\sum_{\ell=0}^{k / 2-2}\binom{k}{\ell}+\binom{k}{k / 2+1}-k / 2 \\
& =\sum_{\ell=0}^{k / 2-1}\binom{k}{\ell}-k / 2 \\
& <\sum_{\ell=0}^{k / 2-1}\binom{k}{\ell}
\end{aligned}
$$

Since every vertex in Q_{k} that is not full in H_{1} is incident to an edge in H_{2} and is therefore a vertex in H_{2} we have that

$$
\left|V\left(H_{2}\right)\right| \geq\left|Q_{k}\right|-\phi_{k}\left(\left|V\left(H_{1}\right)\right|\right)>2^{k}-\sum_{\ell=0}^{k / 2-1}\binom{k}{\ell}=\sum_{\ell=0}^{k / 2}\binom{k}{\ell}
$$

and hence $\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)>\sum_{\ell=0}^{k / 2}\binom{k}{\ell}$. On the other hand, if H_{1} and H_{2} are the subgraph of Q_{k} induced by binary strings of length k with at most $k / 20$'s and with at most $k / 21$ s respectively, then $\left|V\left(H_{1}\right)\right|=\left|V\left(H_{2}\right)\right|=\sum_{\ell=0}^{k / 2}\binom{k}{\ell}$ and hence $\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)=\sum_{\ell=0}^{k / 2}\binom{k}{\ell}$. Hence, as H_{1} and H_{2} cover all the edges of Q_{k}, then Theorem4.1 is valid for even k.

Assume k is odd and that

$$
\left|V\left(H_{1}\right)\right|<\sum_{\ell=0}^{\lfloor k / 2\rfloor}\binom{k}{\ell}+\binom{k-1}{\lfloor k / 2\rfloor}
$$

and hence

$$
\left|V\left(H_{1}\right)\right| \leq \sum_{\ell=0}^{(k-1) / 2}\binom{k}{\ell}+\left(\binom{k-1}{\frac{k-1}{2}}-1\right)
$$

As in the even case, we obtain here by Observation 3.1. Theorem 4.1 and Observation 2.3 that

$$
\begin{aligned}
\phi_{k}\left(\left|V\left(H_{1}\right)\right|\right) & \leq \phi_{k}\left(\sum_{\ell=0}^{(k-1) / 2}\binom{k}{\ell}+\left(\binom{k-1}{\frac{k-1}{2}}-1\right)\right) \\
& =\sum_{\ell=0}^{(k-3) / 2}\binom{k}{\ell}+\left(\binom{k-1}{\frac{k-1}{2}}-1\right)^{\left(\frac{k-1}{2}\right)} \\
& =\sum_{\ell=0}^{(k-3) / 2}\binom{k}{\ell}+\binom{k-1}{\frac{k+1}{2}}-\frac{k-1}{2} \\
& <\sum_{\ell=0}^{(k-3) / 2}\binom{k}{\ell}+\binom{k-1}{\frac{k+1}{2}} .
\end{aligned}
$$

Again, since every vertex in Q_{k} that is not full in H_{1} is incident to an edge in H_{2} and is therefore a vertex in H_{2} we have that

$$
\left|V\left(H_{2}\right)\right| \geq\left|Q_{k}\right|-\phi_{k}\left(\left|V\left(H_{1}\right)\right|\right)>2^{k}-\sum_{\ell=0}^{(k-3) / 2}\binom{k}{\ell}-\binom{k-1}{\frac{k+1}{2}}=\sum_{\ell=0}^{(k-1) / 2}\binom{k}{\ell}+\binom{k-1}{\frac{k-1}{2}}
$$

and hence

$$
\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)>\sum_{\ell=0}^{\lfloor k / 2\rfloor}\binom{k}{\ell}+\binom{k-1}{\lfloor k / 2\rfloor} .
$$

On the other hand, considering the subgraphs H_{1} and H_{2} of Q_{k} induced by binary strings of length k, where H_{1} is induced by the strings with at most $(k-1) / 21$'s among the first $k-1$ bits, and H_{2} is induced by the strings with at most $(k-1) / 20$'s among the first $k-1$ bits, we have that $\left|V\left(H_{1}\right)\right|=\left|V\left(H_{2}\right)\right|=2\left(\sum_{\ell=0}^{(k-1) / 2}\binom{k-1}{\ell}\right)$ and hence

$$
\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)=2\left(\sum_{\ell=0}^{(k-1) / 2}\binom{k-1}{\ell}\right)=\sum_{\ell=0}^{\lfloor k / 2\rfloor}\binom{k}{\ell}+\binom{k-1}{\lfloor k / 2\rfloor} .
$$

Hence, as H_{1} and H_{2} cover all the edges of Q_{k}, then Theorem4.1 is valid for odd k. This completes the proof of Theorem 4.1.

Acknowledgments

Sincere thanks to the anonymous referees for ...

References

[1] Sequence A007818, The On-Line Encyclopedia of Integer Sequences (OEIS): http://oeis.org/A007818.
[2] Sequence A000788, The On-Line Encyclopedia of Integer Sequences (OEIS): http://oeis.org/A000788
[3] Geir Agnarsson: On the number of hypercubic bipartitions of an integer. arXiv:1106.4997v1 [math.CO]
[4] Hubert Delange: Sur la fonction sommatoire de la fonction "somme des chiffres". (French), Enseignement Math., (2) 21, no. 1, $31-47$, (1975).
[5] Daniel H. Greene; Donald E. Knuth: Mathematics for the analysis of algorithms. Third edition, Progress in Computer Science and Applied Logic, 1. Birkhäuser Boston, Inc., Boston, MA, (1990).
[6] Branko Grünbaum: Convex polytopes, 2nd ed. Graduate Texts in Mathematics (GTM) 221, Springer-Verlag, New York, (2003).
[7] Frank Harary; Heiko Harborth: Extremal animals, J. Combinatorics Information Syst. Sci., 1, no. 1, $1-8$, (1976),
[8] Sergiu Hart: A note on the edges of the n-cube, Discrete Math., 14, no. 2, 157 - 163, (1976).
[9] Takayuki Hibi: Algebraic combinatorics on convex polytopes, Glebe: Carslaw Publications, (1992).
[10] Gyula O. H. Katona: A theorem of finite sets. Theory of graphs, (Proc. Colloq., Tihany, 1966), Academic Press, New York, 187 - 207, (1968).
[11] Joseph B. Kruskal: The number of simplices in a complex. 1963 Mathematical optimization techniques, Univ. of California Press, Berkeley, Calif., 251 - 278, (1963).
[12] James Lawrence: personal communication.
[13] Zhiyuan Li; Edward M. Reingold: Solution of a divide-and-conquer maximin recurrence, SIAM J. Comput., 18 no. 6, 1188 - 1200, (1989).
[14] M. D. McIlroy: The number of 1's in binary integers: bounds and extremal properties, SIAM J. Comput., 3, 255 - 261, (1974).
[15] Marcel Paul Schützenberger: A characteristic property of certain polynomials of E. F. Moore and C. E. Shannon, RLE Quarterly Progress Report. No. 55, Research Laboratory of Electronics, M.I.T., 117 - 118, (1959).
[16] Richard P. Stanley: Combinatorics and commutative algebra. Second edition. Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, (1996).

[^0]: *Department of Mathematical Sciences, George Mason University, MS 3F2, 4400 University Drive, Fairfax, VA 22030, geir@math.gmu.edu

[^1]: ${ }^{1}$ as a function this has been called the "pseudo power function" 12. It is similar to the "upper boundary operator" 6.

